CN102085096A - Injection current type magnetoacoustic coupling imaging device - Google Patents
Injection current type magnetoacoustic coupling imaging device Download PDFInfo
- Publication number
- CN102085096A CN102085096A CN 201010585231 CN201010585231A CN102085096A CN 102085096 A CN102085096 A CN 102085096A CN 201010585231 CN201010585231 CN 201010585231 CN 201010585231 A CN201010585231 A CN 201010585231A CN 102085096 A CN102085096 A CN 102085096A
- Authority
- CN
- China
- Prior art keywords
- unit
- magnetic field
- excitation
- imaging device
- central control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 33
- 230000008878 coupling Effects 0.000 title claims abstract description 26
- 238000010168 coupling process Methods 0.000 title claims abstract description 26
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 26
- 238000002347 injection Methods 0.000 title claims abstract description 22
- 239000007924 injection Substances 0.000 title claims abstract description 22
- 230000005284 excitation Effects 0.000 claims abstract description 47
- 238000012545 processing Methods 0.000 claims abstract description 38
- 238000001514 detection method Methods 0.000 claims abstract description 27
- 238000013500 data storage Methods 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 8
- 238000012360 testing method Methods 0.000 claims description 8
- 230000001360 synchronised effect Effects 0.000 claims description 7
- 230000003321 amplification Effects 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 6
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 6
- 238000002474 experimental method Methods 0.000 abstract description 10
- 239000000243 solution Substances 0.000 abstract description 2
- 238000011160 research Methods 0.000 description 6
- 238000004422 calculation algorithm Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 108010001267 Protein Subunits Proteins 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000001808 coupling effect Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 235000015277 pork Nutrition 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
- Measuring Magnetic Variables (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
本发明涉及生物组织电特性信息获取技术领域。为提供一种注入电流式磁声耦合成像装置,为注入电流式磁声耦合成像的实验开展提供条件,本发明采用的技术方案是,包括:中心控制单元,激励单元,稳恒磁场单元,介质仿体,电机驱动扫描单元,检测处理单元,和数据存储与显示单元,中心控制单元与其他各单元连接,以提供其他各单元的同步和控制信号;激励单元对介质仿体产生任意波形激励脉冲信号;稳恒磁场单元对介质单元提供稳恒磁场;介质仿体产生的声信号由电机驱动扫描单元驱动传感器扫描、接收并转换成电信号;电信号经过检测处理单元的处理,由数据存储与显示单元进行存储与显示。本发明主要应用于生物组织电特性信息的获取。
The invention relates to the technical field of acquiring electrical characteristic information of biological tissues. In order to provide a current injection type magnetoacoustic coupling imaging device and provide conditions for the experiment of injection current type magnetoacoustic coupling imaging, the technical solution adopted in the present invention is to include: a central control unit, an excitation unit, a constant magnetic field unit, a medium Phantom, motor-driven scanning unit, detection processing unit, and data storage and display unit, the central control unit is connected with other units to provide synchronization and control signals for other units; the excitation unit generates arbitrary waveform excitation pulses for the medium phantom signal; the constant magnetic field unit provides a constant magnetic field to the medium unit; the acoustic signal generated by the medium phantom is scanned, received and converted into an electrical signal by the motor-driven scanning unit; The display unit performs storage and display. The invention is mainly applied to the acquisition of electrical characteristic information of biological tissues.
Description
技术领域technical field
本发明涉及生物组织电特性信息获取技术领域,具体讲,涉及注入电流式磁声耦合成像装置。The invention relates to the technical field of acquiring electrical characteristic information of biological tissues, in particular, to an injection current type magnetoacoustic coupling imaging device.
背景技术Background technique
生物组织电特性信息有助于了解组织电生理特性,从而为疾病的早期诊断提供依据。由于电阻抗技术成像空间分辨率不高,磁声耦合成像克服了上述缺点,兼具电阻抗成像的功能参数高对比度与超声成像高空间分辨率的优点,同时该方法还具有逆问题良态、重建算法相对简单的优点,目前已经成为功能成像领域一个新的研究热点。The information of electrical properties of biological tissue is helpful to understand the electrophysiological properties of tissue, thus providing a basis for early diagnosis of diseases. Due to the low spatial resolution of electrical impedance technology imaging, magnetoacoustic coupling imaging overcomes the above shortcomings, and has the advantages of high contrast of functional parameters of electrical impedance imaging and high spatial resolution of ultrasonic imaging. The advantage of relatively simple reconstruction algorithm has become a new research hotspot in the field of functional imaging.
根据激励的方式不同,磁声耦合成像分为电流注入式和感应式两种。由于感应式磁声耦合,通过磁场耦合产生的感应电流进行激励,而成像的检测器容易受到磁场干扰,对于信号的检测将造成很大影响。而注入式磁声耦合避免了通过磁场的能量变换,从而避免了检测器受到磁场的干扰,According to different excitation methods, magnetoacoustic coupling imaging can be divided into two types: current injection type and inductive type. Due to the inductive magnetoacoustic coupling, the induced current generated by the magnetic field coupling is used for excitation, and the imaging detector is easily disturbed by the magnetic field, which will have a great impact on the detection of the signal. The injection magnetoacoustic coupling avoids the energy conversion through the magnetic field, thereby avoiding the interference of the detector by the magnetic field.
国内外有很多研究机构对该方法展开研究。然而目前的研究主要处于理论模型和模拟仿真阶段,目前的实验也仅停留在较简单的生物组织神经电流检测的研究上,而利用该原理进行的成像实验并未深入开展。There are many research institutions at home and abroad to study this method. However, the current research is mainly in the stage of theoretical models and simulations, and the current experiments only stay in the research of relatively simple neural current detection in biological tissues, and the imaging experiments using this principle have not been carried out in depth.
