CN102136491B - Electrostatic Discharge Protection Components for Gate Insulated Double Junction Transistors - Google Patents
Electrostatic Discharge Protection Components for Gate Insulated Double Junction Transistors Download PDFInfo
- Publication number
- CN102136491B CN102136491B CN 201110035850 CN201110035850A CN102136491B CN 102136491 B CN102136491 B CN 102136491B CN 201110035850 CN201110035850 CN 201110035850 CN 201110035850 A CN201110035850 A CN 201110035850A CN 102136491 B CN102136491 B CN 102136491B
- Authority
- CN
- China
- Prior art keywords
- type
- region
- active region
- dense
- high pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 59
- 239000000758 substrate Substances 0.000 claims abstract description 58
- 238000009792 diffusion process Methods 0.000 claims abstract description 34
- 238000000059 patterning Methods 0.000 claims 7
- 238000000926 separation method Methods 0.000 claims 4
- 238000002955 isolation Methods 0.000 abstract description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 239000012212 insulator Substances 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
Images
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
本发明提供一种栅极绝缘双接面晶体管静电放电防护元件,所述元件包括一半导体基底;一高压N-型阱于该半导体基底中;一图案化的隔离区设置于该高压N-型阱上,定义一第一主动区及一第二主动区;一N-型双扩散区设置于该高压N-型阱的该第一主动区中;一P-型浓掺杂漏极区设置于该N-型双扩散区中;一P-型体掺杂区于该高压N-型阱的该第二主动区中,其中该N-型双扩散区和该P-型体掺杂区相隔一特定距离,露出该高压N-型阱;一对相邻的一N-型和一P-型浓掺杂源极区设置于该P-型体掺杂区中;以及一栅极结构于该高压N-型阱上,其一端与该N-型浓掺杂源极区相接,其另一端延伸至该图案化的隔离区上。
The invention provides a gate-insulated double-junction transistor electrostatic discharge protection element, which comprises a semiconductor substrate; a high-voltage N-type well in the semiconductor substrate; a patterned isolation region arranged on the high-voltage N-type well to define a first active region and a second active region; an N-type double diffusion region arranged in the first active region of the high-voltage N-type well; a P-type densely doped drain region arranged in the N-type double diffusion region; a P-type body doping region in the second active region of the high-voltage N-type well, wherein the N-type double diffusion region and the P-type body doping region are separated by a specific distance to expose the high-voltage N-type well; a pair of adjacent N-type and P-type densely doped source regions arranged in the P-type body doping region; and a gate structure on the high-voltage N-type well, one end of which is connected to the N-type densely doped source region and the other end of which extends to the patterned isolation region.
Description
本申请为分案申请,原申请日为2008年11月03日,申请号为200810174775.5,发明名称为:栅极绝缘双接面晶体管静电放电防护元件。This application is a divisional application, the original application date is November 3, 2008, the application number is 200810174775.5, and the invention name is: gate insulating double junction transistor electrostatic discharge protection element.
技术领域 technical field
本发明是有关于一种静电放电防护装置,特别是有关于一种栅极绝缘双接面晶体管(IGBT)静电放电防护元件。The present invention relates to an electrostatic discharge protection device, in particular to an electrostatic discharge protection element for a gate insulating double-junction transistor (IGBT).
背景技术 Background technique
传统高电压静电放电(Electrostatic Discharge,简称ESD)防护元件包括横向扩散金属氧化物半功率晶体管(LDMOS Power Transistor)、金属氧化物半晶体管(MOSFET)、硅控整流器(SCR)、双载子晶体管(BJT)、二极管(Diode)和场氧化晶体管(Field Oxide Device,FOD)。在高压静电放电防护上由于其过高的触发电压(trigger voltage)和过低的持有电压(holding voltage),不是造成内部电路先损坏就是造成闩锁效应(latch-up)发生,所以要加上额外的驱动电路或是通过调变布局参数(layout parameter)去使触发电压降低和使持有电压超过元件的工作电压(operation voltage),如此才可作为高压静电放电防护元件。Traditional high-voltage electrostatic discharge (ESD) protection components include laterally diffused metal oxide semi-power transistors (LDMOS Power Transistor), metal oxide semi-transistors (MOSFET), silicon-controlled rectifiers (SCR), bicarrier transistors ( BJT), diode (Diode) and field oxide transistor (Field Oxide Device, FOD). In the protection of high-voltage electrostatic discharge, due to its high trigger voltage (trigger voltage) and low holding voltage (holding voltage), either the internal circuit will be damaged first or the latch-up effect (latch-up) will occur, so it is necessary to add Add an additional drive circuit or adjust the layout parameters to reduce the trigger voltage and make the holding voltage exceed the operation voltage of the device, so that it can be used as a high-voltage electrostatic discharge protection device.
在传统的超高压元件(ultra-HV device)中,往往利用绝缘层上有硅(SOI)基底及其相关的工艺,隔离个别的元件,以减少因高压操作造成元件间的寄生效应。而利用绝缘层上有硅(SOI)基底及其相关的工艺对ESD元件的散热造成不利的影响,因此业界亟需有效地处理ESD元件的散热问题。尤其是,在超高压元件的工艺中,阱(well)的控散浓度均偏低,使得相对的阻抗也就偏高,不利于ESD元件的更均匀一致的启动(uniform turn-on)。In traditional ultra-HV devices, silicon-on-insulator (SOI) substrates and related processes are often used to isolate individual components to reduce parasitic effects between components due to high-voltage operation. However, the use of a silicon-on-insulator (SOI) substrate and related processes will adversely affect the heat dissipation of the ESD device, so the industry urgently needs to effectively deal with the problem of heat dissipation of the ESD device. In particular, in the process of ultra-high voltage components, the concentration of wells is low, so that the relative impedance is also high, which is not conducive to a more uniform turn-on of ESD components.
发明内容 Contents of the invention
有鉴于此,为了克服上述背景技术的缺点,因而利用栅极绝缘双接面晶体管(IGBT)元件作为静电放电防护元件,并改良IGBT元件的漏极区域的布局,使其能够更均匀一致的启动,以提升ESD的保护效能。In view of this, in order to overcome the shortcomings of the above-mentioned background technology, the gate insulated double-junction transistor (IGBT) element is used as an electrostatic discharge protection element, and the layout of the drain region of the IGBT element is improved so that it can be started more uniformly , to improve the protection performance of ESD.
本发明另一实施例提供一种栅极绝缘双接面晶体管(IGBT)静电放电防护元件包括:一半导体基底;一高压N-型阱于该半导体基底中;一图案化的隔离区设置于该高压N-型阱上,定义一第一主动区及一第二主动区;一N-型双扩散区设置于该高压N-型阱的该第一主动区中;一P-型浓掺杂漏极区设置于该N-型双扩散区中;一P-型体掺杂区于该高压N-型阱的该第二主动区中,其中该N-型双扩散区和该P-型体掺杂区相隔一特定距离,露出该高压N-型阱;一对相邻的一N-型和一P-型浓掺杂源极区设置于该P-型体掺杂区中;以及一栅极结构于该高压N-型阱上,其一端与该N-型浓掺杂源极区相接,其另一端延伸至该图案化的隔离区上。Another embodiment of the present invention provides an electrostatic discharge protection device for an insulated gate double junction transistor (IGBT), comprising: a semiconductor substrate; a high voltage N-type well in the semiconductor substrate; a patterned isolation region disposed in the semiconductor substrate On the high-voltage N-type well, a first active region and a second active region are defined; an N-type double diffusion region is set in the first active region of the high-voltage N-type well; a P-type heavily doped The drain region is set in the N-type double diffusion region; a P-type body doped region is in the second active region of the high voltage N-type well, wherein the N-type double diffusion region and the P-type The body doped regions are separated by a specific distance, exposing the high-voltage N-type well; a pair of adjacent N-type and P-type heavily doped source regions are arranged in the P-type body doped region; and A gate structure is on the high voltage N-type well, one end of which is in contact with the N-type heavily doped source region, and the other end extends to the patterned isolation region.
本发明又一实施例提供一种栅极绝缘双接面晶体管(IGBT)静电放电防护元件包括:一半导体基底;一高压N-型阱于该半导体基底中;一图案化的隔离区设置于该高压N-型阱上,定义一第一主动区及一第二主动区;一P-型双扩散区设置于该高压N-型阱的该第一主动区中;一P-型浓掺杂漏极区设置于该P-型双扩散区中;一P-型体掺杂区于该高压N-型阱的该第二主动区中,其中该P-型双扩散区和该P-型体掺杂区相隔一特定距离,露出该高压N-型阱;一对相邻的一N-型和一P-型浓掺杂源极区设置于该P-型体掺杂区中;以及一栅极结构于该高压N-型阱上,其一端与该N-型浓掺杂源极区相接,其另一端延伸至该图案化的隔离区上。Yet another embodiment of the present invention provides an electrostatic discharge protection device for an insulated gate double-junction transistor (IGBT), comprising: a semiconductor substrate; a high-voltage N-type well in the semiconductor substrate; a patterned isolation region disposed in the semiconductor substrate On the high-voltage N-type well, a first active region and a second active region are defined; a P-type double diffusion region is set in the first active region of the high-voltage N-type well; a P-type heavily doped The drain region is set in the P-type double diffusion region; a P-type body doped region is in the second active region of the high voltage N-type well, wherein the P-type double diffusion region and the P-type The body doped regions are separated by a specific distance, exposing the high-voltage N-type well; a pair of adjacent N-type and P-type heavily doped source regions are arranged in the P-type body doped region; and A gate structure is on the high voltage N-type well, one end of which is in contact with the N-type heavily doped source region, and the other end extends to the patterned isolation region.
本发明又一实施例提供一种栅极绝缘双接面晶体管(IGBT)静电放电防护元件包括:一半导体基底;一高压P-型阱于该半导体基底中;一高压N-型阱于该半导体基底中;一图案化的隔离区设置于该半导体基底上,定义一第一主动区于该高压N-型阱及一第二主动区和一第三主动区于该高压P-型阱;一P-型浓掺杂漏极区设置于该第一主动区中;一N-型浓掺杂源极区设置于该第二主动区中,且一P-型浓掺杂源极区设置于该第三主动区中;以及一栅极结构于该高压P-型阱上,其一端与该N-型浓掺杂源极区相接,其另一端延伸至该图案化的隔离区上。Yet another embodiment of the present invention provides an electrostatic discharge protection device for an insulated gate double junction transistor (IGBT), comprising: a semiconductor substrate; a high voltage P-type well in the semiconductor substrate; a high voltage N-type well in the semiconductor substrate In the substrate; a patterned isolation region is disposed on the semiconductor substrate, defining a first active region in the high-voltage N-type well, a second active region and a third active region in the high-voltage P-type well; A P-type heavily doped drain region is disposed in the first active region; an N-type heavily doped source region is disposed in the second active region, and a P-type heavily doped source region is disposed in the second active region In the third active region; and a gate structure on the high voltage P-type well, one end of which is connected to the N-type heavily doped source region, and the other end extends to the patterned isolation region.
本发明再一实施例提供一种栅极绝缘双接面晶体管(IGBT)静电放电防护元件包括:一半导体基底;一图案化的隔离区设置于该半导体基底上,定义一第一主动区及一第二主动区;一栅极结构设置于该半导体基底的该第一主动区上;一N-型双扩散区位于该栅极结构的一侧,且设置该半导体基底的该第一主动区中;一N-型阱设置于该N-型双扩散区中,其底部延伸至该半导体基底;一P-型浓掺杂漏极区设置于该N-型阱中;一N-型浓掺杂源极区设置于该栅极结构的另一侧的该半导体基底中;以及一P-型浓扩散区设置于该半导体基底的该第二主动区中。Yet another embodiment of the present invention provides an electrostatic discharge protection device for an insulated gate double-junction transistor (IGBT), comprising: a semiconductor substrate; a patterned isolation region disposed on the semiconductor substrate, defining a first active region and a The second active region; a gate structure is disposed on the first active region of the semiconductor substrate; an N-type double diffusion region is located on one side of the gate structure, and is disposed in the first active region of the semiconductor substrate ; An N-type well is arranged in the N-type double diffusion region, and its bottom extends to the semiconductor substrate; a P-type heavily doped drain region is arranged in the N-type well; an N-type heavily doped The impurity source region is disposed in the semiconductor substrate on the other side of the gate structure; and a P-type dense diffusion region is disposed in the second active region of the semiconductor substrate.
附图说明 Description of drawings
图1A是显示根据本发明的一实施例的栅极绝缘双接面晶体管(IGBT)静电放电防护元件的剖面示意图;1A is a schematic cross-sectional view showing an electrostatic discharge protection device for an insulated gate double-junction transistor (IGBT) according to an embodiment of the present invention;
图1B是显示图1A的IGBT-ESD元件的第一主动区的平面布局;Figure 1B is a planar layout showing the first active region of the IGBT-ESD element of Figure 1A;
图2A是显示根据本发明另一实施例的IGBT-ESD元件的剖面示意图;2A is a schematic cross-sectional view showing an IGBT-ESD device according to another embodiment of the present invention;
图2B和图2C分别显示图2A的IGBT-ESD元件的第一主动区不同实施例的平面布局;2B and 2C respectively show the planar layouts of different embodiments of the first active region of the IGBT-ESD element of FIG. 2A;
图3A是显示根据本发明又一实施例的IGBT-ESD元件的剖面示意图;3A is a schematic cross-sectional view showing an IGBT-ESD device according to yet another embodiment of the present invention;
图3B是显示根据本发明又一实施例的IGBT-ESD元件的剖面示意图;3B is a schematic cross-sectional view showing an IGBT-ESD device according to yet another embodiment of the present invention;
图4A是显示根据本发明又一实施例的IGBT-ESD元件的剖面示意图;4A is a schematic cross-sectional view showing an IGBT-ESD device according to yet another embodiment of the present invention;
图4B是显示根据本发明又一实施例的IGBT-ESD元件的剖面示意图;以及4B is a schematic cross-sectional view showing an IGBT-ESD device according to yet another embodiment of the present invention; and
图5是显示根据本发明再一实施例的IGBT-ESD元件的剖面示意图。FIG. 5 is a schematic cross-sectional view showing an IGBT-ESD device according to yet another embodiment of the present invention.
附图标号:Figure number:
100a、100b、300a、300b、400a、400b、500~IGBT-ESD元件;100a, 100b, 300a, 300b, 400a, 400b, 500~IGBT-ESD components;
101、401~P-型硅基底;101, 401~P-type silicon substrate;
102~埋藏氧化层;102~buried oxide layer;
402~N-型埋藏层;402~N-type buried layer;
103、403~P-型外延层;103, 403~P-type epitaxial layer;
105~隔离区;105~isolated area;
110、310、410、510~半导体基底;110, 310, 410, 510~semiconductor substrate;
115、315、415b、415d、515~高压N-型阱;115, 315, 415b, 415d, 515~high voltage N-type well;
415a、415c、415e~高压P-型阱;415a, 415c, 415e~high voltage P-type well;
316a、516~N-型双扩散区;316a, 516~N-type double diffusion region;
316b~P-型双扩散区;316b~P-type double diffusion region;
416~额外的P-型浓掺杂区;416~an extra P-type heavily doped region;
117、217a、217b、317、417、517~P-型浓掺杂漏极区;117, 217a, 217b, 317, 417, 517~P-type densely doped drain region;
120、320~P-型体掺杂区;120, 320~P-type body doping region;
122、322、422、522~P-型浓扩散区;122, 322, 422, 522~P-type dense diffusion zone;
124、324、424、524~N-型浓掺杂源极区;124, 324, 424, 524~N-type heavily doped source regions;
524’~N-型轻掺杂(NLDD)区;524'~N-type lightly doped (NLDD) region;
426~额外的P-型浓掺杂区;426~an additional P-type heavily doped region;
130a-130c、330a-330c、430a-430f、530a-530c~图案化的隔离区;130a-130c, 330a-330c, 430a-430f, 530a-530c - patterned isolation regions;
135a、135b~源极电极;135a, 135b ~ source electrodes;
140、340、440、540~栅极结构;140, 340, 440, 540~gate structure;
145a、145b~漏极电极;145a, 145b ~ drain electrodes;
OD1~第一主动区;OD1 ~ the first active zone;
OD2~第二主动区。OD2 ~ the second active zone.
具体实施方式 Detailed ways
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下:In order to make the above-mentioned purposes, features and advantages of the present invention more obvious and understandable, the preferred embodiments are specifically cited below, and in conjunction with the accompanying drawings, the detailed description is as follows:
以下以各实施例详细说明并伴随着图式说明的范例,作为本发明的参考依据。在图式或说明书描述中,相似或相同的部分皆使用相同的图号。且在图式中,实施例的形状或是厚度可扩大,并以简化或是方便标示。再者,图式中各元件的部分将以分别描述说明之,另外,特定的实施例仅为揭示本发明使用的特定方式,其并非用以限定本发明。Hereinafter, each embodiment is described in detail and examples accompanied by drawings are used as a reference basis of the present invention. In the drawings or descriptions in the specification, the same figure numbers are used for similar or identical parts. And in the drawings, the shape or thickness of the embodiments may be enlarged, and marked for simplicity or convenience. Furthermore, the parts of the components in the drawings will be described separately. In addition, the specific embodiments are only used to disclose the specific methods used in the present invention, and are not intended to limit the present invention.
图1A是显示根据本发明的一实施例的栅极绝缘双接面晶体管(IGBT)静电放电防护元件的剖面示意图。于图1A中,一栅极绝缘双接面晶体管(IGBT)静电放电防护(ESD)元件100a包括一半导体基底110以及一图案化的隔离区130a、130b、130c设置于该半导体基底110上,定义一第一主动区OD1及一第二主动区OD2。根据本发明的一实施例,该半导体基底110为一绝缘层上有硅(SOI)基底,例如一P-型硅基底101,其上有一埋藏氧化层102,和一P-型外延层103形成于埋藏氧化层102上。一隔离区105使IGBT-ESD元件100a与基底110上的其他元件隔离。FIG. 1A is a schematic cross-sectional view showing an electrostatic discharge protection device for an insulated gate double-junction transistor (IGBT) according to an embodiment of the present invention. In FIG. 1A, a gate insulated double junction transistor (IGBT) electrostatic discharge protection (ESD)
一高压N-型阱115形成于该半导体基底的该第一主动区OD1中,一P-型体掺杂区120于该半导体基底的该第二主动区OD2中,其中该高压N-型阱115和该P-型体掺杂区120相隔一特定距离,露出该半导体基底。一扩散区113自该高压N-型阱115向该P-型体掺杂区120延伸靠近。一P-型浓掺杂漏极区117设置于该高压N-型阱115中,以及漏极电极145a、145b与该P-型浓掺杂漏极区117电性接触。一对相邻的一N-型浓掺杂源极区124和一P-型浓扩散区122设置于该P-型体掺杂区120中,源极电极135a、135b分别与N-型浓掺杂源极区124和P-型浓扩散区122电性接触。一栅极结构140于该半导体基底上,其一端与该N-型浓掺杂源极区124相接,其另一端延伸至该图案化的隔离区130b上。A high-voltage N-
根据本发明的一实施例,P-型浓掺杂漏极区117的面积可大于第一主动区OD1,但小于高压N-型阱115的面积,其平面布局如图1B所示。According to an embodiment of the present invention, the area of the P-type heavily doped
图2A是显示根据本发明另一实施例的IGBT-ESD元件的剖面示意图。于图2A中,IGBT-ESD元件100b与图1A的IGBT-ESD元件100a实质上相同,为求简明之故,在此省略相同的叙述。不同之处在于,P-型浓掺杂漏极区217a的面积小于该高压N-型阱115的面积,其平面布局如图2B所示。在高压N-型阱115中,高压N-型阱115与P-型浓掺杂漏极区217a之间,存在一异型掺杂的接口,可分散并降低ESD电压约0.7V。根据本发明另一实施例,P-型浓掺杂漏极区217b为多个分离的岛区,设置于高压N-型阱115中,其平面布局如图2C所示。由于各个岛区217b与高压N-型阱115之间,皆存在一异型掺杂的接口,可分散并降低ESD电压,使得IGBT-ESD元件能的更均匀一致的启动(uniform turn-on)。FIG. 2A is a schematic cross-sectional view showing an IGBT-ESD device according to another embodiment of the present invention. In FIG. 2A , the IGBT-ESD device 100 b is substantially the same as the IGBT-
图3A是显示根据本发明又一实施例的IGBT-ESD元件的剖面示意图。于图3A中,一IGBT-ESD元件300a包括一半导体基底310,例如P-型硅基底,及一高压N-型阱315设置于该半导体基底310中。一图案化的隔离区330a、330b、330c设置于该高压N-型阱315上,定义一第一主动区及一第二主动区。一N-型双扩散区316a设置于高压N-型阱315的第一主动区中,一P-型浓掺杂漏极区317设置于N-型双扩散区316a中。一P-型体掺杂区320设置于该高压N-型阱315的第二主动区中,其中该N-型双扩散区316a和该P-型体掺杂区320相隔一特定距离,露出该高压N-型阱。一对相邻的一N-型浓掺杂源极区324和一P-型浓扩散区322设置于该P-型体掺杂区320中。一栅极结构340于该高压N-型阱315上,其一端与该N-型浓掺杂源极区324相接,其另一端延伸至该图案化的隔离区330b上。FIG. 3A is a schematic cross-sectional view showing an IGBT-ESD device according to yet another embodiment of the present invention. In FIG. 3A , an IGBT-ESD device 300 a includes a
图3B是显示根据本发明又一实施例的IGBT-ESD元件的剖面示意图。于图3B中,一IGBT-ESD元件300b与图3A的IGBT-ESD元件300a实质上相同,为求简明之故,在此省略相同的叙述。不同之处在于,IGBT-ESD元件300b具有一P-型双扩散区316b设置于高压N-型阱315的第一主动区中,一P-型浓掺杂漏极区317设置于该P-型双扩散区316b中。由于P-型浓掺杂漏极区317和P-型双扩散区316b皆为P-型掺杂,因此更能增进ESD元件的效能。FIG. 3B is a schematic cross-sectional view showing an IGBT-ESD device according to yet another embodiment of the present invention. In FIG. 3B , an IGBT-
图4A是显示根据本发明又一实施例的IGBT-ESD元件的剖面示意图。于图4A中,一IGBT-ESD元件400a包括一半导体基底410,一高压N-型阱415b于该半导体基底中,一高压P-型阱415c于该半导体基底中。一图案化的隔离区430a-430d设置于该半导体基底上,定义一第一主动区于该高压N-型阱415b及一第二主动区和一第三主动区于该高压P-型阱415c。高压P-型阱415a设置于隔离区430a下方。一P-型浓掺杂漏极区417设置于该第一主动区中,一N-型浓掺杂源极区424设置于该第二主动区中,且一P-型浓掺杂扩散区422设置于该第三主动区中。一栅极结构440于该高压P-型阱415c上,其一端与该N-型浓掺杂源极区424相接,其另一端延伸至该图案化的隔离区430b上。FIG. 4A is a schematic cross-sectional view showing an IGBT-ESD device according to yet another embodiment of the present invention. In FIG. 4A, an IGBT-
图4B是显示根据本发明又一实施例的IGBT-ESD元件的剖面示意图。于图4B中,一IGBT-ESD元件400b包括一半导体基底410,例如一P-型硅基底401,其上有一P-型外延层403,以及一N-型埋藏层402设置于该P-型硅基底401与该P-型外延层403之间。一高压N-型阱415b于该半导体基底中,一高压P-型阱415c于该半导体基底中。一图案化的隔离区430a-430f设置于该半导体基底上,定义一第一主动区于该高压N-型阱415b及一第二主动区和一第三主动区于该高压P-型阱415c。高压N-型阱415d设置于隔离区430e下方。一P-型浓掺杂漏极区417设置于该第一主动区中,一N-型浓掺杂源极区424设置于该第二主动区中,且一P-型浓掺杂扩散区422设置于该第三主动区中。再者,一额外的P-型浓掺杂区416设置于高压P-型阱415a中,及一额外的P-型浓掺杂区426设置于高压P-型阱415e中。一栅极结构440于该高压P-型阱415c上,其一端与该N-型浓掺杂源极区424相接,其另一端延伸至该图案化的隔离区430c上。FIG. 4B is a schematic cross-sectional view showing an IGBT-ESD device according to yet another embodiment of the present invention. In FIG. 4B, an IGBT-
图5是显示根据本发明再一实施例的IGBT-ESD元件的剖面示意图。于图5中,一IGBT-ESD元件500包括:一半导体基底510,及一图案化的隔离区530a-530c设置于该半导体基底510上,定义一第一主动区及一第二主动区。一栅极结构540设置于该半导体基底的该第一主动区上,一N-型双扩散区516位于该栅极结构540的一侧,且设置该半导体基底510的该第一主动区中。一N-型阱515设置于该N-型双扩散区516中,其底部延伸至该半导体基底510,一P-型浓掺杂漏极区517设置于该N-型阱515中。一N-型浓掺杂源极区524设置于该栅极结构540的另一侧的该半导体基底中,一N-型轻掺杂(NLDD)区524’延伸至该栅极结构540的间隙壁下方。一P-型浓扩散区522设置于该半导体基底的该第二主动区中。FIG. 5 is a schematic cross-sectional view showing an IGBT-ESD device according to yet another embodiment of the present invention. In FIG. 5, an IGBT-
应注意的是,本发明各实施例的IGBT-ESD元件的P-型浓掺杂漏极区的面积小于该高压N-型阱的面积,使得高压N-型阱与P-型浓掺杂漏极区之间,存在一异型掺杂的接口,可分散并降低ESD电压约0.7V。更有甚者,P-型浓掺杂漏极区为多个分离的岛区,设置于高压N-型阱中,使得各个岛区与高压N-型阱之间,皆存在一异型掺杂的接口,可分散并降低ESD电压,使得IGBT-ESD元件能的更均匀一致的启动(uniform turn-on)。It should be noted that the area of the P-type densely doped drain region of the IGBT-ESD element of each embodiment of the present invention is smaller than the area of the high-voltage N-type well, so that the high-voltage N-type well and the P-type densely doped There is a hetero-doped interface between the drain regions, which can disperse and reduce the ESD voltage by about 0.7V. What's more, the P-type densely doped drain region is a plurality of separated island regions, which are arranged in the high-voltage N-type well, so that there is a heterogeneous doping between each island region and the high-voltage N-type well. The interface can disperse and reduce the ESD voltage, so that the IGBT-ESD components can be started more uniformly (uniform turn-on).
本发明虽以较佳实施例揭露如上,然其并非用以限定本发明的范围,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可做些许的更动与润饰,因此本发明的保护范围当视所附的权利要求范围所界定为准。Although the present invention is disclosed above with preferred embodiments, it is not intended to limit the scope of the present invention. Anyone with ordinary knowledge in the technical field can make some changes without departing from the spirit and scope of the present invention. and modification, so the protection scope of the present invention should be defined by the scope of the appended claims.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201110035850 CN102136491B (en) | 2008-11-03 | 2008-11-03 | Electrostatic Discharge Protection Components for Gate Insulated Double Junction Transistors |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201110035850 CN102136491B (en) | 2008-11-03 | 2008-11-03 | Electrostatic Discharge Protection Components for Gate Insulated Double Junction Transistors |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 200810174775 Division CN101728384B (en) | 2008-11-03 | 2008-11-03 | Electrostatic Discharge Protection Components for Gate Insulated Double Junction Transistors |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102136491A CN102136491A (en) | 2011-07-27 |
| CN102136491B true CN102136491B (en) | 2013-04-10 |
Family
ID=44296219
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 201110035850 Active CN102136491B (en) | 2008-11-03 | 2008-11-03 | Electrostatic Discharge Protection Components for Gate Insulated Double Junction Transistors |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102136491B (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103367357B (en) * | 2012-03-26 | 2016-02-24 | 英特尔移动通信有限责任公司 | Use the low pressure ESD clamp of high-tension apparatus |
| CN107887375B (en) * | 2016-09-29 | 2021-11-09 | 联华电子股份有限公司 | Semiconductor electrostatic discharge protection element |
| CN107887379B (en) * | 2016-09-30 | 2020-07-10 | 中芯国际集成电路制造(上海)有限公司 | Electrostatic discharge protection structure and forming method thereof |
| CN108269857B (en) * | 2016-12-30 | 2020-09-04 | 无锡华润上华科技有限公司 | Junction field effect transistor and manufacturing method thereof |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5583365A (en) * | 1993-02-24 | 1996-12-10 | Sgs-Thomson Microelectronics, S.R.L. | Fully depleted lateral transistor |
| US7057215B1 (en) * | 2002-08-02 | 2006-06-06 | National Semiconductor Corporation | PMOS based LVTSCR and IGBT-like structure |
| CN1851923A (en) * | 2006-05-24 | 2006-10-25 | 杭州电子科技大学 | SOI LIGBT device unit of integrated ESD diode |
| CN101145580A (en) * | 2006-09-15 | 2008-03-19 | 三洋电机株式会社 | Semiconductor device and manufacturing method thereof |
-
2008
- 2008-11-03 CN CN 201110035850 patent/CN102136491B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5583365A (en) * | 1993-02-24 | 1996-12-10 | Sgs-Thomson Microelectronics, S.R.L. | Fully depleted lateral transistor |
| US7057215B1 (en) * | 2002-08-02 | 2006-06-06 | National Semiconductor Corporation | PMOS based LVTSCR and IGBT-like structure |
| CN1851923A (en) * | 2006-05-24 | 2006-10-25 | 杭州电子科技大学 | SOI LIGBT device unit of integrated ESD diode |
| CN101145580A (en) * | 2006-09-15 | 2008-03-19 | 三洋电机株式会社 | Semiconductor device and manufacturing method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102136491A (en) | 2011-07-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101128716B1 (en) | Semiconductor device | |
| US7825480B2 (en) | Power semiconductor device and manufacturing method of the same | |
| CN100388504C (en) | High voltage LDMOS transistor with isolation structure | |
| US10388741B2 (en) | Semiconductor device with arrangement of semiconductor regions for improving breakdown voltages | |
| US8049307B2 (en) | Insulated gate bipolar transistor (IGBT) electrostatic discharge (ESD) protection devices | |
| JP6495751B2 (en) | Semiconductor device and manufacturing method of semiconductor device | |
| CN110610994A (en) | A lateral double-diffused metal-oxide-semiconductor field-effect transistor | |
| CN102136491B (en) | Electrostatic Discharge Protection Components for Gate Insulated Double Junction Transistors | |
| TWI387106B (en) | Insulated gate bipolar transistor (igbt) electrostatic discharge (esd) protection devices | |
| CN111816651B (en) | Electrostatic discharge protection components | |
| TWI613786B (en) | Semiconductor device | |
| TWI588970B (en) | Semiconductor device | |
| JP2001007322A (en) | High breakdown voltage field effect transistor | |
| CN102456741B (en) | Semiconductor device | |
| US20100102379A1 (en) | Lateral diffused metal oxide semiconductor device | |
| CN101728384B (en) | Electrostatic Discharge Protection Components for Gate Insulated Double Junction Transistors | |
| TWI429073B (en) | Semiconductor structure and method for forming the same | |
| JP5876008B2 (en) | Semiconductor device | |
| KR20120004954A (en) | Semiconductor devices | |
| CN209249463U (en) | Semiconductor subassembly | |
| TWI708364B (en) | Semiconductor device and manufacturing method thereof | |
| TWI597814B (en) | Semiconductor device | |
| TWI394277B (en) | Lateral diffused metal-oxide semiconductor | |
| TWI836520B (en) | Semiconductor device and fabrication method thereof | |
| CN115207090A (en) | High voltage LDMOS device and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |