CN102135270B - Heat accumulation and evaporation integrated device for solar thermal power generation - Google Patents
Heat accumulation and evaporation integrated device for solar thermal power generation Download PDFInfo
- Publication number
- CN102135270B CN102135270B CN 201110049637 CN201110049637A CN102135270B CN 102135270 B CN102135270 B CN 102135270B CN 201110049637 CN201110049637 CN 201110049637 CN 201110049637 A CN201110049637 A CN 201110049637A CN 102135270 B CN102135270 B CN 102135270B
- Authority
- CN
- China
- Prior art keywords
- molten salt
- heat storage
- storage tank
- evaporator
- power generation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001704 evaporation Methods 0.000 title claims abstract description 14
- 230000008020 evaporation Effects 0.000 title claims abstract description 14
- 238000010248 power generation Methods 0.000 title claims abstract description 14
- 238000009825 accumulation Methods 0.000 title 1
- 150000003839 salts Chemical class 0.000 claims abstract description 135
- 238000005338 heat storage Methods 0.000 claims abstract description 65
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000007788 liquid Substances 0.000 claims abstract description 10
- 238000003860 storage Methods 0.000 claims description 2
- 238000013517 stratification Methods 0.000 abstract description 14
- 238000005516 engineering process Methods 0.000 abstract description 13
- 238000000034 method Methods 0.000 abstract description 10
- 238000005086 pumping Methods 0.000 abstract description 9
- 238000007667 floating Methods 0.000 description 8
- 239000012530 fluid Substances 0.000 description 8
- 239000006096 absorbing agent Substances 0.000 description 5
- 238000005192 partition Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 3
- 239000011343 solid material Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000006004 Quartz sand Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
Images
Landscapes
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
太阳能热发电用储热蒸发一体化装置。喷头(2)、蒸发器(3)、熔融盐泵(4)集成安装在熔融盐储热罐(1)内。蒸发器(3)焊接在熔融盐储热罐(1)的底部,并浸泡在熔融盐中。喷头(2)均匀布置在熔融盐液面之上。水自下而上通过蒸发器(3),在发生蒸汽的过程中,强化了熔融盐自然对流并层化温跃层。本发明使用被动式自然对流强化层化技术,蒸发器不需要额外的泵送系统和长时间预热。
Integrated heat storage and evaporation device for solar thermal power generation. The nozzle (2), the evaporator (3), and the molten salt pump (4) are integrated and installed in the molten salt heat storage tank (1). The evaporator (3) is welded on the bottom of the molten salt heat storage tank (1) and immersed in the molten salt. The nozzles (2) are evenly arranged on the liquid surface of the molten salt. Water passes through the evaporator (3) from bottom to top, and in the process of generating steam, the natural convection of molten salt is strengthened and the thermocline is stratified. The present invention uses passive natural convection enhanced stratification technology, and the evaporator does not need an additional pumping system and long-time preheating.
Description
技术领域 technical field
本发明涉及一种用于太阳能热发电的储热蒸发一体化装置。The invention relates to a heat storage and evaporation integrated device for solar thermal power generation.
