CN102244002B - Preparation method of heterojunction with metal/semiconductor nanometer wire crossing structure - Google Patents
Preparation method of heterojunction with metal/semiconductor nanometer wire crossing structure Download PDFInfo
- Publication number
- CN102244002B CN102244002B CN 201110197871 CN201110197871A CN102244002B CN 102244002 B CN102244002 B CN 102244002B CN 201110197871 CN201110197871 CN 201110197871 CN 201110197871 A CN201110197871 A CN 201110197871A CN 102244002 B CN102244002 B CN 102244002B
- Authority
- CN
- China
- Prior art keywords
- metal
- semiconductor
- nanowire
- nanowires
- film electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 97
- 239000002184 metal Substances 0.000 title claims abstract description 91
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 91
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 239000002070 nanowire Substances 0.000 claims abstract description 102
- 239000010409 thin film Substances 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 17
- 230000005684 electric field Effects 0.000 claims abstract description 9
- 238000000233 ultraviolet lithography Methods 0.000 claims abstract description 4
- 150000001875 compounds Chemical class 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- 239000010408 film Substances 0.000 claims description 7
- 239000000725 suspension Substances 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910004613 CdTe Inorganic materials 0.000 claims description 2
- 229910002531 CuTe Inorganic materials 0.000 claims description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 2
- 229910007709 ZnTe Inorganic materials 0.000 claims description 2
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 claims description 2
- 230000005669 field effect Effects 0.000 abstract description 2
- 230000003287 optical effect Effects 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000005566 electron beam evaporation Methods 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
本发明公开了金属/半导体纳米线交叉结构异质结的制备方法,是通过一次紫外光刻的方法在半导体纳米线上制备两对金属薄膜电极,其中一对金属薄膜电极通过所述半导体纳米线连通,与半导体纳米线呈欧姆接触;对另一对金属薄膜电极施加交流电场,金属纳米线被吸附到施加交流电场的金属薄膜电极对上,所述金属纳米线与所述半导体纳米线相交呈肖特基接触,形成金属/半导体纳米线交叉结构异质结。本发明制备方法简单易行,稳定可靠,可以应用到各种纳米尺寸的包括肖特基二极管或以金属纳米线作为栅极的金属-半导体场效应管在内的电子元件、光学元件中如纳米光电探测器、气体传感器、太阳能电池等。The invention discloses a method for preparing a metal/semiconductor nanowire cross structure heterojunction. Two pairs of metal thin film electrodes are prepared on a semiconductor nanowire by a single ultraviolet lithography method, wherein a pair of metal thin film electrodes pass through the semiconductor nanowire connected to the semiconductor nanowires in ohmic contact; an alternating electric field is applied to another pair of metal thin film electrodes, and the metal nanowires are adsorbed to the pair of metal thin film electrodes on which the alternating electric field is applied, and the metal nanowires intersect with the semiconductor nanowires to form a Schottky contacts form metal/semiconductor nanowire cross-structure heterojunctions. The preparation method of the present invention is simple, stable and reliable, and can be applied to electronic components and optical components of various nanometer sizes including Schottky diodes or metal-semiconductor field effect transistors with metal nanowires as gates, such as nanometer Photodetectors, gas sensors, solar cells, etc.
Description
一、技术领域 1. Technical field
本发明涉及一种半导体器件的制备方法,具体地说是金属/半导体纳米线交叉结构异质结的制备方法。The invention relates to a method for preparing a semiconductor device, in particular to a method for preparing a metal/semiconductor nanowire intersection structure heterojunction.