发明内容Contents of the invention
为克服现有技术的不足,提供一种注入电流式磁声耦合成像装置,为注入电流式磁声耦合成像的实验开展提供条件,从而为该方法理论研究及实验的更加深入的研究,以及将来的医学临床应用打下基础,本发明采用的技术方案是,注入电流式磁声耦合成像装置,包括:中心控制单元,激励单元,稳恒磁场单元,电机驱动扫描单元,检测处理单元、数据存储与显示单元,中心控制单元与其他各单元连接,以提供其他各单元的同步和控制信号;激励单元对被测生物体产生任意波形激励脉冲信号;稳恒磁场单元对介质单元提供稳恒磁场;被测生物体产生的声信号由电机驱动扫描单元驱动传感器扫描、接收并转换成电信号;电信号经过检测处理单元的处理,由数据存储与显示单元进行存储与显示。In order to overcome the deficiencies of the existing technology, an injection current type magnetoacoustic coupling imaging device is provided, which provides conditions for the experiment of injection current type magnetoacoustic coupling imaging, so as to provide more in-depth research on the theoretical research and experiment of this method, as well as the future To lay the foundation for medical clinical application, the technical solution adopted by the present invention is that the injection current magnetoacoustic coupling imaging device includes: a central control unit, an excitation unit, a stable and constant magnetic field unit, a motor-driven scanning unit, a detection processing unit, data storage and The display unit and the central control unit are connected with other units to provide synchronization and control signals for other units; the excitation unit generates an arbitrary waveform excitation pulse signal for the measured organism; the constant magnetic field unit provides a constant magnetic field for the medium unit; The acoustic signal generated by the living body is scanned by the motor-driven scanning unit to drive the sensor, received and converted into an electrical signal; the electrical signal is processed by the detection processing unit, and stored and displayed by the data storage and display unit.
所述中心控制单元包括计算机,GPIB接口,LabVIEW虚拟仪器操作平台,所述中心控制单元通过GPIB接口与其他各单元连接,中心控制单元提供其他各单元的同步和控制信号。The central control unit includes a computer, a GPIB interface, and a LabVIEW virtual instrument operating platform. The central control unit is connected with other units through the GPIB interface, and the central control unit provides synchronization and control signals for other units.
所述激励单元由函数发生器,功率放大器组成,用于提供任意波形激励脉冲信号。The excitation unit is composed of a function generator and a power amplifier, and is used to provide an excitation pulse signal with an arbitrary waveform.
所述稳恒磁场单元提供稳恒磁场,包括电磁铁,直流供电电源,和磁场传感器,及磁场测试装置。The constant magnetic field unit provides a constant magnetic field, including an electromagnet, a DC power supply, a magnetic field sensor, and a magnetic field testing device.
所述被测生物介质与所述激励单元通过电极相连,实现激励。The measured biological medium is connected to the excitation unit through electrodes to realize excitation.
所述电机驱动扫描单元实现传感器对实验仿体的扫描,所述电机驱动扫描单元由步进电机驱动器,步进电机组成。The motor-driven scanning unit realizes the scanning of the sensor to the experimental phantom, and the motor-driven scanning unit is composed of a stepping motor driver and a stepping motor.
所述检测处理单元接收被测生物介质受激励产生的声信号,并进行放大滤波处理,由数据采集卡进行同步触发采集信号,并利用数据处理模块进行处理,最后形成输出,所述检测处理单元由声传感器,低噪声放大器,滤波器组成,数据采集卡构成。The detection processing unit receives the acoustic signal generated by the excitation of the measured biological medium, and performs amplification and filtering processing, and the data acquisition card triggers the acquisition signal synchronously, and uses the data processing module for processing, and finally forms an output. The detection processing unit It is composed of acoustic sensor, low noise amplifier, filter and data acquisition card.
所述数据存储与显示单元在同步信号的驱动下完成数据的存储与显示,所述数据存储与显示单元由磁盘阵列和示波器组成。The data storage and display unit is driven by a synchronous signal to complete data storage and display, and the data storage and display unit is composed of a disk array and an oscilloscope.
本发明具有如下技术效果:由于本发明采用了中心控制单元,激励单元,稳恒磁场单元,电机驱动扫描单元,检测处理单元,和数据存储与显示单元结构,因而本发明能够实现对被测物施加电流刺激,测量被测物产生的声波信号,形成图像显示;此外,本发明还具有测试准确可靠的特点。The present invention has the following technical effects: since the present invention adopts a central control unit, an excitation unit, a constant magnetic field unit, a motor-driven scanning unit, a detection processing unit, and a data storage and display unit structure, the present invention can realize the Apply current stimulation, measure the sound wave signal generated by the measured object, and form an image display; in addition, the present invention also has the characteristics of accurate and reliable testing.
附图说明Description of drawings
图1是本发明的系统结构图。Fig. 1 is a system structure diagram of the present invention.
图2是本发明的激励单元。Figure 2 is the excitation unit of the present invention.
图3是本发明的稳恒磁场单元。Fig. 3 is the constant magnetic field unit of the present invention.
图4是本发明的电机驱动扫描单元。FIG. 4 is a motor-driven scanning unit of the present invention.
图5是本发明的被测生物介质。Figure 5 is the tested biological medium of the present invention.
图6是本发明的检测处理单元。Fig. 6 is the detection processing unit of the present invention.
图7是本发明的数据存储与显示单元。Fig. 7 is the data storage and display unit of the present invention.
