CN102182671A - State analysis monitoring system and method of gas compressor - Google Patents
State analysis monitoring system and method of gas compressor Download PDFInfo
- Publication number
- CN102182671A CN102182671A CN2011101384607A CN201110138460A CN102182671A CN 102182671 A CN102182671 A CN 102182671A CN 2011101384607 A CN2011101384607 A CN 2011101384607A CN 201110138460 A CN201110138460 A CN 201110138460A CN 102182671 A CN102182671 A CN 102182671A
- Authority
- CN
- China
- Prior art keywords
- value
- life
- signal
- gas compressor
- parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 35
- 238000012544 monitoring process Methods 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000002159 abnormal effect Effects 0.000 claims abstract description 22
- 238000003745 diagnosis Methods 0.000 claims abstract description 12
- 238000012423 maintenance Methods 0.000 claims abstract description 11
- 239000010705 motor oil Substances 0.000 claims abstract description 8
- 238000012545 processing Methods 0.000 claims abstract description 8
- 238000009826 distribution Methods 0.000 claims description 42
- 238000004364 calculation method Methods 0.000 claims description 14
- 238000012360 testing method Methods 0.000 claims description 12
- 230000001186 cumulative effect Effects 0.000 claims description 9
- 238000005315 distribution function Methods 0.000 claims description 7
- 239000003921 oil Substances 0.000 claims description 7
- 238000004088 simulation Methods 0.000 claims description 4
- 238000009434 installation Methods 0.000 claims description 3
- 238000012886 linear function Methods 0.000 claims description 3
- 230000010354 integration Effects 0.000 claims 2
- 230000001174 ascending effect Effects 0.000 claims 1
- 238000000205 computational method Methods 0.000 claims 1
- 230000005856 abnormality Effects 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000007689 inspection Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000032683 aging Effects 0.000 description 3
- 238000001276 Kolmogorov–Smirnov test Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000012824 chemical production Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
本发明公开了气体压缩机的状态分析监测系统,包括气体压力传感器、温度传感器、信号调理器、机油压力传感器、振动传感器、测振仪、数据采集卡、显示器、计算机。本发明还公开了一种气体压缩机的状态分析监测方法,将气体监测输入计算机,并进行如下处理:将号与预先设定的安全值的上限和下限进行比较,如超出上限或者下限则报警,同时启动故障诊断模块;通过查询故障诊断模块中的气体压缩机状态参数异常和故障对应表,从而确定对应异常部件种类;查询异常部件种类中各种部件在数据库中的历史维修记录;计算状态参数异常对应的不同部件的寿命值;由寿命值最小的部件到寿命值最大的部件为顺序进行检查,直到找到故障部件,完成状态分析监测。
The invention discloses a state analysis and monitoring system of a gas compressor, which comprises a gas pressure sensor, a temperature sensor, a signal conditioner, an engine oil pressure sensor, a vibration sensor, a vibration measuring instrument, a data acquisition card, a display and a computer. The invention also discloses a state analysis and monitoring method of a gas compressor. The gas monitoring is input into a computer, and the following processing is performed: the number is compared with the upper limit and lower limit of a preset safety value, and an alarm is issued if the upper limit or lower limit is exceeded. , and start the fault diagnosis module at the same time; by querying the gas compressor state parameter abnormality and fault correspondence table in the fault diagnosis module, the corresponding abnormal component type can be determined; query the historical maintenance records of various components in the database in the abnormal component type; calculate the status The life values of different components corresponding to abnormal parameters; check in order from the component with the smallest life value to the component with the largest life value, until the faulty part is found, and the state analysis and monitoring is completed.
Description
技术领域technical field
本发明涉及一种机电设备监控分析领域,特别提供一种气体压缩机的状态分析监测系统及方法。The invention relates to the field of monitoring and analysis of electromechanical equipment, and in particular provides a state analysis and monitoring system and method of a gas compressor.
背景技术Background technique
气体压缩机在涉及到气体介质需要增压的化工生产过程中起着重要作用。对压缩机进行工作状态监测有助于提前发现潜在故障、预测寿命,从而尽早采取措施,减少或避免生产损失。Gas compressors play an important role in chemical production processes involving the need for pressurization of gaseous media. Monitoring the working condition of the compressor helps to detect potential failures and predict life in advance, so that measures can be taken as early as possible to reduce or avoid production losses.
目前,在气体压缩机系统的安全、可靠度、可用度和经济效益方面大多使用的监控系统是工控机,应用的监控系统大多仅起到系统部分状态信息的显示及一定的警报作用,很少采用可靠性分析技术。部分监测系统即使采用系统可靠性分析技术也未能充分利用状态监测信号,导致不能很好地监测设备、不能及时分析其运行状态及预测其使用寿命。At present, most of the monitoring systems used in terms of safety, reliability, availability and economic benefits of the gas compressor system are industrial computers. Using reliability analysis techniques. Some monitoring systems fail to make full use of status monitoring signals even if they use system reliability analysis technology, resulting in failure to monitor equipment well, analyze its operating status in time, and predict its service life.
发明内容Contents of the invention
发明目的:本发明所要解决的技术问题是针对现有技术的不足,提供一种气体压缩机的状态分析监测系统及方法,通过对气体压缩机的信号进行分析和处理,并利用可靠性技术提高系统的安全性、可靠性和经济效益。Purpose of the invention: the technical problem to be solved by the present invention is to provide a state analysis and monitoring system and method of a gas compressor for the deficiencies of the prior art, by analyzing and processing the signal of the gas compressor, and using reliability technology to improve System security, reliability and economic benefits.
为了解决上述技术问题,本发明公开了一种气体压缩机的状态分析监测系统,包括气体压力传感器(1)、温度传感器(2)、信号调理器(3)、机油压力传感器(4)、振动传感器(5)、测振仪(6)、数据采集卡(7)、显示器(8)、计算机(9);In order to solve the above technical problems, the present invention discloses a state analysis and monitoring system for a gas compressor, which includes a gas pressure sensor (1), a temperature sensor (2), a signal conditioner (3), an engine oil pressure sensor (4), a vibration Sensor (5), vibrometer (6), data acquisition card (7), display (8), computer (9);
所述气体压力传感器(1)、述温度传感器(2)以及机油压力传感器(4)分别与所述信号调理器(3)连接;所述振动传感器(5)与所述测振仪(6)连接,所述测振仪(6)以及信号调理器(3)分别与所述数据采集卡(7)连接;所述数据采集卡(7)与所述计算机(9)连接,所述计算机(9)与所述显示器(8)连接。The gas pressure sensor (1), the temperature sensor (2) and the oil pressure sensor (4) are respectively connected to the signal conditioner (3); the vibration sensor (5) is connected to the vibrometer (6) Connected, the vibrometer (6) and the signal conditioner (3) are connected with the data acquisition card (7) respectively; the data acquisition card (7) is connected with the computer (9), and the computer ( 9) Connect with the display (8).
本发明中,所述信号调理器(3)用于将气体压力传感器(1)、温度传感器(2)以及机油压力传感器(4)传来的信号进行放大,并传输给数据采集卡(7)。In the present invention, the signal conditioner (3) is used to amplify the signals from the gas pressure sensor (1), the temperature sensor (2) and the engine oil pressure sensor (4), and transmit them to the data acquisition card (7) .
