CN102320752B - Patterning method for material - Google Patents
Patterning method for material Download PDFInfo
- Publication number
- CN102320752B CN102320752B CN 201110154332 CN201110154332A CN102320752B CN 102320752 B CN102320752 B CN 102320752B CN 201110154332 CN201110154332 CN 201110154332 CN 201110154332 A CN201110154332 A CN 201110154332A CN 102320752 B CN102320752 B CN 102320752B
- Authority
- CN
- China
- Prior art keywords
- film
- macromolecule membrane
- thickness
- electrode
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Thin Film Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
本发明公开了一种材料的图案化方法。该方法,包括如下步骤:1)在基底上制备一层高分子薄膜;2)在所得高分子薄膜表面利用喷墨打印的方法涂布所述高分子薄膜的良溶剂,得到图案化后的高分子薄膜;3)在所得图案化后的高分子薄膜上及暴露出的所述基底表面依次制备一层目标材料的薄膜和一层聚苯乙烯薄膜后,于水中浸泡后剥掉所述聚苯乙烯薄膜和除图案外所有的目标材料的薄膜和所述高分子薄膜,完成所述材料的图案化。该石墨烯电极的沟道长度最小可达到2微米,在二氧化硅基底上得到的该石墨烯电极可以直接应用于有机场效应晶体管,作为有效的载流子注入电极,而不需要其他的转移或者后处理手段。The invention discloses a material patterning method. The method comprises the following steps: 1) preparing a layer of polymer film on the substrate; 2) coating the good solvent of the polymer film on the surface of the obtained polymer film by inkjet printing to obtain a patterned high polymer film. Molecular film; 3) After preparing a layer of target material film and a layer of polystyrene film sequentially on the obtained patterned polymer film and the exposed surface of the substrate, peel off the polystyrene film after soaking in water. Vinyl film and films of all target materials except patterns and the polymer film to complete the patterning of the materials. The minimum channel length of the graphene electrode can reach 2 microns, and the graphene electrode obtained on the silicon dioxide substrate can be directly applied to an organic field effect transistor as an effective carrier injection electrode without other transfer or post-processing means.
Description
技术领域 technical field
本发明涉及材料的图案化方法,特别是涉及一种利用喷墨打印方法对材料进行图案化的方法。The invention relates to a method for patterning materials, in particular to a method for patterning materials by using an inkjet printing method.
背景技术 Background technique
化学还原石墨烯因为具有良好的机械性能和高的电导率,被认为是一种优异的导电材料,可以替代目前广泛使用的氧化铟锡(ITO),应用于大面积,透明,柔性的场合。另外,由于石墨烯材料的能级排列与很多有机半导体材料可以相互匹配,因而有望作为出色的电极注入材料,应用于许多有机电子学器件中。实际上,自从石墨烯发现以来,人们已经在很多有机电子学器件中展示了它良好的技术前景(J.Wu,H.A.Becerril,Z.Bao,Z.Liu,Y.Chen,P.Peumans,Appl.Phys.Lett.2008,92,263302;G.Eda,Y.-Y.Lin,C.Mattevi,H.Yamaguchi,H.-A.Chen,I.S.Chen,C.-W.Chen,M.Chhowalla,Adv.Mater.2010,22,505;J.Wu,M.Agrawal,H.c.A.Becerril,Z.Bao,Z.Liu,Y.Chen,P.Peumans,ACS Nano 2009,4,43)。在这些已经报道的应用中,石墨烯的图案化主要是通过光刻和电子束光刻来实现的。Chemically reduced graphene is considered to be an excellent conductive material because of its good mechanical properties and high electrical conductivity. It can replace the widely used indium tin oxide (ITO) in large-area, transparent, and flexible applications. In addition, because the energy level arrangement of graphene materials can match with many organic semiconductor materials, it is expected to be used as an excellent electrode injection material for many organic electronic devices. In fact, since the discovery of graphene, people have demonstrated its good technical prospects in many organic electronic devices (J.Wu, H.A.Becerril, Z.Bao, Z.Liu, Y.Chen, P.Peumans, Appl .Phys.Lett.2008, 92, 263302; G.Eda, Y.-Y.Lin, C. Mattevi, H.Yamaguchi, H.-A.Chen, I.S.Chen, C.-W.Chen, M.Chhowalla , Adv. Mater. 2010, 22, 505; J. Wu, M. Agrawal, H.c. A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, ACS Nano 2009, 4, 43). In these reported applications, the patterning of graphene is mainly achieved by photolithography and electron beam lithography.