背景技术 Background technique
太阳能热发电技术区别于其他可再生能源发电技术的一个显著优点就是它可以使用大规模的储热技术以克服太阳能的间歇性和非稳定性对于发电特性的影响,使太阳能热发电能够输出稳定的负荷到电网,保证电网的稳定性。同时,储热器的存在增加了太阳能热发电站的发电量和发电时数,降低了太阳能热发电的成本。目前商业用的最好的太阳能热发电储热技术主要是双罐的熔融盐储热。低温盐罐储存约290℃的低温熔融盐,由泵送系统送至吸热器中产生高温560℃左右的高温熔融盐,然后将高温熔融盐储存到高温盐罐中。当夜间或者云遮时,高温熔融盐被泵送系统送出至蒸发器放热,然后低温熔融盐流回低温盐罐。这种技术的主要缺点是成本高、使用熔融盐量大。为了解决上述问题,可以采用使用单个熔融盐罐,利用熔融盐在不同温度下密度不同会产生流体分层原理的单罐温跃层储热。单罐温跃层储热技术的关键在于温跃层的层化和保持。专利WO201000089、US2010031062、US4523629描述了在熔融盐罐中安装浮动板,使浮动板作为温跃层层化工具,热流体在浮动板的上部,冷流体在浮动板的下部。充放热过程中浮动板可以上下运动,阻止冷热流体混合保持温跃层的层化状态。通常情况下太阳能热发电站的容量非常大,依据储热时间的长短,需要成上万吨的熔融盐,因此,储热器的尺度非常大,所以,采用浮动板在制作和运行工艺上难度极大。论文《Thermal Analysis of Solar Thermal Energy Storage in a Molten-Salt Thermocline》和《Molten Salt Thermal Energy Storage in Thermoclines under Different EnvironmentBoundary Conditions》中描述了一种在熔融盐罐中添加石英砂和砾石等惰性固体材料,利用固体材料导热系数低强化层化的技术。专利200710028077.X和ZL200720051634.5描述了一种是用泡沫陶瓷实现层化的技术。不管是使用何种固体材料作为填料实现层化,都存在材料与熔融盐本身的相容性问题,以及对于熔融盐的污染问题。而且所有上述技术都需要一套高温熔融盐泵送系统,把高温熔融盐送出至蒸发器放热发生水蒸汽,因此,系统复杂成本高。ZL200810198461.9虽然描述了一种套管式的熔融盐水蒸发器,可以用于高温熔融盐的放热传热,但是,它又无法实现储热。A significant advantage of solar thermal power generation technology that is different from other renewable energy power generation technologies is that it can use large-scale heat storage technology to overcome the impact of solar energy's intermittency and instability on power generation characteristics, so that solar thermal power generation can output stable load to the grid to ensure the stability of the grid. At the same time, the existence of the heat storage device increases the power generation capacity and the power generation hours of the solar thermal power station, and reduces the cost of solar thermal power generation. At present, the best solar thermal power storage technology for commercial use is mainly double-tank molten salt heat storage. The low-temperature salt tank stores low-temperature molten salt at about 290°C, which is sent to the heat absorber by the pumping system to generate high-temperature molten salt at a high temperature of about 560°C, and then the high-temperature molten salt is stored in the high-temperature salt tank. At night or when clouds are covered, the high-temperature molten salt is sent out by the pumping system to the evaporator to release heat, and then the low-temperature molten salt flows back to the low-temperature salt tank. The main disadvantages of this technology are the high cost and the large amount of molten salt used. In order to solve the above problems, a single molten salt tank can be used to store heat in a single-tank thermocline using the principle of fluid stratification caused by the different densities of molten salt at different temperatures. The key to the single-tank thermocline heat storage technology lies in the stratification and maintenance of the thermocline. Patents WO201000089, US2010031062, and US4523629 describe the installation of floating plates in molten salt tanks, using the floating plates as thermocline stratification tools, with hot fluid on the upper part of the floating plate and cold fluid on the lower part of the floating plate. During the charging and discharging process, the floating plate can move up and down to prevent the mixing of cold and hot fluids and maintain the stratified state of the thermocline. Under normal circumstances, the capacity of solar thermal power stations is very large. According to the length of heat storage time, tens of thousands of tons of molten salt are required. Therefore, the scale of the heat storage device is very large, so it is difficult to use floating plates in the manufacturing and operation process great. The papers "Thermal Analysis of Solar Thermal Energy Storage in a Molten-Salt Thermocline" and "Molten Salt Thermal Energy Storage in Thermoclines under Different Environment Boundary Conditions" describe an inert solid material such as quartz sand and gravel in molten salt tanks, A technology that utilizes the low thermal conductivity of solid materials to enhance stratification. Patents 200710028077.X and ZL200720051634.5 describe a technology of layering with ceramic foam. No matter what kind of solid material is used as the filler to achieve layering, there are compatibility issues between the material and the molten salt itself, as well as the contamination of the molten salt. Moreover, all the above-mentioned technologies require a set of high-temperature molten salt pumping system to send the high-temperature molten salt to the evaporator to release heat and generate water vapor. Therefore, the system is complex and costly. Although ZL200810198461.9 describes a casing-type molten salt water evaporator, which can be used for heat release and heat transfer of high-temperature molten salt, it cannot realize heat storage.
