CN102244087A - Controllable power flip array light emitting diode (LED) chip and manufacturing method thereof - Google Patents
Controllable power flip array light emitting diode (LED) chip and manufacturing method thereof Download PDFInfo
- Publication number
- CN102244087A CN102244087A CN2011102147401A CN201110214740A CN102244087A CN 102244087 A CN102244087 A CN 102244087A CN 2011102147401 A CN2011102147401 A CN 2011102147401A CN 201110214740 A CN201110214740 A CN 201110214740A CN 102244087 A CN102244087 A CN 102244087A
- Authority
- CN
- China
- Prior art keywords
- layer
- electrode
- chip
- controllable power
- array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 229910052751 metal Inorganic materials 0.000 claims abstract description 56
- 239000002184 metal Substances 0.000 claims abstract description 56
- 239000004065 semiconductor Substances 0.000 claims abstract description 33
- 238000002161 passivation Methods 0.000 claims abstract description 16
- 239000010410 layer Substances 0.000 claims description 217
- 238000000034 method Methods 0.000 claims description 34
- 229910052594 sapphire Inorganic materials 0.000 claims description 28
- 239000010980 sapphire Substances 0.000 claims description 28
- 238000000206 photolithography Methods 0.000 claims description 24
- 238000005530 etching Methods 0.000 claims description 23
- 239000000758 substrate Substances 0.000 claims description 22
- 238000000151 deposition Methods 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- 150000002739 metals Chemical class 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 229910052737 gold Inorganic materials 0.000 claims description 10
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 10
- 230000008021 deposition Effects 0.000 claims description 8
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 8
- 229910004205 SiNX Inorganic materials 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 238000001020 plasma etching Methods 0.000 claims description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 4
- 238000002955 isolation Methods 0.000 claims description 4
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 4
- 238000005498 polishing Methods 0.000 claims description 4
- 238000007788 roughening Methods 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 239000002356 single layer Substances 0.000 claims description 3
- 229910002704 AlGaN Inorganic materials 0.000 claims description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 2
- 238000005566 electron beam evaporation Methods 0.000 claims description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 2
- 239000011810 insulating material Substances 0.000 claims description 2
- 150000002902 organometallic compounds Chemical class 0.000 claims description 2
- 238000001039 wet etching Methods 0.000 claims description 2
- 229910020286 SiOxNy Inorganic materials 0.000 claims 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims 1
- 238000001947 vapour-phase growth Methods 0.000 claims 1
- 239000010931 gold Substances 0.000 description 12
- 239000010949 copper Substances 0.000 description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 10
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 10
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 6
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 5
- 229910021529 ammonia Inorganic materials 0.000 description 5
- 229910052738 indium Inorganic materials 0.000 description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 229910000077 silane Inorganic materials 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 238000001579 optical reflectometry Methods 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Landscapes
- Led Devices (AREA)
Abstract
本发明公开了一种可控功率倒装阵列LED芯片及其制造方法。可控功率倒装阵列LED芯片为:阵列LED芯片由多个阵列单元构成阵列,其中所有的阵列单元每一行的p电极层(10)连接,每一列的n电极层(5)连接;所述阵列单元是蓝宝石衬底(2)上方依次覆盖n型缓冲层(3)、n型半导体层(6)、有源层(7)、p型半导体层(8)、透明电极层(9)、p电极层(10);所有的n电极层(5)和p电极层(10)由绝缘层(4)包覆;其中每一行的p电极层(10)通过p电极层(10)窗口上方的p电极连接金属层(11)连接;在p电极连接金属层(11)表面还有钝化层(12)。
The invention discloses a controllable power flip-chip array LED chip and a manufacturing method thereof. The controllable power flip-chip array LED chip is as follows: the array LED chip is composed of a plurality of array units, wherein all the array units are connected to the p-electrode layer (10) of each row, and the n-electrode layer (5) of each column is connected; The array unit is covered with n-type buffer layer (3), n-type semiconductor layer (6), active layer (7), p-type semiconductor layer (8), transparent electrode layer (9), p-electrode layer (10); all n-electrode layers (5) and p-electrode layers (10) are covered by an insulating layer (4); wherein the p-electrode layer (10) of each row passes above the window of the p-electrode layer (10) The p-electrode is connected to the metal layer (11); there is also a passivation layer (12) on the surface of the p-electrode connection metal layer (11).
Description
技术领域 technical field
本发明涉及一种倒装阵列LED芯片及其制造方法,尤其涉及一种包括多量子阱有源区的GaN基可控倒装阵列蓝光LED芯片结构及其制造方法。 The invention relates to a flip-chip array LED chip and a manufacturing method thereof, in particular to a GaN-based controllable flip-chip array blue LED chip structure including multiple quantum well active regions and a manufacturing method thereof.
