CN102104376B - Phase generating device and phase generating method - Google Patents
Phase generating device and phase generating method Download PDFInfo
- Publication number
- CN102104376B CN102104376B CN 200910225467 CN200910225467A CN102104376B CN 102104376 B CN102104376 B CN 102104376B CN 200910225467 CN200910225467 CN 200910225467 CN 200910225467 A CN200910225467 A CN 200910225467A CN 102104376 B CN102104376 B CN 102104376B
- Authority
- CN
- China
- Prior art keywords
- frequency
- phase
- output
- digital signal
- reference frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000008569 process Effects 0.000 claims abstract description 7
- 230000001934 delay Effects 0.000 claims description 3
- 230000003111 delayed effect Effects 0.000 claims description 2
- 102100032055 Elongation of very long chain fatty acids protein 1 Human genes 0.000 description 20
- 102100032050 Elongation of very long chain fatty acids protein 2 Human genes 0.000 description 20
- 101000921370 Homo sapiens Elongation of very long chain fatty acids protein 1 Proteins 0.000 description 20
- 101000921368 Homo sapiens Elongation of very long chain fatty acids protein 2 Proteins 0.000 description 20
- 101150002135 SDC1 gene Proteins 0.000 description 18
- 101150118392 sdc-2 gene Proteins 0.000 description 16
- 238000010586 diagram Methods 0.000 description 15
- 102100040844 Dual specificity protein kinase CLK2 Human genes 0.000 description 9
- 101000749291 Homo sapiens Dual specificity protein kinase CLK2 Proteins 0.000 description 9
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 6
- 102100040862 Dual specificity protein kinase CLK1 Human genes 0.000 description 6
- 101000749294 Homo sapiens Dual specificity protein kinase CLK1 Proteins 0.000 description 6
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 101150033203 Sdc3 gene Proteins 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Landscapes
- Manipulation Of Pulses (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一相位产生装置与其相关方法,尤指一数字式的相位产生装置与其相关方法。The invention relates to a phase generating device and its related method, especially a digital phase generating device and its related method.
背景技术 Background technique
请参考图1。图1系一习知相位产生器10的示意图。举例来说,相位产生器10可以是一相位数字模拟转换器(Phase DAC)。传统上,相位产生器10系以模拟方式来产生一相位的。更进一步来说,相位产生器10系用来将两个具有不同相位的差动输入频率(CLK0+、CLK0-、CLK1+、CLK1-)内插出一具有新的相位的一输出频率CLK2。相位产生器10包含有一第一差动对晶体管M1、M2、一第二差动对晶体管M3、M4、一第一负载12、一第二负载14、一第一参考电流源16以及一第二参考电流源18,其中第一差动对晶体管M1、M2的闸极端Na、Nb分别接收第一差动输入频率的一第一正输入频率CLK0+以及一第一负输入频率CLK0-,第二差动对晶体管M3、M4的闸极端Nc、Nd分别接收第二差动输入频率的一第二正输入频率CLK1+以及一第二负输入频率CLK1-。第一参考电流源16以及第二参考电流源18分别提供一第一电流I1以及一第二电流I2给第一差动对晶体管M1、M2以及第二差动对晶体管M3、M4。请注意,相位产生器10内每一组件之间的耦接关系已绘示于图1内,在此不另赘述。Please refer to Figure 1. FIG. 1 is a schematic diagram of a
相位产生器10系依据第一电流I1以及第二电流I2之间的大小关系来内插出具有新的相位的输出频率CLK2,如图2所示。图2所示系相位产生器10的差动输入频率(CLK0+、CLK0-、CLK1+、CLK1-)以及输出频率(CLK2+、CLK2-)的时序图。第一正输入频率CLK0+以及第一负输入频率CLK0-分别于时间点ta输入闸极端Na、Nb,而第二正输入频率CLK1+以及第二负输入频率CLK1-分别于时间点td输入闸极端Nc、Nd。若第一电流I1以及第二电流I2均可分为十等份,则当第一电流I1以及第二电流I2之间的比例为5∶5时,则输出频率(CLK2+、CLK2-)的相位就会刚好介于第一差动输入频率(CLK0+、CLK0-)以及第二差动输入频率(CLK1+、CLK1-)的正中间,亦即输出频率(CLK2+、CLK2-)的转态出现在时间点tc上。当第一电流I1以及第二电流I2之间的比例为9∶1时,则输出频率(CLK2+、CLK2-)的转态就会出现在时间点tb上。换句话说,当第一电流I1越大时,输出频率(CLK2+、CLK2-)的相位就会越接近第一差动输入频率(CLK0+、CLK0-)。反之,当第二电流I2越大时,输出频率(CLK2+、CLK2-)的相位就会越接近第二差动输入频率(CLKI+、CLK1-),以此类推。如此一来,当第一电流I1以及第二电流I2均可分为十等份时,相位产生器10就可以依据第一电流I1以及第二电流I2的分配在时间点ta-td之间产生十个不同的相位。然而,由于相位产生器10系以电流驱动(current steering)的方式来产生不同的相位,因此相位产生器10会具有相当高的耗电量。因此,如何改善一相位产生器耗电量的问题已成为混合讯号领域亟需解决的问题。The
发明内容 Contents of the invention
本发明所要解决的技术问题是提供一种相位产生装置及相位产生方法,可以大幅度的减少电路在操作时的耗电量,亦可改善电路在操作过程中所产生的突波(Glitch)现象。The technical problem to be solved by the present invention is to provide a phase generating device and a phase generating method, which can greatly reduce the power consumption of the circuit during operation, and can also improve the glitch phenomenon generated during the operation of the circuit. .
为了解决以上技术问题,本发明提供了如下技术方案:In order to solve the above technical problems, the present invention provides the following technical solutions:
本发明提供了一种相位产生装置。该相位产生装置包含一相位选择单元、及一相位产生单元。相位选择单元用以根据该数字讯号的部分位,选择复数输入频率中之一者,以产生一参考频率,其中该等输入频率分别具有不同相位。相位产生单元用以对该参考频率进行除频,并根据该数字讯号的另一部分位,选择性地对该除频后的参考频率进行延迟处理,以产生该输出频率。The invention provides a phase generating device. The phase generation device includes a phase selection unit and a phase generation unit. The phase selection unit is used for selecting one of the plurality of input frequencies according to some bits of the digital signal to generate a reference frequency, wherein the input frequencies have different phases respectively. The phase generation unit is used for frequency division of the reference frequency, and selectively performs delay processing on the divided reference frequency according to another part of the digital signal to generate the output frequency.
本发明还提供了一种相位产生方法,用以根据一数字讯号产生具有所需相位的一输出频率,该相位产生方法包含下列步骤:(a)提供复数输入频率,并根据该数字讯号的部分位,选择该等输入频率中之一者,以产生一参考频率,其中该等输入频率分别具有不同相位;(b)对该参考频率进行除频,以产生一除频后的参考频率:以及(c)根据该数字讯号的另一部分位,选择性地对该除频后的参考频率进行延迟处理,以产生该输出频率。The present invention also provides a phase generation method for generating an output frequency with a desired phase according to a digital signal, the phase generation method comprising the following steps: (a) providing a complex input frequency, and according to a portion of the digital signal bit, select one of the input frequencies to generate a reference frequency, wherein the input frequencies respectively have different phases; (b) divide the reference frequency to generate a frequency-divided reference frequency: and (c) selectively performing delay processing on the frequency-divided reference frequency according to another part of the digital signal to generate the output frequency.
本发明采用的相位产生装置及相位产生方法,由于以数字电路的方式来实作该相位转换装置可以避免使用习知的电流驱动(current steering)电路,因此相位产生装置100、800就可以大幅度的减少电路在操作时的耗电量。另一方面,透过本发明所揭露的选择电路106以及其相关方法,相位产生装置100、800得以进一步地改善电路在操作过程中所产生的突波(Glitch)现象。The phase generating device and the phase generating method adopted in the present invention can avoid using the known current driving (current steering) circuit because the phase converting device is implemented in the form of a digital circuit, so the
附图说明 Description of drawings
图1为一习知相位产生器的示意图。FIG. 1 is a schematic diagram of a conventional phase generator.
图2为图1的产生转换器的一差动输入频率以及一输出频率的时序图。FIG. 2 is a timing diagram of generating a differential input frequency and an output frequency of the converter of FIG. 1 .
图3为依据本发明一相位产生装置的一实施例示意图。FIG. 3 is a schematic diagram of an embodiment of a phase generating device according to the present invention.
图4为图3的该相位产生装置的一选择电路的一实施例示意图。FIG. 4 is a schematic diagram of an embodiment of a selection circuit of the phase generating device in FIG. 3 .
图5为图3的该相位产生装置的复数个输入频率、一第一选定输入频率、一第一频率、一第一除频频率、一第二频率、一参考频率以及一第五除频频率的时序图。Fig. 5 is a plurality of input frequencies, a first selected input frequency, a first frequency, a first frequency division frequency, a second frequency, a reference frequency and a fifth frequency division of the phase generating device of Fig. 3 Frequency timing diagram.
图6为图3所示的该相位产生装置的一第二频率、一第二除频频率、该第一输出频率、该第五除频频率以及一第六除频频率的时序图。FIG. 6 is a timing diagram of a second frequency, a second frequency division frequency, the first output frequency, the fifth frequency division frequency and a sixth frequency division frequency of the phase generating device shown in FIG. 3 .
图7为图3所示的该相位产生装置的该选择电路的该第一输出频率、一第二输出频率、一输出讯号、一选择讯号、一控制讯号以及一输出频率的时序图。7 is a timing diagram of the first output frequency, a second output frequency, an output signal, a selection signal, a control signal and an output frequency of the selection circuit of the phase generator shown in FIG. 3 .
图8为本发明该相位产生装置的另一实施例示意图。FIG. 8 is a schematic diagram of another embodiment of the phase generating device of the present invention.
【主要组件符号说明】[Description of main component symbols]
10相位产生器10 phase generators
12、14负载12, 14 load
16、18参考电流源16, 18 reference current source
100、800相位产生装置100, 800 phase generating device
102、104、802、804频率产生装置102, 104, 802, 804 frequency generating device
106、806选择电路106, 806 selection circuit
108基准相位产生电路108 reference phase generation circuit
1021、1041、1082、8021、8041、8082相位选择器1021, 1041, 1082, 8021, 8041, 8082 phase selector
1022、1024、1026、1042、1044、1046、8023、8043反相器1022, 1024, 1026, 1042, 1044, 1046, 8023, 8043 inverters
1023、1025、1043、1045、1084、1086、8022、8042、8084除频器1023, 1025, 1043, 1045, 1084, 1086, 8022, 8042, 8084 frequency dividers
1062多任务器1062 multiplexer
1064控制讯号产生电路1064 control signal generation circuit
1064a与门1064a AND gate
1064b缓存器1064b buffer
210、410相位选择单元210, 410 phase selection unit
220、230、420、430、820、840相位产生单元220, 230, 420, 430, 820, 840 phase generation unit
具体实施方式 Detailed ways
请参考图3。图3所示系依据本发明相位产生装置100的一实施例示意图。相位产生装置100系利用复数个输入频率Sin来将一数字讯号转换为具有一特定输出相位的一输出频率Sout,其中此特定输出相位系对应于此数字讯号。这些输入频率Sin分别具有不同的输入相位,其中每一输入频率Sin的输入相位与其相邻输入频率Sin的输入相位都具有大致上一样的相位差。举例来说,若有8个输入频率Sin(亦即Sin1-Sin8),则这8个输入频率Sin可以用来代表8个不同的输入相位。因此,为了更清楚描述本发明的精神所在,后续关于相位产生装置100的描述系以8个不同的输入相位的输入频率Sin以及依据6位的数字讯号(亦即(b5,b4,b3,b2,b1,b0)),产生具有特定输出相位的输出频率Sout为例做说明。Please refer to Figure 3. FIG. 3 is a schematic diagram of an embodiment of a phase generating device 100 according to the present invention. The phase generator 100 uses a plurality of input frequencies Sin to convert a digital signal into an output frequency Sout with a specific output phase, wherein the specific output phase corresponds to the digital signal. These input frequencies Sin have different input phases respectively, wherein the input phases of each input frequency Sin and the input phases of its adjacent input frequencies Sin have substantially the same phase difference. For example, if there are 8 input frequencies Sin (ie Sin1-Sin8), these 8 input frequencies Sin can be used to represent 8 different input phases. Therefore, in order to describe the spirit of the present invention more clearly, the following description about the phase generating device 100 is based on the input frequency Sin of 8 different input phases and the digital signal based on 6 bits (that is, (b5, b4, b3, b2 , b1, b0)), generating an output frequency Sout with a specific output phase as an example for illustration.
图3的实施例中,相位产生装置100包含有一第一及一第二频率产生装置102、104、一选择电路106以及一基准相位产生电路108。第一频率产生装置102依据输入频率Sin以及一第一数字讯号Sd1来产生具有一第一输出相位P1的一第一输出频率Sc1。第二频率产生装置104依据输入频率Sin以及一第二数字讯号Sd2来产生具有一第二输出相位的一第二输出频率Sc2。选择电路106系耦接于第一、第二频率产生装置102、104,用来依据一选择讯号Sup而自第一、第二频率产生装置102、104所分别产生的第一、第二输出频率Sc1、Sc2中选择其一做为输出频率Sout。基准相位产生电路108系用来提供至少一基准相位给第一、第二频率产生装置102、104以做为第一输出相位P1以及第二输出相位P2的参考相位。在此一实施例中,第二频率产生装置104所产生的第二输出频率Sc2系相位产生装置100目前所输出的输出频率Sout,而第一频率产生装置102所产生的第一输出频率Sc1系相位产生装置100接着要输出的输出频率Sout。换句话说,选择电路106系用来依据选择讯号Sup来将目前做为输出频率Sout的第二输出频率Sc2切换至第一输出频率Sc1以做为接下来所要输出的输出频率Sout。In the embodiment of FIG. 3 , the phase generating device 100 includes a first and a second frequency generating device 102 , 104 , a
第一频率产生装置102包含有一第一相位选择单元210、一第一相位产生单元220、及一第二相位产生单元230。第一相位选择单元210系根据第一数字讯号Sd1的部分位,选择输入频率Sin中之一者,用以产生一参考频率(即图3实施例中的第一频率Ssc1)。第一相位产生单元220系对参考频率进行除频后,再根据第一数字讯号Sd1的另一部分位,选择性地对除频后的参考频率进行延迟处理。而第二相位产生单元230再对第一相位产生单元220的输出频率进行除频,以及根据第一数字讯号Sd1的另一部分位,选择性地对除频后的第一相位产生单元220的输出频率进行延迟处理。在图3的实施例中,第一相位选择单元210包含有一第一相位选择器1021及一第一反相器1022。第一相位产生单元220包含有一第一除频器1023及一第二反相器1024。第二相位产生单元230包含有一第二除频器1025以及一第三反相器1026。其中,第一反相器1022、第二反相器1024及第三反相器1026系做为延迟相位180度用。第一相位选择器1021系用来依据数字讯号(b5,b4,b3,b2,b1,b0)来选择该些输入频率Sin中具有一第一对应相位Ps1的一第一选定输入频率Ss1,并输出第一选定输入频率Ss1,其中b5为数字讯号(b5,b4,b3,b2,b1,b0)中的最高有效位(MostSignificant Bit),而b0为数字讯号(b5,b4,b3,b2,b1,b0)中的最低有效位(Least Significant Bit),以此类推。进一步来说,第一相位选择器1021会依据数字讯号(b5,b4,b3,b2,b1,b0)中一第一位集合自该些输入频率Sin中选择其一,以做为该第一选定输入频率Ss1。第一反相器1022耦接于第一相位选择器1021,用来依据数字讯号(b5,b4,b3,b2,b1,b0)中一第二位集合来选择性地对第一选定输入频率Ss1进行一反相处理,以产生一第一频率Ssc1。在本发明中,第一位集合系包含数字讯号(b5,b4,b3,b2,b1,b0)中的至少一最低有效位,而第一反相器1022依据第二位集合的至少一有效位来选择性地进行反相处理。更进一步来说,在本实施例中,第一位集合系数位讯号(b5,b4,b3,b2,b1,b0)中的(b2,b1,b0)位。由于8个输入频率Sin具有8个不同的输入相位,因此第一相位选择器1021会依据(b2,b1,b0)位从输入频率Sin中选定其中一个对应的输入频率。而第二位集合系数位讯号(b5,b4,b3,b2,b1,b0)中的b3位。当b3位系一高准位位时,第一反相器1021对第一选定输入频率Ss1进行反相处理,并产生第一频率Ssc1。反之,当b3位系一低准位位时,第一反相器1021不进行反相处理,而直接将选定输入频率Ss1输出为第一频率Ssc1。The first frequency generation device 102 includes a first phase selection unit 210 , a first phase generation unit 220 , and a second phase generation unit 230 . The first phase selection unit 210 selects one of the input frequencies Sin according to some bits of the first digital signal Sd1 to generate a reference frequency (ie, the first frequency Ssc1 in the embodiment of FIG. 3 ). The first phase generating unit 220 divides the reference frequency, and then selectively delays the divided reference frequency according to another part of the first digital signal Sd1. The second phase generating unit 230 then divides the output frequency of the first phase generating unit 220, and selectively divides the frequency-divided output of the first phase generating unit 220 according to another part of the first digital signal Sd1. The frequency is delayed. In the embodiment of FIG. 3 , the first phase selection unit 210 includes a first phase selector 1021 and a first inverter 1022 . The first phase generating unit 220 includes a first frequency divider 1023 and a second inverter 1024 . The second phase generating unit 230 includes a second frequency divider 1025 and a third inverter 1026 . Wherein, the first inverter 1022, the second inverter 1024 and the third inverter 1026 are used for delaying the phase by 180 degrees. The first phase selector 1021 is used to select a first selected input frequency Ss1 having a first corresponding phase Ps1 among the input frequencies Sin according to digital signals (b5, b4, b3, b2, b1, b0), And output the first selected input frequency Ss1, where b5 is the most significant bit (MostSignificant Bit) in the digital signal (b5, b4, b3, b2, b1, b0), and b0 is the digital signal (b5, b4, b3, The least significant bit (Least Significant Bit) in b2, b1, b0), and so on. Further, the first phase selector 1021 selects one of the input frequencies Sin according to a first bit set in the digital signal (b5, b4, b3, b2, b1, b0) as the first Select the input frequency Ss1. The first inverter 1022 is coupled to the first phase selector 1021, and is used to selectively select the first input according to a second bit set in the digital signal (b5, b4, b3, b2, b1, b0). The frequency Ss1 is subjected to an inversion process to generate a first frequency Ssc1. In the present invention, the first set of bits includes at least one least significant bit of the digital signal (b5, b4, b3, b2, b1, b0), and the first inverter 1022 according to at least one significant bit of the second set of bits bits to selectively invert. Furthermore, in this embodiment, the first bit sets the bits (b2, b1, b0) in the coefficient bit signal (b5, b4, b3, b2, b1, b0). Since the 8 input frequencies Sin have 8 different input phases, the first phase selector 1021 selects one of the corresponding input frequencies from the input frequencies Sin according to the (b2, b1, b0) bits. And the second bit sets the b3 bit in the coefficient bit signal (b5, b4, b3, b2, b1, b0). When the b3 bit is a high level bit, the first inverter 1021 inverts the first selected input frequency Ss1 to generate the first frequency Ssc1. Conversely, when the b3 bit is a low level bit, the first inverter 1021 does not perform inversion processing, but directly outputs the selected input frequency Ss1 as the first frequency Ssc1.
第一除频器1023耦接于第一反相器1022,用来对第一频率Ssc1进行一除频运作以产生一第一除频频率Sdc1。第二反相器1024耦接于第一除频器1023,用来依据数字讯号(b5,b4,b3,b2,b1,b0)中的位b4来选择性地进行对第一除频频率Sdc1进行反相处理以产生具有一第二相位Ps2的一第二频率Ssc2。当第二反相器1024不对第一除频频率Sdc1进行反相处理时,第一除频频率Sdc1即为第二频率Ssc2。当第二反相器1024对第一除频频率Sdc1进行反相处理时,第二反相器1024的输出即为第二频率Ssc2。第二除频器1025接收第二频率Ssc2,用来对第二频率Ssc2进行一除频运作以产生一第二除频频率Sdc2。第三反相器1026耦接于第二除频器1025,用来依据数字讯号(b5,b4,b3,b2,b1,b0)中的位b5来选择性地进行对第二除频频率Sdc2进行反相处理以产生具有第一输出相位P1的第一输出频率Sc1。当第三反相器1026不对第二除频频率Sdc2进行反相处理时,第二除频频率Sdc2即为第一输出频率Sc1。当第三反相器1026对第二除频频率Sdc2进行反相处理时,第三反相器1026的输出即为第一输出频率Sc1。The first frequency divider 1023 is coupled to the first inverter 1022 and is used for performing a frequency division operation on the first frequency Ssc1 to generate a first frequency division frequency Sdc1. The second inverter 1024 is coupled to the first frequency divider 1023, and is used to selectively divide the first frequency Sdc1 according to the bit b4 in the digital signal (b5, b4, b3, b2, b1, b0). Inverting is performed to generate a second frequency Ssc2 with a second phase Ps2. When the second inverter 1024 does not invert the first frequency division frequency Sdc1, the first frequency division frequency Sdc1 is the second frequency Ssc2. When the second inverter 1024 inverts the first frequency division frequency Sdc1, the output of the second inverter 1024 is the second frequency Ssc2. The second frequency divider 1025 receives the second frequency Ssc2 and is used for performing a frequency division operation on the second frequency Ssc2 to generate a second frequency division frequency Sdc2. The third inverter 1026 is coupled to the second frequency divider 1025, and is used to selectively divide the second frequency Sdc2 according to the bit b5 in the digital signal (b5, b4, b3, b2, b1, b0). The inversion process is performed to generate the first output frequency Sc1 with the first output phase P1. When the third inverter 1026 does not invert the second frequency division frequency Sdc2, the second frequency division frequency Sdc2 is the first output frequency Sc1. When the third inverter 1026 inverts the second frequency division frequency Sdc2, the output of the third inverter 1026 is the first output frequency Sc1.
第二频率产生装置104包含有一第二相位选择单元410、一第三相位产生单元420、及一第四相位产生单元430。第二相位选择单元410包含有一第二相位选择器1041及一第四反相器1042。第三相位产生单元420包含有一第三除频器1043及一第五反相器1044。第四相位产生单元430包含有一第四除频器1045以及一第六反相器1046。第二频率产生装置104系依据一数字讯号(c5,c4,c3,c2,c1,c0)来产生一第二输出频率Sc2,其详细的操作原理系相同于前述的第一频率产生装置102,在此不再赘述。The second frequency generation device 104 includes a second phase selection unit 410 , a third phase generation unit 420 , and a fourth phase generation unit 430 . The second phase selection unit 410 includes a second phase selector 1041 and a fourth inverter 1042 . The third phase generating unit 420 includes a third frequency divider 1043 and a fifth inverter 1044 . The fourth phase generating unit 430 includes a fourth frequency divider 1045 and a sixth inverter 1046 . The second frequency generating device 104 is based on a digital signal (c5, c4, c3, c2, c1, c0) to generate a second output frequency Sc2, and its detailed operating principle is the same as the aforementioned first frequency generating device 102, I won't repeat them here.
请参考图4,图4所示系图3的相位产生装置100的选择电路106的一实施例示意图。选择电路106包含有一多任务器1062以及一控制讯号产生电路1064。多任务器1062具有一第一端点N1和一第二端点N2分别耦接于第一、第二个频率产生装置102、104,用来依据一控制讯号Se而自第一输出频率Sc1以及第二输出频率Sc2中选择其中之一来做为输出频率Sout。控制讯号产生电路1064用来依据第一输出频率Sc1以及第二输出频率Sc2以及选择讯号Sup来产生控制讯号Se。在此实施例中,控制讯号产生电路1064包含有一与门(ANDGate)1064a以及一缓存器1064b。与门1064a具有两个输入端N3、N4分别用以接收第一输出频率Sc1以及第二输出频率Sc2,以及一输出端N5用来输出一输出讯号Sn5。缓存器1064b具有一数据输入端D用来接收选择讯号Sup,一频率控制端CK耦接于与门1064a以接收输出讯号Sn5,以及一数据输出端Q用来输出控制讯号Se。Please refer to FIG. 4 , which is a schematic diagram of an embodiment of the
在本实施例中,由于输入相位产生装置100的数字讯号具有6个位,因此相位产生装置100所产生的输出频率Sout可以具有64个不同相位的选择。另一方面,由于本实施例相位产生装置100系要从频率频率为400MHz的8个输入频率Sin的8个相位来产生频率频率为100MHz的输出频率Sout,其中输出频率Sout系可以具有64个不同相位的选择,因此第一除频器1023以及第二除频器1025就会分别对第一频率Ssc1以及第二频率Ssc2进行一除二的除频运算。同理,第三除频器1043以及第四除频器1045亦会分别对第三频率Ssc3以及第四频率Ssc4进行一除二的除频运算。相位产生装置100的详细运作与其功效于接下来的段落中进一步描述。In this embodiment, since the digital signal input to the phase generating device 100 has 6 bits, the output frequency Sout generated by the phase generating device 100 can have 64 different phase options. On the other hand, since the phase generating device 100 of this embodiment needs to generate an output frequency Sout with a frequency of 100 MHz from 8 phases of 8 input frequencies Sin with a frequency of 400 MHz, the output frequency Sout can have 64 different phases. Therefore, the first frequency divider 1023 and the second frequency divider 1025 respectively perform a frequency division operation of dividing by two on the first frequency Ssc1 and the second frequency Ssc2 . Similarly, the third frequency divider 1043 and the fourth frequency divider 1045 will also perform frequency division operation of dividing by two on the third frequency Ssc3 and the fourth frequency Ssc4 respectively. The detailed operation and function of the phase generating device 100 are further described in the following paragraphs.
请参考图5,图5系图3所示的相位产生装置100的8个输入频率Sin、第一选定输入频率Ss1、第一频率Ssc1、第一除频频率Sdc1以及第二频率Ssc2的时序图。为了更清楚描述本发明的精神所在,本实施例相位产生装置100系分别以数字讯号(b5,b4,b3,b2,b1,b0)为(0,0,0,0,0,0)以及(1,1,1,1,1,1)做说明,该些输入频率Sin的每一个输入频率的频率频率系400MHz,以及第一输出频率Sc1的频率频率系100MHz。因此,当该些输入频率Sin被输入至相位产生装置100时,在时间点t1-t2之间,亦即在该些输入频率Sin中的第一个输入频率Sin1的半个周期内,会具有8个不同的相位。当数字讯号(b5,b4,b3,b2,b1,b0)为(0,0,0,0,0,0)时,第一相位选择器1021就依据数字讯号(0,0,0,0,0,0)中的第一位集合(b2,b1,b0)(亦即(0,0,0))来选择该些输入频率Sin中的一个输入频率。由于第一特定位集合(0,0,0)系相对应至该些输入频率Sin的第一个输入频率Sin1,因此第一相位选择器1021就会选择输入频率Sin1来做为第一选定输入频率Ss1。接着,第一反相器1022用来依据数字讯号(0,0,0,0,0,0)中第二位集合(亦即b3=0)来选择性地对第一选定输入频率Ss1进行反相处理。由于第二位集合b3系一低准位的位,因此第一反相器1021不对第一选定输入频率Ss1进行反相处理,并将第一选定输入频率Ss1直接输出(bypass)为第一频率Ssc1。如此一来,具有第一对应相位Ps1_(0,0,0,0,0,0)(相对于时间点t1)的第一频率Ssc1就被产生了。Please refer to FIG. 5. FIG. 5 is the timing sequence of the eight input frequencies Sin, the first selected input frequency Ss1, the first frequency Ssc1, the first frequency-dividing frequency Sdc1, and the second frequency Ssc2 of the phase generator 100 shown in FIG. picture. In order to describe the spirit of the present invention more clearly, the phase generating device 100 of this embodiment uses digital signals (b5, b4, b3, b2, b1, b0) as (0, 0, 0, 0, 0, 0) and (1, 1, 1, 1, 1, 1) for illustration, the frequency of each of the input frequencies Sin is 400MHz, and the frequency of the first output frequency Sc1 is 100MHz. Therefore, when the input frequencies Sin are input to the phase generating device 100, between time points t1-t2, that is, within the half cycle of the first input frequency Sin1 among the input frequencies Sin, there will be 8 different phases. When the digital signal (b5, b4, b3, b2, b1, b0) is (0, 0, 0, 0, 0, 0), the first phase selector 1021 is based on the digital signal (0, 0, 0, 0 , 0, 0) in the first bit set (b2, b1, b0) (ie (0, 0, 0)) to select one of the input frequencies Sin. Since the first specific bit set (0, 0, 0) corresponds to the first input frequency Sin1 of the input frequencies Sin, the first phase selector 1021 will select the input frequency Sin1 as the first selected Input frequency Ss1. Next, the first inverter 1022 is used to selectively adjust the first selected input frequency Ss1 according to the second bit set (ie b3=0) in the digital signal (0, 0, 0, 0, 0, 0). Perform reverse processing. Since the second bit set b3 is a low-level bit, the first inverter 1021 does not invert the first selected input frequency Ss1, and directly outputs (bypass) the first selected input frequency Ss1 as the first selected input frequency Ss1. A frequency Ssc1. In this way, the first frequency Ssc1 with the first corresponding phase Ps1_(0, 0, 0, 0, 0, 0) (relative to the time point t1) is generated.
另一方面,当数字讯号(b4,b3,b2,b1,b0)为(1,1,1,1,1,1)时,第一相位选择器1021依据数字讯号(1,1,1,1,1,1)中的第一位集合(b2,b1,b0)(亦即(1,1,1))来选择该些输入频率Sin中的一个输入频率。由于第一位集合(1,1,1)系相对应至该些输入频率Sin输入频率Sin8,因此第一相位选择器1021就会选择输入频率Sin8来做为第一选定输入频率Ss1。接着,第一反相器1022用来依据数字讯号(1,1,1,1,1,1)中第二位集合(亦即b3=1)来选择性地对第一选定输入频率Ss1进行反相处理。由于第二位集合b3系一高准位的位,因此第一反相器1022对第一选定输入频率Ss1于进行反相处理,并将反相后的输入频率Sin8(亦即Sin8_bar)输出为第一频率Ssc1。如此一来,具有第一对应相位Ps1_(1,1,1,1,1,1)(相对于时间点t1的时间点t3处的相位)的第一频率Ssc1就被产生了,如图5所示。换言之,由于该些输入频率Sin中的每一个输入频率均可以经由反相处理来分别产生具有对应另外8个相位的8个输入频率,因此第一反相器1022的输出频率(亦即第一频率Ssc1)就可以具有16个不同相位的选择(相对于时间点t1)。On the other hand, when the digital signal (b4, b3, b2, b1, b0) is (1, 1, 1, 1, 1, 1), the first phase selector 1021 according to the digital signal (1, 1, 1, 1, 1, 1) in the first bit set (b2, b1, b0) (ie (1, 1, 1)) to select one of the input frequencies Sin. Since the first bit set (1, 1, 1) corresponds to the input frequency Sin8 of the input frequencies Sin, the first phase selector 1021 selects the input frequency Sin8 as the first selected input frequency Ss1. Next, the first inverter 1022 is used to selectively convert the first selected input frequency Ss1 according to the second bit set (ie b3=1) in the digital signal (1, 1, 1, 1, 1, 1). Perform reverse processing. Since the second bit set b3 is a high-level bit, the first inverter 1022 inverts the first selected input frequency Ss1, and outputs the inverted input frequency Sin8 (ie, Sin8_bar) is the first frequency Ssc1. In this way, a first frequency Ssc1 with a first corresponding phase Ps1_(1, 1, 1, 1, 1, 1) (phase at time point t3 relative to time point t1) is generated, as shown in FIG. 5 shown. In other words, since each of the input frequencies Sin can be processed through inversion to generate 8 input frequencies corresponding to the other 8 phases, the output frequency of the first inverter 1022 (that is, the first The frequency Ssc1) can then have 16 different phase options (relative to the time point t1).
接着,第一频率Ssc1就会被第一除频器1023进行除以二的除频运作以产生第一除频频率Sdc1。以数字讯号(b5,b4,b3,b2,b1,b0)系(0,0,0,0,0,0)为例时,由于数字讯号(b5,b4,b3,b2,b1,b0)中的位b4为低准位位,因此第二反相器1024不对第一除频频率Sdc1进行反相处理而将第一除频频率Sdc1直接输出(bypass)为第二频率Ssc2。如此一来,具有第二相位Ps2_(0,0,0,0,0,0)(相对于时间点t1)的第二频率Ssc2就被产生了。另一方面,以数字讯号(b5,b4,b3,b2,b1,b0)系(1,1,1,1,1,1)为例时,由于数字讯号(b5,b4,b3,b2,b1,b0)中的位b4为高准位位,因此第二反相器1024会对第一除频频率Sdc1进行反相处理以产生一反相后的第一除频频率Sdc1(亦即Sdc1_bar),并将该反相后的第一除频频率Sdc1输出为第二频率Ssc2。如此一来,第二反相器1024所产生的第二频率Ssc2就会具有第二相位Ps2_(1,1,1,1,1,1)(相对于时间点t1的时间点t4)了。换言之,当第一反相器1022所产生的第一频率Ssc1经由第一除频器1023除频后,第一除频频率Sdc1的频率频率就会是200MHz,且依据数字讯号(b5,b4,b3,b2,b1,b0)的值,第一除频频率Sdc1的相位系可以具有16个不同相位的选择。同理,由于每一个输入频率均可以经由第二反相器1024的反相处理来分别产生具有对应另外16个不同相位的16个频率,因此第二反相器1024所输出的第二频率Ssc2的相位就可以具有32个不同的相位选择。请注意,此时具有32种可能的相位的第二频率Ssc2的频率频率亦会是200MHz的。Next, the first frequency Ssc1 is divided by two by the first frequency divider 1023 to generate the first frequency division frequency Sdc1. Taking the digital signal (b5, b4, b3, b2, b1, b0) as an example (0, 0, 0, 0, 0, 0), since the digital signal (b5, b4, b3, b2, b1, b0) Bit b4 in is a low level bit, so the second inverter 1024 does not invert the first frequency division frequency Sdc1 and directly outputs (bypass) the first frequency division frequency Sdc1 as the second frequency Ssc2. In this way, the second frequency Ssc2 with the second phase Ps2_(0, 0, 0, 0, 0, 0) (relative to the time point t1) is generated. On the other hand, when the digital signal (b5, b4, b3, b2, b1, b0) is (1, 1, 1, 1, 1, 1) as an example, since the digital signal (b5, b4, b3, b2, The bit b4 in b1, b0) is a high level bit, so the second inverter 1024 will invert the first frequency division frequency Sdc1 to generate an inverted first frequency division frequency Sdc1 (that is, Sdc1_bar ), and output the inverted first frequency division frequency Sdc1 as the second frequency Ssc2. In this way, the second frequency Ssc2 generated by the second inverter 1024 has a second phase Ps2_(1, 1, 1, 1, 1, 1) (time point t4 relative to time point t1). In other words, when the first frequency Ssc1 generated by the first inverter 1022 is divided by the first frequency divider 1023, the frequency of the first frequency division Sdc1 will be 200 MHz, and according to the digital signals (b5, b4, b3, b2, b1, b0), the phase system of the first frequency division frequency Sdc1 can have 16 different phase options. Similarly, since each input frequency can be processed by the second inverter 1024 to generate 16 frequencies corresponding to the other 16 different phases, the second frequency Ssc2 output by the second inverter 1024 The phase can have 32 different phase options. Please note that the frequency of the second frequency Ssc2 with 32 possible phases is also 200 MHz.
接着,具有第二相位Ps2且频率频率为200MHz的第二频率Ssc2会被传送至第二除频器1025以产生第二除频频率Sdc2。请参考6图。图6系图3所示的相位产生装置100的第二频率Ssc2、第二除频频率Sdc2以及第一输出频率Sc1的时序图。同理,以数字讯号(b5,b4,b3,b2,b1,b0)系(0,0,0,0,0,0)为例时,由于数字讯号(b5,b4,b3,b2,b1,b0)中的位b5为低准位位,因此第三反相器1026不对第二除频频率Sdc2进行反相处理而将第二除频频率Sdc2直接输出为第一输出频率Sc1。如此一来,具有输出相位P1_(0,0,0,0,0,0)(相对于时间点t 1)的第一输出频率Sc1就被产生了。另一方面,以数字讯号(b5,b4,b3,b2,b1,b0)系(1,1,1,1,1,1)为例时,由于数字讯号(b5,b4,b3,b2,b1,b0)中的位b5为高准位位,因此第三反相器1026会对第二除频频率Sdc2进行反相处理以产生一反相后的第二除频频率Sdc2(亦即Sdc2_bar),并将该反相后的第二除频频率Sdc2输出为第一输出频率Sc1。如此一来,具有输出相位P1_(1,1,1,1,1,1)(相对于时间点t1的时间点t5)的第一输出频率Sc1就可以被产生了。换言之,当第二频率Ssc2经由第三除频器1026除频后,第二除频频率Sdc2的频率频率就会是100MHz,且依据数字讯号(b5,b4,b3,b2,b1,b0)的值,第二除频频率Sdc2的相位系可以具有32个不同相位的选择。同理,由于每一个输入频率均可以经由第三反相器1026的反相处理来分别产生具有对应另外32个不同相位的32个频率,因此第三反相器1026所输出的第一输出频率Sc1的相位就可以具有64个不同的相位选择。请注意,此时具有64种不同相位的第一输出频率Sc1的频率频率亦会是100MHz的。从上述所揭露的操作过程可以得知,当分别具有复数个不同相位的复数个频率经过由一除频器以及一反相器所构成的电路后,其会产生双倍数的相位选择。因此,此领域具有通常知识者应可了解本发明并不受限于仅使用两组由除频器和反相器所构成的架构(亦即一组系由虚线1022a包含的第一除频器1023与第二反相器1024所组成,而另一组系由虚线1022b包含的第二除频器1025与第三反相器1026所成),经由适当地修饰后,相位产生装置100亦可以依据一特定个数的相位来产生该特定个数的任一倍数的输出相位。Then, the second frequency Ssc2 with the second phase Ps2 and a frequency of 200 MHz is sent to the second frequency divider 1025 to generate the second frequency division frequency Sdc2. Please refer to Figure 6. FIG. 6 is a timing diagram of the second frequency Ssc2 , the second frequency-dividing frequency Sdc2 and the first output frequency Sc1 of the phase generator 100 shown in FIG. 3 . Similarly, when the digital signal (b5, b4, b3, b2, b1, b0) is (0, 0, 0, 0, 0, 0) as an example, since the digital signal (b5, b4, b3, b2, b1 , b0) bit b5 is a low level bit, so the third inverter 1026 does not invert the second frequency division frequency Sdc2 and directly outputs the second frequency division frequency Sdc2 as the first output frequency Sc1. In this way, the first output frequency Sc1 with the output phase P1_(0, 0, 0, 0, 0, 0) (relative to the time point t1) is generated. On the other hand, when the digital signal (b5, b4, b3, b2, b1, b0) is (1, 1, 1, 1, 1, 1) as an example, since the digital signal (b5, b4, b3, b2, The bit b5 in b1, b0) is a high level bit, so the third inverter 1026 will invert the second frequency division frequency Sdc2 to generate an inverted second frequency division frequency Sdc2 (that is, Sdc2_bar ), and output the inverted second frequency division frequency Sdc2 as the first output frequency Sc1. In this way, the first output frequency Sc1 with the output phase P1_(1, 1, 1, 1, 1, 1) (time point t5 relative to the time point t1) can be generated. In other words, when the second frequency Ssc2 is divided by the third frequency divider 1026, the frequency of the second frequency division Sdc2 will be 100 MHz, and according to the digital signals (b5, b4, b3, b2, b1, b0) value, the phase system of the second division frequency Sdc2 can have 32 different phase options. Similarly, since each input frequency can be processed by the third inverter 1026 to generate 32 frequencies corresponding to another 32 different phases, the first output frequency output by the third inverter 1026 The phase of Sc1 can have 64 different phase options. Please note that the frequency of the first output frequency Sc1 with 64 different phases will also be 100 MHz. It can be known from the above-disclosed operation process that when multiple frequencies with multiple different phases respectively pass through a circuit composed of a frequency divider and an inverter, it will generate double phase selection. Therefore, those skilled in the art should understand that the present invention is not limited to using only two sets of frequency dividers and inverters (that is, a set of first frequency dividers enclosed by dashed line 1022a). 1023 and the second inverter 1024, and the other group is composed of the second frequency divider 1025 and the third inverter 1026 included in the dotted line 1022b), after appropriate modification, the phase generating device 100 can also be According to a specific number of phases, any multiple of the specific number of output phases is generated.
此外,基准相位产生电路108包含有一第三相位选择器1082、一第五除频器1084以及一第六除频器1086。第三相位选择器1082系用来自该些输入频率Sin中选出一输入频率以做为一基准频率Sref。第五除频器1084耦接于第三相位选择器1082,用来对基准频率Sref进行一除频运算以产生一第五除频频率Sdc5。第六除频器1086耦接于第五除频器1084,用来对第五除频频率Sdc5进行一除频运算以产生一第六除频频率Sdc6。请注意,在本实施例中,第五除频器1084以及第六除频器1086系分别对基准考频率Sref以及第五除频频率Sdc5进行一除二的运算。此外,为了方便起见,本实施例的第三相位产生器1082系自该些输入频率Sin中选出第一个输入频率Sin1来做为基准频率Sref,然本发明并不以此为限。In addition, the reference phase generating circuit 108 includes a third phase selector 1082 , a fifth frequency divider 1084 and a sixth frequency divider 1086 . The third phase selector 1082 is used to select an input frequency from the input frequencies Sin as a reference frequency Sref. The fifth frequency divider 1084 is coupled to the third phase selector 1082 for performing a frequency division operation on the reference frequency Sref to generate a fifth frequency division frequency Sdc5. The sixth frequency divider 1086 is coupled to the fifth frequency divider 1084 for performing a frequency division operation on the fifth frequency division frequency Sdc5 to generate a sixth frequency division frequency Sdc6. Please note that, in this embodiment, the fifth frequency divider 1084 and the sixth frequency divider 1086 perform a division by two operation on the reference reference frequency Sref and the fifth frequency division frequency Sdc5 respectively. In addition, for convenience, the third phase generator 1082 in this embodiment selects the first input frequency Sin1 from the input frequencies Sin as the reference frequency Sref, but the present invention is not limited thereto.
请同时参考图3、图5以及图6。当相位产生装置100接收到该些输入频率Sin时,由于第一个输入频率Sin1是该些输入频率Sin中第一个输入至相位产生装置100的频率,因此第三相位选择器1082以第一个输入频率Sin1的相位(亦即时间点t1)来做为第一频率Ssc1的相位的参考点。换句话说,以数字讯号(b5,b4,b3,b2,b1,b0)系(0,0,0,0,0,0)为例时,第一频率Ssc1的第一对应相位Ps1_(0,0,0,0,0,0)系同步于基准频率Sref的相位(亦即时间点t1)。以数字讯号(b5,b4,b3,b2,b1,b0)系(1,1,1,1,1,1)为例时,第一特定输入频率Ssc1的第一对应相位Ps1_(1,1,1,1,1,1)(亦即时间点t3)与基准频率Sref的相位之间具有一最大的相位差。接着,第五除频器1084对基准频率Sref进行一除二的除频运算以产生第五除频频率Sdc5,同时第一除频器1023和第二反相器1024依据第一频率Ssc1来产生第二频率Ssc2。由于当具有一输入相位的一输入频率经由一除频器进行一除频运算后,该除频器所产生的一除频输出频率的一除频输出相位可能会不同步于该输入频率的该输入相位(例如相差180°),因此为了使得第一除频器1023所产生的第一除频频率Sdc1具有统一的基准参考相位,第一除频器1023会依据第五除频器1084所产生的第五除频频率Sdc5的相位为参考点(例如时间点t1)来产生第二频率Ssc2,以使得基准频率Sref与第一频率Ssc1之间的相位差大致上等于第五除频频率Sdc5与第二频率Ssc2之间的相位差。同理,为了使得第二除频器1025所产生的第二除频频率Sdc2具有统一的基准参考相位第二除频器1025会依据第六除频器1086所产生的第六除频频率Sdc6的相位为参考点(例如时间点t1)来产生第一输出频率Sc1,以使得第五除频频率Sdc5与第二频率Ssc2之间的相位差大致上等于第六除频频率Sdc6与第一输出频率Sc1之间的相位差。Please refer to FIG. 3 , FIG. 5 and FIG. 6 at the same time. When the phase generating device 100 receives these input frequencies Sin, since the first input frequency Sin1 is the first frequency input to the phase generating device 100 among the input frequencies Sin, the third phase selector 1082 uses the first The phase of an input frequency Sin1 (that is, the time point t1) is used as the reference point of the phase of the first frequency Ssc1. In other words, when the digital signal (b5, b4, b3, b2, b1, b0) is (0, 0, 0, 0, 0, 0) as an example, the first corresponding phase Ps1_(0 , 0, 0, 0, 0, 0) is synchronized with the phase of the reference frequency Sref (ie the time point t1). Taking the digital signal (b5, b4, b3, b2, b1, b0) as (1, 1, 1, 1, 1, 1) as an example, the first corresponding phase Ps1_(1, 1 of the first specific input frequency Ssc1 , 1, 1, 1, 1) (that is, the time point t3) has a maximum phase difference with the phase of the reference frequency Sref. Next, the fifth frequency divider 1084 divides the reference frequency Sref by one and two to generate the fifth frequency division frequency Sdc5, and at the same time, the first frequency divider 1023 and the second inverter 1024 generate according to the first frequency Ssc1 The second frequency Ssc2. Because when an input frequency with an input phase is subjected to a frequency division operation through a frequency divider, a frequency division output phase of a frequency division output frequency generated by the frequency divider may not be synchronized with the frequency division output phase of the input frequency. The input phases (for example, differ by 180°), so in order to make the first frequency division frequency Sdc1 generated by the first frequency divider 1023 have a unified reference phase, the first frequency divider 1023 will be based on the frequency generated by the fifth frequency divider 1084. The phase of the fifth frequency division frequency Sdc5 is a reference point (such as time point t1) to generate the second frequency Ssc2, so that the phase difference between the reference frequency Sref and the first frequency Ssc1 is substantially equal to the fifth frequency division frequency Sdc5 and The phase difference between the second frequencies Ssc2. Similarly, in order to make the second frequency division frequency Sdc2 generated by the second frequency divider 1025 have a unified reference reference phase, the second frequency divider 1025 will be based on the sixth frequency division frequency Sdc6 generated by the sixth frequency divider 1086 The phase is a reference point (such as time point t1) to generate the first output frequency Sc1, so that the phase difference between the fifth frequency division frequency Sdc5 and the second frequency Ssc2 is substantially equal to the sixth frequency division frequency Sdc6 and the first output frequency Phase difference between Sc1.
另一方面,本实施例相位产生装置100的第二频率产生装置104亦会接收该些输入频率Sin,并依据数字讯号(c5,c4,c3,c2,c1,c0)以及该些输入频率Sin来产生具有第二输出相位的第二输出频率Sc2。请注意,由于第二频率产生装置104的操作方式系大致大相似于第一频率产生装置102,因此不另赘述。然而,为了更清楚描述本发明的精神所在,本实施例以数字讯号(b5,b4,b3,b2,b1,b0)=(0,0,0,0,0,0)以及(c5,c4,c3,c2,c1,c0)=(0,0,0,0,1,0)为例以说明选择电路106的操作。请参图7。图7所示系相位产生装置100的选择电路106的第一输出频率Sc1、第二输出频率Sc2、输出讯号Sn5、选择讯号Sup、控制讯号Se以及输出频率Sout的时序图。当相位产生装置100目前所输出的输出频率Sout系对应至(c5,c4,c3,c2,c1,c0)=(0,0,0,0,1,0)(亦即由第二频率产生装置104所产生),而接下来要输出的输出频率Sout系对应至(b5,b4,b3,b2,b1,b0)=(0,0,0,0,0,0)(亦即由第一频率产生装置102所产生)时,选择讯号Sup会于时间点te先从低电压准位切换至高电压准位。接着,对应于(b5,b4,b3,b2,b1,b0)=(0,0,0,0,0,0)的第一输出频率Sc1就会于时间点tf输入多任务器1062以及与门1064a。接着,第一输出频率Sc1与第二输出频率Sc2于时间点tg时会同时处于高电压准位,因此输出讯号Sn5亦会于时间点tg从低电压准位切换至高电压准位,此时,缓存器1064b的控制讯号Se亦会从低电压准位切换至高电压准位。因此,在时间点tg时,多任务器1062的输出就会从对应至(c5,c4,c3,c2,c1,c0)=(0,0,0,0,1,0)的第二输出频率Sc2切换至对应至(b5,b4,b3,b2,b1,b0)=(0,0,0,0,0,0)的第一输出频率Sc1。接着,在时间点th时,输出讯号Sn5就会从高电压准位切换至低电压准位而将缓存器1064b的控制讯号Se维持在高电压准位。如此一来,在时间点tg过后,相位产生装置100的输出频率Sout就可以从第二输出频率Sc2切换至第一输出频率Sc1。请注意,在时间点te至tg之间,由于多任务器1062的输出端N6的电压会维持不变,亦即维持在高电压准位,而不会从一高电压准位切换至一低电压准位,或从一低电压准位切换至一高电压准位,因此输出端N6实际上并未发生电压准位的变化。换句话说,当相位产生装置100的输出频率Sout于时间点tg从第二输出频率Sc2切换至第一输出频率Sc1时,相位产生装置100的输出端N6上的突波(Glitch)现象就可以大幅度的被改善了。On the other hand, the second frequency generating device 104 of the phase generating device 100 in this embodiment will also receive the input frequencies Sin, and based on the digital signals (c5, c4, c3, c2, c1, c0) and the input frequencies Sin to generate a second output frequency Sc2 with a second output phase. Please note that since the operation of the second frequency generating device 104 is substantially similar to that of the first frequency generating device 102 , it will not be repeated here. However, in order to describe the spirit of the present invention more clearly, in this embodiment, digital signals (b5, b4, b3, b2, b1, b0)=(0, 0, 0, 0, 0, 0) and (c5, c4 , c3, c2, c1, c0)=(0, 0, 0, 0, 1, 0) is taken as an example to illustrate the operation of the
请注意,此领域具有通常知识者应可了解,本发明的相位产生装置100并不受限于以第一、第二频率产生装置102、104以及选择电路106来产生输出频率Sout。经由适当地修饰,相位产生装置100亦可以复数组第一、第二频率产生装置102、104以及选择电路106来产生复数个输出频率Sout。此外,本发明的相位产生装置100并不受限于以二到一(Two-to-one)的多任务器1062结合第一、第二频率产生装置102、104来产生输出频率Sout,经由适当地修饰,相位产生装置100亦可以多到一(例如三到一)的多任务器结合复数个频率产生装置(例如三个频率产生装置)来产生输出频率Sout。另一方面,虽然相位产生装置100的第一相位产生器1021系以半个周期(Half cycle)内的8个相位来产生全周期(Full cycle)内16个相位做说明,然其并做为本发明的限制所在。本发明的相位产生装置100亦可直接以全周期内具有16个相位的该些输入频率Sin来产生输出频率Sout,如图8所示。Please note that those skilled in the art should understand that the phase generating device 100 of the present invention is not limited to using the first and second frequency generating devices 102 , 104 and the
图8所示系依据本发明相位产生装置800的另一实施例示意图。图8的实施例中,相位产生装置800包含有一第一及一第二频率产生装置802、804、一选择电路806以及一基准相位产生电路808。第一频率产生装置802依据该些输入频率Sin’以及一第一数字讯号Sd1’(亦即(d4,d3,d2,d1,d0))来产生具有一第一输出相位的一第一输出频率Sc1’。第二频率产生装置804依据该些输入频率Sin’以及一第二数字讯号Sd2’(亦即(e4,e3,e2,e1,e0))来产生具有一第二输出相位的一第二输出频率Sc2’。选择电路806系耦接于第一、第二频率产生装置802、804,用来依据一选择讯号Sup’而自第一、第二频率产生装置802、804所分别产生的第一、第二输出频率Sc1’、Sc2’中选择其一做为该输出频率Sout’。基准相位产生电路808系用来提供至少一基准相位给第一、第二频率产生装置802、804以做为第一输出相位以及第二输出相位的参考相位。此外,第一频率产生装置802包含有一第一相位选择器8021及一第一相位产生单元820。第一相位选择器8021用来依据第一数字讯号Sd1’来自该些输入频率Sin’中选择具有一对应相位的一选定输入频率Ssc1’。第一相位产生单元820包含有一第一除频器8022及一第一反相器8023。第一除频器8022耦接于第一相位选择器8021,用来对选定输入频率Ssc1’进行一除频运作以产生一第一除频频率Sdc1’。第一反相器8023耦接于第一除频器8022,用来依据第一数字讯号Sd1’中的一位(亦即d4)来选择性地对第一除频频率Sdc1’进行一反相处理,以产生具有第一输出相位P1’的第一输出频率Sc1’。同理,第二频率产生装置804亦包含有一第二相位选择器8041及一第二相位产生单元。第二相位产生单元包含有一第二除频器8042以及一第二反相器8043。此外,参考相位产生电路808包含有:一第三相位选择器8082,用来自该些输入频率Sin’中选出一输入频率以做为一基准频率Sref’;以及一第三除频器8084,耦接于第三相位产生器8082,用来对基准频率Sref’进行一除频运算以产生一第三除频频率Sdc3’;其中第一除频器8022和第二除频器8042以第三除频频率Sdc3’的相位为一基准相位来分别产生第一除频频率Sdc1’和第二除频频率Sdc2’。选择电路806系用来依据选择讯号Sup’来将目前做为输出频率Sout’的第二输出频率Sc2’切换至第一输出频率Sc1’以做为接下来所要输出的输出频率Sout’。FIG. 8 is a schematic diagram of another embodiment of a
进一步来说,在本实施例中,该些输入频率Sin’在全周期的条件时为具有16个不同相位的频率,因此,本实施例相位产生装置800的第一、第二、第三相位选择器8021、8041、8082系从该些输入频率Sin’的全周期内的16个相位中选择一相位,进而得以省略相位产生装置100中对应的第一反相器1022和第四反相器1042。再者,为了简化起见,相位产生装置800系依据五个位的数字讯号(亦即第一数字讯号Sd1’(d4,d3,d2,d1,d0)和第二数字讯号Sd2’(e4,e3,e2,e1,e0))来产生具有一对应相位的输出频率Sout’,其中第一数字讯号Sd1’的四个位(d3,d2,d1,d0)系提供给第一相位选择器8021以从该16个输入频率Sin中选择一具有对应相位的输入频率,第一数字讯号Sd1’的位d4系提供给第一除频器8022,第二数字讯号Sd2’的四个位(e3,e2,e1,e0)系提供给第二相位选择器8041以从该16个输入频率Sin’中选择一具有对应相位的输入频率,第二数字讯号Sd2’的位e4系提供给第二除频器8042。参照关于相位产生装置100所教导的技术内容,由于相位产生装置800的数字讯号具有5个位,因此相位产生装置800所产生的输出频率Sout’可以具有32个不同相位的选择,且输出频率Sout’的频率频率为100MHz(该些输入频率Sin’的频率频率为200MHz)。请注意,由于相位产生装置800的运作方式系相似于相位产生装置100的运作方式,故其详细运作过程在此不另赘述。Further, in this embodiment, these input frequencies Sin' are frequencies with 16 different phases under the condition of a full cycle, therefore, the first, second, and third phases of the
综上所述,本发明所揭露的实施例系以数字(Digital)电路的方式来产生一相位转换装置。如上所述,由于以数字电路的方式来实作该相位转换装置可以避免使用习知的电流驱动(current steering)电路,因此本发明的相位产生装置100、800就可以大幅度的减少电路在操作时的耗电量。另一方面,透过本发明所揭露的选择电路106以及其相关方法,相位产生装置100、800得以进一步地改善电路在操作过程中所产生的突波(Glitch)现象。In summary, the embodiments disclosed in the present invention use a digital circuit to generate a phase conversion device. As mentioned above, since the implementation of the phase conversion device in the form of a digital circuit can avoid the use of a conventional current steering (current steering) circuit, the
以上所述仅为本发明的较佳实施例,凡依本发明权利要求所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.
Claims (11)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 200910225467 CN102104376B (en) | 2009-12-16 | 2009-12-16 | Phase generating device and phase generating method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 200910225467 CN102104376B (en) | 2009-12-16 | 2009-12-16 | Phase generating device and phase generating method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102104376A CN102104376A (en) | 2011-06-22 |
| CN102104376B true CN102104376B (en) | 2013-05-22 |
Family
ID=44156943
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 200910225467 Active CN102104376B (en) | 2009-12-16 | 2009-12-16 | Phase generating device and phase generating method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102104376B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109324215B (en) * | 2018-09-21 | 2022-04-19 | 北京无线电计量测试研究所 | DDS-based standard phase generation method and device |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4789996A (en) * | 1988-01-28 | 1988-12-06 | Siemens Transmission Systems, Inc. | Center frequency high resolution digital phase-lock loop circuit |
| CN1815892A (en) * | 2005-01-31 | 2006-08-09 | 瑞昱半导体股份有限公司 | A circuit that detects phase errors and generates control signals |
| CN101465633A (en) * | 2007-12-21 | 2009-06-24 | 瑞昱半导体股份有限公司 | Signal generating device |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4015937B2 (en) * | 2002-12-06 | 2007-11-28 | 松下電器産業株式会社 | Duty ratio correction circuit |
-
2009
- 2009-12-16 CN CN 200910225467 patent/CN102104376B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4789996A (en) * | 1988-01-28 | 1988-12-06 | Siemens Transmission Systems, Inc. | Center frequency high resolution digital phase-lock loop circuit |
| CN1815892A (en) * | 2005-01-31 | 2006-08-09 | 瑞昱半导体股份有限公司 | A circuit that detects phase errors and generates control signals |
| CN101465633A (en) * | 2007-12-21 | 2009-06-24 | 瑞昱半导体股份有限公司 | Signal generating device |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102104376A (en) | 2011-06-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4322548B2 (en) | Data format conversion circuit | |
| US8471607B1 (en) | High-speed frequency divider architecture | |
| CN105718404B (en) | A kind of square-wave generator and method based on FPGA | |
| US9143164B2 (en) | Scalable serializer | |
| CN102549924B (en) | Frequency generating circuit and method | |
| CN112600567B (en) | High-speed multichannel parallel-serial conversion circuit | |
| JP2007036870A (en) | Pre-emphasis circuit | |
| US20100141306A1 (en) | Parallel-serial conversion circuit and data receiving system | |
| JP2010158004A (en) | Delay circuit, and variable delay circuit | |
| TWI422157B (en) | Phase generating apparatus and phase generating method | |
| CN109753481B (en) | Dynamic phase switching system and dynamic phase switching method | |
| US7034595B2 (en) | Multi-phase clock signal generators and methods of generating multi-phase clock signals | |
| CN102104376B (en) | Phase generating device and phase generating method | |
| JP2004056717A (en) | Semiconductor device, system board and multi-phase clock generating circuit | |
| JP5157461B2 (en) | Frequency dividing circuit and frequency dividing method | |
| JP2005086242A (en) | Integrated circuit | |
| US7612595B2 (en) | Sequence independent non-overlapping digital signal generator with programmable delay | |
| US7342430B1 (en) | Write strategy with multi-stage delay cell for providing stable delays on EFM clock | |
| JP2002517935A (en) | Tunable digital oscillator circuit and method for generating clock signals of different frequencies | |
| CN100426182C (en) | Realizing circuit of asynchronous clock signal switching and method thereof | |
| TWI462483B (en) | Clock generating circuit and associated method for generating output clock signal | |
| JP2010517345A (en) | Clock signal generator | |
| JP3853308B2 (en) | Delay circuit and electronic circuit | |
| JP2008177947A (en) | Variable latency circuit and latency control method for variable latency circuit | |
| TWI433464B (en) | Phase selector |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20201027 Address after: No. 1, Xingzhu Road, Hsinchu Science Park, Taiwan, China Patentee after: MEDIATEK Inc. Address before: 4 building 518057, block C, Institute of international technology innovation, South tech ten road, Shenzhen hi tech Zone, Guangdong Patentee before: Mstar Semiconductor,Inc. Patentee before: MEDIATEK Inc. Effective date of registration: 20201027 Address after: 4th Floor, Block C, International Institute of Technology Innovation, Nanshi Road, Shenzhen High-tech Zone, Guangdong Province Patentee after: Mstar Semiconductor,Inc. Patentee after: MEDIATEK Inc. Address before: 4 building 518057, block C, Institute of international technology innovation, South tech ten road, Shenzhen hi tech Zone, Guangdong Patentee before: Mstar Semiconductor,Inc. Patentee before: MSTAR SEMICONDUCTOR Inc. |