总之,现有单罐温跃层储热都存在温跃层层化困难、需要额外的高温泵送系统将高温熔融盐送至蒸发器、蒸发器外置启动过程预热时间长的缺点。In short, the existing single-tank thermocline heat storage has the disadvantages of difficulty in thermocline stratification, the need for an additional high-temperature pumping system to send high-temperature molten salt to the evaporator, and the long warm-up time of the external evaporator startup process.
发明内容 Contents of the invention
本发明所要解决的技术问题是:The technical problem to be solved by this invention is:
1、单罐温跃层储热的温跃层层化问题;1. Thermocline stratification of single tank thermocline heat storage;
2、储热器与蒸发器独立,需要额外的泵送系统的问题;2. The heat storage and the evaporator are independent, requiring an additional pumping system;
3、蒸发器启动过程预热时间长,影响电站运行时数的问题。3. The warm-up time of the evaporator start-up process is long, which affects the running hours of the power station.
本发明解决上述技术问题采用的方案是:The scheme adopted by the present invention to solve the problems of the technologies described above is:
本发明采用一种储热蒸发一体化装置以解决上述技术问题。本发明采用常规的圆柱形立式熔融盐罐作为熔融盐储热罐,其直径和高度的大小根据储热容量确定。在熔融盐储热罐的底部焊接多个蒸发器。多个蒸发器可以在熔融盐罐中采用规则的三角形、方形、圆形等排列,间距由蒸发量的大小和检修要求决定。蒸发器浸没在熔融盐储热罐的熔融盐中,在发生蒸汽的过程中强化熔融盐储热罐的温跃层层化,变主动式的层化技术,如:浮动板、惰性填料,为被动式自然对流层化技术。蒸发器的底部设有水联箱,水联箱的底部设有冷水进口。蒸发器上部设有蒸汽联箱,蒸汽联箱的上部设有蒸汽出口。水联箱和蒸汽联箱通过换热管连接起来。蒸发器的外隔罩与辐板焊接在一起。辐板与水联箱焊接在一起,通过外隔罩解决温跃层层化问题。在熔融盐储热罐的顶部和熔融盐液面之间安装多个喷头。喷头的排列可以采用规则的三角形、四方形和圆形等布置。喷头按照常规方法安装在高温熔融盐管道上。高温熔融盐管道从熔融盐储热罐顶部进入熔融盐罐并在与熔融盐液面平行的方向上分支,按照喷头的排列方式设计熔融盐管道的分支方式。来自吸热器的高温熔融盐从熔融盐储热器顶部经过喷头的分布和雾化之后进入熔融盐储热罐。熔融盐泵垂直安装在熔融盐储热罐的上部,熔融盐泵将熔融盐底部的低温熔融盐抽出送到吸热器加热。集成在熔融盐储热罐中的蒸发器浸泡在高温熔融盐中,不需要额外的高温熔融盐泵送系统将高温熔融盐送至蒸发器,克服了常规的蒸发器设置在储热罐外,需要额外的泵送系统输送高温熔融盐进入蒸发器的缺点。由于蒸发器一直浸泡在高温熔融盐中,因此,设备温度一直较高,不需要常规蒸发器启动时的长时间预热,解决了蒸发器的启动预热问题。其工作过程是:水工质从蒸发器的底部进入,由于蒸发器浸没在熔融盐储热器中。高温熔融盐通过自然对流将热量传递给水,水在蒸发器中蒸发产生高温高压满足汽轮机参数要求的蒸汽进入汽轮机做功发电,而在储热器内自然对流的熔融盐,在蒸发器的底部温度较蒸发器上部的温度低,热流体由于密度低漂浮在上部,冷流体自然下沉,实现熔融盐的层化。蒸发器的外隔罩将自然对流限制在蒸发器表面和外隔罩之间,从而强化和保护温跃层。The present invention adopts a heat storage and evaporation integrated device to solve the above technical problems. The present invention adopts a conventional cylindrical vertical molten salt tank as a molten salt heat storage tank, and its diameter and height are determined according to the heat storage capacity. Multiple evaporators are welded to the bottom of the molten salt heat storage tank. Multiple evaporators can be arranged in regular triangles, squares, circles, etc. in the molten salt tank, and the spacing is determined by the size of the evaporation capacity and maintenance requirements. The evaporator is immersed in the molten salt of the molten salt heat storage tank, and the thermocline stratification of the molten salt heat storage tank is strengthened in the process of steam generation, and the active stratification technology, such as: floating plate, inert packing, is Passive natural tropostratification technology. The bottom of the evaporator is provided with a water header, and the bottom of the water header is provided with a cold water inlet. The upper part of the evaporator is provided with a steam header, and the upper part of the steam header is provided with a steam outlet. The water header and steam header are connected by heat exchange tubes. The outer partition of the evaporator is welded together with the web. The radial plate and the water header are welded together, and the problem of thermocline stratification is solved through the outer shield. A plurality of spray heads are installed between the top of the molten salt heat storage tank and the liquid surface of the molten salt. The