图8是本发明的系统工作过程。Fig. 8 is the working process of the system of the present invention.
其中,in,
1:中心控制单元1: Central control unit
2:激励单元2: Excitation unit
3:稳恒磁场单元3: Steady magnetic field unit
4:被测生物介质4: Measured biological medium
5:电机驱动扫描单元5: Motor-driven scanning unit
6:检测处理单元6: Detection processing unit
7:数据存储显示单元7: Data storage display unit
8:函数发生器8: Function Generator
9:功率放大器9: Power Amplifier
10:电磁铁10: Electromagnet
11:直流供电电源11: DC power supply
12:磁场传感器12: Magnetic field sensor
13:磁场测试装置13: Magnetic field testing device
14:电极14: electrode
15:步进电机驱动器15: Stepper motor driver
16:步进电机16: stepper motor
17:声传感器17: Acoustic sensor
18:低噪声放大器18: Low noise amplifier
19:滤波器19: filter
20:数据采集卡20: Data acquisition card
21:数据处理模块21: Data processing module
22:磁盘阵列22: disk array
23:示波器。23: Oscilloscope.
具体实施方式Detailed ways
注入电流式磁声耦合成像装置,包括:中心控制单元,激励单元,稳恒磁场单元,电机驱动扫描单元,检测处理单元和数据存储与显示单元。The injection current magneto-acoustic coupling imaging device includes: a central control unit, an excitation unit, a constant magnetic field unit, a motor-driven scanning unit, a detection processing unit, and a data storage and display unit.
所述中心控制单元由计算机,GPIB接口,及LabVIEW虚拟仪器操作平台实现。所述中心控制单元通过GPIB接口与各子单元连接,中心控制单元提供其他各单元的同步和控制信号。The central control unit is realized by a computer, a GPIB interface, and a LabVIEW virtual instrument operating platform. The central control unit is connected with each subunit through a GPIB interface, and the central control unit provides synchronization and control signals for other units.
所述激励单元提供任意波形激励脉冲信号。所述激励单元由函数发生器,功率放大器组成。实验中,激励单元脉冲波形选择或编程产生正弦脉冲,矩形脉冲,高斯脉冲或其他任意波形,脉宽为μs-ms级的脉冲,以达到cm级的分辨率,输出电压范围为100mV-100V。The excitation unit provides an arbitrary waveform excitation pulse signal. The excitation unit is composed of a function generator and a power amplifier. In the experiment, the pulse waveform of the excitation unit is selected or programmed to generate sinusoidal pulses, rectangular pulses, Gaussian pulses or other arbitrary waveforms with a pulse width of μs-ms level to achieve cm-level resolution, and the output voltage range is 100mV-100V.
所述稳恒磁场单元提供稳恒磁场,包括电磁铁,直流供电电源,和磁场传感器,及磁场测试装置。所述稳恒磁场单元用于提供磁声耦合效应的静磁场。所述稳恒磁场单元产生磁场的磁感应强度为1mT-1T,并可实时检测。The constant magnetic field unit provides a constant magnetic field, including an electromagnet, a DC power supply, a magnetic field sensor, and a magnetic field testing device. The constant magnetic field unit is used to provide a static magnetic field for magnetoacoustic coupling effect. The magnetic induction intensity of the magnetic field generated by the constant magnetic field unit is 1mT-1T, and can be detected in real time.
所述被测生物介质可根据实验目的进行选择。The tested biological medium can be selected according to the purpose of the experiment.
所述被测生物介质与所述激励单元通过电极相连,实现激励。The measured biological medium is connected to the excitation unit through electrodes to realize excitation.
所述电机驱动扫描单元实现传感器对实验仿体的扫描,所述电机驱动扫描单元由步进电机驱动器,步进电机组成。扫描步进角度为1.8°,扫描范围为360°。The motor-driven scanning unit realizes the scanning of the sensor to the experimental phantom, and the motor-driven scanning unit is composed of a stepping motor driver and a stepping motor. The scanning step angle is 1.8°, and the scanning range is 360°.
所述检测处理单元接收被测生物介质受激励产生的声信号,并进行放大滤波处理,由数据采集卡进行同步触发采集信号,并利用数据处理模块进行处理,最后形成输出。所述检测处理单元由声传感器,低噪声放大器滤波器组成,数据采集卡,和数据处理模块组成。所述检测处理单元检测精度达到10-3Pa量级,带宽为1MHz。The detection processing unit receives the acoustic signal generated by the excitation of the measured biological medium, and performs amplification and filtering processing, and the data acquisition card performs synchronous trigger acquisition signal, and uses the data processing module to process, and finally forms an output. The detection processing unit is composed of an acoustic sensor, a low noise amplifier filter, a data acquisition card, and a data processing module. The detection processing unit has a detection accuracy of 10-3 Pa and a bandwidth of 1 MHz.
所述数据存储与显示单元在同步信号的驱动下完成数据的存储与显示。所述数据存储与显示单元由磁盘阵列和示波器组成。所述存储显示单元存入容量可达1TB。The data storage and display unit is driven by a synchronous signal to complete data storage and display. The data storage and display unit is composed of a disk array and an oscilloscope. The storage capacity of the storage display unit can reach 1TB.
所述一种注入电流式磁声耦合成像实验系统,具体的工作过程如下:The specific working process of the current injection type magnetoacoustic coupling imaging experimental system is as follows:
系统工作时,由中心控制单元通过GPIB接口与各子单元通信,向其他各子单元发送命令,When the system is working, the central control unit communicates with each sub-unit through the GPIB interface, and sends commands to other sub-units,
1.各子单元启动。1. Each subunit starts.