二、背景技术 2. Background technology
金属/半导体异质结在半导体器件,尤其是微纳器件的制备中起着重要的作用。在半导体器件中,通常需要利用与半导体形成良好的欧姆接触的金属作为电极输入或输出电流,而利用金属-半导体整流接触特性可以制成二极管,即肖特基二极管。与p-n结二极管相比,肖特基结二极管由于正向电流主要是由半导体中的多数载流子进入金属形成的,即多数载流子器件,不存在电荷存储效应,具有开关频率高、正向导通电压低、不存在少数载流子寿命和反向恢复问题等优点,因而具有更加优良的光电特性,更适用于超高速开关器件、光电探测器、太阳能电池以及半导体激光器等。Metal/semiconductor heterojunctions play an important role in the fabrication of semiconductor devices, especially micro-nano devices. In semiconductor devices, it is usually necessary to use a metal that forms a good ohmic contact with the semiconductor as an electrode to input or output current, and a diode can be made by using the metal-semiconductor rectifying contact characteristic, that is, a Schottky diode. Compared with the p-n junction diode, the Schottky junction diode is mainly formed by the majority of carriers in the semiconductor entering the metal because the forward current is the majority carrier device, there is no charge storage effect, and it has high switching frequency and positive It has the advantages of low conduction voltage, no minority carrier lifetime and reverse recovery problems, so it has better photoelectric characteristics, and is more suitable for ultra-high-speed switching devices, photodetectors, solar cells, and semiconductor lasers.
目前,金属/半导体纳米线异质结构的形成方式主要有以下几种:1、液相合成镶嵌有金属颗粒的半导体纳米线,形成包含有金属/半导体异质结的一维纳米结构;2、结合模板法和电化学沉积技术,分段沉积半导体和金属材料,在模板中形成金属/半导体纳米线异质结或在模板法沉积的纳米线阵列顶端选择性沉积金属颗粒,形成金属颗粒/半导体纳米线异质结;3、在单根半导体纳米线上,选定区域外延生长金属薄膜或通过二次光刻(电子束光刻或紫外光刻)和电子束蒸发技术,分别蒸镀上一组欧姆接触的金属电极和一组肖特基接触的金属电极,形成金属薄膜/半导体纳米线异质结。前两种方法需要对实验过程进行严格控制,而且异质结操控在目标器件上困难,而第三种方法设备昂贵,二次光刻工艺较为复杂,而且会在一定程度上对器件性能产生影响。因而,一种稳定可靠、技术可用的金属/半导体纳米线交叉结构异质结的制备方法在纳米器件领域仍有着重要的意义。At present, the formation methods of metal/semiconductor nanowire heterostructures mainly include the following: 1. Liquid phase synthesis of semiconductor nanowires embedded with metal particles to form a one-dimensional nanostructure containing metal/semiconductor heterojunctions; 2. Combining template method and electrochemical deposition technology to deposit semiconductor and metal materials in stages, form metal/semiconductor nanowire heterojunction in the template or selectively deposit metal particles on the top of the nanowire array deposited by template method to form metal particles/semiconductor Nanowire heterojunction; 3. On a single semiconductor nanowire, epitaxially grow a metal film on a selected area or through secondary photolithography (electron beam lithography or ultraviolet lithography) and electron beam evaporation technology, respectively vapor-deposit a A group of metal electrodes in ohmic contact and a group of metal electrodes in Schottky contact form a metal film/semiconductor nanowire heterojunction. The first two methods require strict control of the experimental process, and it is difficult to control the heterojunction on the target device, while the third method is expensive in equipment, and the secondary photolithography process is more complicated, and will affect the performance of the device to a certain extent . Therefore, a stable, reliable, and technically available method for preparing a metal/semiconductor nanowire cross-structure heterojunction is still of great significance in the field of nanodevices.
三、发明内容 3. Contents of the invention
本发明针对上述现有技术所存在的不足之处,旨在提供一种制备方法简单、易于实现的金属/半导体纳米线交叉结构异质结的制备方法。The present invention aims to provide a method for preparing a metal/semiconductor nanowire cross-structure heterojunction with a simple preparation method and easy realization in view of the shortcomings of the above-mentioned prior art.
本发明解决技术问题采用如下技术方案:The present invention solves technical problem and adopts following technical scheme:
本发明金属/半导体纳米线交叉结构异质结的制备方法的特点在于:将半导体纳米线3水平分散在覆有绝缘层2的硅片1上,通过一次紫外光刻的方法在绝缘层2上制备两对金属薄膜电极,其中一对金属薄膜电极4通过所述半导体纳米线3连通,所述金属薄膜电极4与半导体纳米线3呈欧姆接触;将分散有金属纳米线5的悬浮液滴在绝缘层2上,对另一对金属薄膜电极6施加交流电场,使金属纳米线5吸附到金属薄膜电极6上,所述金属纳米线5与所述半导体纳米线3相交,呈肖特基接触,形成金属/半导体纳米线交叉结构异质结。The characteristics of the preparation method of the metal/semiconductor nanowire cross structure heterojunction of the present invention are: the
本发明金属/半导体纳米线交叉结构异质结的制备方法的特点也在于:所述半导体纳米线3和所述金属纳米线5为长度不小于10μm、直径小于1μm的单晶结构。The method for preparing the metal/semiconductor nanowire cross structure heterojunction of the present invention is also characterized in that: the
本发明金属/半导体纳米线交叉结构异质结的制备方法的特点也在于:所述半导体纳米线3为单质半导体、II-Ⅵ族半导体化合物、I-Ⅵ族半导体化合物或III-V族半导体化合物;The preparation method of the metal/semiconductor nanowire cross structure heterojunction of the present invention is also characterized in that: the
本发明金属/半导体纳米线交叉结构异质结的制备方法的特点也在于:所述单质半导体为Si或Ge;所述II-Ⅵ族半导体化合物为ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe或CdTe;所述I-Ⅵ族半导体化合物为CuO、CuS、CuSe或CuTe;所述III-V族半导体化合物为GaAs或In2Sb3;The preparation method of metal/semiconductor nanowire cross structure heterojunction of the present invention is also characterized in that: the simple semiconductor is Si or Ge; the II-VI group semiconductor compound is ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe or CdTe; the I-VI group semiconductor compound is CuO, CuS, CuSe or CuTe; the III-V group semiconductor compound is GaAs or In 2 Sb 3 ;
本发明金属/半导体纳米线交叉结构异质结的制备方法的特点也在于:当所述半导体纳米线3为n型半导体时,所述两对金属薄膜电极为包括In、Ti、Ag、Al中的一种或几种,所述两对金属薄膜电极的功函低于所述半导体纳米线3的功函;所述金属纳米线5为包括Pt、Au、Ni、Cu中的一种或几种,所述金属纳米线5的功函大于所述半导体纳米线3与电子的亲和力;The feature of the preparation method of the metal/semiconductor nanowire cross structure heterojunction of the present invention is also that: when the
当所述半导体纳米线3为p型半导体时,所述两对金属薄膜电极为包括Pt、Au、Ni、Cu中的一种或几种,所述两对金属薄膜电极的功函大于所述半导体纳米线3的功函;所述金属纳米线5为包括In、Ti、Ag、Al中的一种或几种,所述金属纳米线5的功函低于所述半导体纳米线3与电子的亲和力。When the
本发明制备过程如下:The preparation process of the present invention is as follows:
将半导体纳米线3水平分散在覆有100-500nm绝缘层2的硅片1上,利用掩模板通过一步光刻在绝缘层上光刻出两对电极图形,其中一对电极图形通过半导体纳米线连通,之后利用电子束蒸发技术在两对电极图形上蒸镀得到两对金属薄膜电极。通过半导体纳米线连通的一对金属薄膜电极4与半导体纳米线3呈欧姆接触。随后,将预先合成的金属纳米线5分散在无水乙醇、去离子水或异丙醇中形成悬浮液,将悬浮液滴在绝缘层2上,对另一对金属薄膜电极6的两端加上交流电,金属纳米线5在交变的电场中被极化,沿着增加电场强度的方向移动,直到施加交流电的一对金属薄膜电极6分别与金属纳米线5的两端接触,金属纳米线5与半导体纳米线3相交呈肖特基接触,形成稳定的金属/半导体纳米线交叉结构异质结。Disperse semiconductor nanowires 3 horizontally on a
与已有技术相比,本发明的有益效果体现在:Compared with the prior art, the beneficial effects of the present invention are reflected in:
本发明分别制备金属纳米线和半导体纳米线,通过一次光刻,利用电场吸附作用,即可直接完成异质结的形成和器件制备,过程简单易行。此外,与半导体纳米线呈肖特基接触的金属纳米线还可以用作栅极,构造金属-半导体场效应管。该异质结由于具有很小的结点,更适用于纳米光电探测器等领域,有望获得更高的灵敏度和更快的探测速度。The invention prepares the metal nanowires and the semiconductor nanowires respectively, and can directly complete the formation of the heterojunction and the preparation of the device through one photolithography and the use of electric field adsorption, and the process is simple and easy. In addition, the metal nanowire in Schottky contact with the semiconductor nanowire can also be used as a gate to construct a metal-semiconductor field effect transistor. Because the heterojunction has very small junctions, it is more suitable for nanometer photodetectors and other fields, and is expected to obtain higher sensitivity and faster detection speed.
四、附图说明 4. Description of drawings
图1是本发明金属/半导体纳米线交叉结构异质结制备方法的流程图。Fig. 1 is a flow chart of the preparation method of the metal/semiconductor nanowire cross structure heterojunction of the present invention.
图2是本发明金属/半导体纳米线交叉结构异质结器件的结构示意图。Fig. 2 is a schematic structural diagram of a metal/semiconductor nanowire cross-structure heterojunction device of the present invention.
其中1为硅片,2为绝缘层,3为半导体纳米线,4为与半导体纳米线连通的一对金属薄膜电极,5为金属纳米线,6为与金属纳米线连通的一对金属薄膜电极。Among them, 1 is a silicon wafer, 2 is an insulating layer, 3 is a semiconductor nanowire, 4 is a pair of metal thin film electrodes connected with the semiconductor nanowire, 5 is a metal nanowire, and 6 is a pair of metal thin film electrodes connected with the metal nanowire .
五、具体实施方式 5. Specific implementation
下面结合附图详细描述本发明的金属/半导体纳米线交叉结构异质结的制备方法,非限定实施例如下。The preparation method of the metal/semiconductor nanowire cross structure heterojunction of the present invention will be described in detail below in conjunction with the accompanying drawings, and the non-limiting examples are as follows.
实施例1:Example 1:
将清洁的带有300nm SiO2绝缘层的硅片紧贴在通过化学气相沉积法(CVD)生长了p型ZnS纳米线的衬底,沿水平方向轻轻推动硅片,通过定向的摩擦力,实现ZnS纳米线在硅片上的均匀、水平分散,通过电子显微镜观察,使其分散密度约为2-10根/mm2。均匀旋涂正性光刻胶后,利用特定掩模板进行紫外曝光并显影,光刻出2对电极图形,每对电极尖端的距离为5μm,其中一对电极图形通过半导体纳米线连通。之后,利用电子束蒸发技术蒸镀上50nm厚的金属Au,作为欧姆接触电极,接着用丙酮去除未曝光的光刻胶及其上方蒸镀的金属。A clean silicon wafer with a 300nm SiO2 insulating layer is attached to a substrate grown by chemical vapor deposition (CVD) with p-type ZnS nanowires, and the silicon wafer is gently pushed along the horizontal direction, and through directional friction, The uniform and horizontal dispersion of the ZnS nanowires on the silicon wafer is realized, and the dispersion density is about 2-10 wires/mm 2 through electron microscope observation. After the positive photoresist was evenly spin-coated, a specific mask was used for ultraviolet exposure and development, and two pairs of electrode patterns were photoetched. The distance between the tips of each pair of electrodes was 5 μm, and a pair of electrode patterns were connected through semiconductor nanowires. After that, metal Au with a thickness of 50nm is evaporated by electron beam evaporation technology as an ohmic contact electrode, and then the unexposed photoresist and the metal evaporated on it are removed with acetone.
