CN102088161B - High speed and high power semiconductor light source - Google Patents
High speed and high power semiconductor light source Download PDFInfo
- Publication number
- CN102088161B CN102088161B CN2009102137262A CN200910213726A CN102088161B CN 102088161 B CN102088161 B CN 102088161B CN 2009102137262 A CN2009102137262 A CN 2009102137262A CN 200910213726 A CN200910213726 A CN 200910213726A CN 102088161 B CN102088161 B CN 102088161B
- Authority
- CN
- China
- Prior art keywords
- speed
- light source
- semiconductor light
- power
- power semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【技术领域】 【Technical field】
本发明涉及一种半导体激光光源,尤其涉及一种高速大功率半导体光源。The invention relates to a semiconductor laser light source, in particular to a high-speed and high-power semiconductor light source.
【背景技术】 【Background technique】
普通通讯用的半导体激光器的输出功率一般为毫瓦级,无法满足诸如无线光通信系统对光源高速、大功率的需要。目前,实现高速、大功率光源的方法是采用半导体激光器+掺铒光纤放大器,可以得到2.5Gb/S的调制速率和百毫瓦的输出光功率。但是,该方法制作的高速、大功率光源具有体积庞大,封装困难,耦合效率低,光功率损耗较大,成本高等缺点。The output power of semiconductor lasers used in ordinary communications is generally at the milliwatt level, which cannot meet the needs of high-speed and high-power light sources such as wireless optical communication systems. At present, the method of realizing high-speed and high-power light source is to use semiconductor laser + erbium-doped fiber amplifier, which can obtain a modulation rate of 2.5Gb/s and an output optical power of 100 milliwatts. However, the high-speed and high-power light source produced by this method has the disadvantages of bulky, difficult packaging, low coupling efficiency, large optical power loss, and high cost.
【发明内容】 【Content of invention】
本发明解决的技术问题是提供一种高速大功率半导体光源,其可改善半导体光放大器的直流偏置电流和激光二极管的调制电流对彼此的干扰、抑制光反射,以获得高质量、高速、大功率的激光光束。The technical problem solved by the present invention is to provide a high-speed and high-power semiconductor light source, which can improve the mutual interference between the DC bias current of the semiconductor optical amplifier and the modulation current of the laser diode, suppress light reflection, and obtain high-quality, high-speed, large-scale power laser beam.
本发明提供一种高速大功率半导体光源,其包括:相对设置的p电极和n电极;主振荡部分,且主振荡部分为单模高速分布反馈半导体激光器(DFB-LD)或分布布拉格反射器半导体激光器(DBR-LD);功率放大部分,位于主振荡部分的后方。其中,功率放大部分的主轴线与主振荡部分的主轴线有一定的倾斜角,该功率放大部分的前端为一过渡光波导,且该主振荡部分的主轴线与该功率放大部分的主轴线之间的该倾斜角为锐角夹角,且通过该过渡光波导实现平滑连接,高速大功率半导体光源进一步包括一隔离槽,隔离槽贯穿p电极且位于主振荡部分与功率放大部分之间。The invention provides a high-speed and high-power semiconductor light source, which includes: a p-electrode and an n-electrode arranged oppositely; a main oscillation part, and the main oscillation part is a single-mode high-speed distributed feedback semiconductor laser (DFB-LD) or a distributed Bragg reflector semiconductor Laser (DBR-LD); the power amplification part is located behind the main oscillation part. Wherein, the main axis of the power amplifying part and the main axis of the main oscillating part have a certain inclination angle, the front end of the power amplifying part is a transition optical waveguide, and the main axis of the main oscillating part and the main axis of the power amplifying part The inclination angle between them is an acute angle, and the smooth connection is realized through the transition optical waveguide. The high-speed and high-power semiconductor light source further includes an isolation groove, which runs through the p-electrode and is located between the main oscillation part and the power amplification part.
根据本发明一优选实施例,隔离槽的深度为1-6微米,宽度为5-50微米。According to a preferred embodiment of the present invention, the isolation trench has a depth of 1-6 microns and a width of 5-50 microns.
根据本发明一优选实施例,隔离槽的宽度为30微米。According to a preferred embodiment of the present invention, the width of the isolation groove is 30 microns.