2.由中心控制单元对各子单元进行参数设置。2. The central control unit sets the parameters of each sub-unit.
3.由激励单元输出激励信号,通过电极注入被测生物介质内,在稳恒磁场单元提供稳恒磁场的情况下,即可激发产生声信号。3. The excitation signal is output by the excitation unit, which is injected into the biological medium to be measured through the electrodes. Under the condition of the constant magnetic field provided by the constant magnetic field unit, the acoustic signal can be excited and generated.
4.检测处理单元对信号进行接收。4. The detection processing unit receives the signal.
5.检测处理单元对信号检测处理,包括放大滤波等。5. The detection processing unit detects and processes the signal, including amplification and filtering.
6.由数据存储显示单元进行数据存储,与实时显示。6. The data storage and display unit is used for data storage and real-time display.
7.若扫描未结束,则由电机驱动扫描单元驱动步进电机移动一定角度,并重复3-6的工作步骤;若扫描结束,则整个系统工作结束。7. If the scanning is not over, the motor drives the scanning unit to drive the stepping motor to move a certain angle, and repeat the working steps of 3-6; if the scanning is over, the whole system ends.
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下:In order to further understand the invention content, characteristics and effects of the present invention, the following examples are given, and detailed descriptions are as follows in conjunction with the accompanying drawings:
请参见图6,磁声耦合成像的基本原理是,对置于稳恒磁场中的介质仿体,通过电极对介质仿体注入电流,电流受到洛仑兹力的作用,产生瞬间的位移,形成声波振动,并且振动的频率与注入的电流频率相同。此时,在介质仿体外部利用声波换能器即可检测到声波响应,结合相应的图象重建算法,即可重建出介质放体的电特性(如电导率)分布的图像。生物组织是电介质,不同的生物组织及同一组织在病变情况下其电特性会发生变化,磁声耦合的成像方法,目的在于得到生物组织内电特性的信息,从而实现早期的功能诊断。Please refer to Figure 6. The basic principle of magneto-acoustic coupling imaging is to inject current into the dielectric phantom through the electrodes for the dielectric phantom placed in a steady magnetic field. The sound waves vibrate, and at the same frequency as the injected electrical current. At this time, the acoustic wave response can be detected by using the acoustic wave transducer outside the medium phantom, combined with the corresponding image reconstruction algorithm, the image of the distribution of the electrical properties (such as conductivity) of the medium phantom can be reconstructed. Biological tissue is a dielectric, and the electrical properties of different biological tissues and the same tissue will change under the condition of disease. The magneto-acoustic coupling imaging method aims to obtain information on the electrical properties of biological tissues, so as to realize early functional diagnosis.
根据电磁学理论,介质内部受到洛仑兹力作用,According to the theory of electromagnetism, the interior of the medium is acted by the Lorentz force,
dF=Idl×BdF=Idl×B
其中l为长度单元,F为洛仑兹力,B为静磁场,I为注入介质仿体的电流。Among them, l is the length unit, F is the Lorentz force, B is the static magnetic field, and I is the current injected into the dielectric phantom.
根据欧姆定律,According to Ohm's law,
I=U/RI=U/R
当激励单元提供的电压一定时,则介质仿体内的电流密度分布与介质参数有关。When the voltage provided by the excitation unit is constant, the current density distribution in the dielectric phantom is related to the dielectric parameters.
同时,由电磁学和声学理论可知,声压大小与稳恒磁场,介质内部电流密度,介质仿体的电参数密切相关At the same time, it can be seen from the theory of electromagnetism and acoustics that the sound pressure is closely related to the steady and constant magnetic field, the current density inside the medium, and the electrical parameters of the medium phantom.
其中,为超声在介质仿体中的传播速度,ρ0为介质密度,βs为绝热压缩系数,p为声压,J为电流密度,B为稳恒磁场。in, is the propagation velocity of ultrasound in the medium phantom, ρ0 is the medium density, βs is the adiabatic compressibility coefficient, p is the sound pressure, J is the current density, and B is the steady magnetic field.
综上,可以推导得出,在已知稳恒磁场和激励电压的情况下,对于一个电导率参数分布确定的介质仿体,声压大小与电导率有关,即振动声源位于介质内电导率变化的界面处强度较大。利用换能器在介质仿体外部检测到的超声脉冲信号随时间的变化曲线,反映了沿此传播方向上介质内部电导率的变化。因此,通过位于介质仿体外换能器检测的声信号即可得到沿传播方向的电导率界面的位置。In summary, it can be deduced that, in the case of known steady magnetic field and excitation voltage, for a medium phantom whose conductivity parameter distribution is determined, the sound pressure is related to the conductivity, that is, the vibration sound source is located in the medium with conductivity The intensity at the changed interface is greater. The time-varying curve of the ultrasonic pulse signal detected by the transducer outside the medium phantom reflects the change of the internal conductivity of the medium along this propagation direction. Therefore, the position of the conductivity interface along the propagation direction can be obtained from the acoustic signal detected by the transducer located outside the dielectric phantom.
一种注入电流式磁声耦合成像实验系统,包括中心控制单元,激励单元,稳恒磁场单元,介质仿体,电机驱动扫描单元,检测处理单元,和数据存储与显示单元。An injection current magnetoacoustic coupling imaging experiment system includes a central control unit, an excitation unit, a constant magnetic field unit, a medium phantom, a motor-driven scanning unit, a detection processing unit, and a data storage and display unit.
