[go: up one dir, main page]

CN102244087A - Controllable power flip array light emitting diode (LED) chip and manufacturing method thereof - Google Patents

Controllable power flip array light emitting diode (LED) chip and manufacturing method thereof Download PDF

Info

Publication number
CN102244087A
CN102244087A CN2011102147401A CN201110214740A CN102244087A CN 102244087 A CN102244087 A CN 102244087A CN 2011102147401 A CN2011102147401 A CN 2011102147401A CN 201110214740 A CN201110214740 A CN 201110214740A CN 102244087 A CN102244087 A CN 102244087A
Authority
CN
China
Prior art keywords
layer
electrode
chip
controllable power
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011102147401A
Other languages
Chinese (zh)
Inventor
邓朝勇
杨利忠
李绪诚
张荣芬
许铖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou University
Original Assignee
Guizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou University filed Critical Guizhou University
Priority to CN2011102147401A priority Critical patent/CN102244087A/en
Publication of CN102244087A publication Critical patent/CN102244087A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

本发明公开了一种可控功率倒装阵列LED芯片及其制造方法。可控功率倒装阵列LED芯片为:阵列LED芯片由多个阵列单元构成阵列,其中所有的阵列单元每一行的p电极层(10)连接,每一列的n电极层(5)连接;所述阵列单元是蓝宝石衬底(2)上方依次覆盖n型缓冲层(3)、n型半导体层(6)、有源层(7)、p型半导体层(8)、透明电极层(9)、p电极层(10);所有的n电极层(5)和p电极层(10)由绝缘层(4)包覆;其中每一行的p电极层(10)通过p电极层(10)窗口上方的p电极连接金属层(11)连接;在p电极连接金属层(11)表面还有钝化层(12)。

Figure 201110214740

The invention discloses a controllable power flip-chip array LED chip and a manufacturing method thereof. The controllable power flip-chip array LED chip is as follows: the array LED chip is composed of a plurality of array units, wherein all the array units are connected to the p-electrode layer (10) of each row, and the n-electrode layer (5) of each column is connected; The array unit is covered with n-type buffer layer (3), n-type semiconductor layer (6), active layer (7), p-type semiconductor layer (8), transparent electrode layer (9), p-electrode layer (10); all n-electrode layers (5) and p-electrode layers (10) are covered by an insulating layer (4); wherein the p-electrode layer (10) of each row passes above the window of the p-electrode layer (10) The p-electrode is connected to the metal layer (11); there is also a passivation layer (12) on the surface of the p-electrode connection metal layer (11).

Figure 201110214740

Description

可控功率倒装阵列LED芯片及其制造方法Controllable power flip-chip array LED chip and manufacturing method thereof

技术领域 technical field

本发明涉及一种倒装阵列LED芯片及其制造方法,尤其涉及一种包括多量子阱有源区的GaN基可控倒装阵列蓝光LED芯片结构及其制造方法。 The invention relates to a flip-chip array LED chip and a manufacturing method thereof, in particular to a GaN-based controllable flip-chip array blue LED chip structure including multiple quantum well active regions and a manufacturing method thereof.

背景技术 Background technique

白光LED具有亮度高、节能环保等优点,已经成为最有潜力的照明光源之一。白光LED的能耗仅为白炽灯的1/8,荧光灯的1/2,其寿命可长达10万小时。这对普通家庭明来说可谓“一劳永逸”,同时还可实现无汞化,回收容易等优点,对环境保护和节约能源具有重要意义。 White LED has the advantages of high brightness, energy saving and environmental protection, and has become one of the most potential lighting sources. The energy consumption of white light LED is only 1/8 of that of incandescent lamp and 1/2 of that of fluorescent lamp, and its life span can be as long as 100,000 hours. This can be described as "once and for all" for ordinary households. At the same time, it can also achieve mercury-free and easy recycling, which is of great significance to environmental protection and energy conservation.

目前制备大功率白光LED的方法主要是在蓝色或近紫外LED芯片上涂覆黄色荧光粉,通过混色得到白光。这种通过蓝光LED的得到白光的方法,构造简单、成本低廉、技术成熟度高,因此运用广泛。大多数5W以上的大功率白光LED是由大功率的蓝光LED芯片制成的。所以制造大功率蓝光LED芯片是制作大功率白光LED的基础。 The current method of preparing high-power white LEDs is mainly to coat yellow phosphor powder on blue or near-ultraviolet LED chips, and obtain white light through color mixing. This method of obtaining white light through blue LEDs has a simple structure, low cost, and high technical maturity, so it is widely used. Most high-power white LEDs above 5W are made of high-power blue LED chips. Therefore, manufacturing high-power blue LED chips is the basis for making high-power white LEDs.

目前,调节发光亮度的LED主要是通过以下几种方式:第一、单个LED芯片主要是控通过LED芯片的电流来调节发光亮度;第二、多个LED芯片的组合通过控制多个LED芯片的开关来调节发光亮度。但是由于每个LED芯片可能不是同一批次生产的电学性能和光学性能会有不同,通过以上的控制方法连接设计和电源驱动,组合芯片发光的协调性、一致性较差。 At present, the LEDs that adjust the luminance are mainly in the following ways: first, a single LED chip mainly controls the current through the LED chip to adjust the luminance; second, the combination of multiple LED chips controls the current of multiple LED chips. Switch to adjust the brightness of the light. However, because each LED chip may not be produced in the same batch, the electrical and optical properties will be different. Through the above control method to connect the design and power drive, the coordination and consistency of the light emission of the combined chip is poor.

目前单色显示屏在户外广告和小型移动数码设备上都有应用,所以发展LED单色显示屏也有很广的应用前景。 At present, monochrome display screens are used in outdoor advertisements and small mobile digital devices, so the development of LED monochrome display screens also has a broad application prospect.

发明内容 Contents of the invention

本发明要解决的技术问题是,提供一种可控功率倒装阵列LED芯片,该芯片能有效调节大功率蓝光LED倒装芯片的发光亮度,还可作为单色显示屏使用,通过控制行列的扫描达到显示字符的目的;此外本发明还提供一种该芯片的制造方法,以克服现有技术存在的LED芯片发光亮度调节困难等不足。 The technical problem to be solved by the present invention is to provide a controllable power flip-chip array LED chip, which can effectively adjust the luminous brightness of the high-power blue LED flip-chip, and can also be used as a monochrome display screen. Scanning achieves the purpose of displaying characters; in addition, the present invention also provides a manufacturing method of the chip, so as to overcome the shortcomings of the prior art such as difficulty in adjusting the luminance of the LED chip.

本发明的可控功率倒装阵列LED芯片结构为:阵列LED芯片由多个阵列单元构成阵列,其中所有的阵列单元每一行的p电极层连接到一起,每一列的n电极层连接到一起,这样可以单独控制每个阵列单元发光;所述阵列单元是蓝宝石衬底上方依次覆盖n型缓冲层、n型半导体层、有源层、p型半导体层、透明电极层、p电极层;每一列阵列单元的n电极层连接在一起;并且全部n电极层和p电极层由绝缘层包覆;在绝缘层包覆的p电极层窗口上方的p电极连接金属层使每一行的p电极连接到一起。蓝宝石衬底的出光面为粗糙化表面,以提高出光率;在p电极连接金属层表面还有钝化层。芯片的p电极层采用光反射率较高的银或铝等金属来增加光反射,并且完全覆盖每一个阵列单元的透明电极层。 The controllable power flip-chip array LED chip structure of the present invention is as follows: the array LED chip is composed of a plurality of array units, wherein the p-electrode layers of each row of all array units are connected together, and the n-electrode layers of each column are connected together. In this way, each array unit can be individually controlled to emit light; the array unit is sequentially covered with an n-type buffer layer, an n-type semiconductor layer, an active layer, a p-type semiconductor layer, a transparent electrode layer, and a p-electrode layer above the sapphire substrate; each column The n-electrode layers of the array unit are connected together; and all n-electrode layers and p-electrode layers are covered by an insulating layer; the p-electrode connection metal layer above the p-electrode layer window covered by the insulating layer makes the p-electrodes of each row connected to Together. The light-emitting surface of the sapphire substrate is a roughened surface to increase the light-emitting rate; there is also a passivation layer on the surface of the p-electrode connection metal layer. The p-electrode layer of the chip uses metals such as silver or aluminum with high light reflectivity to increase light reflection, and completely covers the transparent electrode layer of each array unit.

其中,LED芯片出光面为蓝宝石衬底,采用蓝宝石(Al2O3);并对出光面进行有组织的表面粗糙化处理形成粗糙化表面,以减少出光表面对光的反射,提高出光率,改善LED的发光效率。 Among them, the light-emitting surface of the LED chip is a sapphire substrate, and sapphire (Al 2 O 3 ) is used; and the surface of the light-emitting surface is roughened to form a rough surface, so as to reduce the reflection of light on the light-emitting surface and improve the light-extracting rate. Improve the luminous efficiency of LED.

所述的n型半导体层和p型半导体层是由GaN、或GaAs、或AlGaN半导体材料构成;其中n型半导体层掺入的杂质是Si等材料,p型半导体层掺入的杂质是Mg等材料;有源层采用多层的InGaN层和GaN层,形成多量子阱层。 The n-type semiconductor layer and the p-type semiconductor layer are composed of GaN, or GaAs, or AlGaN semiconductor materials; wherein the impurities doped in the n-type semiconductor layer are materials such as Si, and the impurities doped in the p-type semiconductor layer are Mg, etc. Material; the active layer adopts multi-layer InGaN layer and GaN layer to form multiple quantum well layers.

本发明的LED芯片由彼此相互独立的阵列单元构成阵列。但是每一列阵列单元n电极层是连接在一起的;n电极层的材料材料包括Cu、Ti、Al、Ni或Au金属,采用其中的单一金属或组合金属;p电极层采用对可见光反射率很高的金属Ag或Al,并且完全覆盖每一个阵列单元的透明电极层; The LED chip of the present invention is composed of mutually independent array units forming an array. However, the n-electrode layers of each row of array units are connected together; the material of the n-electrode layer includes Cu, Ti, Al, Ni or Au metal, and a single metal or a combination of metals is used; High metal Ag or Al, and completely cover the transparent electrode layer of each array unit;

在绝缘层包覆的p电极层窗口上方的p电极连接金属层使每一行的p电极连接到一起;p电极连接金属层的材料包括Cu、Ti、Al、Ni或Au金属,采用其中的单一金属或组合金属。 The p-electrode connection metal layer above the p-electrode layer window covered by the insulating layer connects the p-electrodes of each row together; the material of the p-electrode connection metal layer includes Cu, Ti, Al, Ni or Au metal, and a single one of them is used metal or combination of metals.

绝缘层和钝化层是由SiOx、SiNx或SiOxNy等绝缘材料构成;透明电极层采用金属薄膜Ni/Au或氧化铟锡(ITO)制作。 The insulating layer and passivation layer are made of insulating materials such as SiO x , SiN x or SiO x N y ; the transparent electrode layer is made of metal thin film Ni/Au or indium tin oxide (ITO).

本发明的可控功率倒装阵列LED芯片的制造方法,包括以下制造步骤: The manufacturing method of the controllable power flip-chip array LED chip of the present invention comprises the following manufacturing steps:

步骤一,在蓝宝石衬底生长低掺杂的n型缓冲层,再生长高掺杂的n型半导体层; Step 1, growing a low-doped n-type buffer layer on the sapphire substrate, and then growing a highly-doped n-type semiconductor layer;

步骤二,生长有源层,生长为单层的InGaN,或者交替生长为多个周期的InGaN层和GaN层,形成多量子阱层; Step 2, growing the active layer as a single layer of InGaN, or alternately growing multiple periods of InGaN layers and GaN layers to form multiple quantum well layers;

步骤三,在步骤二的基础上生长p型半导体层; Step 3, growing a p-type semiconductor layer on the basis of step 2;

步骤四,沉积透明电极层和p电极层; Step 4, depositing a transparent electrode layer and a p-electrode layer;

步骤五,在步骤四的基础上进行光刻和刻蚀,露出n型缓冲层和芯片的隔离槽,为n电极的沉积做准备; Step 5, on the basis of step 4, perform photolithography and etching to expose the n-type buffer layer and the isolation groove of the chip, and prepare for the deposition of the n-electrode;

步骤六,沉积金属层,并进行光刻和刻蚀,形成每一行都连接到一起的n电极层; Step 6, depositing a metal layer, and performing photolithography and etching to form n-electrode layers that are connected together in each row;

步骤七,沉积绝缘层,并进行光刻和刻蚀,露出p电极层窗口,为沉积p电极层窗口上方的p电极连接金属层做准备;同时在芯片边沿露出n电极pad,以供外电路连接; Step 7, deposit an insulating layer, and perform photolithography and etching to expose the p-electrode layer window to prepare for the deposition of the p-electrode connection metal layer above the p-electrode layer window; at the same time, expose the n-electrode pad on the edge of the chip for external circuits connect;

步骤八,沉积Cu、Ti、Al、Ni或Au金属,采用其中的单一金属或组合金属,并进行光刻和刻蚀,形成每一列阵列单元都连接在一起的p电极连接金属层和n电极外接pad,以供外电路连接; Step 8, depositing Cu, Ti, Al, Ni or Au metal, adopting a single metal or a combination of metals, and performing photolithography and etching to form a p-electrode connection metal layer and n-electrode that are connected together in each row of array units External pad for external circuit connection;

步骤九,沉积钝化层,并进行光刻和刻蚀,露出p电极pad和n电极pad,以供外电路连接; Step 9, depositing a passivation layer, and performing photolithography and etching to expose the p-electrode pad and n-electrode pad for external circuit connection;

步骤十,对蓝宝石衬底进行减薄,并对蓝宝石的出光面进行有组织的粗糙化处理,形成粗糙化表面。 In step ten, the sapphire substrate is thinned, and the light-emitting surface of the sapphire is roughened in an organized manner to form a roughened surface.

步骤一到步骤三采用MOCVD(金属有机化合物汽相沉积)工艺制备,或者采用MBE(分子束外延)方法制备。 Steps 1 to 3 are prepared by MOCVD (metal organic compound vapor deposition) process, or by MBE (molecular beam epitaxy) method.

步骤五采用湿刻工艺,采用ICP(增强等离子刻蚀)方法、或者RIE(反应离子刻蚀)方法,或者采用该两种方法的组合。 Step five adopts a wet etching process, adopts an ICP (enhanced plasma etching) method, or a RIE (reactive ion etching) method, or adopts a combination of the two methods.

步骤四、步骤六和步骤七采用磁控溅射或电子束蒸发的方法生长透明电极层和p电极层步骤七采用PECVD(等离子增强化学汽相沉积)工艺生长绝缘层和钝化层;步骤十采用CMP(化学机械抛光)工艺设备将蓝宝石衬底减薄。 Step 4, Step 6 and Step 7 use magnetron sputtering or electron beam evaporation to grow the transparent electrode layer and p-electrode layer. Step 7 uses PECVD (Plasma Enhanced Chemical Vapor Deposition) process to grow the insulating layer and passivation layer; Step 10 The sapphire substrate is thinned using CMP (Chemical Mechanical Polishing) process equipment.

步骤一、在蓝宝石衬底上采用MOCVD方法先生长低掺杂Si的n型GaN缓冲层,再生长高掺杂Si的n型GaN接触层;即用TMGa(三甲基镓)、NH3(氨)和硅源SiH4(硅烷)在570℃下生长2μm厚的低掺杂Si的n-GaN缓冲层;再生长20nm的高掺杂Si的n型GaN接触层; Step 1: Grow a low-doped Si n-type GaN buffer layer on the sapphire substrate by MOCVD method, and then grow a highly-doped Si n-type GaN contact layer; that is, use TMGa (trimethylgallium), NH 3 ( Ammonia) and silicon source SiH 4 (silane) at 570 ° C to grow a 2 μm thick low-doped Si n-GaN buffer layer; and then grow a 20 nm high-doped Si n-type GaN contact layer;

步骤二、采用MOCVD方法生长有源层。交替生长多个周期的InGaN层和GaN层,形成多量子阱—MQW层。具体过程为: Step 2, growing the active layer by MOCVD method. Multiple periods of InGaN layers and GaN layers are alternately grown to form multiple quantum wells—MQW layers. The specific process is:

1、通入铟源TMIn(三甲基铟)生长3nm厚的InGaN; 1. Introduce the indium source TMIn (trimethylindium) to grow 3nm thick InGaN;

2、去掉铟源,通入硅烷(SiH4)生长20nm厚的n-GaN;  2. Remove the indium source and feed silane (SiH 4 ) to grow n-GaN with a thickness of 20nm;

3、重复过程1、2多次,就生长出InGaN/GaN多量子阱; 3. Repeat process 1 and 2 multiple times to grow InGaN/GaN multiple quantum wells;

步骤三、在MQW有源层顶部,采用MOCVD方法生长p型半导体层,即通入TMGa(三甲基镓)、NH3(氨)和Cp2Mg(二茂镁),生长100nm厚的p型半导体层; Step 3: On the top of the MQW active layer, grow a p-type semiconductor layer by MOCVD, that is, inject TMGa (trimethylgallium), NH 3 (ammonia) and Cp 2 Mg (dimagnesium), and grow a 100nm-thick p-type semiconductor layer. Type semiconductor layer;

步骤四、经过清洗之后用磁控溅射的方法在p型半导体层上沉积一层ITO透明导电薄膜作为透明电极层,在透明电极层上溅镀沉积Ag或Al金属形成p电极层;透明电极层的厚度为500nm,p电极层的厚度为120nm; Step 4, after cleaning, deposit a layer of ITO transparent conductive film on the p-type semiconductor layer by magnetron sputtering as a transparent electrode layer, and deposit Ag or Al metal on the transparent electrode layer to form a p-electrode layer; transparent electrode The thickness of the layer is 500nm, and the thickness of the p-electrode layer is 120nm;

步骤五、在步骤四的基础上涂光刻胶,掩膜,光刻,进行刻蚀,露出n型缓冲层和芯片的隔离槽,为n电极的沉积做好准备; Step 5. On the basis of step 4, apply photoresist, mask, photolithography, and etch to expose the n-type buffer layer and the isolation groove of the chip, and prepare for the deposition of the n-electrode;

步骤六、用磁控溅射沉积Cu/Au(铜/金),沉积金属的厚度为120nm;形成n电极层,并进行光刻和刻蚀,形成每一行都连接到一起的n电极; Step 6. Deposit Cu/Au (copper/gold) by magnetron sputtering, and the thickness of the deposited metal is 120nm; form an n-electrode layer, and perform photolithography and etching to form n-electrodes that are connected together in each row;

步骤七、采用PECVD(等离子增强化学汽相沉积)生长SiO2绝缘层,并进行光刻和刻蚀,露出p电极窗口,为进一步沉积p电极层窗口上方的p电极连接金属层做准备;同时在芯片边沿露出n电极pad,以供外电路连接; Step 7, using PECVD (Plasma Enhanced Chemical Vapor Deposition) to grow the SiO 2 insulating layer, and performing photolithography and etching to expose the p-electrode window and prepare for the further deposition of the p-electrode connection metal layer above the p-electrode layer window; at the same time The n-electrode pad is exposed on the edge of the chip for external circuit connection;

步骤八、用磁控溅射沉积Cu/Au(铜/金)等金属组成的p电极的连接金属电极层,该层厚90-150μm,并进行光刻和刻蚀,形成每一列阵列单元都连接在一起的p电极连接金属和n电极外接pad;以供外电路连接; Step 8. Use magnetron sputtering to deposit Cu/Au (copper/gold) and other metals to connect the metal electrode layer of the p-electrode. The thickness of this layer is 90-150 μm, and perform photolithography and etching to form each row of array units. The p electrodes connected together are connected to the metal and the n electrodes are connected to an external pad; for external circuit connection;

步骤九、除去光刻胶,采用PECVD生长SiOx或SiNx钝化层,即形成80nm厚的SiO2钝化层;并进行光刻和刻蚀,露出p电极pad和n电极pad,以供外电路连接; Step 9, remove the photoresist, and grow SiOx or SiNx passivation layer by PECVD, that is, form an 80nm thick SiO2 passivation layer; and perform photolithography and etching to expose the p-electrode pad and n-electrode pad for external circuits connect;

步骤十、用化学机械抛光(CMP)设备将蓝宝石减薄,即将蓝宝石衬底由350μm~450μm减薄至90μm~150μm,并用光刻加离子刻蚀的方法对蓝宝石的出光面进行有组织的粗糙化处理,形成粗糙化表面。 Step 10. Use chemical mechanical polishing (CMP) equipment to thin the sapphire, that is, thin the sapphire substrate from 350 μm to 450 μm to 90 μm to 150 μm, and use photolithography plus ion etching to roughen the light-emitting surface of the sapphire in an organized manner treated to form a roughened surface.

基于上述步骤的制造方法可以得到一种可控功率的倒装阵列式LED芯片,该芯片与传统LED芯片相比,既可以增大发光面积,又能够通过控制芯片的阵列的行和列的通电与否控制阵列单元的发光,从而可以控制芯片的功率,达到控制芯片发光亮度的目的;也可以通过外部的驱动扫描电路控制芯片行和列通电与否,用来显示字符。 A controllable power flip-chip array LED chip can be obtained based on the manufacturing method of the above steps. Compared with the traditional LED chip, the chip can not only increase the light-emitting area, but also can control the power supply of the rows and columns of the chip array. Whether to control the light emission of the array unit, so that the power of the chip can be controlled to achieve the purpose of controlling the brightness of the chip; it can also be used to display characters by controlling whether the row and column of the chip are energized or not through the external driving scanning circuit.

调整有源层结构(如多个材料的量子阱形成复合量子阱)及材料组分(调整掺杂浓度改变发光波长)可以发多种颜色光,本发明也涵盖了这一LED芯片范畴。 Adjusting the structure of the active layer (such as quantum wells of multiple materials to form a composite quantum well) and material components (adjusting the doping concentration to change the emission wavelength) can emit light of various colors, and the present invention also covers this category of LED chips.

本发明以上所述内容,仅给出了实现本发明的一种实施方案,但此方案和方案中的芯片结构以及工艺条件可以改变的,这种改变不脱离本发明的思想及范围,对本领域人员自己明了的所有变更应当包含在所述权利要求范围内。 The above-mentioned content of the present invention has only provided a kind of implementation scheme that realizes the present invention, but the chip structure and process condition in this scheme and scheme can be changed, and this change does not depart from the idea and scope of the present invention, and is of great importance to those skilled in the art. All changes apparent to the person himself should be included within the scope of the claims.

附图说明 Description of drawings

图1为本发明的工艺流程图;  Fig. 1 is a process flow diagram of the present invention;

图2为蓝宝石Al2O3(0001)面衬底上外延生长n-GaN层、n+-GaN层、有源层、p-GaN层、透明电极和Ag/Al金属电极后的截面的图; Figure 2 is a diagram of the cross-section after epitaxial growth of n-GaN layer, n + -GaN layer, active layer, p-GaN layer, transparent electrode and Ag/Al metal electrode on the sapphire Al 2 O 3 (0001) surface substrate ;

图3 n区电极光刻和刻蚀后得到的平面图; Figure 3 The plan view obtained after photolithography and etching of the n-region electrode;

图4为图3的A-A截面图; Fig. 4 is the A-A sectional view of Fig. 3;

图5为n区电极刻蚀后得到的平面图; Fig. 5 is the plane view obtained after n-region electrode etching;

图6为图5的A-A截面图 Fig. 6 is the A-A sectional view of Fig. 5

图7为SiOx或SiNx绝缘层刻蚀后的平面图形; Fig. 7 is the plane figure after SiOx or SiNx insulation layer etching;

图8为图7的A-A截面图; Fig. 8 is the A-A sectional view of Fig. 7;

图9为p电极区上方沉积、光刻和刻蚀后p电极连接金属线的平面图; 9 is a plan view of the p-electrode connection metal line after deposition, photolithography and etching above the p-electrode region;

图10为图8的A-A截面图; Fig. 10 is the A-A sectional view of Fig. 8;

图11 SiOx或SiNx钝化层刻蚀后的平面图形 Figure 11 Plane pattern after etching of SiOx or SiNx passivation layer

图12为对蓝宝石出光面进行有组织的粗糙化处理后的得到的截面图形; Fig. 12 is a cross-sectional figure obtained after organized roughening treatment on the light-emitting surface of sapphire;

附图标记: Reference signs:

1—蓝宝石衬底的粗糙化表面; 1—roughened surface of sapphire substrate;

2—蓝宝石衬底; 2—Sapphire substrate;

3—n型缓冲层,即n-GaN缓冲层; 3—n-type buffer layer, namely n-GaN buffer layer;

4—(SiOx或SiNx)绝缘层; 4—(SiO x or SiNx) insulating layer;

5—n电极层; 5—n electrode layer;

6—n半导体层,即n+-GaN层; 6—n semiconductor layer, that is, n + -GaN layer;

7—有源层; 7—active layer;

8—p半导体层,即p-GaN层; 8—p semiconductor layer, that is, p-GaN layer;

9—透明电极层; 9—transparent electrode layer;

10—p电极层; 10—p electrode layer;

11—p电极连接金属层; 11—the p electrode is connected to the metal layer;

12—(SiOx或SiNx)钝化层。 12—( SiOx or SiNx) passivation layer.

具体实施方式 Detailed ways

本发明的实施例:在此,以“从蓝宝石表面发光的GaN基可控功率蓝光倒装阵列式LED芯片”为例来说明本发明的芯片结构及其制造方法。 Embodiments of the present invention: Here, the chip structure and its manufacturing method of the present invention will be described by taking the "GaN-based power-controllable blue flip-chip LED chip that emits light from the surface of sapphire" as an example.

本发明的芯片结构为:阵列LED芯片是由多个阵列单元构成阵列,其中所有的阵列单元每一行的p电极层10连接到一起,每一列的n电极层5连接到一起,这样可以单独控制每个阵列单元发光;所述阵列单元是蓝宝石衬底2上方依次覆盖n型缓冲层3、n型半导体层6、有源层7、p型半导体层8、透明电极层9、p电极层10;每一列阵列单元的n电极层5连接在一起;并且全部n电极层5和p电极层10由绝缘层4包覆;在绝缘层4包覆的p电极层10窗口上方的p电极连接金属层11使每一行的p电极层10连接到一起。蓝宝石衬底2的出光面为粗糙化表面1,以提高出光率;在p电极连接金属层11表面还有钝化层12。芯片的p电极层采用光反射率较高的银或铝等金属来增加光反射。 The chip structure of the present invention is: an array LED chip is formed by a plurality of array units, in which the p-electrode layers 10 of each row of all array units are connected together, and the n-electrode layers 5 of each column are connected together, so that they can be individually controlled Each array unit emits light; the array unit is sequentially covered with an n-type buffer layer 3, an n-type semiconductor layer 6, an active layer 7, a p-type semiconductor layer 8, a transparent electrode layer 9, and a p-electrode layer 10 above the sapphire substrate 2. ; The n-electrode layer 5 of each column array unit is connected together; And all n-electrode layers 5 and p-electrode layers 10 are covered by insulating layer 4; Layer 11 connects the p-electrode layers 10 of each row together. The light-exiting surface of the sapphire substrate 2 is a roughened surface 1 to increase the light-extraction rate; there is a passivation layer 12 on the surface of the p-electrode connecting metal layer 11 . The p-electrode layer of the chip uses metals such as silver or aluminum with high light reflectivity to increase light reflection.

本发明中镓源为TMGa(三甲基镓),氮源为NH3(氨),铟源为TMIn(三甲基铟),硅源为SiH4(硅烷),镁源为Cp2Mg(二茂镁)。 In the present invention, the gallium source is TMGa (trimethylgallium), the nitrogen source is NH 3 (ammonia), the indium source is TMIn (trimethyl indium), the silicon source is SiH 4 (silane), and the magnesium source is Cp 2 Mg ( Dichloromagnesium).

以下是该实施例可控功率蓝光倒装阵列式LED芯片结构的详细制造方法,其流程如图1所示意,它包括以下步骤: The following is the detailed manufacturing method of the controllable power blue light flip-chip array LED chip structure of this embodiment, and its flow is shown in Figure 1, which includes the following steps:

步骤一、在蓝宝石衬底2上采用MOCVD方法先生长低掺杂Si的n型GaN缓冲层3,再生长高掺杂Si的n型GaN半导体层6;即用TMGa(三甲基镓)、NH3(氨)和硅源SiH4(硅烷)在570℃下生长2μm厚的低掺杂Si的n-GaN缓冲层3;再生长20nm的高掺杂Si的n型GaN半导体层6;如图2所示意。 Step 1: On the sapphire substrate 2, grow a low-doped Si n-type GaN buffer layer 3 by MOCVD method, and then grow a highly-doped Si n-type GaN semiconductor layer 6; that is, use TMGa (trimethylgallium), NH 3 (ammonia) and silicon source SiH 4 (silane) grow a 2 μm thick low-doped Si n-GaN buffer layer 3 at 570°C; then grow a 20nm highly doped Si n-type GaN semiconductor layer 6; as Figure 2 schematically.

步骤二、采用MOCVD方法生长有源层7。交替生长多个周期的InGaN层和GaN层,形成多量子阱—MQW层。具体过程为:第一,通入铟源TMIn(三甲基铟)生长3nm厚的InGaN;第二,去掉铟源,通入硅烷(SiH4)生长20nm厚的n-GaN; 第三,重复过程第一、第二多次,就生长出InGaN/GaN多量子阱;如图2所示意 Step 2, growing the active layer 7 by MOCVD method. Multiple periods of InGaN layers and GaN layers are alternately grown to form multiple quantum wells—MQW layers. The specific process is as follows: first, feed indium source TMIn (trimethyl indium) to grow 3nm thick InGaN; second, remove the indium source, feed silane (SiH 4 ) to grow 20nm thick n-GaN; third, repeat In the first and second times of the process, InGaN/GaN multiple quantum wells are grown; as shown in Figure 2

步骤三、在MQW有源层7顶部,采用MOCVD方法生长p型半导体层8,即通入TMGa(三甲基镓)、NH3(氨)和Cp2Mg(二茂镁),生长100nm厚的p型半导体层8; Step 3: On the top of the MQW active layer 7, grow a p-type semiconductor layer 8 by MOCVD method, that is, inject TMGa (trimethylgallium), NH 3 (ammonia) and Cp 2 Mg (dimagnesium) to a thickness of 100nm The p-type semiconductor layer 8;

步骤四、经过清洗之后用磁控溅射的方法在p型半导体层8上沉积一层ITO透明导电薄膜作为透明电极层9,在透明电极层上溅镀沉积Ag或Al金属形成p电极层10;透明电极层9的厚度为500nm,p电极层10的厚度为120nm; Step 4, after cleaning, deposit a layer of ITO transparent conductive film on the p-type semiconductor layer 8 by magnetron sputtering as the transparent electrode layer 9, and deposit Ag or Al metal on the transparent electrode layer to form the p-electrode layer 10 ; The thickness of the transparent electrode layer 9 is 500nm, and the thickness of the p-electrode layer 10 is 120nm;

步骤五、在步骤四的基础上涂光刻胶,掩膜,光刻,进行刻蚀,露出n型缓冲层和芯片的隔离槽,为n电极层5的沉积做准备;如图3、图4所示; Step 5, on the basis of step 4, apply photoresist, mask, photolithography, etch, expose the n-type buffer layer and the isolation groove of the chip, and prepare for the deposition of n electrode layer 5; as shown in Figure 3, Fig. 4 shown;

步骤六、用磁控溅射沉积Cu/Au(铜/金),沉积金属的厚度为120nm;形成n电极层5,并进行光刻和刻蚀,形成每一行都连接到一起的n电极层5;如图5和图6所示。 Step 6. Deposit Cu/Au (copper/gold) by magnetron sputtering, the thickness of the deposited metal is 120nm; form the n-electrode layer 5, and perform photolithography and etching to form n-electrode layers that are connected together in each row 5; as shown in Figure 5 and Figure 6.

步骤七、采用PECVD(等离子增强化学汽相沉积)生长SiO2绝缘层4,并进行光刻和刻蚀,露出p电极层10窗口,为进一步沉积p电极层10窗口上方的p电极连接金属层做准备;同时在芯片边沿露出n电极pad,以供外电路连接;如图7、图8所示。 Step 7. Use PECVD (Plasma Enhanced Chemical Vapor Deposition) to grow the SiO 2 insulating layer 4, and perform photolithography and etching to expose the p-electrode layer 10 window, and to further deposit the p-electrode connection metal layer above the p-electrode layer 10 window Make preparations; at the same time, expose the n-electrode pad on the edge of the chip for external circuit connection; as shown in Figure 7 and Figure 8.

步骤八、在p电极层10上用磁控溅射沉积Cu/Au(铜/金)等金属组成的p电极的连接金属电极层11,该层厚90-150μm,并进行光刻和刻蚀,形成每一列阵列单元都连接在一起的p电极连接金属和n电极外接pad;以供外电路连接;如图9、图10所示 Step 8. On the p-electrode layer 10, use magnetron sputtering to deposit Cu/Au (copper/gold) and other metals to connect the metal electrode layer 11 of the p-electrode, the thickness of which is 90-150 μm, and perform photolithography and etching , to form the p-electrode connection metal and the n-electrode external pad that are connected together in each row of array units; for external circuit connection; as shown in Figure 9 and Figure 10

步骤九、除去光刻胶,采用PECVD生长SiOx或SiNx钝化层,即形成80nm厚的SiO2钝化层12;并进行光刻和刻蚀,露出p电极pad和n电极pad,以供外电路连接; Step 9, remove the photoresist, grow SiOx or SiNx passivation layer by PECVD, namely form SiO 2 passivation layer 12 with a thickness of 80nm; and perform photolithography and etching to expose the p electrode pad and n electrode pad for external circuit connection;

步骤十、用化学机械抛光(CMP)设备将蓝宝石衬底2减薄,即将蓝宝石衬底由350μm~450μm减薄至90μm~150μm,并用光刻加离子刻蚀的方法对蓝宝石的出光面进行有组织的粗糙化处理,形成粗糙化表面1。 Step 10. Thinning the sapphire substrate 2 with chemical mechanical polishing (CMP) equipment, that is, thinning the sapphire substrate from 350 μm to 450 μm to 90 μm to 150 μm, and using photolithography plus ion etching to effectively polish the light emitting surface of the sapphire. Roughening of the tissue to form a roughened surface 1 .

按照上述步骤和工艺制造的LED芯片,得到较好质量的倒装阵列式LED芯片。 The LED chips manufactured according to the above steps and process can obtain better quality flip-chip array LED chips.

基于上述实例结构及其制造方法,调整有源层结构(如多个材料的量子阱形成复合量子阱)及材料组分(调整掺杂浓度改变发光波长)可以发多种颜色光,本发明也涵盖了这一LED芯片范畴。 Based on the above example structure and its manufacturing method, adjusting the active layer structure (such as quantum wells of multiple materials to form a composite quantum well) and material components (adjusting the doping concentration to change the emission wavelength) can emit multiple colors of light, and the present invention also Covers this category of LED chips.

本发明以上所述内容,仅给出了实现本发明的一种实施方案,但此方案和方案中的芯片结构以及工艺条件可以改变,这种改变不脱离本发明的思想及范围,对本领域人员自己明了的所有变更应当包含在所述的权利要求范围内。 The above content of the present invention has only provided a kind of implementation scheme that realizes the present invention, but the chip structure and process condition in this scheme and scheme can be changed, and this change does not depart from the idea and scope of the present invention, and is helpful to those skilled in the art. All changes that are self-evident should be included within the scope of the described claims.

Claims (14)

1.一种可控功率倒装阵列LED芯片,其特征在于:阵列LED芯片由多个阵列单元构成阵列,其中所有的阵列单元每一行的p电极层(10)连接,每一列的n电极层(5)连接;所述每个阵列单元的结构是蓝宝石衬底(2)上方依次覆盖n型缓冲层(3)、n型半导体层(6)、有源层(7)、p型半导体层(8)、透明电极层(9)、p电极层(10);所有的n电极层(5)和p电极层(10)由绝缘层(4)包覆;其中每一行的p电极层(10)通过p电极层(10)窗口上方的p电极连接金属层(11)连接;在p电极连接金属层(11)表面还有钝化层(12)。 1. A controllable power flip-chip array LED chip, characterized in that: the array LED chip is composed of a plurality of array units to form an array, wherein the p-electrode layer (10) of each row of all array units is connected, and the n-electrode layer of each column (5) Connection; the structure of each array unit is that the sapphire substrate (2) is sequentially covered with an n-type buffer layer (3), an n-type semiconductor layer (6), an active layer (7), and a p-type semiconductor layer (8), transparent electrode layer (9), p-electrode layer (10); all n-electrode layers (5) and p-electrode layers (10) are covered by an insulating layer (4); wherein each row of p-electrode layers ( 10) Connecting through the p-electrode connection metal layer (11) above the window of the p-electrode layer (10); there is also a passivation layer (12) on the surface of the p-electrode connection metal layer (11). 2.根据权利要求1所述的可控功率倒装阵列LED芯片,其特征在于:粗糙化表面(1)为蓝宝石衬底(2)通过表面粗糙化处理形成的LED芯片出光面。 2. The controllable power flip-chip array LED chip according to claim 1, characterized in that the roughened surface (1) is the light-emitting surface of the LED chip formed by roughening the sapphire substrate (2). 3.根据权利要求1所述的可控功率倒装阵列LED芯片,其特征在于:n型缓冲层(3)、n型半导体层(6)和p型半导体层(8)由GaN、GaAs或AlGaN半导体材料构成;其中n型层掺入的杂质是Si材料,p型层掺入的杂质是Mg材料。 3. The controllable power flip chip array LED chip according to claim 1, characterized in that: n-type buffer layer (3), n-type semiconductor layer (6) and p-type semiconductor layer (8) are made of GaN, GaAs or It is composed of AlGaN semiconductor material; the impurity doped in the n-type layer is Si material, and the impurity doped in the p-type layer is Mg material. 4.根根据权利要求1所述的可控功率倒装阵列LED芯片,其特征在于:有源层(7)是单层的InGaN,或者是多层的InGaN层和GaN层,形成多量子阱层。 4. The controllable power flip-chip array LED chip according to claim 1, characterized in that: the active layer (7) is a single layer of InGaN, or a multi-layer InGaN layer and GaN layer, forming multiple quantum wells layer. 5.根据权利要求1、2或3所述的可控功率倒装阵列LED芯片,其特征在于:LED芯片由彼此相互独立的阵列单元构成阵列,每一列阵列单元的n电极层(5)连接;n电极层(5)的材料包括Cu、Ti、Al、Ni或Au金属,采用其中的单一金属或组合金属。 5. The controllable power flip-chip array LED chip according to claim 1, 2 or 3, characterized in that: the LED chip is composed of mutually independent array units to form an array, and the n electrode layer (5) of each array unit is connected to ; The material of the n-electrode layer (5) includes Cu, Ti, Al, Ni or Au metal, and a single metal or a combination of metals is used. 6.根据权利要求1、2或3所述的可控功率倒装阵列LED芯片,其特征在于: p电极层(10)采用Ag或Al,并且完全覆盖每一个阵列单元的透明电极层(9)。 6. The controllable power flip-chip array LED chip according to claim 1, 2 or 3, characterized in that: the p-electrode layer (10) is made of Ag or Al, and completely covers the transparent electrode layer (9) of each array unit ). 7.根据权利要求1、2或3所述的可控功率倒装阵列LED芯片,其特征在于: p电极连接金属层(11)的材料包括Cu、Ti、Al、Ni或Au金属,采用其中的单一金属或组合金属。 7. The controllable power flip-chip array LED chip according to claim 1, 2 or 3, characterized in that: the material of the p-electrode connection metal layer (11) includes Cu, Ti, Al, Ni or Au metal, among which a single metal or a combination of metals. 8.根据权利要求1所述的可控功率倒装阵列LED芯片,其特征在于:绝缘层(4)和钝化层(9)由SiOx、SiNx或SiOxNy绝缘材料构成。 8. The controllable power flip chip array LED chip according to claim 1, characterized in that the insulating layer (4) and the passivation layer (9) are made of SiOx , SiNx or SiOxNy insulating material. 9.根据权利要求1所述的可控功率倒装阵列LED芯片,其特征在于:透明电极层(9)采用金属薄膜Ni/Au或氧化铟锡制作。 9. The controllable power flip chip array LED chip according to claim 1, characterized in that: the transparent electrode layer (9) is made of metal film Ni/Au or indium tin oxide. 10.一种可控功率倒装阵列LED芯片的制造方法,其特征在于,它包括以下制造步骤: 10. A method for manufacturing controllable power flip-chip array LED chips, characterized in that it comprises the following manufacturing steps: 步骤一,在蓝宝石衬底生长低掺杂的n型缓冲层(3),再生长高掺杂的n型半导体层(6); Step 1, growing a low-doped n-type buffer layer (3) on a sapphire substrate, and then growing a highly-doped n-type semiconductor layer (6); 步骤二,生长有源层(7),生长为单层的InGaN,或者交替生长为多个周期的InGaN层和GaN层,形成多量子阱层; Step 2, growing the active layer (7), growing into a single layer of InGaN, or alternately growing into multiple periods of InGaN layers and GaN layers to form multiple quantum well layers; 步骤三,在步骤二的基础上生长p型半导体层(8); Step three, growing a p-type semiconductor layer (8) on the basis of step two; 步骤四,沉积透明电极层(9)和p电极层(10); Step 4, depositing a transparent electrode layer (9) and a p-electrode layer (10); 步骤五,在步骤四的基础上进行光刻和刻蚀,露出n型缓冲层(3)和芯片的隔离槽,为n电极的沉积做准备; Step 5, performing photolithography and etching on the basis of step 4, exposing the n-type buffer layer (3) and the isolation groove of the chip, and preparing for the deposition of the n-electrode; 步骤六,沉积金属层,并进行光刻和刻蚀,形成每一行都连接到一起的n电极层(5); Step 6, depositing a metal layer, and performing photolithography and etching to form an n-electrode layer (5) where each row is connected together; 步骤七,沉积绝缘层(4),并进行光刻和刻蚀,露出p电极层(10)窗口,为沉积p电极层(10)窗口上方的p电极连接金属层(11)做准备;同时在芯片边沿露出n电极pad; Step 7, depositing an insulating layer (4), performing photolithography and etching, exposing the window of the p-electrode layer (10), and preparing for depositing the p-electrode connection metal layer (11) above the window of the p-electrode layer (10); at the same time The n-electrode pad is exposed on the edge of the chip; 步骤八,沉积金属包括Cu、Ti、Al、Ni或Au金属,采用其中的单一金属或组合金属,并进行光刻和刻蚀,形成每一列阵列单元都连接在一起的p电极连接金属层(11)和n电极外接pad; Step 8, depositing metals including Cu, Ti, Al, Ni or Au metals, using a single metal or a combination of metals, and performing photolithography and etching to form a p-electrode connection metal layer ( 11) and n electrode external pad; 步骤九,沉积钝化层(12),并进行光刻和刻蚀,露出p电极pad和n电极pad; Step 9, depositing a passivation layer (12), and performing photolithography and etching to expose the p-electrode pad and n-electrode pad; 步骤十,对蓝宝石衬底(2)进行减薄,并对蓝宝石的出光面进行有组织的粗糙化处理,形成粗糙化表面(1)。 Step ten, thinning the sapphire substrate (2), and performing organized roughening treatment on the light-emitting surface of the sapphire to form a roughened surface (1). 11.根据权利要求10所述的可控功率倒装阵列LED芯片的制造方法,其特征在于:上述制造步骤中,步骤一到步骤三可以交换沉积顺序,即先在衬底上生长p型半导体层(8)和有源层(7),最后在有源层顶部生长n型半导体层(6)。 11. The method for manufacturing controllable power flip-chip array LED chips according to claim 10, characterized in that: in the above-mentioned manufacturing steps, the deposition sequence can be exchanged from step 1 to step 3, that is, the p-type semiconductor is first grown on the substrate layer (8) and active layer (7), and finally an n-type semiconductor layer (6) is grown on top of the active layer. 12.根据权利要求10或11所述的可控功率倒装阵列LED芯片的制造方法,其特征在于:步骤一到步骤三采用“MOCVD”金属有机化合物汽相沉积工艺制备,或者采用“MBE”分子束外延方法制备。 12. The method for manufacturing controllable power flip-chip array LED chips according to claim 10 or 11, characterized in that: Steps 1 to 3 are prepared by "MOCVD" metal organic compound vapor phase deposition process, or "MBE" prepared by molecular beam epitaxy. 13.根据权利要求9所述的可控功率倒装阵列LED芯片的制造方法,其特征在于:步骤五采用湿刻工艺,采用“ICP”增强等离子刻蚀方法或者“RIE”反应离子刻蚀方法,或者采用该两种方法的组合。 13. The method for manufacturing controllable power flip-chip array LED chips according to claim 9, characterized in that: Step 5 adopts wet etching process, adopts "ICP" enhanced plasma etching method or "RIE" reactive ion etching method , or a combination of the two methods. 14.根据权利要求9所述的可控功率倒装阵列LED芯片的制造方法,其特征在于:步骤四、步骤六和步骤七采用磁控溅射或电子束蒸发的方法生长透明电极层(9)、p电极层(10)、n电极(5)和p电极连接金属层(11);步骤七采用“PECVD”等离子增强化学汽相沉积生长绝缘层(4)和钝化层(12);步骤十采用化学机械抛光“CMP”设备将蓝宝石衬底(2)减薄。 14. The method for manufacturing controllable power flip-chip array LED chips according to claim 9, characterized in that: step 4, step 6 and step 7 use magnetron sputtering or electron beam evaporation to grow the transparent electrode layer (9 ), p-electrode layer (10), n-electrode (5) and p-electrode connection metal layer (11); Step 7 adopts "PECVD" plasma enhanced chemical vapor deposition to grow insulating layer (4) and passivation layer (12); In step ten, the sapphire substrate (2) is thinned by chemical mechanical polishing "CMP" equipment.
CN2011102147401A 2011-07-29 2011-07-29 Controllable power flip array light emitting diode (LED) chip and manufacturing method thereof Pending CN102244087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011102147401A CN102244087A (en) 2011-07-29 2011-07-29 Controllable power flip array light emitting diode (LED) chip and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011102147401A CN102244087A (en) 2011-07-29 2011-07-29 Controllable power flip array light emitting diode (LED) chip and manufacturing method thereof

Publications (1)

Publication Number Publication Date
CN102244087A true CN102244087A (en) 2011-11-16

Family

ID=44962044

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011102147401A Pending CN102244087A (en) 2011-07-29 2011-07-29 Controllable power flip array light emitting diode (LED) chip and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN102244087A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544266A (en) * 2012-02-01 2012-07-04 俞国宏 Manufacture method of high-lighting-effect white-light light-emitting diode (LED) inversion chip
CN102709437A (en) * 2012-06-11 2012-10-03 华灿光电股份有限公司 Miniature light-emitting diode chip with high-reflectivity layers
CN103280505A (en) * 2013-03-08 2013-09-04 友达光电股份有限公司 Manufacturing method of light emitting diode array and manufacturing method of light emitting diode display device
CN105140352A (en) * 2015-07-29 2015-12-09 中山大学 GaN-based light emitting diode (LED) array micro display device and fabrication method thereof
WO2016183845A1 (en) * 2015-05-21 2016-11-24 Goertek.Inc Transferring method, manufacturing method, device and electronic apparatus of micro-led
CN108831979A (en) * 2018-08-23 2018-11-16 中山市华南理工大学现代产业技术研究院 Broadband and high-efficiency two-dimensional photonic crystal LED flip-chip array chip and its preparation method
US10319697B2 (en) 2015-05-21 2019-06-11 Goertek, Inc. Transferring method, manufacturing method, device and electronic apparatus of micro-LED
CN113270438A (en) * 2021-04-30 2021-08-17 广东德力光电有限公司 Manufacturing process of flip micro LED dot matrix
CN113270439A (en) * 2021-04-30 2021-08-17 广东德力光电有限公司 Controllable micro LED lattice manufacturing method
CN114759061A (en) * 2022-05-06 2022-07-15 江西兆驰半导体有限公司 Micro LED chip array integrated structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148520B2 (en) * 2001-10-26 2006-12-12 Lg Electronics Inc. Diode having vertical structure and method of manufacturing the same
CN1881624A (en) * 2005-06-15 2006-12-20 上海蓝光科技有限公司 Light-emitting diode and its preparation method
US20080012114A1 (en) * 2004-12-21 2008-01-17 Eles Semiconductor Equipment S.P.A. System for contacting electronic devices and production processes thereof
CN101431092A (en) * 2007-11-09 2009-05-13 三垦电气株式会社 Semiconductor light-emitting device, and method of fabrication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148520B2 (en) * 2001-10-26 2006-12-12 Lg Electronics Inc. Diode having vertical structure and method of manufacturing the same
US20080012114A1 (en) * 2004-12-21 2008-01-17 Eles Semiconductor Equipment S.P.A. System for contacting electronic devices and production processes thereof
CN1881624A (en) * 2005-06-15 2006-12-20 上海蓝光科技有限公司 Light-emitting diode and its preparation method
CN101431092A (en) * 2007-11-09 2009-05-13 三垦电气株式会社 Semiconductor light-emitting device, and method of fabrication

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544266B (en) * 2012-02-01 2012-12-05 俞国宏 Manufacture method of high-lighting-effect white-light light-emitting diode (LED) inversion chip
CN102544266A (en) * 2012-02-01 2012-07-04 俞国宏 Manufacture method of high-lighting-effect white-light light-emitting diode (LED) inversion chip
CN102709437A (en) * 2012-06-11 2012-10-03 华灿光电股份有限公司 Miniature light-emitting diode chip with high-reflectivity layers
CN103280505A (en) * 2013-03-08 2013-09-04 友达光电股份有限公司 Manufacturing method of light emitting diode array and manufacturing method of light emitting diode display device
CN107889540B (en) * 2015-05-21 2019-06-21 歌尔股份有限公司 Transfer method, manufacturing method, apparatus and electronic device of micro-light emitting diode
WO2016183845A1 (en) * 2015-05-21 2016-11-24 Goertek.Inc Transferring method, manufacturing method, device and electronic apparatus of micro-led
CN107889540A (en) * 2015-05-21 2018-04-06 歌尔股份有限公司 Transfer method, manufacturing method, device and electronic equipment of micro light emitting diode
US10193012B2 (en) 2015-05-21 2019-01-29 Goertek, Inc. Transferring method, manufacturing method, device and electronic apparatus of micro-LED
US10319697B2 (en) 2015-05-21 2019-06-11 Goertek, Inc. Transferring method, manufacturing method, device and electronic apparatus of micro-LED
CN105140352A (en) * 2015-07-29 2015-12-09 中山大学 GaN-based light emitting diode (LED) array micro display device and fabrication method thereof
CN105140352B (en) * 2015-07-29 2018-04-20 中山大学 GaN base LED array micro-display device and preparation method thereof
CN108831979A (en) * 2018-08-23 2018-11-16 中山市华南理工大学现代产业技术研究院 Broadband and high-efficiency two-dimensional photonic crystal LED flip-chip array chip and its preparation method
CN108831979B (en) * 2018-08-23 2024-02-06 中山市华南理工大学现代产业技术研究院 Broadband and efficient two-dimensional photonic crystal LED flip-chip array chip and preparation method thereof
CN113270438A (en) * 2021-04-30 2021-08-17 广东德力光电有限公司 Manufacturing process of flip micro LED dot matrix
CN113270439A (en) * 2021-04-30 2021-08-17 广东德力光电有限公司 Controllable micro LED lattice manufacturing method
CN113270439B (en) * 2021-04-30 2024-02-20 广东德力光电有限公司 A controllable micro-LED dot matrix production method
CN113270438B (en) * 2021-04-30 2024-02-20 广东德力光电有限公司 Manufacturing process of flip micro LED lattice
CN114759061A (en) * 2022-05-06 2022-07-15 江西兆驰半导体有限公司 Micro LED chip array integrated structure
CN114759061B (en) * 2022-05-06 2025-07-25 江西兆驰半导体有限公司 Micro LED chip array integrated structure

Similar Documents

Publication Publication Date Title
CN102270633B (en) High-power flip-chip array LED chip and manufacturing method thereof
Chen et al. Monolithic red/green/blue micro-LEDs with HBR and DBR structures
CN102244087A (en) Controllable power flip array light emitting diode (LED) chip and manufacturing method thereof
JP5554792B2 (en) Light emitting device and manufacturing method thereof
CN102456799B (en) Semiconductor light emitting device and manufacturing method thereof
CN101807650B (en) Gallium nitride-based high-brightness light-emitting diode and its manufacture craft with distributed Bragg reflecting layer
CN100386899C (en) High-efficiency high-brightness total reflection light-emitting diode and its manufacturing method
US20160141458A1 (en) Light-emitting device
JP2005532673A (en) Vertical structure diode and manufacturing method thereof
TWI462334B (en) Light-emitting diode structure and manufacturing method thereof
CN108922950A (en) A kind of high brightness flip LED chips and preparation method thereof
CN102097553A (en) Sapphire substrate-based single chip white light emitting diode
CN105870287B (en) GaN base white light LEDs and preparation method
Huang et al. Improved light extraction of nitride-based flip-chip light-emitting diodes via sapphire shaping and texturing
CN101582418A (en) Tricolor single-chip white light-emitting diode regulated through electric injection
WO2021119906A1 (en) Light-emitting diode
CN115458645B (en) Manufacturing method of crosstalk prevention structure of integrated color Micro LED
CN102394240A (en) TFT (thin film transistor)-LED (light-emitting diode) color array display base plate and manufacturing method thereof
CN101887938B (en) LED chip and manufacturing method thereof
CN102024898A (en) LED (light-emitting diode) and manufacturing method thereof
CN112510130A (en) Design and manufacturing method of blue light Mico-LED chip with flip-chip structure
CN102427080B (en) A kind of Multiple Quantum Well TFT-LED array display base plate and manufacture method thereof
CN101859859B (en) High-brightness GaN-based light-emitting diode and preparation method thereof
US9178110B2 (en) Light-emitting device and method for manufacturing same
CN101203966A (en) Light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20111116