根据本发明一优选实施例,在n电极上相对于隔离槽设置一贯穿该n电极的浅槽,浅槽的深度为1-10微米,宽度为25-100微米。According to a preferred embodiment of the present invention, a shallow groove penetrating through the n-electrode is provided on the n-electrode opposite to the isolation groove, the depth of the shallow groove is 1-10 microns, and the width is 25-100 microns.
根据本发明一优选实施例,该过渡光波导的长度为50-300微米,该夹角为5-12度。According to a preferred embodiment of the present invention, the length of the transition optical waveguide is 50-300 microns, and the included angle is 5-12 degrees.
根据本发明一优选实施例,功率放大部分的前端为一过渡光波导,后端为一锥形放大部分,且在该过渡光波导的光输出端与锥形放大部分之间平滑连接。According to a preferred embodiment of the present invention, the front end of the power amplifying part is a transitional optical waveguide, and the rear end is a tapered amplifying part, which is smoothly connected between the light output end of the transitional optical waveguide and the tapered amplifying part.
根据本发明一优选实施例,功率放大部分的前端为一过渡光波导,后端为一锥形放大部分,且在该过渡光波导的光输出端与锥形放大部分之间还进一步设置一第二隔离槽。According to a preferred embodiment of the present invention, the front end of the power amplification part is a transitional optical waveguide, and the rear end is a tapered amplification part, and a first Two isolation slots.
根据本发明一优选实施例,本发明中的过渡光波导为弯曲的过渡光波导。According to a preferred embodiment of the present invention, the transitional optical waveguide in the present invention is a curved transitional optical waveguide.
本发明的高速大功率半导体光源的显著的优点之一是通过采用弯曲过渡光波导、隔离槽等结构,有效地抑制了光反馈及电信号间的干扰,具有直接调制输出高速大功率光信号的潜在能力,可通过百毫安的调制电流和数安培的直流电流获得几兆赫兹、瓦级的直接调制的输出光功率。One of the remarkable advantages of the high-speed and high-power semiconductor light source of the present invention is that by adopting structures such as curved transitional optical waveguides and isolation grooves, the interference between optical feedback and electrical signals is effectively suppressed, and it has the ability to directly modulate and output high-speed and high-power optical signals. Potential ability, through the modulation current of 100 milliamps and the direct current of several amperes, the directly modulated output optical power of several megahertz and watts can be obtained.
【附图说明】 【Description of drawings】
图1为本发明高速大功率半导体光源第一种实施方式的结构示意图。Fig. 1 is a schematic structural view of the first embodiment of the high-speed and high-power semiconductor light source of the present invention.
图2为图1所示的高速大功率半导体光源的俯视图。FIG. 2 is a top view of the high-speed and high-power semiconductor light source shown in FIG. 1 .
图3为图1所示的高速大功率半导体光源沿A-A方向的剖面示意图。Fig. 3 is a schematic cross-sectional view along the direction A-A of the high-speed and high-power semiconductor light source shown in Fig. 1 .
图4为图1所示的高速大功率半导体光源沿B-B方向的剖面示意图。FIG. 4 is a schematic cross-sectional view of the high-speed and high-power semiconductor light source shown in FIG. 1 along the B-B direction.
图5为本发明高速大功率半导体光源第二种实施方式的结构示意图。Fig. 5 is a schematic structural diagram of the second embodiment of the high-speed and high-power semiconductor light source of the present invention.
图6为图5所示的高速大功率半导体光源的俯视图。FIG. 6 is a top view of the high-speed and high-power semiconductor light source shown in FIG. 5 .
【具体实施方式】 【Detailed ways】
图1为本发明高速大功率半导体光源的结构示意图,请参阅图1所示,其包括主振荡部分101以及功率放大部分102。其中,主振荡部分101在光路上设置于高速大功率半导体光源的起始端,功率放大部分102则设置于主振荡部分101的后方,中间有一隔离槽122使两部分隔离。FIG. 1 is a schematic structural diagram of a high-speed and high-power semiconductor light source according to the present invention. Please refer to FIG. 1 , which includes a
图2为图1所示的高速大功率半导体光源的俯视图。请参阅图2所示,主振荡部分101可为单模的主振荡器:例如一个分布布拉格反射激光二极管或分布式反馈激光二极管。以采用分布式反馈激光二极管为例,主振荡部分101有源区宽度(光波导宽度)W0约为5-10微米,其长度L1可调,L1介于300-400微米之间。FIG. 2 is a top view of the high-speed and high-power semiconductor light source shown in FIG. 1 . Please refer to FIG. 2 , the
功率放大部分102设置于主振荡部分101的后方,功率放大部分102例如可为锥形的光功率放大器,其长度L3可调,L3约为1000微米,其宽度W2可调,W2约为600-800微米。其中,功率放大部分102包括过渡光波导102a以及锥形放大部分102b。过渡光波导102a为曲线型,其包括一光输入端1021与一光输出端1022。光输入端1021的宽度Wa与主振荡部分101有源区宽度W0相同或相近,为2-10微米,其长度L2可调,L2介于50-300微米。过渡光波导102a的光输出端1022的宽度Wb与锥形放大部分102b的输入端的宽度相同或相近,锥形放大部分102b的输出端宽度W3(有源区)约为100-400微米,较佳为300微米,且主振荡部分101的中心轴线与锥形放大部分102b的中心轴线之间具有一夹角θ,夹角θ为锐角,较佳取值范围为5-12度。本发明中的曲线型的过渡光波导102a可进一步改善光束在此段的光束质量,提高单模光的输出功率,具有输出光模式质量好、有效功率更大的效果。The
图3为如图1所示的高速大功率半导体光源沿A-A方向的剖面示意图。图3显示高速大功率半导体光源的多层结构,其包括n电极层110,以及依序分别形成于n电极110上的衬底层d0、缓冲层d1、第一波导层d2、量子阱层d3、势垒层d4、第二波导层d5、P型缓冲层d6、刻蚀阻止层d7、第一导电层d8、第二导电层d9、欧姆接触层d10以及p电极层120。FIG. 3 is a schematic cross-sectional view along the direction AA of the high-speed and high-power semiconductor light source shown in FIG. 1 . Fig. 3 shows the multi-layer structure of high-speed and high-power semiconductor light source, which includes n-electrode layer 110, and substrate layer d 0 , buffer layer d 1 , first waveguide layer d 2 , and quantum wells respectively formed on n-electrode 110 in sequence Layer d 3 , barrier layer d 4 , second waveguide layer d 5 , P-type buffer layer d 6 , etch stop layer d 7 , first conductive layer d 8 , second conductive layer d 9 , ohmic contact layer d 10 and the p-electrode layer 120 .
其中,n电极层110和p电极层120可为多层金属层,采用蒸发或溅射的方法在其表面覆盖,然后在适当的温度下进行合金化而形成一个低阻的金属-半导体结。n电极层金属材料采用Au-Sn系统,厚度约为150纳米-200纳米,或采用In-Sn-Ag系统,厚度约为200纳米-250纳米。p电极层金属材料可为Zn-Au、Mg-Au、Ti-Pt-Au等。Wherein, the n-electrode layer 110 and the p-electrode layer 120 can be multi-layer metal layers, which are covered by evaporation or sputtering, and then alloyed at an appropriate temperature to form a low-resistance metal-semiconductor junction. The n-electrode layer metal material adopts Au-Sn system with a thickness of about 150nm-200nm, or adopts In-Sn-Ag system with a thickness of about 200nm-250nm. The metal material of the p-electrode layer can be Zn-Au, Mg-Au, Ti-Pt-Au and the like.
衬层d0形成于n电极层110上,其可为掺杂硫(S)的n型InP层,其厚度约为80-120微米,较佳为90微米,掺杂质量约为20×1017-50×1017cm-3。The liner d0 is formed on the n-electrode layer 110, which can be an n-type InP layer doped with sulfur (S), with a thickness of about 80-120 microns, preferably 90 microns, and a doping quality of about 20×10 17-50 ×10 17 cm -3 .
p电极层120设置于欧姆接触层d10上方,且第一限制层d8、第二限制层d9、欧姆接触层d10以及p电极120的宽度与主振荡部分101有源区宽度W0相同,约为2~4微米。The p-electrode layer 120 is disposed above the ohmic contact layer d 10 , and the widths of the first confinement layer d 8 , the second confinement layer d 9 , the ohmic contact layer d 10 and the p-electrode 120 are the same as the width W 0 of the active region of the
如图3所示,高速大功率半导体光源的表面上可进一步包括SiN介质层105和聚酰亚胺保护层107。其中,SiN介质层105覆盖于刻蚀停止层d7的上表面,聚酰亚胺保护层107设置于SiN介质层105上方,且SiN介质层105与聚酰亚胺保护层107的覆盖高度是达至与p电极120的上表面相平齐,以此形成对高速大功率半导体光源的表面保护。As shown in FIG. 3 , the surface of the high-speed and high-power semiconductor light source may further include a SiN dielectric layer 105 and a polyimide protective layer 107 . Wherein, the SiN dielectric layer 105 covers the upper surface of the etching stop layer d7 , the polyimide protective layer 107 is arranged above the SiN dielectric layer 105, and the covering height of the SiN dielectric layer 105 and the polyimide protective layer 107 is To be flush with the upper surface of the p-electrode 120 , thereby forming surface protection for the high-speed and high-power semiconductor light source.
图4为图1所示的高速大功率半导体光源沿光波导轴线B-B方向的剖面示意图。请一并参阅图3与图4所示,高速大功率半导体光源的主振荡部分101与功率放大部分102之间还设置有隔离槽122。隔离槽122的宽度W1为5-50微米,较佳约为30微米。隔离槽122贯穿p电极层120、欧姆接触层d10、第二限制层d9以及第一限制层d8直至刻蚀停止层d7的上表面,其深度D1为1-6微米,较佳约为2微米。FIG. 4 is a schematic cross-sectional view of the high-speed and high-power semiconductor light source shown in FIG. 1 along the axis BB of the optical waveguide. Please refer to FIG. 3 and FIG. 4 together, an
更进一步的,高速大功率半导体光源可在n电极110处,相对于隔离槽122设置有浅槽112。浅槽112贯穿n电极110并深入至衬底层d0的内部,其深度D2可为1-10微米,宽度W4为25-100微米,且浅槽112的宽度W4与隔离槽122的宽度W1存在以下的关系:Furthermore, the high-speed and high-power semiconductor light source can be provided with a
W4≈W1+(10-50)微米。W 4 ≈W 1 +(10-50) microns.
请参阅图4所示,高速大功率半导体光源还包括光栅109,其设置于第二波导层d5,且光栅109刻至隔离槽122处,布满整个主振荡部分101。Please refer to FIG. 4 , the high-speed and high-power semiconductor light source further includes a grating 109 disposed on the second waveguide layer d 5 , and the grating 109 is carved to the
本发明高速大功率半导体光源在安装时,p电极120所在面朝下,以倒装的形式安装,使用电隔离的特殊热沉;也可以n电极110所在面朝下,以正装的形式安装,使用常规的热沉。When the high-speed and high-power semiconductor light source of the present invention is installed, the p-electrode 120 is installed face down, and it is installed in the form of flip-chip, using a special heat sink for electrical isolation; it can also be installed in the form of the n-electrode 110, facing down, Use a conventional heat sink.
本发明高速大功率半导体光源工作时,主振荡部分101的调制输出信号注入至功率放大部分102中,经过衍射行波放大,可获得功率高达瓦级的光输出。其中,主振荡部分101和功率放大部分102分别单独偏置。例如,主振荡部分101可在固定偏置电流上施加调制电流,对功率放大部分102施加固定的偏置电流,其输出的调制光信号根据功率放大部分102的偏置电流而线性变化。此外,也可使其输出光功率根据主振荡部分101的电流的变化而改变。When the high-speed and high-power semiconductor light source of the present invention is working, the modulated output signal of the
以1550mn的高速大功率半导体光源为例,其主要工作参数如下:Taking the 1550mn high-speed and high-power semiconductor light source as an example, its main working parameters are as follows:
A.工作波长 1550微米波段A. Working wavelength 1550 micron band
B.工作电流 2-3AB. Working current 2-3A
C.输出光功率 约1-1.5WC. Output optical power about 1-1.5W
D.工作速率 约2.5Gb/sD. The working rate is about 2.5Gb/s
图5为本发明高速大功率半导体光源第二种实施方式的结构示意图。图6为图5所示的高速大功率半导体光源第二种实施方式的俯视图。高速大功率半导体光源与图1所示的高速大功率半导体光源的不同之处在于:在过渡光波导102a的光输出端与锥形放大部分之间还进一步设置一隔离槽123。隔离槽123的宽度为2-5微米。隔离槽123实现了功率放大部分102中过渡光波导102a以及锥形放大部分102b之间的电隔离,提高单模输出光的质量。Fig. 5 is a schematic structural diagram of the second embodiment of the high-speed and high-power semiconductor light source of the present invention. Fig. 6 is a top view of the second embodiment of the high-speed and high-power semiconductor light source shown in Fig. 5 . The difference between the high-speed high-power semiconductor light source and the high-speed high-power semiconductor light source shown in FIG. 1 is that an
综上所述,本发明高速大功率半导体光源通过采用了弯曲过渡光波导、隔离槽等结构,有效地抑制了光反馈及电信号间的干扰,具有直接调制输出高速大功率光信号的潜在能力,可通过百毫安的调制电流和数安培的直流电流获得几兆赫兹、瓦级的直接调制的输出光功率。本发明的光源把激光技术与行波光放大技术有机地融为一体,是一种可以广泛应用于光纤通信、无线光通信、材料加工、激光医疗和军事等行业的高速大功率半导体光源。In summary, the high-speed and high-power semiconductor light source of the present invention effectively suppresses the interference between optical feedback and electrical signals by adopting structures such as curved transitional optical waveguides and isolation grooves, and has the potential ability to directly modulate and output high-speed and high-power optical signals , the directly modulated output optical power of several megahertz and watts can be obtained through the modulation current of 100 milliamperes and the direct current of several amperes. The light source of the invention organically integrates laser technology and traveling wave light amplification technology, and is a high-speed and high-power semiconductor light source that can be widely used in optical fiber communication, wireless optical communication, material processing, laser medical treatment, military and other industries.
在上述实施例中,仅对本发明进行了示范性描述,但是本领域技术人员在阅读本专利申请后可以在不脱离本发明的精神和范围的情况下对本发明进行各种修改。In the above embodiments, the present invention is only described as an example, but those skilled in the art can make various modifications to the present invention without departing from the spirit and scope of the present invention after reading this patent application.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2009102137262A CN102088161B (en) | 2009-12-03 | 2009-12-03 | High speed and high power semiconductor light source |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2009102137262A CN102088161B (en) | 2009-12-03 | 2009-12-03 | High speed and high power semiconductor light source |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102088161A CN102088161A (en) | 2011-06-08 |
| CN102088161B true CN102088161B (en) | 2012-07-11 |
Family
ID=44099836
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2009102137262A Expired - Fee Related CN102088161B (en) | 2009-12-03 | 2009-12-03 | High speed and high power semiconductor light source |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102088161B (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104377298A (en) * | 2014-12-11 | 2015-02-25 | 北京工业大学 | Flip-chip bonding electrode structure of surface-type semiconductor laser device |
| WO2019075631A1 (en) * | 2017-10-17 | 2019-04-25 | 中国科学院半导体研究所 | Curved conical photonic crystal laser device, array, and array light source group |
| CN110690647A (en) * | 2019-09-10 | 2020-01-14 | 中国科学院上海技术物理研究所 | A single-mode terahertz quantum cascade laser with a high-efficiency diffraction grating |
| CN111326952A (en) * | 2020-02-10 | 2020-06-23 | 中国工程物理研究院应用电子学研究所 | Spectral beam combining device based on on-chip control semiconductor laser chip |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5657339A (en) * | 1994-12-27 | 1997-08-12 | Fuji Photo Film Co. Ltd. | Integrated optics semiconductor laser device |
| US7027475B1 (en) * | 2000-04-11 | 2006-04-11 | Nuvonyx, Inc. | Tailored index single mode optical amplifiers and devices and systems including same |
| JP2007243072A (en) * | 2006-03-10 | 2007-09-20 | Toyota Central Res & Dev Lab Inc | Semiconductor optical amplifier composite semiconductor laser device |
| CN101063731A (en) * | 2006-04-30 | 2007-10-31 | 深圳大学 | Distributed feedback inhibition semiconductor optical amplifier |
| JP2008258531A (en) * | 2007-04-09 | 2008-10-23 | Mitsubishi Electric Corp | Laser amplification device and laser device |
-
2009
- 2009-12-03 CN CN2009102137262A patent/CN102088161B/en not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5657339A (en) * | 1994-12-27 | 1997-08-12 | Fuji Photo Film Co. Ltd. | Integrated optics semiconductor laser device |
| US7027475B1 (en) * | 2000-04-11 | 2006-04-11 | Nuvonyx, Inc. | Tailored index single mode optical amplifiers and devices and systems including same |
| JP2007243072A (en) * | 2006-03-10 | 2007-09-20 | Toyota Central Res & Dev Lab Inc | Semiconductor optical amplifier composite semiconductor laser device |
| CN101063731A (en) * | 2006-04-30 | 2007-10-31 | 深圳大学 | Distributed feedback inhibition semiconductor optical amplifier |
| JP2008258531A (en) * | 2007-04-09 | 2008-10-23 | Mitsubishi Electric Corp | Laser amplification device and laser device |
Non-Patent Citations (3)
| Title |
|---|
| Byung-Kwon Kang et al.Design of amplifier-and modulator-Intergrated laser diode for 10-Gb/s 80-km transmission.《selected topics in quantum electronics》.2005, * |
| F.Koyama et al.Multiple-quantum-well GaInAs/GainAsP tapered broad-area amplifiers with monolithically integrated waveguide lens for High-power applications.《photonics technology letters》.1993, * |
| 刘杨等.倾斜脊形波导集成超辐射光源.《中国激光》.2001, * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102088161A (en) | 2011-06-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10666014B2 (en) | Tunable laser and manufacturing method for tunable laser | |
| KR100958338B1 (en) | Super luminescent diode with integrated optical amplifier and external resonant laser using the same | |
| CN104953468A (en) | Four-segment amplification feedback laser structure for chaotic light emission | |
| CN102088161B (en) | High speed and high power semiconductor light source | |
| US20130207140A1 (en) | Semiconductor Optical Element Semiconductor Optical Module and Manufacturing Method Thereof | |
| US6999638B2 (en) | Semiconductor waveguide device | |
| EP0672932B1 (en) | Semiconductor optical modulator | |
| US7274720B2 (en) | Semiconductor laser element having InGaAs compressive-strained quantum-well active layer | |
| JPH03256386A (en) | Semiconductor laser, its manufacture and optical communication system | |
| JPH05341242A (en) | Optical modulating element | |
| US6671300B2 (en) | Optical devices | |
| US6717969B2 (en) | Semiconductor laser device which includes current confinement structure and trenches formed through current stopping layer down to active layer | |
| JP3655079B2 (en) | Optical semiconductor device | |
| JP6206498B2 (en) | Optical semiconductor device and manufacturing method thereof | |
| CN115428280B (en) | Semiconductor optical integrated components | |
| US7573925B1 (en) | Semiconductor laser having a doped active layer | |
| WO2009025912A2 (en) | Optimization of laser parameters to achieve desired performance | |
| JP3450210B2 (en) | Semiconductor optical device and method of manufacturing the same | |
| US7848375B1 (en) | Ridge waveguide laser with flared facet | |
| JP2023503861A (en) | Waveguide structure of optical integrated circuit | |
| US7606279B1 (en) | Thin INP spacer layer in a high speed laser for reduced lateral current spreading | |
| JPS6218782A (en) | Semiconductor laser of buried structure | |
| Wan et al. | 1.3 µm High Speed Heterogeneous Quantum-Dot Lasers on Si | |
| JPH03192787A (en) | Integrated optical modulator | |
| JPH07312457A (en) | Semiconductor laser device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C17 | Cessation of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120711 Termination date: 20131203 |