背景技术 Background technique
白光LED具有亮度高、节能环保等优点,已经成为最有潜力的照明光源之一。白光LED的能耗仅为白炽灯的1/8,荧光灯的1/2,其寿命可长达10万小时。这对普通家庭明来说可谓“一劳永逸”,同时还可实现无汞化,回收容易等优点,对环境保护和节约能源具有重要意义。 White LED has the advantages of high brightness, energy saving and environmental protection, and has become one of the most potential lighting sources. The energy consumption of white light LED is only 1/8 of that of incandescent lamp and 1/2 of that of fluorescent lamp, and its life span can be as long as 100,000 hours. This can be described as "once and for all" for ordinary households. At the same time, it can also achieve mercury-free and easy recycling, which is of great significance to environmental protection and energy conservation.
目前制备大功率白光LED的方法主要是在蓝色或近紫外LED芯片上涂覆黄色荧光粉,通过混色得到白光。这种通过蓝光LED的得到白光的方法,构造简单、成本低廉、技术成熟度高,因此运用广泛。大多数5W以上的大功率白光LED是由大功率的蓝光LED芯片制成的。所以制造大功率蓝光LED芯片是制作大功率白光LED的基础。 The current method of preparing high-power white LEDs is mainly to coat yellow phosphor powder on blue or near-ultraviolet LED chips, and obtain white light through color mixing. This method of obtaining white light through blue LEDs has a simple structure, low cost, and high technical maturity, so it is widely used. Most high-power white LEDs above 5W are made of high-power blue LED chips. Therefore, manufacturing high-power blue LED chips is the basis for making high-power white LEDs.
目前,调节发光亮度的LED主要是通过以下几种方式:第一、单个LED芯片主要是控通过LED芯片的电流来调节发光亮度;第二、多个LED芯片的组合通过控制多个LED芯片的开关来调节发光亮度。但是由于每个LED芯片可能不是同一批次生产的电学性能和光学性能会有不同,通过以上的控制方法连接设计和电源驱动,组合芯片发光的协调性、一致性较差。 At present, the LEDs that adjust the luminance are mainly in the following ways: first, a single LED chip mainly controls the current through the LED chip to adjust the luminance; second, the combination of multiple LED chips controls the current of multiple LED chips. Switch to adjust the brightness of the light. However, because each LED chip may not be produced in the same batch, the electrical and optical properties will be different. Through the above control method to connect the design and power drive, the coordination and consistency of the light emission of the combined chip is poor.
目前单色显示屏在户外广告和小型移动数码设备上都有应用,所以发展LED单色显示屏也有很广的应用前景。 At present, monochrome display screens are used in outdoor advertisements and small mobile digital devices, so the development of LED monochrome display screens also has a broad application prospect.
发明内容 Contents of the invention
本发明要解决的技术问题是,提供一种可控功率倒装阵列LED芯片,该芯片能有效调节大功率蓝光LED倒装芯片的发光亮度,还可作为单色显示屏使用,通过控制行列的扫描达到显示字符的目的;此外本发明还提供一种该芯片的制造方法,以克服现有技术存在的LED芯片发光亮度调节困难等不足。 The technical problem to be solved by the present invention is to provide a controllable power flip-chip array LED chip, which can effectively adjust the luminous brightness of the high-power blue LED flip-chip, and can also be used as a monochrome display screen. Scanning achieves the purpose of displaying characters; in addition, the present invention also provides a manufacturing method of the chip, so as to overcome the shortcomings of the prior art such as difficulty in adjusting the luminance of the LED chip.
本发明的可控功率倒装阵列LED芯片结构为:阵列LED芯片由多个阵列单元构成阵列,其中所有的阵列单元每一行的p电极层连接到一起,每一列的n电极层连接到一起,这样可以单独控制每个阵列单元发光;所述阵列单元是蓝宝石衬底上方依次覆盖n型缓冲层、n型半导体层、有源层、p型半导体层、透明电极层、p电极层;每一列阵列单元的n电极层连接在一起;并且全部n电极层和p电极层由绝缘层包覆;在绝缘层包覆的p电极层窗口上方的p电极连接金属层使每一行的p电极连接到一起。蓝宝石衬底的出光面为粗糙化表面,以提高出光率;在p电极连接金属层表面还有钝化层。芯片的p电极层采用光反射率较高的银或铝等金属来增加光反射,并且完全覆盖每一个阵列单元的透明电极层。 The controllable power flip-chip array LED chip structure of the present invention is as follows: the array LED chip is composed of a plurality of array units, wherein the p-electrode layers of each row of all array units are connected together, and the n-electrode layers of each column are connected together. In this way, each array unit can be individually controlled to emit light; the array unit is sequentially covered with an n-type buffer layer, an n-type semiconductor layer, an active layer, a p-type semiconductor layer, a transparent electrode layer, and a p-electrode layer above the sapphire substrate; each column The n-electrode layers of the array unit are connected together; and all n-electrode layers and p-electrode layers are covered by an insulating layer; the p-electrode connection metal layer above the p-electrode layer window covered by the insulating layer makes the p-electrodes of each row connected to Together. The light-emitting surface of the sapphire substrate is a roughened surface to increase the light-emitting rate; there is also a passivation layer on the surface of the p-electrode connection metal layer. The p-electrode layer of the chip uses metals such as silver or aluminum with high light reflectivity to increase light reflection, and completely covers the transparent electrode layer of each array unit.
其中,LED芯片出光面为蓝宝石衬底,采用蓝宝石(Al2O3);并对出光面进行有组织的表面粗糙化处理形成粗糙化表面,以减少出光表面对光的反射,提高出光率,改善LED的发光效率。 Among them, the light-emitting surface of the LED chip is a sapphire substrate, and sapphire (Al 2 O 3 ) is used; and the surface of the light-emitting surface is roughened to form a rough surface, so as to reduce the reflection of light on the light-emitting surface and improve the light-extracting rate. Improve the luminous efficiency of LED.
所述的n型半导体层和p型半导体层是由GaN、或GaAs、或AlGaN半导体材料构成;其中n型半导体层掺入的杂质是Si等材料,p型半导体层掺入的杂质是Mg等材料;有源层采用多层的InGaN层和GaN层,形成多量子阱层。 The n-type semiconductor layer and the p-type semiconductor layer are composed of GaN, or GaAs, or AlGaN semiconductor materials; wherein the impurities doped in the n-type semiconductor layer are materials such as Si, and the impurities doped in the p-type semiconductor layer are Mg, etc. Material; the active layer adopts multi-layer InGaN layer and GaN layer to form multiple quantum well layers.
本发明的LED芯片由彼此相互独立的阵列单元构成阵列。但是每一列阵列单元n电极层是连接在一起的;n电极层的材料材料包括Cu、Ti、Al、Ni或Au金属,采用其中的单一金属或组合金属;p电极层采用对可见光反射率很高的金属Ag或Al,并且完全覆盖每一个阵列单元的透明电极层; The LED chip of the present invention is composed of mutually independent array units forming an array. However, the n-electrode layers of each row of array units are connected together; the material of the n-electrode layer includes Cu, Ti, Al, Ni or Au metal, and a single metal or a combination of metals is used; High metal Ag or Al, and completely cover the transparent electrode layer of each array unit;
在绝缘层包覆的p电极层窗口上方的p电极连接金属层使每一行的p电极连接到一起;p电极连接金属层的材料包括Cu、Ti、Al、Ni或Au金属,采用其中的单一金属或组合金属。 The p-electrode connection metal layer above the p-electrode layer window covered by the insulating layer connects the p-electrodes of each row together; the material of the p-electrode connection metal layer includes Cu, Ti, Al, Ni or Au metal, and a single one of them is used metal or combination of metals.
绝缘层和钝化层是由SiOx、SiNx或SiOxNy等绝缘材料构成;透明电极层采用金属薄膜Ni/Au或氧化铟锡(ITO)制作。 The insulating layer and passivation layer are made of insulating materials such as SiO x , SiN x or SiO x N y ; the transparent electrode layer is made of metal thin film Ni/Au or indium tin oxide (ITO).
本发明的可控功率倒装阵列LED芯片的制造方法,包括以下制造步骤: The manufacturing method of the controllable power flip-chip array LED chip of the present invention comprises the following manufacturing steps:
步骤一,在蓝宝石衬底生长低掺杂的n型缓冲层,再生长高掺杂的n型半导体层; Step 1, growing a low-doped n-type buffer layer on the sapphire substrate, and then growing a highly-doped n-type semiconductor layer;
步骤二,生长有源层,生长为单层的InGaN,或者交替生长为多个周期的InGaN层和GaN层,形成多量子阱层;
步骤三,在步骤二的基础上生长p型半导体层;
步骤四,沉积透明电极层和p电极层;
步骤五,在步骤四的基础上进行光刻和刻蚀,露出n型缓冲层和芯片的隔离槽,为n电极的沉积做准备;
步骤六,沉积金属层,并进行光刻和刻蚀,形成每一行都连接到一起的n电极层;
步骤七,沉积绝缘层,并进行光刻和刻蚀,露出p电极层窗口,为沉积p电极层窗口上方的p电极连接金属层做准备;同时在芯片边沿露出n电极pad,以供外电路连接;
步骤八,沉积Cu、Ti、Al、Ni或Au金属,采用其中的单一金属或组合金属,并进行光刻和刻蚀,形成每一列阵列单元都连接在一起的p电极连接金属层和n电极外接pad,以供外电路连接;
步骤九,沉积钝化层,并进行光刻和刻蚀,露出p电极pad和n电极pad,以供外电路连接;
步骤十,对蓝宝石衬底进行减薄,并对蓝宝石的出光面进行有组织的粗糙化处理,形成粗糙化表面。 In step ten, the sapphire substrate is thinned, and the light-emitting surface of the sapphire is roughened in an organized manner to form a roughened surface.
步骤一到步骤三采用MOCVD(金属有机化合物汽相沉积)工艺制备,或者采用MBE(分子束外延)方法制备。 Steps 1 to 3 are prepared by MOCVD (metal organic compound vapor deposition) process, or by MBE (molecular beam epitaxy) method.
步骤五采用湿刻工艺,采用ICP(增强等离子刻蚀)方法、或者RIE(反应离子刻蚀)方法,或者采用该两种方法的组合。 Step five adopts a wet etching process, adopts an ICP (enhanced plasma etching) method, or a RIE (reactive ion etching) method, or adopts a combination of the two methods.
步骤四、步骤六和步骤七采用磁控溅射或电子束蒸发的方法生长透明电极层和p电极层步骤七采用PECVD(等离子增强化学汽相沉积)工艺生长绝缘层和钝化层;步骤十采用CMP(化学机械抛光)工艺设备将蓝宝石衬底减薄。
步骤一、在蓝宝石衬底上采用MOCVD方法先生长低掺杂Si的n型GaN缓冲层,再生长高掺杂Si的n型GaN接触层;即用TMGa(三甲基镓)、NH3(氨)和硅源SiH4(硅烷)在570℃下生长2μm厚的低掺杂Si的n-GaN缓冲层;再生长20nm的高掺杂Si的n型GaN接触层; Step 1: Grow a low-doped Si n-type GaN buffer layer on the sapphire substrate by MOCVD method, and then grow a highly-doped Si n-type GaN contact layer; that is, use TMGa (trimethylgallium), NH 3 ( Ammonia) and silicon source SiH 4 (silane) at 570 ° C to grow a 2 μm thick low-doped Si n-GaN buffer layer; and then grow a 20 nm high-doped Si n-type GaN contact layer;
步骤二、采用MOCVD方法生长有源层。交替生长多个周期的InGaN层和GaN层,形成多量子阱—MQW层。具体过程为:
1、通入铟源TMIn(三甲基铟)生长3nm厚的InGaN; 1. Introduce the indium source TMIn (trimethylindium) to grow 3nm thick InGaN;
2、去掉铟源,通入硅烷(SiH4)生长20nm厚的n-GaN; 2. Remove the indium source and feed silane (SiH 4 ) to grow n-GaN with a thickness of 20nm;
3、重复过程1、2多次,就生长出InGaN/GaN多量子阱;
3. Repeat
步骤三、在MQW有源层顶部,采用MOCVD方法生长p型半导体层,即通入TMGa(三甲基镓)、NH3(氨)和Cp2Mg(二茂镁),生长100nm厚的p型半导体层; Step 3: On the top of the MQW active layer, grow a p-type semiconductor layer by MOCVD, that is, inject TMGa (trimethylgallium), NH 3 (ammonia) and Cp 2 Mg (dimagnesium), and grow a 100nm-thick p-type semiconductor layer. Type semiconductor layer;
步骤四、经过清洗之后用磁控溅射的方法在p型半导体层上沉积一层ITO透明导电薄膜作为透明电极层,在透明电极层上溅镀沉积Ag或Al金属形成p电极层;透明电极层的厚度为500nm,p电极层的厚度为120nm;
步骤五、在步骤四的基础上涂光刻胶,掩膜,光刻,进行刻蚀,露出n型缓冲层和芯片的隔离槽,为n电极的沉积做好准备;
步骤六、用磁控溅射沉积Cu/Au(铜/金),沉积金属的厚度为120nm;形成n电极层,并进行光刻和刻蚀,形成每一行都连接到一起的n电极;
步骤七、采用PECVD(等离子增强化学汽相沉积)生长SiO2绝缘层,并进行光刻和刻蚀,露出p电极窗口,为进一步沉积p电极层窗口上方的p电极连接金属层做准备;同时在芯片边沿露出n电极pad,以供外电路连接;
步骤八、用磁控溅射沉积Cu/Au(铜/金)等金属组成的p电极的连接金属电极层,该层厚90-150μm,并进行光刻和刻蚀,形成每一列阵列单元都连接在一起的p电极连接金属和n电极外接pad;以供外电路连接;
步骤九、除去光刻胶,采用PECVD生长SiOx或SiNx钝化层,即形成80nm厚的SiO2钝化层;并进行光刻和刻蚀,露出p电极pad和n电极pad,以供外电路连接;
步骤十、用化学机械抛光(CMP)设备将蓝宝石减薄,即将蓝宝石衬底由350μm~450μm减薄至90μm~150μm,并用光刻加离子刻蚀的方法对蓝宝石的出光面进行有组织的粗糙化处理,形成粗糙化表面。
基于上述步骤的制造方法可以得到一种可控功率的倒装阵列式LED芯片,该芯片与传统LED芯片相比,既可以增大发光面积,又能够通过控制芯片的阵列的行和列的通电与否控制阵列单元的发光,从而可以控制芯片的功率,达到控制芯片发光亮度的目的;也可以通过外部的驱动扫描电路控制芯片行和列通电与否,用来显示字符。 A controllable power flip-chip array LED chip can be obtained based on the manufacturing method of the above steps. Compared with the traditional LED chip, the chip can not only increase the light-emitting area, but also can control the power supply of the rows and columns of the chip array. Whether to control the light emission of the array unit, so that the power of the chip can be controlled to achieve the purpose of controlling the brightness of the chip; it can also be used to display characters by controlling whether the row and column of the chip are energized or not through the external driving scanning circuit.
调整有源层结构(如多个材料的量子阱形成复合量子阱)及材料组分(调整掺杂浓度改变发光波长)可以发多种颜色光,本发明也涵盖了这一LED芯片范畴。 Adjusting the structure of the active layer (such as quantum wells of multiple materials to form a composite quantum well) and material components (adjusting the doping concentration to change the emission wavelength) can emit light of various colors, and the present invention also covers this category of LED chips.
本发明以上所述内容,仅给出了实现本发明的一种实施方案,但此方案和方案中的芯片结构以及工艺条件可以改变的,这种改变不脱离本发明的思想及范围,对本领域人员自己明了的所有变更应当包含在所述权利要求范围内。 The above-mentioned content of the present invention has only provided a kind of implementation scheme that realizes the present invention, but the chip structure and process condition in this scheme and scheme can be changed, and this change does not depart from the idea and scope of the present invention, and is of great importance to those skilled in the art. All changes apparent to the person himself should be included within the scope of the claims.
附图说明 Description of drawings
图1为本发明的工艺流程图; Fig. 1 is a process flow diagram of the present invention;
图2为蓝宝石Al2O3(0001)面衬底上外延生长n-GaN层、n+-GaN层、有源层、p-GaN层、透明电极和Ag/Al金属电极后的截面的图; Figure 2 is a diagram of the cross-section after epitaxial growth of n-GaN layer, n + -GaN layer, active layer, p-GaN layer, transparent electrode and Ag/Al metal electrode on the sapphire Al 2 O 3 (0001) surface substrate ;
图3 n区电极光刻和刻蚀后得到的平面图; Figure 3 The plan view obtained after photolithography and etching of the n-region electrode;
图4为图3的A-A截面图; Fig. 4 is the A-A sectional view of Fig. 3;
图5为n区电极刻蚀后得到的平面图; Fig. 5 is the plane view obtained after n-region electrode etching;
图6为图5的A-A截面图 Fig. 6 is the A-A sectional view of Fig. 5
图7为SiOx或SiNx绝缘层刻蚀后的平面图形; Fig. 7 is the plane figure after SiOx or SiNx insulation layer etching;
图8为图7的A-A截面图; Fig. 8 is the A-A sectional view of Fig. 7;
图9为p电极区上方沉积、光刻和刻蚀后p电极连接金属线的平面图; 9 is a plan view of the p-electrode connection metal line after deposition, photolithography and etching above the p-electrode region;
图10为图8的A-A截面图; Fig. 10 is the A-A sectional view of Fig. 8;
图11 SiOx或SiNx钝化层刻蚀后的平面图形 Figure 11 Plane pattern after etching of SiOx or SiNx passivation layer
图12为对蓝宝石出光面进行有组织的粗糙化处理后的得到的截面图形; Fig. 12 is a cross-sectional figure obtained after organized roughening treatment on the light-emitting surface of sapphire;
附图标记: Reference signs:
1—蓝宝石衬底的粗糙化表面; 1—roughened surface of sapphire substrate;
2—蓝宝石衬底; 2—Sapphire substrate;
3—n型缓冲层,即n-GaN缓冲层; 3—n-type buffer layer, namely n-GaN buffer layer;
4—(SiOx或SiNx)绝缘层; 4—(SiO x or SiNx) insulating layer;
5—n电极层; 5—n electrode layer;
6—n半导体层,即n+-GaN层; 6—n semiconductor layer, that is, n + -GaN layer;
7—有源层; 7—active layer;
8—p半导体层,即p-GaN层; 8—p semiconductor layer, that is, p-GaN layer;
9—透明电极层; 9—transparent electrode layer;
10—p电极层; 10—p electrode layer;
11—p电极连接金属层; 11—the p electrode is connected to the metal layer;
12—(SiOx或SiNx)钝化层。 12—( SiOx or SiNx) passivation layer.
具体实施方式 Detailed ways
本发明的实施例:在此,以“从蓝宝石表面发光的GaN基可控功率蓝光倒装阵列式LED芯片”为例来说明本发明的芯片结构及其制造方法。 Embodiments of the present invention: Here, the chip structure and its manufacturing method of the present invention will be described by taking the "GaN-based power-controllable blue flip-chip LED chip that emits light from the surface of sapphire" as an example.
本发明的芯片结构为:阵列LED芯片是由多个阵列单元构成阵列,其中所有的阵列单元每一行的p电极层10连接到一起,每一列的n电极层5连接到一起,这样可以单独控制每个阵列单元发光;所述阵列单元是蓝宝石衬底2上方依次覆盖n型缓冲层3、n型半导体层6、有源层7、p型半导体层8、透明电极层9、p电极层10;每一列阵列单元的n电极层5连接在一起;并且全部n电极层5和p电极层10由绝缘层4包覆;在绝缘层4包覆的p电极层10窗口上方的p电极连接金属层11使每一行的p电极层10连接到一起。蓝宝石衬底2的出光面为粗糙化表面1,以提高出光率;在p电极连接金属层11表面还有钝化层12。芯片的p电极层采用光反射率较高的银或铝等金属来增加光反射。
The chip structure of the present invention is: an array LED chip is formed by a plurality of array units, in which the p-
本发明中镓源为TMGa(三甲基镓),氮源为NH3(氨),铟源为TMIn(三甲基铟),硅源为SiH4(硅烷),镁源为Cp2Mg(二茂镁)。 In the present invention, the gallium source is TMGa (trimethylgallium), the nitrogen source is NH 3 (ammonia), the indium source is TMIn (trimethyl indium), the silicon source is SiH 4 (silane), and the magnesium source is Cp 2 Mg ( Dichloromagnesium).
以下是该实施例可控功率蓝光倒装阵列式LED芯片结构的详细制造方法,其流程如图1所示意,它包括以下步骤: The following is the detailed manufacturing method of the controllable power blue light flip-chip array LED chip structure of this embodiment, and its flow is shown in Figure 1, which includes the following steps:
步骤一、在蓝宝石衬底2上采用MOCVD方法先生长低掺杂Si的n型GaN缓冲层3,再生长高掺杂Si的n型GaN半导体层6;即用TMGa(三甲基镓)、NH3(氨)和硅源SiH4(硅烷)在570℃下生长2μm厚的低掺杂Si的n-GaN缓冲层3;再生长20nm的高掺杂Si的n型GaN半导体层6;如图2所示意。
Step 1: On the
步骤二、采用MOCVD方法生长有源层7。交替生长多个周期的InGaN层和GaN层,形成多量子阱—MQW层。具体过程为:第一,通入铟源TMIn(三甲基铟)生长3nm厚的InGaN;第二,去掉铟源,通入硅烷(SiH4)生长20nm厚的n-GaN; 第三,重复过程第一、第二多次,就生长出InGaN/GaN多量子阱;如图2所示意
步骤三、在MQW有源层7顶部,采用MOCVD方法生长p型半导体层8,即通入TMGa(三甲基镓)、NH3(氨)和Cp2Mg(二茂镁),生长100nm厚的p型半导体层8;
Step 3: On the top of the MQW
步骤四、经过清洗之后用磁控溅射的方法在p型半导体层8上沉积一层ITO透明导电薄膜作为透明电极层9,在透明电极层上溅镀沉积Ag或Al金属形成p电极层10;透明电极层9的厚度为500nm,p电极层10的厚度为120nm;
步骤五、在步骤四的基础上涂光刻胶,掩膜,光刻,进行刻蚀,露出n型缓冲层和芯片的隔离槽,为n电极层5的沉积做准备;如图3、图4所示;
步骤六、用磁控溅射沉积Cu/Au(铜/金),沉积金属的厚度为120nm;形成n电极层5,并进行光刻和刻蚀,形成每一行都连接到一起的n电极层5;如图5和图6所示。
步骤七、采用PECVD(等离子增强化学汽相沉积)生长SiO2绝缘层4,并进行光刻和刻蚀,露出p电极层10窗口,为进一步沉积p电极层10窗口上方的p电极连接金属层做准备;同时在芯片边沿露出n电极pad,以供外电路连接;如图7、图8所示。
步骤八、在p电极层10上用磁控溅射沉积Cu/Au(铜/金)等金属组成的p电极的连接金属电极层11,该层厚90-150μm,并进行光刻和刻蚀,形成每一列阵列单元都连接在一起的p电极连接金属和n电极外接pad;以供外电路连接;如图9、图10所示
步骤九、除去光刻胶,采用PECVD生长SiOx或SiNx钝化层,即形成80nm厚的SiO2钝化层12;并进行光刻和刻蚀,露出p电极pad和n电极pad,以供外电路连接;
步骤十、用化学机械抛光(CMP)设备将蓝宝石衬底2减薄,即将蓝宝石衬底由350μm~450μm减薄至90μm~150μm,并用光刻加离子刻蚀的方法对蓝宝石的出光面进行有组织的粗糙化处理,形成粗糙化表面1。
按照上述步骤和工艺制造的LED芯片,得到较好质量的倒装阵列式LED芯片。 The LED chips manufactured according to the above steps and process can obtain better quality flip-chip array LED chips.
基于上述实例结构及其制造方法,调整有源层结构(如多个材料的量子阱形成复合量子阱)及材料组分(调整掺杂浓度改变发光波长)可以发多种颜色光,本发明也涵盖了这一LED芯片范畴。 Based on the above example structure and its manufacturing method, adjusting the active layer structure (such as quantum wells of multiple materials to form a composite quantum well) and material components (adjusting the doping concentration to change the emission wavelength) can emit multiple colors of light, and the present invention also Covers this category of LED chips.
本发明以上所述内容,仅给出了实现本发明的一种实施方案,但此方案和方案中的芯片结构以及工艺条件可以改变,这种改变不脱离本发明的思想及范围,对本领域人员自己明了的所有变更应当包含在所述的权利要求范围内。 The above content of the present invention has only provided a kind of implementation scheme that realizes the present invention, but the chip structure and process condition in this scheme and scheme can be changed, and this change does not depart from the idea and scope of the present invention, and is helpful to those skilled in the art. All changes that are self-evident should be included within the scope of the described claims.
Claims (14)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2011102147401A CN102244087A (en) | 2011-07-29 | 2011-07-29 | Controllable power flip array light emitting diode (LED) chip and manufacturing method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2011102147401A CN102244087A (en) | 2011-07-29 | 2011-07-29 | Controllable power flip array light emitting diode (LED) chip and manufacturing method thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN102244087A true CN102244087A (en) | 2011-11-16 |
Family
ID=44962044
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2011102147401A Pending CN102244087A (en) | 2011-07-29 | 2011-07-29 | Controllable power flip array light emitting diode (LED) chip and manufacturing method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102244087A (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102544266A (en) * | 2012-02-01 | 2012-07-04 | 俞国宏 | Manufacture method of high-lighting-effect white-light light-emitting diode (LED) inversion chip |
| CN102709437A (en) * | 2012-06-11 | 2012-10-03 | 华灿光电股份有限公司 | Miniature light-emitting diode chip with high-reflectivity layers |
| CN103280505A (en) * | 2013-03-08 | 2013-09-04 | 友达光电股份有限公司 | Manufacturing method of light emitting diode array and manufacturing method of light emitting diode display device |
| CN105140352A (en) * | 2015-07-29 | 2015-12-09 | 中山大学 | GaN-based light emitting diode (LED) array micro display device and fabrication method thereof |
| WO2016183845A1 (en) * | 2015-05-21 | 2016-11-24 | Goertek.Inc | Transferring method, manufacturing method, device and electronic apparatus of micro-led |
| CN108831979A (en) * | 2018-08-23 | 2018-11-16 | 中山市华南理工大学现代产业技术研究院 | Broadband and high-efficiency two-dimensional photonic crystal LED flip-chip array chip and its preparation method |
| US10319697B2 (en) | 2015-05-21 | 2019-06-11 | Goertek, Inc. | Transferring method, manufacturing method, device and electronic apparatus of micro-LED |
| CN113270438A (en) * | 2021-04-30 | 2021-08-17 | 广东德力光电有限公司 | Manufacturing process of flip micro LED dot matrix |
| CN113270439A (en) * | 2021-04-30 | 2021-08-17 | 广东德力光电有限公司 | Controllable micro LED lattice manufacturing method |
| CN114759061A (en) * | 2022-05-06 | 2022-07-15 | 江西兆驰半导体有限公司 | Micro LED chip array integrated structure |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7148520B2 (en) * | 2001-10-26 | 2006-12-12 | Lg Electronics Inc. | Diode having vertical structure and method of manufacturing the same |
| CN1881624A (en) * | 2005-06-15 | 2006-12-20 | 上海蓝光科技有限公司 | Light-emitting diode and its preparation method |
| US20080012114A1 (en) * | 2004-12-21 | 2008-01-17 | Eles Semiconductor Equipment S.P.A. | System for contacting electronic devices and production processes thereof |
| CN101431092A (en) * | 2007-11-09 | 2009-05-13 | 三垦电气株式会社 | Semiconductor light-emitting device, and method of fabrication |
-
2011
- 2011-07-29 CN CN2011102147401A patent/CN102244087A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7148520B2 (en) * | 2001-10-26 | 2006-12-12 | Lg Electronics Inc. | Diode having vertical structure and method of manufacturing the same |
| US20080012114A1 (en) * | 2004-12-21 | 2008-01-17 | Eles Semiconductor Equipment S.P.A. | System for contacting electronic devices and production processes thereof |
| CN1881624A (en) * | 2005-06-15 | 2006-12-20 | 上海蓝光科技有限公司 | Light-emitting diode and its preparation method |
| CN101431092A (en) * | 2007-11-09 | 2009-05-13 | 三垦电气株式会社 | Semiconductor light-emitting device, and method of fabrication |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102544266B (en) * | 2012-02-01 | 2012-12-05 | 俞国宏 | Manufacture method of high-lighting-effect white-light light-emitting diode (LED) inversion chip |
| CN102544266A (en) * | 2012-02-01 | 2012-07-04 | 俞国宏 | Manufacture method of high-lighting-effect white-light light-emitting diode (LED) inversion chip |
| CN102709437A (en) * | 2012-06-11 | 2012-10-03 | 华灿光电股份有限公司 | Miniature light-emitting diode chip with high-reflectivity layers |
| CN103280505A (en) * | 2013-03-08 | 2013-09-04 | 友达光电股份有限公司 | Manufacturing method of light emitting diode array and manufacturing method of light emitting diode display device |
| CN107889540B (en) * | 2015-05-21 | 2019-06-21 | 歌尔股份有限公司 | Transfer method, manufacturing method, apparatus and electronic device of micro-light emitting diode |
| WO2016183845A1 (en) * | 2015-05-21 | 2016-11-24 | Goertek.Inc | Transferring method, manufacturing method, device and electronic apparatus of micro-led |
| CN107889540A (en) * | 2015-05-21 | 2018-04-06 | 歌尔股份有限公司 | Transfer method, manufacturing method, device and electronic equipment of micro light emitting diode |
| US10193012B2 (en) | 2015-05-21 | 2019-01-29 | Goertek, Inc. | Transferring method, manufacturing method, device and electronic apparatus of micro-LED |
| US10319697B2 (en) | 2015-05-21 | 2019-06-11 | Goertek, Inc. | Transferring method, manufacturing method, device and electronic apparatus of micro-LED |
| CN105140352A (en) * | 2015-07-29 | 2015-12-09 | 中山大学 | GaN-based light emitting diode (LED) array micro display device and fabrication method thereof |
| CN105140352B (en) * | 2015-07-29 | 2018-04-20 | 中山大学 | GaN base LED array micro-display device and preparation method thereof |
| CN108831979A (en) * | 2018-08-23 | 2018-11-16 | 中山市华南理工大学现代产业技术研究院 | Broadband and high-efficiency two-dimensional photonic crystal LED flip-chip array chip and its preparation method |
| CN108831979B (en) * | 2018-08-23 | 2024-02-06 | 中山市华南理工大学现代产业技术研究院 | Broadband and efficient two-dimensional photonic crystal LED flip-chip array chip and preparation method thereof |
| CN113270438A (en) * | 2021-04-30 | 2021-08-17 | 广东德力光电有限公司 | Manufacturing process of flip micro LED dot matrix |
| CN113270439A (en) * | 2021-04-30 | 2021-08-17 | 广东德力光电有限公司 | Controllable micro LED lattice manufacturing method |
| CN113270439B (en) * | 2021-04-30 | 2024-02-20 | 广东德力光电有限公司 | A controllable micro-LED dot matrix production method |
| CN113270438B (en) * | 2021-04-30 | 2024-02-20 | 广东德力光电有限公司 | Manufacturing process of flip micro LED lattice |
| CN114759061A (en) * | 2022-05-06 | 2022-07-15 | 江西兆驰半导体有限公司 | Micro LED chip array integrated structure |
| CN114759061B (en) * | 2022-05-06 | 2025-07-25 | 江西兆驰半导体有限公司 | Micro LED chip array integrated structure |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102270633B (en) | High-power flip-chip array LED chip and manufacturing method thereof | |
| Chen et al. | Monolithic red/green/blue micro-LEDs with HBR and DBR structures | |
| CN102244087A (en) | Controllable power flip array light emitting diode (LED) chip and manufacturing method thereof | |
| JP5554792B2 (en) | Light emitting device and manufacturing method thereof | |
| CN102456799B (en) | Semiconductor light emitting device and manufacturing method thereof | |
| CN101807650B (en) | Gallium nitride-based high-brightness light-emitting diode and its manufacture craft with distributed Bragg reflecting layer | |
| CN100386899C (en) | High-efficiency high-brightness total reflection light-emitting diode and its manufacturing method | |
| US20160141458A1 (en) | Light-emitting device | |
| JP2005532673A (en) | Vertical structure diode and manufacturing method thereof | |
| TWI462334B (en) | Light-emitting diode structure and manufacturing method thereof | |
| CN108922950A (en) | A kind of high brightness flip LED chips and preparation method thereof | |
| CN102097553A (en) | Sapphire substrate-based single chip white light emitting diode | |
| CN105870287B (en) | GaN base white light LEDs and preparation method | |
| Huang et al. | Improved light extraction of nitride-based flip-chip light-emitting diodes via sapphire shaping and texturing | |
| CN101582418A (en) | Tricolor single-chip white light-emitting diode regulated through electric injection | |
| WO2021119906A1 (en) | Light-emitting diode | |
| CN115458645B (en) | Manufacturing method of crosstalk prevention structure of integrated color Micro LED | |
| CN102394240A (en) | TFT (thin film transistor)-LED (light-emitting diode) color array display base plate and manufacturing method thereof | |
| CN101887938B (en) | LED chip and manufacturing method thereof | |
| CN102024898A (en) | LED (light-emitting diode) and manufacturing method thereof | |
| CN112510130A (en) | Design and manufacturing method of blue light Mico-LED chip with flip-chip structure | |
| CN102427080B (en) | A kind of Multiple Quantum Well TFT-LED array display base plate and manufacture method thereof | |
| CN101859859B (en) | High-brightness GaN-based light-emitting diode and preparation method thereof | |
| US9178110B2 (en) | Light-emitting device and method for manufacturing same | |
| CN101203966A (en) | Light emitting device and manufacturing method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C12 | Rejection of a patent application after its publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20111116 |