剥离工艺(lift-off technique)在光刻中应用很广泛,然而在喷墨打印中,还没有报道过。由于石墨烯的颗粒粒度比较大,直接打印很难实现。如果采用剥离工艺进行制备石墨烯电极,就涉及到掩模(mask)层的图案化问题。如何利用喷墨打印技术制备图案化的掩模层,就成为了石墨烯剥离工艺中的一个技术难点。一旦获得好的方法,使得价廉的化学还原石墨烯材料方便易行的用喷墨打印技术进行制备,会极大地有利于这种材料在电子学中的应用。The lift-off technique is widely used in lithography, but it has not been reported in inkjet printing. Due to the relatively large particle size of graphene, direct printing is difficult to achieve. If the graphene electrode is prepared by the lift-off process, it involves the patterning of the mask (mask) layer. How to prepare a patterned mask layer using inkjet printing technology has become a technical difficulty in the graphene exfoliation process. Once a good method is obtained, it will greatly benefit the application of this material in electronics if the cheap chemically reduced graphene material can be easily prepared by inkjet printing technology.
发明内容 Contents of the invention
本发明的目的是提供一种材料的图案化方法。The purpose of the present invention is to provide a material patterning method.
本发明提供的材料的图案化方法,包括如下步骤:The patterning method of the material provided by the invention comprises the following steps:
1)在基底上制备一层高分子薄膜;1) preparing a layer of polymer film on the substrate;
2)在所述步骤1)所得高分子薄膜表面利用喷墨打印的方法涂布所述高分子薄膜的良溶剂,得到图案化后的高分子薄膜;2) In the step 1) the surface of the obtained polymer film is coated with a good solvent for the polymer film by inkjet printing to obtain a patterned polymer film;
3)在所述步骤2)所得图案化后的高分子薄膜上及暴露出的所述基底表面依次制备一层目标材料的薄膜和一层聚苯乙烯薄膜后,于水中浸泡后剥掉所述聚苯乙烯薄膜和除图案外所有的目标材料的薄膜和所述高分子薄膜,完成所述材料的图案化。3) After preparing a layer of target material film and a layer of polystyrene film on the patterned polymer film obtained in step 2) and the exposed surface of the substrate, soak in water and peel off the Polystyrene film and films of all target materials except patterns and the polymer film to complete the patterning of the materials.
所述步骤1)中,所述基底为石英片、硅片或表面带有二氧化硅层的硅片,其中,所述带有二氧化硅层的硅片中,所述二氧化硅层的厚度为100-500纳米,优选300纳米;构成所述高分子薄膜的材料为聚丙烯腈、聚苯乙烯或聚甲基丙烯酸甲酯,优选重均分子量为10000-1000000的聚丙烯腈,更优选重均分子量为200000的聚丙烯腈;所述高分子薄膜的厚度为1-100纳米,优选2纳米;所述制备高分子薄膜的方法为旋涂法;所述旋涂法中,转速为2000-5000转/分钟,优选3500转/分钟;In the step 1), the substrate is a quartz wafer, a silicon wafer or a silicon wafer with a silicon dioxide layer on the surface, wherein, in the silicon wafer with a silicon dioxide layer, the silicon dioxide layer The thickness is 100-500 nanometers, preferably 300 nanometers; the material constituting the polymer film is polyacrylonitrile, polystyrene or polymethyl methacrylate, preferably polyacrylonitrile with a weight average molecular weight of 10000-1000000, more preferably Polyacrylonitrile with a weight average molecular weight of 200,000; the thickness of the polymer film is 1-100 nanometers, preferably 2 nanometers; the method for preparing the polymer film is a spin coating method; in the spin coating method, the rotating speed is 2000 -5000 rpm, preferably 3500 rpm;
所述步骤2)喷墨打印的方法中,喷墨打印机的喷头为20微米至100微米,优选30微米;相邻液滴间距为120-70微米,优选87微米;操作温度为30-100℃,优选80℃;所述高分子薄膜的良溶剂选自N,N-二甲基甲酰胺、甲苯和氯苯中的至少一种,优选N,N-二甲基甲酰胺;该步骤中,由于喷墨打印步骤所用溶剂为步骤1)所得高分子薄膜的良溶剂,当进行喷墨打印时,该溶剂能将高分子薄膜按照预设图案溶解掉,曝露出基底(如二氧化硅)的表面,从而形成图案化的高分子薄膜。在实际操作中,可根据所需图案确定所需液滴的个数,如要制作电极对,则所得液滴的个数为2。In the method of step 2) inkjet printing, the nozzle of the inkjet printer is 20 microns to 100 microns, preferably 30 microns; the distance between adjacent droplets is 120-70 microns, preferably 87 microns; the operating temperature is 30-100 °C , preferably 80°C; the good solvent of the polymer film is selected from at least one of N,N-dimethylformamide, toluene and chlorobenzene, preferably N,N-dimethylformamide; in this step, Because the solvent used in the inkjet printing step is a good solvent for the polymer film obtained in step 1), when inkjet printing is performed, the solvent can dissolve the polymer film according to a preset pattern, exposing the surface of the substrate (such as silicon dioxide). surface, forming a patterned polymer film. In actual operation, the number of liquid droplets required can be determined according to the desired pattern, and if an electrode pair is to be fabricated, the number of liquid droplets obtained is 2.
所述步骤3)中,所述目标材料薄膜的厚度为1-10纳米,优选5纳米;所述聚苯乙烯薄膜的厚度为700纳米至10微米,优选1微米;所述聚苯乙烯的重均分子量为10000-1000000,优选200000;所述目标材料为能与步骤1)所述基底结合的材料,优选氧化石墨烯或铬;所述于水中浸泡步骤中,时间为30分钟至3小时,优选90分钟;制备所述目标材料的薄膜和聚苯乙烯薄膜的方法均为旋涂法或热蒸镀法;所述旋涂法中,转速为3000-8000转/分钟,优选4000转/分钟;所述热蒸镀方法中,真空度小于4×10-4帕斯卡,蒸镀速度为1埃/秒。该剥离步骤中,由于目标材料与基底之间具有具有牢固的结合能力,因而,在剥离时,步骤2)图案化暴露出的基底上覆盖的目标材料薄膜没有被剥离,其余区域的薄膜均被剥掉,从而完成了目标材料的图案化。In the step 3), the thickness of the target material film is 1-10 nanometers, preferably 5 nanometers; the thickness of the polystyrene film is 700 nanometers to 10 microns, preferably 1 micron; the weight of the polystyrene The average molecular weight is 10,000-1,000,000, preferably 200,000; the target material is a material that can be combined with the substrate in step 1), preferably graphene oxide or chromium; in the step of soaking in water, the time is 30 minutes to 3 hours, Preferably 90 minutes; the methods for preparing the film of the target material and the polystyrene film are spin coating or thermal evaporation; in the spin coating, the rotating speed is 3000-8000 rpm, preferably 4000 rpm ; In the thermal evaporation method, the vacuum degree is less than 4×10 -4 Pascal, and the evaporation rate is 1 angstrom/second. In this peeling step, since the target material and the substrate have a strong bonding ability, during peeling, the target material film covered on the substrate exposed by the patterning in step 2) is not peeled off, and the films in the remaining areas are all covered. peeled off, thus completing the patterning of the target material.
所述材料的图案化方法,还包括如下步骤:在所述步骤1)之前,将所述基底分别用洗涤剂、水、去离子水、乙醇和丙酮清洗干净。The method for patterning the material further includes the following step: before the step 1), cleaning the substrate with detergent, water, deionized water, ethanol and acetone respectively.
按照上述方法制备得到的电极,尤其是由石墨烯或铬构成的电极,以及该方法在制备电极中的应用,也属于本发明的保护范围。该电极的厚度为1-10纳米,沟道长度为1-100微米。Electrodes prepared according to the above method, especially electrodes made of graphene or chromium, and the application of the method in preparing electrodes also belong to the protection scope of the present invention. The thickness of the electrode is 1-10 nanometers, and the channel length is 1-100 micrometers.
由于氧化石墨烯在作为电极应用时,需要通过还原的方法恢复其导电性转变为石墨烯,故上述由石墨烯构成的电极,是将按照上述方法图案化后的氧化石墨烯,经退火或加入还原剂的方法将氧化石墨烯还原而得,该方法为常规方法,各种常用的还原氧化石墨烯的方法均适用,如所述退火方法中,真空度可为8×10-4-1×10-5Pa,优选小于4×10-4Pa,温度可为400-500℃,优选450℃,时间可为1-4小时,优选2小时。Since graphene oxide is used as an electrode, it needs to restore its conductivity to graphene through reduction, so the above-mentioned electrode composed of graphene is the graphene oxide patterned according to the above method, annealed or added The method of reducing agent will reduce graphene oxide to obtain it. This method is a conventional method, and various commonly used methods for reducing graphene oxide are applicable. For example, in the annealing method, the degree of vacuum can be 8×10 -4 -1× 10 -5 Pa, preferably less than 4×10 -4 Pa, the temperature can be 400-500°C, preferably 450°C, and the time can be 1-4 hours, preferably 2 hours.
另外,上述本发明提供的电极在制备有机场效应晶体管中的应用,也属于本发明的保护范围。In addition, the application of the electrodes provided by the present invention in the preparation of organic field effect transistors also belongs to the protection scope of the present invention.
本发明首次公开了一种利用喷墨打印技术和剥离方法在二氧化硅基底上直接制备氧化石墨烯的方法;本发明所制备的石墨烯电极厚度可控,电极的沟道长度可控,沟道长度最小可以达到2微米;该石墨烯电极不需要转移,在二氧化硅基底上可直接用于场效应晶体管的制备;该方法不仅局限在石墨烯材料的图案化,其他与二氧化硅基底具有牢固结合能力的材料,如铬,也可用此方法进行图案化。The invention discloses for the first time a method for directly preparing graphene oxide on a silicon dioxide substrate by using inkjet printing technology and a stripping method; the thickness of the graphene electrode prepared by the invention is controllable, the channel length of the electrode is controllable, and the The minimum track length can reach 2 microns; the graphene electrode does not need to be transferred, and can be directly used for the preparation of field effect transistors on the silicon dioxide substrate; this method is not limited to the patterning of graphene materials, other Materials with strong bonding capabilities, such as chromium, can also be patterned with this method.
附图说明 Description of drawings
图1为步骤2),3),5),6)结束之后基底的光学显微镜照片;Fig. 1 is step 2), 3), 5), 6) the optical microscope photo of substrate after finishing;
图2为实施例1制备的石墨烯电极的原子力显微镜照片;Fig. 2 is the atomic force microscope photo of the graphene electrode prepared by embodiment 1;
图3为本发明制备的石墨烯电极的扫描显微镜照片;Fig. 3 is the scanning micrograph of the graphene electrode prepared by the present invention;
图4为实施例1中的石墨烯电极应用于有机场效应晶体管中的器件曲线;Fig. 4 is the device curve that the graphene electrode in embodiment 1 is applied in the organic field effect transistor;
图5为实施例2中的金属铬电极的扫描电子显微镜照片。5 is a scanning electron micrograph of the metal chromium electrode in Example 2.
具体实施方式 Detailed ways
下面结合具体实施例对本发明作进一步阐述,但本发明并不限于以下实施例。所述方法如无特别说明均为常规方法。所述材料如无特别说明均能从公开商业途径而得。The present invention will be further described below in conjunction with specific examples, but the present invention is not limited to the following examples. The methods are conventional methods unless otherwise specified. The materials can be obtained from public commercial sources unless otherwise specified.
实施例1、在二氧化硅基底上制备石墨烯电极并展示其在有机场效应晶体管中的应用。Example 1, preparing graphene electrodes on a silicon dioxide substrate and demonstrating its application in organic field effect transistors.
1)清洗二氧化硅基底:1) Clean the silica substrate:
将表面带有厚度300纳米二氧化硅的硅片依次用洗涤剂、水、去离子水、丙酮和乙醇各超声清洗5分钟后,烘干;Silicon wafers with a thickness of 300 nanometers of silicon dioxide on the surface were ultrasonically cleaned with detergent, water, deionized water, acetone and ethanol for 5 minutes each, and then dried;
2)将步骤1)处理完毕的硅片放置于台式匀胶机转头上,滴加一滴重均分子量为200000的聚丙烯腈浓度为1.5mg/mL的N,N-二甲基甲酰胺的溶液,调节匀胶机转速在3500转每分钟,在硅片上形成均匀的聚丙烯腈高分子薄膜,厚度为2纳米;2) Place the silicon wafer that has been processed in step 1) on the rotor of a desktop homogenizer, and add dropwise a drop of N,N-dimethylformamide with a weight-average molecular weight of 200,000 and a concentration of 1.5 mg/mL of polyacrylonitrile. solution, adjust the speed of the homogenizer at 3500 rpm, and form a uniform polyacrylonitrile polymer film on the silicon wafer with a thickness of 2 nanometers;
3)喷墨打印图案化聚丙烯腈掩模层:3) Inkjet printing patterned polyacrylonitrile mask layer:
将步骤2)中制得的,表面带有掩模层的硅片置于喷墨打印机(jetlab II inkjetprinting equipment)操作台上,控制操作台温度80℃,在硅片表面用喷墨打印机滴加N,N-二甲基甲酰胺溶剂,选用的打印机喷头为30微米,相邻液滴间距87微米,图案由两个相邻的液滴组成。Place the silicon wafer prepared in step 2) with a mask layer on the surface of the inkjet printer (jetlab II inkjetprinting equipment) on the console, control the temperature of the console to 80 ° C, and drip the ink on the surface of the silicon wafer with the inkjet printer For N, N-dimethylformamide solvent, the nozzle of the selected printer is 30 microns, the distance between adjacent droplets is 87 microns, and the pattern consists of two adjacent droplets.
图1a为液滴干涸后在聚丙烯腈表面形成的图案;由图可知,在溶剂液滴边缘形成的环状物,其宽度远远小于液滴本身的直径,这使得打印机对电极沟道区的分辨能力有很大的改善。Figure 1a is the pattern formed on the surface of polyacrylonitrile after the droplet dries up; as can be seen from the figure, the ring formed on the edge of the solvent droplet has a width far smaller than the diameter of the droplet itself, which makes the printer's electrode channel area The resolution ability has been greatly improved.
4)在步骤3)得到的具有图案的硅片表面,旋涂(转速为4000转/分钟)氧化石墨烯水溶液三次,制备一层厚度为5纳米的氧化石墨烯膜。4) On the surface of the patterned silicon wafer obtained in step 3), spin-coat (rotating at a speed of 4000 rpm) an aqueous graphene oxide solution three times to prepare a graphene oxide film with a thickness of 5 nanometers.
图1b为制备了氧化石墨烯膜之后的光学显微镜照片;由图可知,由于氧化石墨烯与二氧化硅衬底有较强的结合力,氧化石墨烯更容易沉积在暴露出二氧化硅基底的部位。Figure 1b is an optical microscope photo after the graphene oxide film is prepared; it can be seen from the figure that graphene oxide is easier to deposit on the exposed silicon dioxide substrate due to the strong bonding force between graphene oxide and silicon dioxide substrate parts.
5)在步骤4)所得氧化石墨烯膜上旋涂(转速为4000转/分钟)一层厚度1微米的聚苯乙烯薄膜,然后将基片放入水中90分钟,用镊子剥掉聚苯乙烯薄膜和除圆圈图案外所有的目标材料的薄膜和高分子薄膜,完成氧化石墨烯的图案化。5) Spin-coat (rotating speed is 4000 rpm) polystyrene film with a thickness of 1 micron on the graphene oxide film obtained in step 4), then put the substrate into water for 90 minutes, and peel off the polystyrene film with tweezers Thin films and thin films of all target materials except circle patterns and polymer films to complete the patterning of graphene oxide.
图1c就是剥掉聚苯乙烯高分子薄膜以后获得的氧化石墨烯图案;由图可知,氧化石墨烯的图案与聚丙烯腈的图案有很好的互补关系,证明了图案之间有良好的转移效率。Figure 1c is the graphene oxide pattern obtained after peeling off the polystyrene polymer film; it can be seen from the figure that the graphene oxide pattern and the polyacrylonitrile pattern have a good complementary relationship, which proves that there is a good transfer between the patterns efficiency.
6)为了使所得图案化的氧化石墨烯恢复导电性,以便作为电极使用,将带有氧化石墨烯图案的基片置于真空中,当真空度低于4×10-4帕斯卡,加热至450℃,保持2小时即得到图案化的石墨烯。6) In order to restore the conductivity of the obtained patterned graphene oxide so that it can be used as an electrode, the substrate with the graphene oxide pattern is placed in a vacuum, and when the degree of vacuum is lower than 4×10 -4 Pascal, heat it to 450 °C, keep for 2 hours to obtain patterned graphene.
图1d为经过步骤6)热退火还原之后的还原石墨烯电极的光学显微镜照片。Figure 1d is an optical microscope photo of the reduced graphene electrode after step 6) thermal annealing reduction.
图2为经过步骤6)之后的还原石墨烯电极的原子力显微镜照片。Fig. 2 is the atomic force microscope photo of the reduced graphene electrode after step 6).
图3为经过步骤6)之后的还原石墨烯电极的扫描电子显微镜照片。Fig. 3 is a scanning electron micrograph of the reduced graphene electrode after step 6).
由图可知,该石墨烯电极的沟道长度为1-2微米。It can be seen from the figure that the channel length of the graphene electrode is 1-2 microns.
利用该实施例制备所得石墨烯制备有机场效应晶体管:Utilize this embodiment to prepare gained graphene to prepare organic field effect transistor:
将该实施例制备所得石墨烯电极表面采用热蒸镀的方法制备一层并五苯半导体膜,蒸镀过程中真空度低于4×10-4帕斯卡,蒸镀速度1埃每秒,得到基于并五苯的有机场效应晶体管。A layer of pentacene semiconductor film was prepared on the surface of the obtained graphene electrode prepared in this embodiment by thermal evaporation. During the evaporation process, the vacuum degree was lower than 4 × 10 -4 Pascals, and the evaporation rate was 1 angstrom per second, and obtained based on Pentacene organic field effect transistor.
在空气中用Keithley 4200半导体测试仪进行测试。图4a为得到的有机场效应晶体管的转移曲线,图4b为得到的有机场效应晶体管的输出曲线。Tested in air with a Keithley 4200 semiconductor tester. Fig. 4a is the obtained transfer curve of the organic field effect transistor, and Fig. 4b is the obtained output curve of the organic field effect transistor.
由图可知,在电极沟道很短的情况下,仍然具有良好的转移和输出曲线。It can be seen from the figure that the transfer and output curves are still good when the electrode channel is very short.
实施例2、在二氧化硅基底上利用喷墨打印和剥离工艺对铬进行图案化Example 2. Chromium is patterned on a silicon dioxide substrate using inkjet printing and lift-off process
1)清洗二氧化硅基底:1) Clean the silica substrate:
将表面带有厚度300纳米二氧化硅的硅片依次用洗涤剂、水、去离子水、丙酮和乙醇各超声清洗5分钟后,烘干;Silicon wafers with a thickness of 300 nanometers of silicon dioxide on the surface were ultrasonically cleaned with detergent, water, deionized water, acetone and ethanol for 5 minutes each, and then dried;
2)将步骤1)处理完毕的硅片放置于台式匀胶机转头上,滴加一滴重均分子量为200000的聚丙烯腈浓度为1.5mg/mL的N,N-二甲基甲酰胺的溶液,调节匀胶机转速在3500转每分钟,在硅片上形成均匀的聚丙烯腈高分子薄膜,厚度1纳米;2) Place the silicon wafer that has been processed in step 1) on the rotor of a desktop homogenizer, and add dropwise a drop of N,N-dimethylformamide with a weight-average molecular weight of 200,000 and a concentration of 1.5 mg/mL of polyacrylonitrile. solution, adjust the speed of the homogenizer at 3500 rpm, and form a uniform polyacrylonitrile polymer film on the silicon wafer with a thickness of 1 nanometer;
3)喷墨打印图案化聚丙烯腈掩模层:3) Inkjet printing patterned polyacrylonitrile mask layer:
将步骤2)所得表面为聚丙烯腈高分子薄膜的硅片置于喷墨打印机操作台上,控制操作台温度80℃,在硅片表面用喷墨打印机滴加N,N-二甲基甲酰胺溶剂,选用的打印机喷头为30微米,相邻液滴间距87微米,液滴为2滴。Place the silicon wafer with polyacrylonitrile polymer film on the surface obtained in step 2) on the console of an inkjet printer, control the temperature of the console to 80°C, and drop N,N-dimethylformaldehyde on the surface of the silicon wafer with an inkjet printer For the amide solvent, the nozzle of the selected printer is 30 microns, the distance between adjacent droplets is 87 microns, and the number of droplets is 2 drops.
4)在真空度小于4×10-4帕斯卡、蒸镀速度为1埃/秒的条件下,利用热蒸镀方法在聚丙烯腈掩模层上蒸镀一层厚度为5纳米的铬层。4) Under the condition that the degree of vacuum is less than 4×10 -4 Pascal and the evaporation rate is 1 angstrom/second, a chromium layer with a thickness of 5 nanometers is evaporated on the polyacrylonitrile mask layer by thermal evaporation.
5)在步骤4)所得铬层上旋涂一层(转速为4000转/分钟)厚度1微米的聚苯乙烯高分子薄膜,然后将基片放入水中90分钟,用镊子剥掉聚苯乙烯薄膜和除圆圈图案外所有的目标材料的薄膜和高分子薄膜,完成铬材料的图案化。5) Spin-coat one deck (rotating speed is 4000 rev/min) polystyrene macromolecular films with a thickness of 1 micron on the chromium layer obtained in step 4), then put the substrate into water for 90 minutes, and peel off the polystyrene with tweezers Thin films and thin films of all target materials except circle patterns and polymer films, complete the patterning of chromium materials.
图5是在表面带有二氧化硅的硅片上图案化铬电极的扫描电子显微镜照片。可见获得的铬电极沟道长度为2微米,具有良好的均一性。Figure 5 is a scanning electron micrograph of patterned chromium electrodes on a silicon wafer with silicon dioxide on its surface. It can be seen that the channel length of the obtained chromium electrode is 2 microns, which has good uniformity.
Claims (12)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201110154332 CN102320752B (en) | 2011-06-09 | 2011-06-09 | Patterning method for material |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201110154332 CN102320752B (en) | 2011-06-09 | 2011-06-09 | Patterning method for material |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102320752A CN102320752A (en) | 2012-01-18 |
| CN102320752B true CN102320752B (en) | 2013-06-19 |
Family
ID=45448626
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 201110154332 Expired - Fee Related CN102320752B (en) | 2011-06-09 | 2011-06-09 | Patterning method for material |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102320752B (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201504363A (en) * | 2013-07-16 | 2015-02-01 | Enerage Inc | Graphene printing ink and preparation method of graphene circuit |
| CN103606634B (en) * | 2013-11-14 | 2016-02-10 | 中国科学院化学研究所 | A kind of pattern metal electrodes and preparation method thereof |
| CN106531878B (en) * | 2016-10-25 | 2019-02-05 | 中国科学院化学研究所 | Patterned polyethylene tetrathiolate nickel film and preparation method of device |
| CN107478320B (en) | 2017-08-23 | 2019-11-05 | 京东方科技集团股份有限公司 | Transistor sound sensing element and preparation method thereof, sonic transducer and portable equipment |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101533894A (en) * | 2009-04-15 | 2009-09-16 | 河北大学 | Method for preparing flexible polymer solar cell by inkjet printing of active layer |
| CN101708950A (en) * | 2009-12-02 | 2010-05-19 | 单军成 | Low-hydroxyl purple quartz tube and production method thereof |
| CN101758014A (en) * | 2009-12-31 | 2010-06-30 | 中国科学院化学研究所 | Method for preparation of patterning colloid photonic crystal by ink-jet printing |
| CN101327479B (en) * | 2008-06-25 | 2011-01-12 | 中国科学院化学研究所 | Method for preparing composite bandgap colloidal photonic crystal film using inkjet printing method |
| CN101990705A (en) * | 2008-02-01 | 2011-03-23 | 新南部创新有限公司 | Method for patterned etching of selected material |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100495640C (en) * | 2007-01-18 | 2009-06-03 | 复旦大学 | Thin film pattern preparation method with self-defining boundary |
-
2011
- 2011-06-09 CN CN 201110154332 patent/CN102320752B/en not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101990705A (en) * | 2008-02-01 | 2011-03-23 | 新南部创新有限公司 | Method for patterned etching of selected material |
| CN101327479B (en) * | 2008-06-25 | 2011-01-12 | 中国科学院化学研究所 | Method for preparing composite bandgap colloidal photonic crystal film using inkjet printing method |
| CN101533894A (en) * | 2009-04-15 | 2009-09-16 | 河北大学 | Method for preparing flexible polymer solar cell by inkjet printing of active layer |
| CN101708950A (en) * | 2009-12-02 | 2010-05-19 | 单军成 | Low-hydroxyl purple quartz tube and production method thereof |
| CN101758014A (en) * | 2009-12-31 | 2010-06-30 | 中国科学院化学研究所 | Method for preparation of patterning colloid photonic crystal by ink-jet printing |
Non-Patent Citations (2)
| Title |
|---|
| Lei Zhang.Top-Gate Organic Thin-Film Transistors Constructed by a General Lamination Approach.《Advanced Materials》.2010,第22卷3537. |
| Top-Gate Organic Thin-Film Transistors Constructed by a General Lamination Approach;Lei Zhang;《Advanced Materials》;20100720;第22卷;3537页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102320752A (en) | 2012-01-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4421582B2 (en) | Pattern formation method | |
| CN101274757B (en) | Surface modifying carbon nanotube material, manufacturing method therefore, electronic component and electronic device | |
| JP2007529884A (en) | Carbon nanotube stripping solution and method | |
| JP2015517021A5 (en) | ||
| CN102320752B (en) | Patterning method for material | |
| CN112968144B (en) | PI flexible substrate peeling method, flexible substrate and OLED based on silk mesh substrate layer | |
| CN111293035B (en) | A kind of preparation method of carbon nanotube film | |
| CN109801739A (en) | A kind of stretchable electrode of patterns of high precisionization and preparation method thereof | |
| Tang et al. | Controlling the surface wettability of the polymer dielectric for improved resolution of inkjet-printed electrodes and patterned channel regions in low-voltage solution-processed organic thin film transistors | |
| CN103413760B (en) | Method for constructing organic micron line array by template auxiliary volatilization induction self-assembly | |
| CN110034007A (en) | A method for ultra-high-precision patterning of transparent stretchable electrodes | |
| CN100495640C (en) | Thin film pattern preparation method with self-defining boundary | |
| CN111863624B (en) | Large-scale preparation and patterning method of two-dimensional material semiconductor film and two-dimensional material semiconductor film | |
| CN103325943A (en) | Organic thin-film transistor and preparation method thereof | |
| TWI887527B (en) | Transfer of nanostructures using crosslinkable copolymer films | |
| KR101047034B1 (en) | Thin film pattern formation method | |
| TWI788477B (en) | Pattern forming method | |
| CN106505148B (en) | A kind of organic thin film field effect transistor based on lamination electrode and preparation method thereof | |
| KR20120031582A (en) | Fabrication of thin film transistor and integrated circuits by spray printing method | |
| TWI873152B (en) | Source/drain electrode for organic semiconductor device, organic semiconductor device using the same, and method for manufacturing thereof | |
| TWI886504B (en) | Transistor, and electronic device | |
| CN103606634B (en) | A kind of pattern metal electrodes and preparation method thereof | |
| JP6143698B2 (en) | Wiring pattern forming method, organic transistor manufacturing method, and organic transistor | |
| TW202043244A (en) | Pattern formation method | |
| JP2018037486A (en) | Thin film transistor manufacturing method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130619 |