随后,取少量预先合成的Al纳米线超声分散在无水乙醇中形成悬浮液,用胶头滴管吸取一滴滴在已制备好金属电极的硅片上,使其分散密度约为2-10根/mm2,在另一对悬空的电极两端加上一频率1kHz,电压30Vrms的交流电,使Al纳米线在电场作用下移动到相对的两个电极上,连通电极并与ZnS纳米线垂直相交,形成肖特基接触的金属/半导体纳米线交叉结构异质结,其结构如图2所示。Subsequently, take a small amount of pre-synthesized Al nanowires and ultrasonically disperse them in absolute ethanol to form a suspension, and use a rubber dropper to draw a drop on the silicon wafer with the metal electrode prepared, so that the dispersion density is about 2-10 /mm 2 , add an alternating current with a frequency of 1kHz and a voltage of 30V rms at both ends of the other pair of suspended electrodes, so that the Al nanowires will move to the two opposite electrodes under the action of the electric field, connect the electrodes and be perpendicular to the ZnS nanowires Intersect to form a metal/semiconductor nanowire cross-structure heterojunction with Schottky contacts, the structure of which is shown in Figure 2.
实施例2:Example 2:
将少量液相法预先合成的n型CdS纳米线超声分散在异丙醇中,用胶头滴管吸取一滴,沿特定方向滴在略倾斜的清洁的带有100nm HfO2绝缘层的硅片上,实现CdS纳米线的水平分散,使其分散密度约为2-10根/mm2。待溶剂蒸发之后,均匀旋涂正性光刻胶后,紫外曝光并显影,光刻出2对电极图形,其中一对电极图形通过半导体纳米线连通。之后,利用电子束蒸发技术蒸镀上80nm In/20nm Au的双层金属电极,作为欧姆接触电极,接着用丙酮去除未曝光的光刻胶及其上方蒸镀的金属。Ultrasonic dispersion of a small amount of pre-synthesized n-type CdS nanowires in isopropanol in isopropanol, suck a drop with a rubber dropper, and drop it in a specific direction on a slightly inclined clean silicon wafer with a 100nm HfO 2 insulating layer , realize the horizontal dispersion of CdS nanowires, and make the dispersion density about 2-10 wires/mm 2 . After the solvent is evaporated, the positive photoresist is uniformly spin-coated, exposed to ultraviolet light and developed, and two pairs of electrode patterns are photoetched, and one pair of electrode patterns is connected through a semiconductor nanowire. Afterwards, a double-layer metal electrode of 80nm In/20nm Au is evaporated by electron beam evaporation technology as an ohmic contact electrode, and then the unexposed photoresist and the metal evaporated on it are removed with acetone.
随后,将预先合成的Au纳米线超声分散在无水乙醇中形成悬浮液,滴在已制备好金属电极的硅片上,分散密度约为2-10根/mm2。在另一对悬空的电极两端加上一频率1kHz,电压30Vrms的交流电,使Au纳米线在电场作用下移动到相对的两个电极上,连通电极并与CdS纳米线相交,形成肖特基接触的金属/半导体纳米线交叉结构异质结。Subsequently, ultrasonically disperse the pre-synthesized Au nanowires in anhydrous ethanol to form a suspension, and drop them on the silicon wafers on which the metal electrodes have been prepared, with a dispersion density of about 2-10 wires/mm 2 . Apply an alternating current with a frequency of 1kHz and a voltage of 30V rms to the two ends of another pair of suspended electrodes, so that the Au nanowires move to the two opposite electrodes under the action of an electric field, connect the electrodes and intersect with the CdS nanowires to form a Schottky electrode. Metal/semiconductor nanowire cross-structure heterojunction with base contacts.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201110197871 CN102244002B (en) | 2011-07-14 | 2011-07-14 | Preparation method of heterojunction with metal/semiconductor nanometer wire crossing structure |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201110197871 CN102244002B (en) | 2011-07-14 | 2011-07-14 | Preparation method of heterojunction with metal/semiconductor nanometer wire crossing structure |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102244002A CN102244002A (en) | 2011-11-16 |
| CN102244002B true CN102244002B (en) | 2013-01-09 |
Family
ID=44961986
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 201110197871 Expired - Fee Related CN102244002B (en) | 2011-07-14 | 2011-07-14 | Preparation method of heterojunction with metal/semiconductor nanometer wire crossing structure |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102244002B (en) |
Families Citing this family (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102420244B (en) * | 2011-11-14 | 2013-10-09 | 清华大学 | A kind of one-dimensional metal/semiconductor nano-heterojunction transistor and its preparation method |
| CN102569485B (en) * | 2011-12-31 | 2014-12-31 | 浙江大学 | Near-infrared band full silicon-base nanometer photoelectric detector |
| CN102544183A (en) * | 2012-02-17 | 2012-07-04 | 合肥工业大学 | Silicon nanowire Schottky junction type solar battery and preparation method for same |
| CN102583223B (en) * | 2012-03-02 | 2015-01-07 | 合肥工业大学 | Preparation method of nano solar battery based on CuS quasi one-dimensional nanostructure |
| CN102610275B (en) * | 2012-03-22 | 2014-08-06 | 合肥工业大学 | Cadmium selenide nanowire-based Schottky junction type multi-byte nonvolatile memory and preparation method thereof |
| CN102610672A (en) * | 2012-03-23 | 2012-07-25 | 合肥工业大学 | Heterojunction type photoelectric detector and manufacturing method thereof |
| CN103337481B (en) * | 2013-07-02 | 2015-11-04 | 合肥工业大学 | Non-volatile memory based on p-type IIB-VIA group semiconductor nanowire Schottky junction and its preparation method |
| CN103985788B (en) * | 2014-05-21 | 2016-08-17 | 中国科学院上海微系统与信息技术研究所 | Tensile strain germanium MSM photoelectric detector and preparation method thereof |
| CN104952940A (en) * | 2015-06-09 | 2015-09-30 | 华中科技大学 | Very high bandwidth germanium-silicon photoelectric detector |
| CN107564862B (en) * | 2016-07-01 | 2020-09-25 | 清华大学 | Preparation method of nanoheterostructures |
| CN107564910B (en) * | 2016-07-01 | 2020-08-11 | 清华大学 | Semiconductor device |
| CN107564917B (en) * | 2016-07-01 | 2020-06-09 | 清华大学 | Nanoheterostructure |
| CN106531824A (en) * | 2016-11-25 | 2017-03-22 | 罗雷 | Heterojunction type photoelectric detector and manufacturing method thereof |
| CN108872151B (en) * | 2017-09-29 | 2023-06-16 | 郑州大学 | An optical sensor based on T-shaped pair and nanowire pair |
| CN108649094B (en) * | 2018-05-14 | 2020-08-14 | 南京邮电大学 | Ultraviolet photodetector with Cu/CuI/ZnO structure and preparation method thereof |
| CN110499489B (en) * | 2019-07-23 | 2021-06-01 | 电子科技大学 | Preparation process of semiconductor/metal heterojunction nanowire array material |
| CN110620033B (en) * | 2019-08-26 | 2021-11-05 | 中国科学院微电子研究所 | Method for manufacturing metal nanowire or sheet and nanowire or sheet |
| CN114047231B (en) * | 2021-11-04 | 2024-02-27 | 湖州师范学院 | Diode type heterojunction gas sensor chip and preparation method thereof |
| CN115038251B (en) * | 2022-07-20 | 2024-02-02 | 江南大学 | A method of fabricating sensors using a wire-based straight writing process |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7268363B2 (en) * | 2005-02-15 | 2007-09-11 | Eastman Kodak Company | Photosensitive organic semiconductor compositions |
| CN1917251A (en) * | 2006-09-12 | 2007-02-21 | 武汉大学 | Diode of heterogenous pn junction of n-silicone Nano wire/ p- conductive organic matter, and preparation method |
| CA2674448A1 (en) * | 2007-01-12 | 2008-07-17 | Qunano Ab | Nitride nanowires and method of producing such |
| US7892610B2 (en) * | 2007-05-07 | 2011-02-22 | Nanosys, Inc. | Method and system for printing aligned nanowires and other electrical devices |
-
2011
- 2011-07-14 CN CN 201110197871 patent/CN102244002B/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| CN102244002A (en) | 2011-11-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102244002B (en) | Preparation method of heterojunction with metal/semiconductor nanometer wire crossing structure | |
| CN107749433B (en) | Two-dimensional van der Waals heterojunction photoelectric detector and preparation method thereof | |
| Xu et al. | High‐gain 200 ns photodetectors from self‐aligned CdS–CdSe core–shell nanowalls | |
| CN207529954U (en) | A kind of two dimension Van der Waals heterojunction photoelectric detector | |
| CN103887360A (en) | InAs/GaSb superlattice infrared photoelectric detector and manufacturing method thereof | |
| CN102067324A (en) | Polymer-embedded semiconductor rod arrays | |
| Ren et al. | Solar-blind photodetector based on single crystal Ga2O3 film prepared by a unique ion-cutting process | |
| CN106449854B (en) | Fully- depleted ferroelectricity side grid single nano-wire near infrared photodetector and preparation method | |
| US9773884B2 (en) | III-nitride transistor with engineered substrate | |
| CN110660882B (en) | A gate-controlled PIN structure GaN ultraviolet detector and preparation method thereof | |
| KR102153945B1 (en) | Electronic devcie using two dimensional semicondoctor material | |
| WO2018082251A1 (en) | Ultraviolet detector provided with gan nanowire array, and manufacturing method therefor | |
| TWI619156B (en) | Nanoscale heterostructure | |
| CN103311305A (en) | Silicon lateral nanowire multi-faceted gate transistor and production method thereof | |
| CN103390640B (en) | A kind of silicon Schottky junction with Bi2Se3 thin film as contact layer and its preparation method | |
| CN115440837B (en) | Photodiode based on graphene/tungsten ditelluride/germanium mixed-dimension heterojunction and preparation method and application thereof | |
| CN107634090A (en) | Two-dimentional black phosphorus PN junction, its preparation method and application | |
| CN102569516A (en) | Method for preparing p-CdS nano wire and p-CdS/n-Si nano p-n node through manganese trioxide (MoO3) surface doping | |
| CN101960611A (en) | Photovoltaic devices with high aspect ratio nanostructures | |
| TWI643265B (en) | Nano heterostructure and preparation method of nano transistor | |
| CN108767068B (en) | A two-dimensional material photodetector and its manufacturing method | |
| CN115863442A (en) | Vertical p-n junction diode based on van der Waals contact, preparation method, and semiconductor device | |
| CN104538489A (en) | Method for increasing the switch ratio of graphene and nanowire heterojunction detector | |
| CN105655423B (en) | A kind of nano heterogeneous joint solar cell based on chalcogen cuprous compound and preparation method thereof | |
| CN101707215B (en) | Ohmic contact electrode structure on aluminum nitride crystalloid and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130109 Termination date: 20150714 |
|
| EXPY | Termination of patent right or utility model |