所述中心控制单元由计算机,GPIB接口,及LabVIEW虚拟仪器操作平台实现。所述中心控制单元通过GPIB接口与各子单元连接,中心控制单元提供其他各单元的同步和控制信号。The central control unit is realized by a computer, a GPIB interface, and a LabVIEW virtual instrument operating platform. The central control unit is connected with each subunit through a GPIB interface, and the central control unit provides synchronization and control signals for other units.
所述激励单元由函数发生器,功率放大器组成,函数发生器型号为泰克AFG3252,功率放大器型号为HSA4104。所述激励元提供任意波形电流脉冲信号。The excitation unit is composed of a function generator and a power amplifier, the function generator model is Tektronix AFG3252, and the power amplifier model is HSA4104. The excitation unit provides an arbitrary waveform current pulse signal.
由中心控制单元对函数发生器和功率放大器进行参数设置和输出控制。输出的电压信号通过电极在仿体介质内形成注入电流,Parameter setting and output control of the function generator and power amplifier are performed by the central control unit. The output voltage signal forms an injection current in the phantom medium through the electrodes,
已有研究表明,MAT-MI的成像分辨率与脉冲宽度有关,而且其正比于声速与脉冲宽度之积,为了能够获得更高分辨率的组织电导率分布图像,理想情况下脉冲磁场的激励信号应采用变化率大且脉宽很窄的波形。考虑对介质内大小为Δl的目标(如组织中的肿瘤)成像,则由换能器检测到成像目标边界的前后两个信号脉冲,如图2所示,设其间隔为Δt,有Existing studies have shown that the imaging resolution of MAT-MI is related to the pulse width, and it is proportional to the product of sound velocity and pulse width. A waveform with a large rate of change and a narrow pulse width should be used. Considering the imaging of a target (such as a tumor in the tissue) with a size of Δl in the medium, the transducer detects two signal pulses before and after the boundary of the imaging target, as shown in Figure 2, and the interval is set as Δt, and we have
Δl=cs·ΔtΔl=c s ·Δt
为了使成像分辨率达到毫米级,激励单元输出的脉冲信号脉宽应小于1μs量级。激励脉冲可选择使用正弦脉冲或矩形脉冲。In order to achieve a millimeter-level imaging resolution, the pulse width of the pulse signal output by the excitation unit should be less than 1 μs. The excitation pulse can choose to use sinusoidal pulse or rectangular pulse.
所述稳恒磁场单元提供稳恒磁场,包括电磁铁,直流供电电源,和磁场传感器,及磁场测试装置。电磁铁型号英普SBV-380,可达到最大2.4T的磁感应强度,电磁铁直流供电电源型号为Agilent-6684A,磁场传感器型号为Lakeshore HMNT-4E04-VR,磁场测试装置型号为Lakeshore 460。The constant magnetic field unit provides a constant magnetic field, including an electromagnet, a DC power supply, a magnetic field sensor, and a magnetic field testing device. The electromagnet model is Yingpu SBV-380, which can reach a maximum magnetic induction of 2.4T. The model of the electromagnet DC power supply is Agilent-6684A, the model of the magnetic field sensor is Lakeshore HMNT-4E04-VR, and the model of the magnetic field testing device is Lakeshore 460.
所述稳恒磁场单元用于提供磁声耦合效应的静磁场。由中心控制单元对直流供电电源进行控制,同时控制磁场测试装置,由磁场传感器对磁感应强度进行测量。The constant magnetic field unit is used to provide a static magnetic field for magnetoacoustic coupling effect. The DC power supply is controlled by the central control unit, and the magnetic field testing device is controlled at the same time, and the magnetic induction intensity is measured by the magnetic field sensor.
所述被测生物介质可根据实验目的,设计其尺寸大小。可使用如猪肉等动物组织,或添加有一定比例盐的琼脂块,或者金属块如铜块等进行实验。The size of the tested biological medium can be designed according to the purpose of the experiment. Animal tissues such as pork, or agar blocks with a certain percentage of salt added, or metal blocks such as copper blocks can be used for experiments.
所述被测生物介质与所述激励单元通过电极相连,实现激励。电极由0.5mm-1mm线径的铜金属丝或铝金属丝实现。The measured biological medium is connected to the excitation unit through electrodes to realize excitation. The electrodes are realized by copper or aluminum wires with a wire diameter of 0.5mm-1mm.
所述电机驱动扫描单元由步进电机驱动器,步进电机组成。系统工作时,由步进电机驱动器驱动步进电机旋转特定角度,如1.8°进行扫描,扫描范围为360°。扫描的同时,在激励单元的激励下,由被测生物介质产生的声信号,通过检测处理单元接收。步进电机型号为NI-NEMA23,驱动器型号为P70530。The motor-driven scanning unit is composed of a stepper motor driver and a stepper motor. When the system is working, the stepper motor driver drives the stepper motor to rotate at a specific angle, such as 1.8° for scanning, and the scanning range is 360°. While scanning, under the excitation of the excitation unit, the acoustic signal generated by the measured biological medium is received by the detection and processing unit. The model of the stepper motor is NI-NEMA23, and the model of the driver is P70530.
所述检测处理单元由声传感器,低噪声放大器滤波器组成,数据采集卡,和数据处理模块组成。The detection processing unit is composed of an acoustic sensor, a low noise amplifier filter, a data acquisition card, and a data processing module.
所述检测处理单元接收被测生物介质受激励产生的声信号,并进行放大滤波处理,由数据采集卡进行同步触发采集信号,并利用数据处理模块进行处理,最后形成输出。声传感器型号为Olympus V303,低噪声放大器型号为NF-SA230F5,滤波器型号为nf 3628,数据采集卡型号为NI PXIe-5122。数据处理模块可采用平均叠加算法进行1000次以上的叠加平均计算。The detection processing unit receives the acoustic signal generated by the excitation of the measured biological medium, and performs amplification and filtering processing, and the data acquisition card performs synchronous trigger acquisition signal, and uses the data processing module to process, and finally forms an output. The acoustic sensor model is Olympus V303, the low noise amplifier model is NF-SA230F5, the filter model is nf 3628, and the data acquisition card model is NI PXIe-5122. The data processing module can use the average superposition algorithm to perform more than 1000 superposition average calculations.