arrangement of nozzles can be arranged in regular triangles, squares and circles. The nozzle is installed on the high temperature molten salt pipeline according to the conventional method. The high-temperature molten salt pipeline enters the molten salt tank from the top of the molten salt heat storage tank and branches in a direction parallel to the liquid surface of the molten salt. The branching mode of the molten salt pipeline is designed according to the arrangement of the nozzles. The high-temperature molten salt from the heat absorber enters the molten salt heat storage tank from the top of the molten salt heat storage tank through the distribution and atomization of the nozzle. The molten salt pump is vertically installed on the upper part of the molten salt heat storage tank, and the molten salt pump pumps out the low-temperature molten salt at the bottom of the molten salt and sends it to the heat absorber for heating. The evaporator integrated in the molten salt heat storage tank is immersed in the high-temperature molten salt, and no additional high-temperature molten salt pumping system is needed to send the high-temperature molten salt to the evaporator, which overcomes the conventional evaporator being set outside the heat storage tank, Disadvantages of requiring an additional pumping system to deliver the high temperature molten salt into the evaporator. Since the evaporator is always immersed in high-temperature molten salt, the temperature of the equipment is always high, which does not require long-term preheating when the conventional evaporator starts, which solves the problem of evaporator start-up preheating. Its working process is: the water working medium enters from the bottom of the evaporator, because the evaporator is submerged in the molten salt heat storage. The high-temperature molten salt transfers heat to the water through natural convection, and the water evaporates in the evaporator to produce high-temperature and high-pressure steam that meets the requirements of the steam turbine parameters and enters the steam turbine to generate power. The temperature in the upper part of the evaporator is low, the hot fluid floats on the upper part due to its low density, and the cold fluid sinks naturally to realize the stratification of molten salt. The outer shroud of the evaporator confines natural convection between the evaporator surface and the outer shroud, strengthening and protecting the thermocline.
本发明利用蒸发器冷流体需要熔融盐传热蒸发的特点,在水蒸发的过程中使蒸发器外侧的熔融盐自然对流,实现自然的层化,不需要任何浮动板或者填料以及泵送系统,结构简单,蒸汽器启动时间短,储热与蒸发一体化。The present invention utilizes the feature that the cold fluid of the evaporator requires molten salt to conduct heat and evaporate, and in the process of water evaporation, the molten salt outside the evaporator is naturally convected to realize natural stratification without any floating plate or filler and pumping system. The structure is simple, the start-up time of the steamer is short, and the heat storage and evaporation are integrated.
附图说明 Description of drawings
图1储热蒸发一体化装置结构图;Fig. 1 Structural diagram of heat storage and evaporation integrated device;
图2蒸发器主视图;Figure 2 The front view of the evaporator;
图3蒸发器俯视图;Figure 3 top view of the evaporator;
图中:1熔融盐储热罐、2喷头、3蒸发器、4熔融盐泵、5蒸汽联箱、6换热管、7水联箱、8支撑腿、9外隔罩、10辐板。In the figure: 1 molten salt heat storage tank, 2 nozzle, 3 evaporator, 4 molten salt pump, 5 steam header, 6 heat exchange tube, 7 water header, 8 supporting legs, 9 outer shield, 10 spoke plate.
具体实施方式 Detailed ways
图1是本发明储热蒸发一体化装置结构图。熔融盐储热罐1内布置有喷头2、蒸发器3和熔融盐泵4。多个喷头2安装在熔融盐储热罐1顶部和熔融盐液面之间,位于熔融盐液面以上,并按照规则的三角形、方形或圆形均匀分布。喷头按照常规方法安装在高温熔融盐管道上。高温熔融盐管道从熔融盐储热罐顶部进入熔融盐罐并在与熔融盐液面平行的方向上分支,按照喷头的排列方式设计熔融盐管道的分支方式。来自于吸热器的高温熔融盐通过均匀分布的喷头2分流以后,低速均匀地掉落在熔融盐储热罐1的熔融盐液面上,高温熔融盐密度低自然而然停留在熔融盐储热器1的上部。分流的熔融盐流量和流速较低,可以防止流体进入时对于熔融盐储热罐1内熔融盐的扰动,有利于保持熔融盐的温度分层。多个蒸发器3均匀分布并浸泡在熔融盐储热罐1中的熔融盐中,按照规则的三角形、方形或圆形等排列并焊接在熔融盐储热罐1的底部。低温水从蒸发器3的底部进入,冷水在蒸发器内自下而上流动,周围的高温熔融盐加热冷水发生所需参数的蒸汽。在蒸发器发生蒸汽的过程中,周围的高温熔融盐会自然而然的产生自然对流,低温的熔融盐密度大沉到熔融盐储热罐1的底部,高温熔融盐密度小会上浮到熔融盐储热罐1的上部,这样在熔融盐储热罐1中自然形成温跃层。垂直安装在熔融盐储热罐1顶部的熔融盐泵4一直深入到熔融盐中,直至接近熔融盐储热罐1的底部,从熔融盐储热罐1的底部抽出低温熔融盐,泵送到吸热器内吸热产生高温熔融盐,高温熔融盐从熔融盐储热罐1的顶部经喷头2重新流回熔融盐储热罐1中。Fig. 1 is a structural diagram of the heat storage and evaporation integrated device of the present invention. A
图2、图3分别是蒸发器的主视图和俯视图。蒸发器3的受热面是由换热管6所组成的管束形成的。多根换热管6按照圆形、三角形等方式排列,换热管6的下端插入到圆柱形封闭的水联箱7中,换热管6的上端插入到圆柱形封闭的蒸汽联箱5中。换热管束内的每根换热管6之间有留有足够的空间,不能紧密排列。水联箱7和蒸汽联箱5分别由水管和蒸汽管连接起来,用于供水和出蒸汽。辐板10与水联箱7和外隔罩9焊接在一起以固定。为消除外隔罩9与换热管6组成的管束之间由于膨胀量不同可能引起的应力,辐板10与蒸汽联箱5之间接触但不固定,可相对滑动,以使换热管6组成的管束、水联箱7和蒸汽联箱5能相对于外隔罩9上下移动。支撑腿8与外隔罩9和水联箱7焊接在一起,并焊接在熔融盐储热罐1的底部,防止蒸发器3在熔融盐储热罐1内漂移。蒸发器3连同外隔罩9一起浸泡在熔融盐储热罐1中。冷水从水联箱7进入,下部的熔融盐传热给水变成低温熔融盐,随着水在换热管6中上升,逐渐被周围的高温熔融盐加热升温,因此,高度方向上熔融盐在越高的位置温度也越高,外隔罩9与换热管6之间是对流剧烈的区域,换热过的低温熔融盐会自然从外隔罩9底部流出,高温熔融盐从外隔罩9上部流入,即实现了对水的加热,又强化了温跃层的层化。Figure 2 and Figure 3 are the front view and top view of the evaporator respectively. The heating surface of the
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201110049637 CN102135270B (en) | 2011-03-01 | 2011-03-01 | Heat accumulation and evaporation integrated device for solar thermal power generation |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201110049637 CN102135270B (en) | 2011-03-01 | 2011-03-01 | Heat accumulation and evaporation integrated device for solar thermal power generation |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102135270A CN102135270A (en) | 2011-07-27 |
| CN102135270B true CN102135270B (en) | 2013-10-16 |
Family
ID=44295133
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 201110049637 Expired - Fee Related CN102135270B (en) | 2011-03-01 | 2011-03-01 | Heat accumulation and evaporation integrated device for solar thermal power generation |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102135270B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2016205804A (en) * | 2015-04-16 | 2016-12-08 | 太陽光電能源科技股▲ふん▼有限公司Big Sun Energy Technology Inc. | Spray-type thermal insulation steam supply device and power generation equipment using the same |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102418917A (en) * | 2011-12-08 | 2012-04-18 | 江苏太阳宝新能源有限公司 | Solar photo-thermal power generation energy storage tank and steam generator optimized structure |
| CN107702086B (en) * | 2017-10-24 | 2023-10-20 | 西安西热节能技术有限公司 | Peak regulating system and method for storing heat by using molten salt |
| CN109307445A (en) * | 2018-10-17 | 2019-02-05 | 朱焕旺 | Fused salt spray solidification heat exchanger |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN2851982Y (en) * | 2005-12-06 | 2006-12-27 | 北京工业大学 | Double-medium solar high-temperature heat absorbing and storing device |
| CN201043869Y (en) * | 2007-05-18 | 2008-04-02 | 东莞理工学院 | High-temperature inclined-temperature layer mixed heat storage device in molten salt |
| US7987844B2 (en) * | 2009-01-13 | 2011-08-02 | Hamilton Sundstrand Corporation | Catalyzed hot gas heating system for concentrated solar power generation systems |
| US8925543B2 (en) * | 2009-01-13 | 2015-01-06 | Aerojet Rocketdyne Of De, Inc. | Catalyzed hot gas heating system for pipes |
-
2011
- 2011-03-01 CN CN 201110049637 patent/CN102135270B/en not_active Expired - Fee Related
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2016205804A (en) * | 2015-04-16 | 2016-12-08 | 太陽光電能源科技股▲ふん▼有限公司Big Sun Energy Technology Inc. | Spray-type thermal insulation steam supply device and power generation equipment using the same |
| US10256636B2 (en) | 2015-04-16 | 2019-04-09 | Big Sun Energy Technology Inc. | Spraying heat preservation vapor supplying device and generator apparatus using such device |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102135270A (en) | 2011-07-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN100445686C (en) | Method and device for mixed heat storage in high temperature slope layer in molten salt | |
| CN101464108A (en) | Corrugated phase-change heat accumulation element | |
| CN102168848A (en) | High-temperature concrete heat reservoir capable of generating steam directly | |
| CN204084894U (en) | A kind of linear Fresnel formula solar thermal collector using pulsating heat pipe | |
| CN102155806A (en) | Salt-melting heat-storing warehouse | |
| CN102135270B (en) | Heat accumulation and evaporation integrated device for solar thermal power generation | |
| CN103485990A (en) | Device and method for improving generating efficiency of fused salt tower type solar thermal power station | |
| CN103940119B (en) | Single-tank energy storage device and method for using single-tank energy storage device | |
| CN109140575A (en) | The regenerative apparatus of thermally stratified layer enhancing | |
| CN108413795A (en) | A kind of high/low temperature fuse salt list tank heat-storing device | |
| CN104896569A (en) | Temperature stratification type heat accumulating/releasing device | |
| CN201043869Y (en) | High-temperature inclined-temperature layer mixed heat storage device in molten salt | |
| CN103673332A (en) | Flat-plate solar collector module | |
| CN202613802U (en) | High temperature heat accumulation and heat exchange device for solar thermal power generation | |
| CN102305480A (en) | Thermocline solar thermal storage system with baffles | |
| CN107418882A (en) | The phase-change energy-storage solar methane-generating pit of hot-water heating system twin-stage self-loopa round the clock can be achieved | |
| CN202470852U (en) | Direct contact type phase transition displacement heat supply device | |
| CN204678718U (en) | Uniform and the agitating device of a kind of solar light-heat power-generation heat storage can charging | |
| JP2012202556A (en) | Solar heat collecting apparatus and solar power generating system | |
| CN204574557U (en) | A kind of high temperature solar heating system | |
| RU2491482C2 (en) | System of solar hot water supply | |
| CN105318763A (en) | Vertical-type phase-change thermal storage tank | |
| CN204007260U (en) | Vertical phase-change heat storage can | |
| CN205352161U (en) | Solar energy fused salt phase -change thermal ware | |
| CN204610178U (en) | Multi-tube bubble pump device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131016 Termination date: 20180301 |