本发明中,所述数据采集卡(7)基于PXI(PCI extensions for Instrumentation,面向仪器系统的PCI扩展)总线技术,用于将采集的信号转化为电信号,传输给计算机。In the present invention, the data acquisition card (7) is based on the PXI (PCI extensions for Instrumentation, PCI extension for instrumentation system) bus technology, and is used to convert the collected signal into an electrical signal and transmit it to the computer.
本发明中,所述测振仪(6)用于将振动信号进行放大处理,并传输给数据采集卡(7)。In the present invention, the vibrometer (6) is used to amplify the vibration signal and transmit it to the data acquisition card (7).
本发明中,所述计算机(9)安装有LabVIEW平台软件。Among the present invention, described computer (9) is equipped with LabVIEW platform software.
本发明还公开了一种气体压缩机的状态分析监测方法,将气体压力信号、温度信号、机油压力信号、振动信号输入计算机,并按照如下步骤对以上信号进行处理:The invention also discloses a state analysis and monitoring method of a gas compressor, which inputs gas pressure signals, temperature signals, oil pressure signals, and vibration signals into a computer, and processes the above signals according to the following steps:
步骤(1)将气体压力信号、温度信号、机油压力信号、振动信号与预先设定的安全值的上限和下限进行比较,如超出上限或者下限则报警,同时启动故障诊断模块;Step (1) comparing the gas pressure signal, temperature signal, engine oil pressure signal, and vibration signal with the upper limit and lower limit of the preset safety value, if the upper limit or lower limit is exceeded, an alarm is given, and the fault diagnosis module is started simultaneously;
步骤(2)通过查询故障诊断模块中的气体压缩机状态参数异常和故障对应表,从而确定对应异常部件种类;Step (2) determines the type of corresponding abnormal parts by querying the gas compressor state parameter abnormality and fault correspondence table in the fault diagnosis module;
气体压缩机状态参数异常和故障对应表Gas compressor state parameter abnormality and fault correspondence table
步骤(3)查询异常部件种类中各种部件在数据库中的历史维修记录,所述历史维修记录包括异常部件发生故障时间减去其安装后开始使用时间,记L为该类异常部件寿命值,则有L=S-F,其中S代表部件开始使用时间,F代表异常部件设定使用终点时间;Step (3) Query the historical maintenance records of various components in the database in the category of abnormal components. The historical maintenance records include the abnormal component failure time minus the starting time after installation. Record L as the life value of this type of abnormal components, Then there is L=S-F, where S represents the time when the component starts to be used, and F represents the end time when the abnormal component is set to be used;
步骤(4)计算状态参数异常对应的不同部件的寿命值;注意,步骤(3)中的寿命表示某一类部件的实际寿命记录值(如该类部件故障次数为n,则有n个寿命值),而本步骤中寿命值则是根据步骤(3)寿命值首先确立该部件老化规律,然后依据该规律通过计算机模拟该部件寿命值。Step (4) Calculate the life value of different components corresponding to abnormal state parameters; note that the life in step (3) represents the actual life record value of a certain type of component (such as the number of failures of this type of component is n, then there are n lifespans value), and the life value in this step is to first establish the aging law of the component according to the life value in step (3), and then simulate the life value of the component by computer according to the law.
步骤(5),由寿命值最小的部件到寿命值最大的部件为顺序进行检查,直到找到故障部件,完成状态分析监测。In step (5), inspection is performed sequentially from the component with the smallest life value to the component with the largest life value, until the faulty component is found, and the state analysis and monitoring is completed.
本发明方法步骤(4)中异常部件寿命值的计算方法包括如下步骤:The calculation method of abnormal part life value in the method step (4) of the present invention comprises the following steps:
步骤(41)排序,将步骤(3)某一个异常部件的故障次数n个寿命值进行由小到大顺序进行排序;Step (41) sorting, sorting the fault times n life values of a certain abnormal component in step (3) from small to large;
步骤(42)参数估计,计算故障次数n个寿命值服从以下函数的参数估计值:Step (42) parameter estimation, calculates the parameter estimation value of the number of times of failure n life-span values obey following function:
浴盆曲线,浴盆曲线概率密度函数为f(t)=β/αβexp(t/α)βexp[1-exp(t/α)β]的参数α和β的估计值,其中,t表示部件寿命变量,值为L,参数α代表位置、参数β代表形状;The bathtub curve, the probability density function of the bathtub curve is the estimated value of the parameters α and β of f(t)=β/α β exp(t/α) β exp[1-exp(t/α) β ], where t represents Component life variable, the value is L, the parameter α represents the position, and the parameter β represents the shape;
威布尔分布,威布尔分布概率密度函数为f(t)=αβtβ-1 exp(-αtβ),其中,变量t表示工作寿命,参数α代表位置、参数代表形状;Weibull distribution, the probability density function of Weibull distribution is f(t)=αβt β-1 exp(-αt β ), wherein, the variable t represents the working life, the parameter α represents the position, and the parameter represents the shape;
线性递增概率密度函数f(t)=(at+b)exp(-1/2at2-bt),其中,变量t表示工作寿命,参数a代表线性函数的斜率,参数b代表截距;Linear increasing probability density function f(t)=(at+b)exp(-1/2at 2 -bt), wherein, variable t represents the working life, parameter a represents the slope of the linear function, and parameter b represents the intercept;
指数分布,概率密度函数为f(t)=αexp(-at),其中,变量t表示工作寿命,参数α代表位置;Exponential distribution, the probability density function is f(t)=αexp(-at), wherein, the variable t represents the working life, and the parameter α represents the position;
步骤(43)使用公式k=1+3.322lgn对n个排序后的寿命值数据进行分组,分组数为k;Step (43) uses the formula k=1+3.322lgn to group the life value data after n sorting, and the number of groups is k;
步骤(44)计算频率:Step (44) calculates the frequency:
计算组与组之间的间隔即组距Δt=(La-Sm)/k,其中,La为寿命的最大值,Sm为最小值;Calculate the interval between groups, that is, the group distance Δt=(L a -S m )/k, where L a is the maximum value of life, and S m is the minimum value;
确定各组组限值,组限即各组的上限值下限值将组限取成等于下限值且小于上限值即按半闭区间分配数据。Determine the limit value of each group, the group limit is the upper limit of each group lower limit Take the group limit equal to the lower limit value and less than the upper limit That is, data is allocated according to semi-closed intervals.
统计落入各组的频数Δri,根据寿命时间和各组下限值和小于上限值进行比较,如若寿命时间tj满足则频数Δri=Δri+1,并通过ωi=Δri/n计算频率ωi。Count the frequency Δr i falling into each group, according to the life time and the lower limit of each group and less than the upper limit For comparison, if the life time t j satisfies Then the frequency Δr i =Δr i +1, and the frequency ω i is calculated by ω i =Δr i /n.
步骤(45)通过计算各组的累积频率,其中,ri为至第i组结束时的累积频数。Step (45) passes Calculate the cumulative frequency of each group, where r i is the cumulative frequency until the end of the i-th group.
分别计算浴盆曲线、威布尔分布、线性递增函数以及指数分布的分布函数Fi’,Fi’的四种分布密度函数f(t)的积分,其中1≤i≤k;Calculate the bathtub curve, Weibull distribution, linear increasing function and exponential distribution distribution function F i ', the integral of the four distribution density functions f(t) of F i ', where 1≤i≤k;
分别计算k个Fi,Fi为第i组的累积频率;Fi通过参数估计后得到分布概率函数积分得到的F(t)计算可得到k个体数值,即Fi’和Fi均有k个;Calculate k F i separately, and F i is the cumulative frequency of the i-th group; F (t ) obtained by integrating the distribution probability function after parameter estimation can obtain the value of k individuals, that is, both F i ' and F i have k;
计算Di=|Fi-Fi’|,取K-S的检验统计量D=max(D1,D2,...,Dk);Calculate D i =|F i -F i '|, take KS test statistic D=max(D 1 , D 2 ,..., D k );
步骤(46)模型检验,根据设定置信水平δ(一般取0.05,0.01)和故障次数n个寿命值查柯尔莫哥洛夫检验的临界值Dc表得出Dc,判断上面四种分布是否存在D<Dc:Step (46) Model inspection, according to the set confidence level δ (generally 0.05, 0.01) and the number of failures n life values check the critical value D c table of Kolmogorov test to get D c , judge the above four Does the distribution exist D<D c :
如果只有一个D值小于某一临界值Dc,则该D值所对应的函数即为所选函数;If only one D value is less than a certain critical value D c , then the function corresponding to the D value is the selected function;
如果有两个或两个以上的D值小于某一临界值Dc,则选取较小的D值所对应的函数为所选函数;If there are two or more D values smaller than a certain critical value D c , then select the function corresponding to the smaller D value as the selected function;
如果所有四种模型的D值均大于或等于临界值Dc,直接应用平均值法以获得其寿命均值;If the D values of all four models are greater than or equal to the critical value D c , the average value method is directly applied to obtain the average life;
步骤(47)由ti=F-1(ti)模拟第i次异常部件寿命,其中1≤i≤m,模拟m次之后,则此时设备或零部件寿命为 Step (47) Simulate the i-th abnormal component life by t i =F -1 (t i ), where 1≤i≤m, after m times of simulation, the life of the equipment or component at this time is
对浴盆曲线其对应的寿命计算式为ti=α{ln[1-ln[1-Ui]]}1/β i=1,2,...,威布尔分布对应的寿命计算式为ti=[1/α(ln[1-Ui])]1/β i=1,2,...,线性递增函数对应的寿命计算式为i=1,2,...,指数分布函数对应的寿命计算式为ti=1/α(ln[1-Ui])i=1,2,...,其中Ui取[0,1]随机值;For the bathtub curve, the corresponding lifetime calculation formula is t i =α{ln[1-ln[1-U i ]]} 1/β i=1, 2,..., and the corresponding lifetime calculation formula for Weibull distribution is t i =[1/α(ln[1-U i ])] 1/β i=1, 2,..., the life calculation formula corresponding to the linear increasing function is i=1, 2,..., the life calculation formula corresponding to the exponential distribution function is t i =1/α(ln[1-U i ])i=1, 2,..., where U i takes [0 , 1] random value;
柯尔莫哥洛夫检验的临界值Dc表The critical value D c table of Kolmogorov test
有益效果:根据本发明可实现数据的连续记录,对气体压缩机进行状态参数处理和性能分析,并结合系统关键设备的可靠性分析和寿命预测,建立状态信号和故障之间的对应关系,完成对设备的在线安全监测和故障分析,提高气体压缩机系统的安全性、可靠度、可用度和经济效益。Beneficial effects: according to the present invention, the continuous recording of data can be realized, the state parameter processing and performance analysis of the gas compressor can be carried out, and the corresponding relationship between the state signal and the fault can be established in combination with the reliability analysis and life prediction of the key equipment of the system. On-line safety monitoring and fault analysis of equipment to improve the safety, reliability, availability and economic benefits of the gas compressor system.
附图说明Description of drawings
下面结合附图和具体实施方式对本发明做更进一步的具体说明,本发明的上述和/或其他方面的优点将会变得更加清楚。The advantages of the above and/or other aspects of the present invention will become clearer as the present invention will be further described in detail in conjunction with the accompanying drawings and specific embodiments.
图1为数据采集系统组成示意图。Figure 1 is a schematic diagram of the composition of the data acquisition system.
图2为应用软件基本功能简图。Figure 2 is a schematic diagram of the basic functions of the application software.
具体实施方式Detailed ways
本实施例提供了一种气体压缩机状态参数监测系统及方法,包含有气体压力传感器1、温度传感器2、信号调理器3、机油压力传感器4、振动传感器5、测振仪6、PXI数据采集卡7、显示器8、计算机9、打印机10;其中气体压力传感器1与信号调理器3连接,温度传感器2与信号调理器3,信号调理器3与机油压力传感器4连接,信号调理器3与PXI数据采集卡7连接,振动传感器5与测振仪6连接,测振仪6与PXI数据采集卡7连接,PXI数据采集卡7与计算机9连接,计算机9分别与显示器8、打印机10连接。其中数据采集卡是NI公司生产的PXI数据采集卡7。气体压缩机状态监测和可靠性系统基于LabVIEW平台进行状态参数测量,设计出适用于本系统的应用软件具备数据库和寿命预测功能。This embodiment provides a gas compressor state parameter monitoring system and method, including a gas pressure sensor 1, a
如图2所示,温度信号11、压力信号12、振动信号13、历史维修记录14、数据库15、设备寿命分布模型16、设备寿命分布模型17、预测设备寿命18、状态信号分析与处理19、故障诊断20;其中,温度信号11导入数据库15中,压力信号12导入数据库15中,振动信号13导入数据库15中,历史维修记录14导入数据库15中,数据库15的结果用于设备寿命分布模型17和状态信号分析与处理18,设备寿命分布模型17预测设备寿命18,预测设备寿命18和状态信号分析与处理19用于系统故障诊断20。As shown in Figure 2,
通过气体压缩机压力和温度监测点相应传感器的信号传输至信号放大器,并传输至PXI数据采集卡中进行数据采集,并把相应数据输入计算机,通过应用软件分析状态信号找出故障原因,并结合故障树分析技术状态参数和故障模式之间建立直接联系,通过关键设备历史维修纪录,并应用可靠性理论和技术建立设备劣化模型并进行模型检验,通过软件实现设备的寿命预测,最终实现气体压缩机系统的故障诊断。The signal from the corresponding sensor of the gas compressor pressure and temperature monitoring point is transmitted to the signal amplifier, and then transmitted to the PXI data acquisition card for data acquisition, and the corresponding data is input into the computer, and the cause of the fault is found by analyzing the status signal through the application software, and combined Fault tree analysis technology establishes a direct connection between state parameters and failure modes, and establishes an equipment degradation model through the historical maintenance records of key equipment, and applies reliability theory and technology and conducts model inspection, realizes equipment life prediction through software, and finally realizes gas compression Machine system fault diagnosis.
本发明还公开了一种气体压缩机的状态分析监测方法,将气体压力信号、温度信号、机油压力信号、振动信号输入计算机,并按照如下步骤对以上信号进行处理:The invention also discloses a state analysis and monitoring method of a gas compressor, which inputs gas pressure signals, temperature signals, oil pressure signals, and vibration signals into a computer, and processes the above signals according to the following steps:
步骤(1)将气体压力信号、温度信号、机油压力信号、振动信号与预先设定的安全值的上限和下限进行比较,如超出上限或者下限则报警,同时启动故障诊断模块;Step (1) comparing the gas pressure signal, temperature signal, engine oil pressure signal, and vibration signal with the upper limit and lower limit of the preset safety value, if the upper limit or lower limit is exceeded, an alarm is given, and the fault diagnosis module is started simultaneously;
步骤(2)通过查询故障诊断模块中的气体压缩机状态参数异常和故障对应表,从而确定对应异常部件种类;Step (2) determines the type of corresponding abnormal parts by querying the gas compressor state parameter abnormality and fault correspondence table in the fault diagnosis module;
气体压缩机状态参数异常和故障对应表Gas compressor state parameter abnormality and fault correspondence table
步骤(3)查询异常部件种类中各种部件在数据库中的历史维修记录,所述历史维修记录包括异常部件发生故障时间减去其安装后开始使用时间,记L为该类异常部件寿命值,则有L=S-F,其中S代表部件开始使用时间,F代表异常部件设定使用终点时间;Step (3) Query the historical maintenance records of various components in the database in the category of abnormal components. The historical maintenance records include the abnormal component failure time minus the starting time after installation. Record L as the life value of this type of abnormal components, Then there is L=S-F, where S represents the time when the component starts to be used, and F represents the end time when the abnormal component is set to be used;
步骤(4)计算状态参数异常对应的不同部件的寿命值;注意,步骤(3)中的寿命表示某一类部件的实际寿命记录值(如该类部件故障次数为n,则有n个寿命值),而本步骤中寿命值则是根据步骤(3)寿命值首先确立该部件老化规律,然后依据该规律通过计算机模拟该部件寿命值。Step (4) Calculate the life value of different components corresponding to abnormal state parameters; note that the life in step (3) represents the actual life record value of a certain type of component (such as the number of failures of this type of component is n, then there are n lifespans value), and the life value in this step is to first establish the aging law of the component according to the life value in step (3), and then simulate the life value of the component by computer according to the law.
步骤(5),由寿命值最小的部件到寿命值最大的部件为顺序进行检查,直到找到故障部件,完成状态分析监测。In step (5), inspection is performed sequentially from the component with the smallest life value to the component with the largest life value, until the faulty component is found, and the state analysis and monitoring is completed.
本发明方法步骤(4)中异常部件寿命值的计算方法包括如下步骤:The calculation method of abnormal part life value in the method step (4) of the present invention comprises the following steps:
步骤(41)排序,将步骤(3)某一个异常部件的故障次数n个寿命值进行由小到大顺序进行排序;Step (41) sorting, sorting the fault times n life values of a certain abnormal component in step (3) from small to large;
步骤(42)参数估计,计算故障次数n个寿命值服从以下函数的参数估计值:Step (42) parameter estimation, calculates the parameter estimation value of the number of times of failure n life-span values obey following function:
浴盆曲线,浴盆曲线概率密度函数为f(t)=β/αβexp(t/α)βexp[1-exp(t/α)β]的参数α和β的估计值,其中,t表示部件寿命变量,值为L,参数α代表位置、参数β代表形状;The bathtub curve, the probability density function of the bathtub curve is the estimated value of the parameters α and β of f(t)=β/α β exp(t/α) β exp[1-exp(t/α) β ], where t represents Component life variable, the value is L, the parameter α represents the position, and the parameter β represents the shape;
威布尔分布,威布尔分布概率密度函数为f(t)=αβtβ-1 exp(-αtβ),其中,变量t表示工作寿命,参数α代表位置、参数代表形状;Weibull distribution, the probability density function of Weibull distribution is f(t)=αβt β-1 exp(-αt β ), wherein, the variable t represents the working life, the parameter α represents the position, and the parameter represents the shape;
线性递增概率密度函数f(t)=(at+b)exp(-1/2at2-bt),其中,变量t表示工作寿命,参数a代表线性函数的斜率,参数b代表截距;Linear increasing probability density function f(t)=(at+b)exp(-1/2at 2 -bt), wherein, variable t represents the working life, parameter a represents the slope of the linear function, and parameter b represents the intercept;
指数分布,概率密度函数为f(t)=αexp(-at),其中,变量t表示工作寿命,参数α代表位置;Exponential distribution, the probability density function is f(t)=αexp(-at), wherein, the variable t represents the working life, and the parameter α represents the position;
步骤(43)使用公式k=1+3.322lgn对n个排序后的寿命值数据进行分组,分组数为k;Step (43) uses the formula k=1+3.322lgn to group the life value data after n sorting, and the number of groups is k;
步骤(44)计算频率:Step (44) calculates the frequency:
计算组与组之间的间隔即组距Δt=(La-Sm)/k,其中,La为寿命的最大值,Sm为最小值;Calculate the interval between groups, that is, the group distance Δt=(L a -S m )/k, where L a is the maximum value of life, and S m is the minimum value;
确定各组组限值,组限即各组的上限值下限值将组限取成等于下限值且小于上限值即按半闭区间分配数据。Determine the limit value of each group, the group limit is the upper limit of each group lower limit Take the group limit equal to the lower limit value and less than the upper limit That is, data is allocated according to semi-closed intervals.
统计落入各组的频数Δri,根据寿命时间和各组下限值和小于上限值进行比较,如若寿命时间tj满足则频数Δri=Δri+1,并通过ωi=Δri/n计算频率ωi。Count the frequency Δr i falling into each group, according to the life time and the lower limit of each group and less than the upper limit For comparison, if the life time t j satisfies Then the frequency Δr i =Δr i +1, and the frequency ω i is calculated by ω i =Δr i /n.
步骤(45)通过计算各组的累积频率,其中,ri为至第i组结束时的累积频数。Step (45) passes Calculate the cumulative frequency of each group, where r i is the cumulative frequency until the end of the i-th group.
分别计算浴盆曲线、威布尔分布、线性递增函数以及指数分布的分布函数Fi’,Fi’的四种分布密度函数f(t)的积分,其中1≤i≤k;Calculate the bathtub curve, Weibull distribution, linear increasing function and exponential distribution distribution function F i ', the integral of the four distribution density functions f(t) of F i ', where 1≤i≤k;
分别计算k个Fi,Fi为第i组的累积频率;Fi通过参数估计后得到分布概率函数积分得到的F(t)计算可得到k个体数值,即Fi’和Fi均有k个;Calculate k F i separately, and F i is the cumulative frequency of the i-th group; F (t ) obtained by integrating the distribution probability function after parameter estimation can obtain the value of k individuals, that is, both F i ' and F i have k;
计算Di=|Fi-Fi’|,取K-S的检验统计量D=max(D1,D2,...,Dk);Calculate D i =|F i -F i '|, take KS test statistic D=max(D 1 , D 2 ,..., D k );
步骤(46)模型检验,根据设定置信水平δ(一般取0.05,0.01)和故障次数n个寿命值查柯尔莫哥洛夫检验的临界值Dc表得出Dc,判断上面四种分布是否存在D<Dc:Step (46) Model inspection, according to the set confidence level δ (generally 0.05, 0.01) and the number of failures n life values check the critical value D c table of Kolmogorov test to get D c , judge the above four Does the distribution exist D<D c :
如果只有一个D值小于某一临界值Dc,则该D值所对应的函数即为所选函数;If only one D value is less than a certain critical value D c , then the function corresponding to the D value is the selected function;
如果有两个或两个以上的D值小于某一临界值Dc,则选取较小的D值所对应的函数为所选函数;If there are two or more D values smaller than a certain critical value D c , then select the function corresponding to the smaller D value as the selected function;
如果所有四种模型的D值均大于或等于临界值Dc,直接应用平均值法以获得其寿命均值;If the D values of all four models are greater than or equal to the critical value D c , the average value method is directly applied to obtain the average life;
步骤(47)由ti=F-1(ti)模拟第i次异常部件寿命,其中1≤i≤m,模拟m次之后,则此时设备或零部件寿命为 Step (47) Simulate the i-th abnormal component life by t i =F -1 (t i ), where 1≤i≤m, after m times of simulation, the life of the equipment or component at this time is
对浴盆曲线其对应的寿命计算式为ti=α{ln[1-ln[1-Ui]]}1/β i=1,2,...,威布尔分布对应的寿命计算式为ti=[1/α(ln[1-Ui])]1/β i=1,2,...,线性递增函数对应的寿命计算式为i=1,2,...,指数分布函数对应的寿命计算式为ti=1/α(ln[1-Ui])i=1,2,...,其中Ui取[0,1]随机值;For the bathtub curve, the corresponding lifetime calculation formula is t i =α{ln[1-ln[1-U i ]]} 1/β i=1, 2,..., and the corresponding lifetime calculation formula for Weibull distribution is t i =[1/α(ln[1-U i ])] 1/β i=1, 2,..., the life calculation formula corresponding to the linear increasing function is i=1, 2,..., the life calculation formula corresponding to the exponential distribution function is t i =1/α(ln[1-U i ])i=1, 2,..., where U i takes [0 , 1] random value;
柯尔莫哥洛夫检验的临界值Dc表The critical value D c table of Kolmogorov test
实施例:Example:
本实施例提供了一种气体压缩机状态参数监测系统及方法的应用情况,通过气体压力传感器1将检测压力信号传到信号调理器3,经过信号处理后传到PXI数据采集卡(7),并将其传输到计算机中,通过LabVIEW软件平台读出一级排气阀压力为0.63兆帕,和设定上限0.62兆帕比较,判断排气压力高于正常排气压力,查找气体压缩机状态参数异常和故障对应表确立主要潜在故障模式分别有排气阀损坏、吸气阀损坏、活塞环与气缸间隙过大以及压力表故障,此时,应用软件系统提示出现异常并报警,同时启动故障诊断模块;The present embodiment provides a kind of application situation of gas compressor state parameter monitoring system and method, by gas pressure sensor 1, detection pressure signal is passed to signal
气体压缩机状态参数异常和故障对应表:Gas compressor status parameter abnormality and fault correspondence table:
通过软件从数据库中查询排气阀、吸气阀、活塞环与气缸间隙过大以及压力表故障等维修记录,分别根据其开始使用时间和发生故障时间计算排气阀、吸气阀、活塞环与气缸间隙过大以及压力表的寿命,见表3(单位:小时),其对应故障次数n分别表3部件检测寿命表Check the maintenance records of the exhaust valve, suction valve, piston ring and cylinder, and pressure gauge failure from the database through the software, and calculate the exhaust valve, suction valve, piston ring according to the starting time and failure time respectively The gap between the air cylinder and the pressure gauge is too large and the service life of the pressure gauge is shown in Table 3 (unit: hour), and the corresponding failure times n are shown in Table 3. Component detection life table
为24、18、19和16,对排气阀的寿命数据进行排序,得到590、773、1480、1659、1680、1793、1890、2092、2578、2695、2790、3072、3107、3367、3407、3534、3805、4321、4502、4704、4720、4903、5071、6730,估计浴盆曲线参数为位置参数α为3207.3,形状参数β为1.019;威布尔分布位置参数α为2515.7,形状参数β为1.141;线性递增参数a为0.3271,参数b为0.8352,指数分布为3508.6;For 24, 18, 19 and 16, sort the life data of the exhaust valve to get 590, 773, 1480, 1659, 1680, 1793, 1890, 2092, 2578, 2695, 2790, 3072, 3107, 3367, 3407, 3534, 3805, 4321, 4502, 4704, 4720, 4903, 5071, 6730, the estimated bathtub curve parameters are position parameter α is 3207.3, shape parameter β is 1.019; Weibull distribution position parameter α is 2515.7, shape parameter β is 1.141; The linear increasing parameter a is 0.3271, the parameter b is 0.8352, and the exponential distribution is 3508.6;
对这些数据进行分组,由k=1+3.322lg24=5.585,则组数近似为6,组间隔Δt为1023,则有六个区间,分别为[590,1613)、[1613,2636)、[2636,3659)、[3659,4682)、[4682,5705)和[5705,6730],六个区间频率分别为3、6、7、3、4、1,累积频率Fi分别为0.125、0.375、0.667、0.792、0.958和1。These data are grouped, by k=1+3.322lg24=5.585, then the number of groups is approximately 6, and the group interval Δt is 1023, then there are six intervals, which are respectively [590, 1613), [1613, 2636), [ 2636, 3659), [3659, 4682), [4682, 5705) and [5705, 6730], the six interval frequencies are 3, 6, 7, 3, 4, 1, and the cumulative frequency F i is 0.125, 0.375 , 0.667, 0.792, 0.958 and 1.
根据上面四种分布的参数估计值计算ti分别为1613、2636、3659、4682、5705和6730时对应分布函数,分别计算浴盆曲线、威布尔分布、线性递增函数以及指数分布的K-S的检验统计量D分别为0.431、0.205、0.319和0.496。Calculate the corresponding distribution function when t i is 1613, 2636, 3659, 4682, 5705 and 6730 according to the parameter estimates of the above four distributions, and calculate the test statistics of bathtub curve, Weibull distribution, linear increasing function and exponential distribution respectively The amounts D were 0.431, 0.205, 0.319 and 0.496, respectively.
给定置信水平δ为0.05,又由故障次数为24查柯尔莫哥洛夫检验的临界值Dc表知Dc为0.268,和K-S的检验统计量D相比较知,只有威布尔分布的K-S的检验统计量D为0.205小于0.268,由此判断排气阀服从威布尔分布,且位置参数α为2515.7,形状参数β为1.141;The given confidence level δ is 0.05, and the critical value D c of the Kolmogorov test shows that the number of failures is 24. D c is 0.268. Compared with the test statistic D of KS, it is known that only the Weibull distribution The test statistic D of KS is 0.205 and less than 0.268, so it is judged that the exhaust valve obeys the Weibull distribution, and the position parameter α is 2515.7, and the shape parameter β is 1.141;
用同样方法判断吸气阀的寿命分布为威布尔分布,吸气阀威布尔分布位置参数α为4815.7,形状参数β为1.017,活塞环与气缸间隙过大服从威布尔分布,位置参数α为7018,形状参数β为1.062,压力表服从线性递增,参数a为0.2629,参数b为0.7274。Use the same method to judge that the life distribution of the suction valve is a Weibull distribution. The position parameter α of the Weibull distribution of the suction valve is 4815.7, and the shape parameter β is 1.017. The gap between the piston ring and the cylinder is too large to obey the Weibull distribution, and the position parameter α is 7018. , the shape parameter β is 1.062, the pressure gauge obeys linear increase, the parameter a is 0.2629, and the parameter b is 0.7274.
最后由ti=[1/2517(ln[1-Ui])]1/1.141 i=1,2,...模拟100次其排气阀寿命为2471.4小时,由ti=[1/4815.7(ln[1-Ui])]1/1.017 i=1,2,...模拟100次其排气阀寿命为4759.7小时,由ti=[1/7018(ln[1-Ui])]1/1.062 i=1,2,...模拟100次其活塞环与气缸间隙过大为6409.8小时,由i=1,2,...模拟100次其活塞环与气缸间隙过大为5381.3小时,对这些寿命值进行排序,由2471.4<4759.7<5381.3<6409.8,知道发生故障的部件顺序为排气阀、吸气阀、压力表和活塞环与气缸间隙过大,此时先检查排气阀是否发生故障,如没有故障,则检查吸气阀,以此类推,如果均没有发生故障,则考虑是否存在其它原因。Finally, by t i =[1/2517(ln[1-U i ])] 1/1.141 i=1, 2, ... simulating 100 times its exhaust valve life is 2471.4 hours, by t i =[1/ 4815.7(ln[1-U i ])] 1/1.017 i=1, 2,... Simulating 100 times, the exhaust valve life is 4759.7 hours, by t i =[1/7018(ln[1-U i ])] 1/1.062 i=1, 2, ... simulating 100 times the gap between the piston ring and the cylinder is too large for 6409.8 hours, by i=1, 2,... 100 simulations, the gap between the piston ring and the cylinder is too large for 5381.3 hours, sort these life values, from 2471.4<4759.7<5381.3<6409.8, it is known that the sequence of the faulty parts is the exhaust valve , the suction valve, pressure gauge, and the gap between the piston ring and the cylinder are too large. At this time, first check whether the exhaust valve is faulty. If there is no fault, check the suction valve, and so on. If there is no fault, then consider whether There are other reasons.
本发明的气体压缩机状态监测和可靠性分析系统及方法,通过不同的传感器采集不同类型的多个变量数据而获取对象信息。并通过LabVIEW的图形化编程控制方法,可将气体压缩机的温度、压力、振动等物理量采集进入到计算机并进行分析。通过状态信号分析故障原因,并结合故障树分析和设备老化的可靠性分析技术,实现故障诊断和提高设备可靠度、可用度水平。从而相比于传统的气体压缩机组监控平台,更能提高系统的安全性和可靠性。The gas compressor state monitoring and reliability analysis system and method of the present invention acquire object information by collecting multiple variable data of different types through different sensors. And through the graphical programming control method of LabVIEW, the temperature, pressure, vibration and other physical quantities of the gas compressor can be collected and entered into the computer for analysis. Analyze the cause of the fault through the status signal, and combine the fault tree analysis and the reliability analysis technology of equipment aging to realize the fault diagnosis and improve the reliability and availability of the equipment. Therefore, compared with the traditional gas compressor unit monitoring platform, the safety and reliability of the system can be improved.
气体压缩机状态参数的监测是使用传感器对压缩机的温度、压力、振动等物理量进行测量,转换成适当的中间量,如电压或电流,通过LabVIEW平台显示、识别、分析和趋势预测的过程。LabVIEW平台是一种基于仪器或虚拟仪器的软件平台。通过LabVIEW的图形化编程控制方法,可将气体压缩机的温度、压力、振动等物理量的多个变量数据采集进入到计算机并进行分析。数据采集系统需要使用适当的传感器和配套硬件,并由相应的软件将从传感器获取的数据进行转换传输。应用NI公司的硬件产品,使用LabVIEW开发平台,利用Matlab处理复杂算法的能力,快速高质量地开发满足要求的应用程序。利用该平台可以增强构建科学和工程系统的能力,提供了实现仪器编程和数据采集系统的便捷途径。还可以借助其进行原理研究、设计、测试并实现仪器系统,从而大大提高工作效率。The monitoring of gas compressor state parameters is the process of using sensors to measure physical quantities such as temperature, pressure, and vibration of the compressor, converting them into appropriate intermediate quantities, such as voltage or current, and displaying, identifying, analyzing, and trending through the LabVIEW platform. The LabVIEW platform is a software platform based on instruments or virtual instruments. Through the graphical programming control method of LabVIEW, multiple variable data of physical quantities such as temperature, pressure, and vibration of the gas compressor can be collected and entered into the computer for analysis. The data acquisition system needs to use appropriate sensors and supporting hardware, and the corresponding software will convert and transmit the data obtained from the sensors. Apply NI's hardware products, use the LabVIEW development platform, and use Matlab's ability to process complex algorithms to quickly and high-quality develop applications that meet the requirements. Using this platform can enhance the ability to build scientific and engineering systems, and provides a convenient way to implement instrument programming and data acquisition systems. It can also be used to conduct principle research, design, test and implement instrument systems, thereby greatly improving work efficiency.
本发明提供了一种气体压缩机的状态分析监测系统及方法的思路及方法,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。The present invention provides an idea and method of a state analysis and monitoring system and method of a gas compressor. There are many methods and approaches to specifically realize the technical solution. The above description is only a preferred embodiment of the present invention. Those of ordinary skill in the art can make some improvements and modifications without departing from the principle of the present invention, and these improvements and modifications should also be regarded as the protection scope of the present invention. All components that are not specified in this embodiment can be realized by existing technologies.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201110138460 CN102182671B (en) | 2011-05-26 | 2011-05-26 | State analysis monitoring method of gas compressor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201110138460 CN102182671B (en) | 2011-05-26 | 2011-05-26 | State analysis monitoring method of gas compressor |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102182671A true CN102182671A (en) | 2011-09-14 |
| CN102182671B CN102182671B (en) | 2013-09-18 |
Family
ID=44568942
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 201110138460 Expired - Fee Related CN102182671B (en) | 2011-05-26 | 2011-05-26 | State analysis monitoring method of gas compressor |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102182671B (en) |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102494762A (en) * | 2011-12-19 | 2012-06-13 | 湖南工业大学 | Vibration testing system of cooling tower based on labview platform |
| CN102926983A (en) * | 2012-11-06 | 2013-02-13 | 昆山北极光电子科技有限公司 | State inspection system for compressor unit |
| CN103306964A (en) * | 2012-03-12 | 2013-09-18 | 上海斯可络压缩机有限公司 | Fault detection device |
| CN103527464A (en) * | 2013-10-31 | 2014-01-22 | 莱芜钢铁集团电子有限公司 | Detecting method and device of gas compressor |
| CN104993973A (en) * | 2015-06-25 | 2015-10-21 | 小米科技有限责任公司 | Method and apparatus for monitoring state of compressor of terminal |
| CN105298823A (en) * | 2015-11-23 | 2016-02-03 | 武汉大学 | Large pump unit on-line monitoring and diagnosis system |
| CN105473856A (en) * | 2013-08-30 | 2016-04-06 | 艾默生环境优化技术有限公司 | Compressor assembly with liquid sensor |
| CN105971866A (en) * | 2016-05-03 | 2016-09-28 | 莱芜钢铁集团电子有限公司 | Online detection method and system for air compressor faults |
| CN106837768A (en) * | 2016-12-21 | 2017-06-13 | 苏州市计量测试研究所 | A kind of air compressor efficiency on-line checking assessment system and method |
| CN108106653A (en) * | 2017-12-15 | 2018-06-01 | 芜湖致通汽车电子有限公司 | A kind of sensor vibration experimental data acquisition system |
| US10125768B2 (en) | 2015-04-29 | 2018-11-13 | Emerson Climate Technologies, Inc. | Compressor having oil-level sensing system |
| CN109374044A (en) * | 2018-09-30 | 2019-02-22 | 北京英视睿达科技有限公司 | A kind of intelligent automatic repair method and device for multi-parameter environmental monitoring equipment |
| CN109635421A (en) * | 2018-08-28 | 2019-04-16 | 李涛 | A kind of general purpose pressure gauge detection cycle dynamic optimization method based on Weibull model |
| CN109883742A (en) * | 2019-02-21 | 2019-06-14 | 西安交通大学 | A non-destructive state monitoring system and method for a diaphragm compressor |
| CN110073057A (en) * | 2016-12-28 | 2019-07-30 | 纳博特斯克有限公司 | The monitoring system of foreign matter removal device, foreign matter remove the monitoring method of system and foreign matter removal device |
| CN110439801A (en) * | 2019-08-01 | 2019-11-12 | 江西资生科技有限公司 | A kind of novel real-time monitoring of piston of reciprocating compressor and early warning system and method |
| CN111456932A (en) * | 2020-03-04 | 2020-07-28 | 辽宁工程技术大学 | Event importance analysis method in compressor fault process |
| CN112415303A (en) * | 2020-10-30 | 2021-02-26 | 桂林电子科技大学 | Air compressor life prediction system and method considering fault accumulation effect |
| CN112443479A (en) * | 2019-08-27 | 2021-03-05 | 深圳中集智能科技有限公司 | Compressor fault diagnosis method and device, storage medium and electronic equipment |
| CN113757093A (en) * | 2021-10-14 | 2021-12-07 | 中国海洋石油集团有限公司 | Fault diagnosis method for flash steam compressor unit |
| CN115479636A (en) * | 2022-10-26 | 2022-12-16 | 中国航空工业集团公司金城南京机电液压工程研究中心 | Turbine cooler state monitoring and analyzing method |
| CN119103098A (en) * | 2024-11-08 | 2024-12-10 | 青岛东燃燃气设备有限公司 | A method and system for abnormal monitoring of hydrogen compressor |
| CN119747111A (en) * | 2024-12-09 | 2025-04-04 | 大龙兴创实验仪器(北京)股份公司 | Centrifuge state monitoring system and method |
| CN120106813A (en) * | 2025-02-14 | 2025-06-06 | 南京亚美上信息科技有限公司 | Rail transit fault detection method and system |
| EP4579081A4 (en) * | 2022-09-30 | 2025-08-27 | Maekawa Seisakusho Kk | CONDITION MONITORING SYSTEM AND CONDITION MONITORING PROCEDURES |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006064991A1 (en) * | 2004-12-17 | 2006-06-22 | Korea Research Institute Of Standards And Science | A precision diagnostic method for the failure protection and predictive maintenance of a vacuum pump and a precision diagnostic system therefor |
| CN2842011Y (en) * | 2005-09-09 | 2006-11-29 | 祝长友 | Back-discharge fracturing fluid injection pump |
| CN101080699A (en) * | 2004-12-17 | 2007-11-28 | 韩国标准科学研究院 | Trend monitoring and diagnostic analysis method for vacuum pump and trend monitoring and diagnostic analysis system therefor and computer-readable storage media including a computer program which perf |
-
2011
- 2011-05-26 CN CN 201110138460 patent/CN102182671B/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006064991A1 (en) * | 2004-12-17 | 2006-06-22 | Korea Research Institute Of Standards And Science | A precision diagnostic method for the failure protection and predictive maintenance of a vacuum pump and a precision diagnostic system therefor |
| CN101080699A (en) * | 2004-12-17 | 2007-11-28 | 韩国标准科学研究院 | Trend monitoring and diagnostic analysis method for vacuum pump and trend monitoring and diagnostic analysis system therefor and computer-readable storage media including a computer program which perf |
| CN101080700A (en) * | 2004-12-17 | 2007-11-28 | 韩国标准科学研究院 | A precision diagnostic method for the failure protection and predictive maintenance of a vacuum pump and a precision diagnostic system therefor |
| CN2842011Y (en) * | 2005-09-09 | 2006-11-29 | 祝长友 | Back-discharge fracturing fluid injection pump |
Cited By (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102494762A (en) * | 2011-12-19 | 2012-06-13 | 湖南工业大学 | Vibration testing system of cooling tower based on labview platform |
| CN103306964A (en) * | 2012-03-12 | 2013-09-18 | 上海斯可络压缩机有限公司 | Fault detection device |
| CN102926983A (en) * | 2012-11-06 | 2013-02-13 | 昆山北极光电子科技有限公司 | State inspection system for compressor unit |
| CN105473856A (en) * | 2013-08-30 | 2016-04-06 | 艾默生环境优化技术有限公司 | Compressor assembly with liquid sensor |
| US10041487B2 (en) | 2013-08-30 | 2018-08-07 | Emerson Climate Technologies, Inc. | Compressor assembly with liquid sensor |
| US9784274B2 (en) | 2013-08-30 | 2017-10-10 | Emerson Climate Technologies, Inc. | Compressor assembly with liquid sensor |
| CN105473856B (en) * | 2013-08-30 | 2017-07-11 | 艾默生环境优化技术有限公司 | Compressor assembly with liquid sensor and method of determining lubricating oil level thereof |
| CN103527464A (en) * | 2013-10-31 | 2014-01-22 | 莱芜钢铁集团电子有限公司 | Detecting method and device of gas compressor |
| CN103527464B (en) * | 2013-10-31 | 2015-12-09 | 莱芜钢铁集团电子有限公司 | A kind of gas compressor detecting method and device |
| US10180139B2 (en) | 2015-04-29 | 2019-01-15 | Emerson Climate Technologies, Inc. | Compressor having oil-level sensing system |
| US10125768B2 (en) | 2015-04-29 | 2018-11-13 | Emerson Climate Technologies, Inc. | Compressor having oil-level sensing system |
| CN104993973A (en) * | 2015-06-25 | 2015-10-21 | 小米科技有限责任公司 | Method and apparatus for monitoring state of compressor of terminal |
| CN105298823A (en) * | 2015-11-23 | 2016-02-03 | 武汉大学 | Large pump unit on-line monitoring and diagnosis system |
| CN105971866A (en) * | 2016-05-03 | 2016-09-28 | 莱芜钢铁集团电子有限公司 | Online detection method and system for air compressor faults |
| CN105971866B (en) * | 2016-05-03 | 2019-03-15 | 莱芜钢铁集团电子有限公司 | A kind of air compressor fault online detection method and system |
| CN106837768A (en) * | 2016-12-21 | 2017-06-13 | 苏州市计量测试研究所 | A kind of air compressor efficiency on-line checking assessment system and method |
| CN106837768B (en) * | 2016-12-21 | 2019-01-25 | 苏州市计量测试院 | A kind of air compressor efficiency on-line checking assessment system and method |
| CN110073057A (en) * | 2016-12-28 | 2019-07-30 | 纳博特斯克有限公司 | The monitoring system of foreign matter removal device, foreign matter remove the monitoring method of system and foreign matter removal device |
| CN110073057B (en) * | 2016-12-28 | 2021-12-14 | 纳博特斯克有限公司 | Foreign matter removal system and monitoring method of foreign matter removal device |
| CN108106653A (en) * | 2017-12-15 | 2018-06-01 | 芜湖致通汽车电子有限公司 | A kind of sensor vibration experimental data acquisition system |
| CN109635421B (en) * | 2018-08-28 | 2023-02-24 | 李涛 | Weibull model-based dynamic optimization method for detection period of general pressure gauge |
| CN109635421A (en) * | 2018-08-28 | 2019-04-16 | 李涛 | A kind of general purpose pressure gauge detection cycle dynamic optimization method based on Weibull model |
| CN109374044A (en) * | 2018-09-30 | 2019-02-22 | 北京英视睿达科技有限公司 | A kind of intelligent automatic repair method and device for multi-parameter environmental monitoring equipment |
| CN109374044B (en) * | 2018-09-30 | 2023-11-10 | 国际商业机器(中国)投资有限公司 | An intelligent automatic repair method and device for multi-parameter environmental monitoring equipment |
| CN109883742B (en) * | 2019-02-21 | 2020-02-07 | 西安交通大学 | Nondestructive state monitoring system and method for diaphragm compressor |
| CN109883742A (en) * | 2019-02-21 | 2019-06-14 | 西安交通大学 | A non-destructive state monitoring system and method for a diaphragm compressor |
| CN110439801A (en) * | 2019-08-01 | 2019-11-12 | 江西资生科技有限公司 | A kind of novel real-time monitoring of piston of reciprocating compressor and early warning system and method |
| CN112443479A (en) * | 2019-08-27 | 2021-03-05 | 深圳中集智能科技有限公司 | Compressor fault diagnosis method and device, storage medium and electronic equipment |
| CN111456932A (en) * | 2020-03-04 | 2020-07-28 | 辽宁工程技术大学 | Event importance analysis method in compressor fault process |
| CN112415303A (en) * | 2020-10-30 | 2021-02-26 | 桂林电子科技大学 | Air compressor life prediction system and method considering fault accumulation effect |
| CN112415303B (en) * | 2020-10-30 | 2022-07-12 | 桂林电子科技大学 | An air compressor life prediction system and method considering the cumulative effect of faults |
| CN113757093A (en) * | 2021-10-14 | 2021-12-07 | 中国海洋石油集团有限公司 | Fault diagnosis method for flash steam compressor unit |
| EP4579081A4 (en) * | 2022-09-30 | 2025-08-27 | Maekawa Seisakusho Kk | CONDITION MONITORING SYSTEM AND CONDITION MONITORING PROCEDURES |
| CN115479636A (en) * | 2022-10-26 | 2022-12-16 | 中国航空工业集团公司金城南京机电液压工程研究中心 | Turbine cooler state monitoring and analyzing method |
| CN115479636B (en) * | 2022-10-26 | 2023-10-03 | 中国航空工业集团公司金城南京机电液压工程研究中心 | Turbine cooler state monitoring and analyzing method |
| CN119103098A (en) * | 2024-11-08 | 2024-12-10 | 青岛东燃燃气设备有限公司 | A method and system for abnormal monitoring of hydrogen compressor |
| CN119747111A (en) * | 2024-12-09 | 2025-04-04 | 大龙兴创实验仪器(北京)股份公司 | Centrifuge state monitoring system and method |
| CN120106813A (en) * | 2025-02-14 | 2025-06-06 | 南京亚美上信息科技有限公司 | Rail transit fault detection method and system |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102182671B (en) | 2013-09-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102182671B (en) | State analysis monitoring method of gas compressor | |
| CN102270271B (en) | Equipment failure early warning and optimizing method and system based on similarity curve | |
| KR101316486B1 (en) | Error detection method and system | |
| US10430531B2 (en) | Model based system monitoring | |
| CN108229538B (en) | Vehicle system prediction apparatus and method | |
| CN104573850A (en) | Method for evaluating state of thermal power plant equipment | |
| CN111308991A (en) | Coal mill operation fault identification method and application | |
| JP5875726B1 (en) | Preprocessor for abnormality sign diagnosis apparatus and processing method thereof | |
| CN109416531A (en) | The different degree decision maker of abnormal data and the different degree determination method of abnormal data | |
| CN102705078B (en) | Diesel engine fault prediction method based on gray model | |
| CN111289256B (en) | Data-driven marine diesel engine fault detection method | |
| CN103149046B (en) | A kind of various dimensions method for diagnosing faults based on expert's thinking | |
| CN102494899A (en) | Composite fault diagnosis method for diesel engine and diagnosis system | |
| CN104268416B (en) | A kind of Cold Chain Logistics compartment temperature monitoring method and system | |
| CN112782614A (en) | Fault early warning method and device of converter based on multi-information fusion | |
| CN113837591A (en) | Equipment health assessment method oriented to multi-working-condition operation conditions | |
| CN102607641A (en) | Cluster anomaly detection method of combustion gas turbine | |
| CN106872172A (en) | The method for real time discriminating and system of Aero Engine Testing security parameter monitoring | |
| WO2023029382A1 (en) | Strong-robustness signal early-degradation feature extraction and device running state monitoring method | |
| CN103234742A (en) | Fault diagnosis method for damping springs of vibrating screen | |
| CN118747322A (en) | A medical device fault category detection method and system based on deep learning | |
| CN107103425B (en) | Intelligent energy evaluation system for power generation equipment running state computer | |
| CN110488188B (en) | Unit three-dimensional health quantitative evaluation method based on dynamic threshold | |
| CN202091172U (en) | Device for monitoring state and analyzing reliability of gas compressor | |
| CN118623941A (en) | Coolant status monitoring and early warning system based on sensor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C53 | Correction of patent of invention or patent application | ||
| CB02 | Change of applicant information |
Address after: 221000 South three ring road, Jiangsu, Xuzhou Applicant after: Xuzhou Institute of Technology Applicant after: Jiangsu Zhongneng Polysilicon Technology Development Co., Ltd. Address before: 221004 Xuzhou Economic Development Zone, Jiangsu, Yang Road, No. 66 Applicant before: Jiangsu Zhongneng Polysilicon Technology Development Co., Ltd. Applicant before: Xuzhou Institute of Technology |
|
| CB03 | Change of inventor or designer information |
Inventor after: Chen Fengteng Inventor after: Zhong Zhenwu Inventor after: Chen Qiguo Inventor after: Hu Zhiqiang Inventor after: Li Huijuan Inventor before: Zhong Zhenwu Inventor before: Chen Fengteng Inventor before: Chen Qiguo Inventor before: Hu Zhiqiang Inventor before: Li Huijuan |
|
| COR | Change of bibliographic data |
Free format text: CORRECT: INVENTOR; FROM: ZHONG ZHENWU CHEN FENGTENG CHEN QIGUO HU ZHIQIANG LI HUIJUAN TO: CHEN FENGTENG ZHONG ZHENWU CHEN QIGUO HU ZHIQIANG LI HUIJUAN Free format text: CORRECT: APPLICANT; FROM: JIANGSU ZHONGNENG POLYSILICON TECHNOLOGY DEVELOPMENT CO., LTD. TO: XUZHOUENGINEERING COLLEGE |
|
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C17 | Cessation of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130918 Termination date: 20140526 |