所述数据存储与显示单元由磁盘阵列和示波器组成。所述数据存储与显示单元在同步信号的驱动下完成数据的存储与显示。磁盘阵列型号为NI-8262,示波器型号为泰克TDS2012B。The data storage and display unit is composed of a disk array and an oscilloscope. The data storage and display unit is driven by a synchronous signal to complete data storage and display. The disk array model is NI-8262, and the oscilloscope model is Tektronix TDS2012B.
综上所述,所述一种注入电流式磁声耦合成像实验系统,具体的工作过程如下,参见图9:To sum up, the specific working process of the current injection type magnetoacoustic coupling imaging experimental system is as follows, see Figure 9:
系统工作时,由中心控制单元通过GPIB接口与各子单元通信,向其他各子单元发送命令,When the system is working, the central control unit communicates with each sub-unit through the GPIB interface, and sends commands to other sub-units,
1.各子单元启动。1. Each subunit starts.
2.由中心控制单元对各子单元进行参数设置。2. The central control unit sets the parameters of each sub-unit.
3.由激励单元输出激励,通过电极注入介质仿体内,在稳恒磁场单元提供稳恒磁场的情况下,即可激发产生声信号。3. The excitation is output by the excitation unit, injected into the dielectric body through the electrode, and the acoustic signal can be excited and generated under the condition of the constant magnetic field provided by the constant magnetic field unit.
4.检测处理单元对信号进行接收。4. The detection processing unit receives the signal.
5.检测处理单元对信号检测处理,包括放大滤波等。5. The detection processing unit detects and processes the signal, including amplification and filtering.
6.由数据存储显示单元进行数据存储,与实时显示。6. The data storage and display unit is used for data storage and real-time display.
7.若扫描未结束,则由电机驱动扫描单元驱动步进电机移动一定角度,并重复3-6的工作步骤;若扫描结束,则整个系统工作结束。7. If the scanning is not over, the motor drives the scanning unit to drive the stepping motor to move a certain angle, and repeat the working steps of 3-6; if the scanning is over, the whole system ends.
尽管上面结合附图对本发明的优选实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,并不是限制性的。本发明中的中心控制单元还可使用单片机,或者数字处理系统完成。本发明中所述的显示存储单元还可使用液晶显示器,及固态硬盘组成。本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以作出很多形式,这些均属于本发明的保护范围之内。Although the preferred embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to the above specific implementations, which are only illustrative and not restrictive. The central control unit in the present invention can also be completed using a single-chip microcomputer or a digital processing system. The display storage unit described in the present invention can also be composed of a liquid crystal display and a solid state hard disk. Under the enlightenment of the present invention, those skilled in the art can also make many forms without departing from the gist of the present invention and the scope of protection of the claims, and these all belong to the protection scope of the present invention.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201010585231 CN102085096B (en) | 2010-12-13 | 2010-12-13 | Injection current type magnetoacoustic coupling imaging device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201010585231 CN102085096B (en) | 2010-12-13 | 2010-12-13 | Injection current type magnetoacoustic coupling imaging device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102085096A true CN102085096A (en) | 2011-06-08 |
| CN102085096B CN102085096B (en) | 2012-07-04 |
Family
ID=44097270
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 201010585231 Expired - Fee Related CN102085096B (en) | 2010-12-13 | 2010-12-13 | Injection current type magnetoacoustic coupling imaging device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102085096B (en) |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102590625A (en) * | 2012-02-29 | 2012-07-18 | 中国医学科学院生物医学工程研究所 | Magnetic acoustic coupling imaging weak acoustic signal frequency domain detection processing method |
| CN102590764A (en) * | 2012-03-02 | 2012-07-18 | 中国医学科学院生物医学工程研究所 | MHz pulse weak magnetic field detection experimental system and signal processing system |
| CN102599935A (en) * | 2012-03-23 | 2012-07-25 | 中国医学科学院生物医学工程研究所 | Device for accurately positioning and controlling position of acoustic probe in magnetoacoustic coupling imaging |
| CN103519817A (en) * | 2013-10-28 | 2014-01-22 | 中国医学科学院生物医学工程研究所 | Method and device for filtering zero-point magnetic field interference pulses through magnetoacoustic coupling imaging |
| CN103610462A (en) * | 2013-11-26 | 2014-03-05 | 中国医学科学院生物医学工程研究所 | Transversely-moving-circular composite scanning method for magnetic acoustic imaging |
| CN104013388A (en) * | 2014-06-13 | 2014-09-03 | 中国医学科学院生物医学工程研究所 | Magneto-acoustic coupling imaging excitation and detection method and device based on low-frequency continuous waves |
| CN104239642A (en) * | 2014-09-19 | 2014-12-24 | 中国医学科学院生物医学工程研究所 | Vector solving method for magnetoacoustic coupling direct problem under sinusoidal excitation |
| CN104865538A (en) * | 2014-02-25 | 2015-08-26 | 旺玖科技股份有限公司 | System and method for detecting ultra-weak magnetic field, buffer unit, excitation source unit |
| CN104856675A (en) * | 2015-06-08 | 2015-08-26 | 中国医学科学院生物医学工程研究所 | Phantom preparation device and method for magnetoacoustic coupling signal detection test |
| CN105092693A (en) * | 2015-08-19 | 2015-11-25 | 中国医学科学院生物医学工程研究所 | Magnetosonic imaging signal processing device and processing method based on pulse code |
| CN106442703A (en) * | 2016-09-18 | 2017-02-22 | 中国医学科学院生物医学工程研究所 | Gated alternating electromagnetic excitation magnetoacoustic tomography device and method with capacity of reducing power consumption |
| CN106901734A (en) * | 2017-02-28 | 2017-06-30 | 深圳大学 | A bioacoustic conductivity detection device for biological tissue |
| CN108387817A (en) * | 2018-01-23 | 2018-08-10 | 中国科学院电工研究所 | A kind of Fault Diagnosis for Grounding Grids method and device based on Injection Current formula multi- scenarios method |
| CN109358472A (en) * | 2018-09-18 | 2019-02-19 | 中国医学科学院生物医学工程研究所 | Magnetoacoustic signals production method and device based on modulated excitation |
| CN111175371A (en) * | 2020-01-10 | 2020-05-19 | 中国医学科学院生物医学工程研究所 | Two-dimensional focusing scanning magnetic acoustic imaging device |
| CN111887846A (en) * | 2020-08-19 | 2020-11-06 | 中国科学院电工研究所 | A coupled imaging method and device based on field modulation |
| CN113812926A (en) * | 2021-09-27 | 2021-12-21 | 中国民航大学 | A magneto-acoustic coupled imaging system and method based on laser Doppler vibration measurement |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104434099B (en) * | 2014-12-14 | 2017-08-22 | 中国科学院电工研究所 | The resistivity method for reconstructing of magnetic thermal acoustic imaging is carried out using Linear Double vorticity equation |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6535625B1 (en) * | 1999-09-24 | 2003-03-18 | Magnetus Llc | Magneto-acoustic imaging |
| CN101247758A (en) * | 2005-05-11 | 2008-08-20 | 明尼苏达大学评议会 | Method and apparatus for imaging using magnetic induction |
-
2010
- 2010-12-13 CN CN 201010585231 patent/CN102085096B/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6535625B1 (en) * | 1999-09-24 | 2003-03-18 | Magnetus Llc | Magneto-acoustic imaging |
| CN101247758A (en) * | 2005-05-11 | 2008-08-20 | 明尼苏达大学评议会 | Method and apparatus for imaging using magnetic induction |
Non-Patent Citations (4)
| Title |
|---|
| 19940831 Bradley J.,et.al A Theoretical Model for Magneto-Acoustic Imaging of Bioelectric Currents 723-728 1-8 第41卷, 第8期 2 * |
| 20050831 杨少华,等 一种基于磁声电相互耦合的神经电流检测方法 31,32,42 1-8 第26卷, 第8期 2 * |
| 20100430 李经宇,殷涛,刘志朋,许国辉 基于磁声耦合效应的电导率图像重建研究 416-420 1-8 第27卷, 第2期 2 * |
| 20100630 李峋 基于乳腺肿瘤模型的感应式磁声成像正问题研究 390-398 1-8 第29卷, 第3期 2 * |
Cited By (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102590625A (en) * | 2012-02-29 | 2012-07-18 | 中国医学科学院生物医学工程研究所 | Magnetic acoustic coupling imaging weak acoustic signal frequency domain detection processing method |
| CN102590625B (en) * | 2012-02-29 | 2014-05-14 | 中国医学科学院生物医学工程研究所 | Magnetic acoustic coupling imaging weak acoustic signal frequency domain detection processing method |
| CN102590764A (en) * | 2012-03-02 | 2012-07-18 | 中国医学科学院生物医学工程研究所 | MHz pulse weak magnetic field detection experimental system and signal processing system |
| CN102599935B (en) * | 2012-03-23 | 2014-05-07 | 中国医学科学院生物医学工程研究所 | Device for accurately positioning and controlling position of acoustic probe in magnetoacoustic coupling imaging |
| CN102599935A (en) * | 2012-03-23 | 2012-07-25 | 中国医学科学院生物医学工程研究所 | Device for accurately positioning and controlling position of acoustic probe in magnetoacoustic coupling imaging |
| CN103519817A (en) * | 2013-10-28 | 2014-01-22 | 中国医学科学院生物医学工程研究所 | Method and device for filtering zero-point magnetic field interference pulses through magnetoacoustic coupling imaging |
| CN103519817B (en) * | 2013-10-28 | 2015-04-22 | 中国医学科学院生物医学工程研究所 | Method and device for filtering zero-point magnetic field interference pulses through magnetoacoustic coupling imaging |
| CN103610462A (en) * | 2013-11-26 | 2014-03-05 | 中国医学科学院生物医学工程研究所 | Transversely-moving-circular composite scanning method for magnetic acoustic imaging |
| CN103610462B (en) * | 2013-11-26 | 2015-07-08 | 中国医学科学院生物医学工程研究所 | A translational-circumferential composite scanning method for magnetoacoustic imaging |
| CN104865538A (en) * | 2014-02-25 | 2015-08-26 | 旺玖科技股份有限公司 | System and method for detecting ultra-weak magnetic field, buffer unit, excitation source unit |
| CN104865538B (en) * | 2014-02-25 | 2018-05-08 | 旺玖科技股份有限公司 | System and method for detecting ultra-weak magnetic field, buffer unit and excitation source unit |
| CN104013388A (en) * | 2014-06-13 | 2014-09-03 | 中国医学科学院生物医学工程研究所 | Magneto-acoustic coupling imaging excitation and detection method and device based on low-frequency continuous waves |
| CN104239642A (en) * | 2014-09-19 | 2014-12-24 | 中国医学科学院生物医学工程研究所 | Vector solving method for magnetoacoustic coupling direct problem under sinusoidal excitation |
| CN104239642B (en) * | 2014-09-19 | 2017-05-31 | 中国医学科学院生物医学工程研究所 | Magnetosonic couples the vector method for solving of direct problem under a kind of sinusoidal excitation |
| CN104856675A (en) * | 2015-06-08 | 2015-08-26 | 中国医学科学院生物医学工程研究所 | Phantom preparation device and method for magnetoacoustic coupling signal detection test |
| CN104856675B (en) * | 2015-06-08 | 2017-06-09 | 中国医学科学院生物医学工程研究所 | Imitative body for magnetosonic coupled signal test experience prepares device and method |
| CN105092693B (en) * | 2015-08-19 | 2018-03-13 | 中国医学科学院生物医学工程研究所 | A kind of magnetosonic imaging signal processing unit and processing method based on pulse code |
| CN105092693A (en) * | 2015-08-19 | 2015-11-25 | 中国医学科学院生物医学工程研究所 | Magnetosonic imaging signal processing device and processing method based on pulse code |
| CN106442703A (en) * | 2016-09-18 | 2017-02-22 | 中国医学科学院生物医学工程研究所 | Gated alternating electromagnetic excitation magnetoacoustic tomography device and method with capacity of reducing power consumption |
| CN106901734A (en) * | 2017-02-28 | 2017-06-30 | 深圳大学 | A bioacoustic conductivity detection device for biological tissue |
| CN108387817A (en) * | 2018-01-23 | 2018-08-10 | 中国科学院电工研究所 | A kind of Fault Diagnosis for Grounding Grids method and device based on Injection Current formula multi- scenarios method |
| CN109358472A (en) * | 2018-09-18 | 2019-02-19 | 中国医学科学院生物医学工程研究所 | Magnetoacoustic signals production method and device based on modulated excitation |
| CN111175371A (en) * | 2020-01-10 | 2020-05-19 | 中国医学科学院生物医学工程研究所 | Two-dimensional focusing scanning magnetic acoustic imaging device |
| CN111887846A (en) * | 2020-08-19 | 2020-11-06 | 中国科学院电工研究所 | A coupled imaging method and device based on field modulation |
| CN111887846B (en) * | 2020-08-19 | 2024-04-16 | 中国科学院电工研究所 | Coupling imaging method and device based on field regulation and control |
| CN113812926A (en) * | 2021-09-27 | 2021-12-21 | 中国民航大学 | A magneto-acoustic coupled imaging system and method based on laser Doppler vibration measurement |
| CN113812926B (en) * | 2021-09-27 | 2024-05-10 | 中国民航大学 | A magnetoacoustic coupling imaging system and method based on laser Doppler vibrometer |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102085096B (en) | 2012-07-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102085096B (en) | Injection current type magnetoacoustic coupling imaging device | |
| CN102788836B (en) | Magneto-acoustic microscopic imaging method and imaging system | |
| Xu et al. | Magnetoacoustic tomography with magnetic induction (MAT-MI) | |
| CN101247758B (en) | Methods and apparatus for imaging with magnetic induction | |
| Chen et al. | Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity | |
| CN107550458B (en) | Multi-characteristic imaging method of biological tissue based on acoustoelectric effect and acoustic radiation force | |
| CN109645999B (en) | A 4D Transcranial Focused Ultrasound Neuroimaging Method Based on Acoustoelectric Effect | |
| Mariappan et al. | Magnetoacoustic tomography with magnetic induction: bioimepedance reconstruction through vector source imaging | |
| CN107174202B (en) | A method and system for magneto-acoustic imaging based on active detection | |
| Qin et al. | Optimizing frequency and pulse shape for ultrasound current source density imaging | |
| CN102590625B (en) | Magnetic acoustic coupling imaging weak acoustic signal frequency domain detection processing method | |
| CN104013388B (en) | Based on the excitation of magnetosonic coupling imaging and detection method and the device of low frequency and continuous ripple | |
| Liu et al. | Magnetoacoustic tomography with current injection | |
| CN107064302A (en) | A kind of Injection Current formula thermal acoustic imaging electrical conductivity method for reconstructing | |
| CN105251125A (en) | Integrated device of transcranial magnetoacoustic stimulation and electroencephalogram detection | |
| CN109745077A (en) | A method for detecting elastic properties based on focused ultrasonic vibro-acoustic signals | |
| CN108732240B (en) | System and method for quantitatively estimating HIFU damage viscoelasticity by laser Doppler monitoring pulsed acoustic radiation force shear wave | |
| CN118217553A (en) | An integrated system and method for HIFU heating and temperature measurement based on ultrasonic transducer | |
| CN108392751B (en) | A method for real-time monitoring of high-intensity focused ultrasound treatment of acoustic cavitation | |
| CN103330576B (en) | Micro-elasticity imaging method based on tissue microbubble dynamics model | |
| Yu et al. | Transcranial ultrasound estimation of viscoelasticity and fluidity in brain tumors aided by transcranial shear waves | |
| CN106885842B (en) | A Resistivity Reconstruction Method of Injected Current Thermoacoustic Imaging | |
| CN107536608A (en) | Non-intrusion type acoustic-electric imaging method based on sensitivity field theory | |
| CN207323489U (en) | A magnetoacoustic conductivity detection device for biological tissue | |
| CN114052699B (en) | A method and device for thermoacoustic imaging of magnetic nanoparticles based on single pulse magnetic field excitation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120704 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |