CN102322882A - Absolute shaft angle encoding system based on array detector - Google Patents
Absolute shaft angle encoding system based on array detector Download PDFInfo
- Publication number
- CN102322882A CN102322882A CN201110149465A CN201110149465A CN102322882A CN 102322882 A CN102322882 A CN 102322882A CN 201110149465 A CN201110149465 A CN 201110149465A CN 201110149465 A CN201110149465 A CN 201110149465A CN 102322882 A CN102322882 A CN 102322882A
- Authority
- CN
- China
- Prior art keywords
- code
- module
- array detector
- data processing
- disc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Transform (AREA)
Abstract
本发明公开了一种基于阵列探测器的绝对轴角编码系统。包括光源,转轴,编码盘,物镜,阵列探测器和数据处理电路;转轴中安装编码盘,光源置于编码盘的一侧,编码盘的另一侧依次设有成像物镜和阵列探测器,编码盘、成像物镜和阵列探测器三者安装需要满足物象位置关系,阵列探测器获取放大后的编码盘局部图像信息后,传到数据处理电路,数据处理电路对图像信息分析处理后,输出角度信息。编码盘采用单圈绝对式的编码方式,减少码道,缩小编码盘尺寸;采用阵列探测器作为接收元件,满足响应频率高的要求;采用硬件电路作为数据处理单元,具有实时性好,响应速度快,体积小等特点。加入成像物镜,用于放大编码盘局部图像,提高系统分辨率。
The invention discloses an absolute shaft angle encoding system based on an array detector. It includes a light source, a rotating shaft, a code disc, an objective lens, an array detector and a data processing circuit; The installation of the disc, imaging objective lens and array detector needs to meet the positional relationship of the object image. After the array detector obtains the enlarged local image information of the encoding disc, it is transmitted to the data processing circuit. After the data processing circuit analyzes and processes the image information, it outputs the angle information. . The encoder disc adopts single-turn absolute encoding method, which reduces the number of code channels and the size of the encoder disc; uses array detectors as receiving elements to meet the requirements of high response frequency; adopts hardware circuits as data processing units, which has good real-time performance and fast response speed. Fast, small size and other characteristics. An imaging objective lens is added to magnify the partial image of the code disc to improve the resolution of the system.
Description
技术领域 technical field
本发明涉及一种精密角度测量系统,尤其是涉及一种基于阵列探测器的绝对轴角编码系统。The invention relates to a precision angle measurement system, in particular to an absolute shaft angle encoding system based on an array detector.
背景技术 Background technique
根据编码方式的不同,传统的轴角编码器可以分为增量式和绝对式两种,增量式编码器的优点是响应速度快,结构简单,尺寸小,其缺点是受环境影响大,掉电后容易造成数据损失,而且有误差累积。与增量式编码器相比,绝对式轴角编码器具有抗干扰能力强,掉电后无须重新标定,无累积误差等优点。According to different encoding methods, traditional shaft encoders can be divided into two types: incremental and absolute. The advantages of incremental encoders are fast response, simple structure, and small size. The disadvantages are that they are greatly affected by the environment. It is easy to cause data loss after power failure, and there is error accumulation. Compared with the incremental encoder, the absolute shaft encoder has the advantages of strong anti-interference ability, no need to re-calibrate after power failure, and no cumulative error.
目前,世界上研制开发轴角编码器的公司和研究机构很多,主要有德国Heidenhain公司,Opton公司等;日本的Tamagawa公司、尼康公司、佳能公司等;美国的Itek公司,Renco公司等,以及英国、瑞士和俄罗斯等国家的研究机构和厂家。美国NASA的Goddard宇航中心为车辆Cartesian坐标研制的27位超高分辨率的绝对式轴角编码器,它采用了全新的编码方式和图像识别技术,满足航天技术的需要。我国的编码器研究大概起步于上个世纪六十年代,中科院长春光机所于1964年研制了第一块编码盘和圆光栅,并成功应用于光电经纬仪和测量雷达上,随后,多家科研单位也先后进行了光电编码器的开发和研究,并取得了一定成果,80年代末,成都光机所研制出26位绝对式轴角编码器<±10″;2001年,长春光机所研制出15位超小型绝对式光电编码器,直径为40mm。At present, there are many companies and research institutions that develop shaft encoders in the world, mainly German Heidenhain Company, Opton Company, etc.; Japan's Tamagawa Company, Nikon Company, Canon Company, etc.; American Itek Company, Renco Company, etc., and British , Switzerland and Russia and other countries' research institutions and manufacturers. The Goddard Space Center of NASA in the United States developed a 27-bit ultra-high resolution absolute shaft encoder for the Cartesian coordinates of the vehicle. It uses a new encoding method and image recognition technology to meet the needs of aerospace technology. my country's encoder research probably started in the 1960s. The Changchun Institute of Optics and Mechanics of the Chinese Academy of Sciences developed the first encoder disc and circular grating in 1964, and successfully applied them to photoelectric theodolites and measuring radars. The unit has also successively carried out the development and research of photoelectric encoders, and achieved certain results. In the late 1980s, Chengdu Institute of Optics and Mechanics developed a 26-bit absolute shaft angle encoder <±10″; in 2001, Changchun Institute of Optics and Mechanics developed Produced a 15-bit ultra-small absolute photoelectric encoder with a diameter of 40mm.
对于目前已有的绝对式轴角编码器而言,分辨率与系统尺寸之间存在着矛盾,高分辨率的编码器往往系统尺寸较大,而小型化的编码器往往角分辨率不高,另外,响应频率不高也是现有的轴角编码器存在的一大问题。For the existing absolute shaft encoders, there is a contradiction between resolution and system size. High-resolution encoders tend to have larger system sizes, while miniaturized encoders often have low angular resolution. In addition, the low response frequency is also a major problem in the existing shaft encoders.
实用新型专利“绝对位置轴角编码器”(专利申请号:200620115789.6)中所述的绝对轴角编码器,与本发明有相似之处,下面介绍其主要特点:The absolute shaft-angle encoder described in the utility model patent "Absolute Position Shaft-Angle Encoder" (patent application number: 200620115789.6) has similarities with the present invention, and its main features are introduced below:
1、所提出的系统,利用线阵CCD采集码盘局部信息,进而利用电子细分技术,提高角分辨率,在一定程度上克服了编码器尺寸与角分辨率之间的矛盾。1. The proposed system uses the linear array CCD to collect the local information of the code disc, and then uses the electronic subdivision technology to improve the angular resolution, which overcomes the contradiction between the encoder size and the angular resolution to a certain extent.
2、所提出的系统,为了缩小码盘的同时提高粗码分辨率,在衍射极限范围内,需要缩小编码盘刻线的尺寸,由于阵列探测器像元的大小存在极限最小尺寸,编码盘刻线的尺寸过小不利于电子细分获取细码,故提高粗码分辨率和提高细码分辨率之间存在矛盾,也就是在缩小编码器尺寸的同时提高分辨率这方面仍然存在一定问题。2. In the proposed system, in order to reduce the size of the code disc and improve the resolution of the coarse code at the same time, it is necessary to reduce the size of the engraved line of the code disc within the diffraction limit range. Since the pixel size of the array detector has a limit minimum size, the engraved line of the code disc needs to be reduced. Too small line size is not conducive to electronic subdivision to obtain fine codes, so there is a contradiction between improving the resolution of coarse codes and improving the resolution of fine codes, that is, there are still certain problems in improving the resolution while reducing the size of the encoder.
3、所提出的编码盘,采用的伪随机编码方式,为了进行电子细分,其阵列CCD所成编码盘局部图像需要包含至少组完整编码,其中N为码道的等分数,n组完整编码对应的码道宽度为为了提高粗码分辨率,需要增大N,而N越大,越大,细分能够提高的分辨率越小,这形成一对矛盾。3. The proposed encoding disc adopts a pseudo-random encoding method. In order to carry out electronic subdivision, the partial image of the encoding disc formed by the array CCD needs to contain at least group of complete codes, where N is the equal fraction of the code channel, and the code channel width corresponding to n groups of complete codes is In order to improve the coarse code resolution, N needs to be increased, and the larger N is, The larger , the smaller the resolution that can be improved by subdivision, which forms a pair of contradictions.
4、所提出的编码盘,采用伪随机编码方式编码,从图像信息中解码角度信息较为复杂。4. The proposed encoding disk is encoded by pseudo-random encoding, and it is more complicated to decode angle information from image information.
随着国防、自动化等行业和领域的发展,对轴角编码器的小型化、智能化、集成化的要求越来越高,制约轴角编码器发展的因素有很多,其中编码方式和探测器是两个关键因素,改变传统的编码方法,研制出有利于电子细分的小尺寸码盘是促进轴角编码器发展的重要途径,对于探测器的要求,一方面要配合编码盘,能够有效分辨编码盘的局部图像,便于电子细分,另外一方面要求实时性好,即响应频率高,这样能更有利于实时处理。缩小系统尺寸,提高分辨率、减小响应时间,这是光电轴角编码器的发展趋势。With the development of industries and fields such as national defense and automation, the requirements for the miniaturization, intelligence and integration of shaft encoders are getting higher and higher. There are many factors restricting the development of shaft encoders, among which the encoding method and detector They are two key factors. Changing the traditional coding method and developing a small-sized code disc that is conducive to electronic subdivision is an important way to promote the development of shaft angle encoders. For the requirements of the detector, on the one hand, it must cooperate with the code disc to effectively Resolving the partial image of the encoding disc is convenient for electronic subdivision. On the other hand, it requires good real-time performance, that is, high response frequency, which is more conducive to real-time processing. Reducing the size of the system, increasing the resolution, and reducing the response time are the development trends of photoelectric shaft encoders.
发明内容 Contents of the invention
为了克服背景技术中存在的问题,本发明的目的在于提供一种基于阵列探测器的绝对轴角编码系统。In order to overcome the problems in the background technology, the object of the present invention is to provide an absolute shaft angle encoding system based on an array detector.
本发明解决其技术问题所采取的技术方案是:The technical scheme that the present invention solves its technical problem to take is:
本发明包括光源,转轴,编码盘,物镜,阵列探测器和数据处理电路;转轴中安装编码盘,光源置于编码盘的一侧,编码盘的另一侧依次设有成像物镜和阵列探测器,编码盘、成像物镜和阵列探测器三者安装需要满足物象位置关系,阵列探测器获取放大后的编码盘局部图像信息后,传到数据处理电路,数据处理电路对图像信息分析处理后,输出角度信息。The invention includes a light source, a rotating shaft, an encoding disc, an objective lens, an array detector and a data processing circuit; the encoding disc is installed in the rotating shaft, the light source is placed on one side of the encoding disc, and the other side of the encoding disc is provided with an imaging objective lens and an array detector in sequence , the installation of the encoder disc, imaging objective lens and array detector needs to meet the positional relationship of the object image. After the array detector obtains the enlarged local image information of the encoder disc, it is transmitted to the data processing circuit. After the data processing circuit analyzes and processes the image information, it outputs angle information.
所述的编码盘,以二进制码为基础,用透光和遮光的窗口分别代表二进制码中的“1和“0”,其编码方式采用单圈绝对式编码,整个码盘只有一圈码道,沿圆周方向等分成2n个区域,即2n组编码。每组编码的角宽度为它由n位编码刻线和1位分隔刻线组成。分隔刻线是角宽度为θ1的透光窗口,它作为标志,用来区分相邻两组编码,分隔刻线与左右两边的编码刻线均相距角宽度为θ2的角间隔,编码刻线由n个窗口组成,每个窗口有两种可能的状态:透光和遮光,分别代表二进制“1”和“0”,每个窗口的角宽度为θ3,整个码道2n组编码刻线采用n位自然二进制码进行编码。每组编码的角度关系满足θ1、θ2和θ3三者均不相等。The said code disk is based on the binary code, and uses light-transmitting and light-shielding windows to respectively represent "1" and "0" in the binary code. , divided into 2 n areas equally along the circumferential direction, that is, 2 n groups of codes. The angular width of each group of codes is It consists of n-bit coding lines and 1-bit separating lines. The separation reticle is a light - transmitting window with an angular width of θ 1. It is used as a sign to distinguish two adjacent groups of codes. The line is composed of n windows, and each window has two possible states: light-transmitting and light-shielding, representing binary "1" and "0" respectively, the angular width of each window is θ 3 , and the entire code channel is 2 n groups of codes The engraved line is coded with n-bit natural binary code. The angular relationship of each group of codes satisfies None of θ 1 , θ 2 and θ 3 are equal.
所述的数据处理电路包括阵列探测器控制模块,数据接收模块,解粗码模块,解细码模块,获取角度信息模块和数据输出模块;用于输出控制信号的阵列探测器控制模块和用于接收阵列探测器数据的数据接收模块两者分别与阵列探测器相连接,数据接收模块分别经过解粗码模块和解细码模块后与获取角度信息模块相连接,获取角度信息模块与数据输出模块相连接。The data processing circuit includes an array detector control module, a data receiving module, a coarse code decoding module, a fine code decoding module, an angle information acquisition module and a data output module; the array detector control module for outputting control signals and the The data receiving module receiving array detector data is connected with the array detector respectively, and the data receiving module is respectively connected with the angle information acquisition module after the coarse code decoding module and the fine code decoding module, and the angle information acquisition module is connected with the data output module connect.
本发明具有的有益效果是:The beneficial effects that the present invention has are:
1、采用一种单圈绝对式的编码方式,它能够达到减少码道,缩小编码盘尺寸的目的。1. A single-turn absolute encoding method is adopted, which can achieve the purpose of reducing the code track and reducing the size of the encoding disc.
2、采用阵列探测器作为接收元件,一方面,能够对所接收的粗码信息进行细分,另外一方面,其响应频率较高,可很好的满足响应频率高的要求。2. The array detector is used as the receiving element. On the one hand, it can subdivide the received coarse code information. On the other hand, its response frequency is high, which can well meet the requirement of high response frequency.
3、采用硬件电路作为数据处理单元,它具有实时性好,响应速度快,体积小等特点。3. The hardware circuit is used as the data processing unit, which has the characteristics of good real-time performance, fast response speed and small size.
4、在编码盘与阵列探测器之间加入一个成像物镜,用于放大编码盘局部图像,一方面在相同系统尺寸情况下,可有效提高系统分辨率,另外一方面,解决了提高粗码分辨率和提高细码分辨率之间的矛盾。4. An imaging objective lens is added between the code disk and the array detector to enlarge the partial image of the code disk. On the one hand, under the same system size, the system resolution can be effectively improved. On the other hand, it solves the problem of improving the resolution of coarse codes. The contradiction between the high rate and the improvement of fine code resolution.
附图说明 Description of drawings
图1是本发明的总体结构原理示意图;Fig. 1 is a schematic diagram of the general structure principle of the present invention;
图2是编码盘整体示意图;Fig. 2 is an overall schematic diagram of an encoding disc;
图3是编码盘局部放大示意图;Fig. 3 is a partially enlarged schematic diagram of the code disc;
图4是编码盘局部尺寸;Fig. 4 is the local size of the code disc;
图5是细分码的读取原理;Fig. 5 is the reading principle of the subdivision code;
图6是数据处理电路框图。Fig. 6 is a block diagram of a data processing circuit.
图中:1、光源,2、转轴,3、编码盘,31、每组编码,32、分隔刻线,33、n位编码刻线,34、角间隔,35、像素标尺,36、参考线,4、物镜,5、阵列探测器,6、数据处理电路,61、阵列探测器控制模块,62、数据接收模块,63、解粗码模块,64、解细码模块,65、获取角度信息模块,66、数据输出模块。In the figure: 1. Light source, 2. Rotating shaft, 3. Coding disc, 31. Each group of codes, 32. Separation line, 33. n-bit coding line, 34. Angle interval, 35. Pixel scale, 36. Reference line , 4, objective lens, 5, array detector, 6, data processing circuit, 61, array detector control module, 62, data receiving module, 63, coarse code decoding module, 64, fine code decoding module, 65, angle information acquisition module, 66, a data output module.
具体实施方式 Detailed ways
下面结合附图和实施例对本发明做进一步的说明:Below in conjunction with accompanying drawing and embodiment the present invention will be further described:
如图1所示,本发明包括光源1,转轴2,编码盘3,物镜4,阵列探测器5和数据处理电路6;转轴2中安装编码盘3,光源1置于编码盘3的一侧,编码盘3的另一侧依次设有成像物镜4和阵列探测器5,编码盘3、成像物镜4和阵列探测器5三者安装需要满足物象位置关系,阵列探测器5获取放大后的编码盘局部图像信息后,传到数据处理电路6,数据处理电路6对图像信息分析处理后,输出角度信息。As shown in Figure 1, the present invention comprises a light source 1, a
光源1选用LED作为照明光源,对编码盘3的局部进行照明,确保编码盘3清晰成像于阵列探测器5上,编码盘3采用单圈绝对式编码方式进行编码,成像物镜4位于阵列探测器5和编码盘3之间,它的作用是放大编码盘图像,使阵列探测器5能够接收到合适的编码盘3图像,保证后续译码的准确性。数据处理电路6接收到图像信息,然后对其进行解码,最终由U S B接口输出角度结果。下面就本系统中的几个重要部分做进一步的详细介绍。The light source 1 uses LED as the lighting source to illuminate the part of the
一、编码盘1. Encoding disk
如图2、图3、图4所示,整个码盘只有一圈码道,沿圆周方向等分成128个区域,即128组编码,每组编码31的角宽度为168′45″,由7位的编码刻线33和1位分隔刻线32组成,分隔刻线32是角宽度为8′的透光窗口,它用来区分相邻两个编码,分隔刻线32与左右两边的编码刻线33均相距角宽度为20′的角间隔34,编码刻线33由7个窗口组成,每个窗口有两种可能的状态:透光和遮光,分别代表二进制“1”和“0”,每个窗口的角宽度为17′15″,128组7位编码刻线采用自然二进制码进行编码。As shown in Fig. 2, Fig. 3, and Fig. 4, the whole code disc has only one circle of code track, which is equally divided into 128 areas along the circumferential direction, that is, 128 groups of codes, and the angular width of each group of
二、测角原理Second, the principle of angle measurement
编码盘3通过物镜4放大,将其局部图像成像在阵列探测器5上,为保证至少有两个分隔刻线出现在阵列探测器中,同时又有利于后续的像素细分,选定大小为两个区域(整个圆周被分为128个区域)成像在探测器上。The
首先,从阵列探测器5所获取的信息,进行A/D转换获得二值化数据。First, A/D conversion is performed on the information obtained from the
然后根据分隔线与编码刻线的线宽不同找出两个相邻的分隔刻线32,然后得到两相邻分隔刻线之间的7位编码数据33,即可获得角度的绝对信息的粗码,假设所获得的自然二进制码所对应的十进制值为N,则粗码读数为Then find out two
如图5所示,细码的获取方式如下,假设检出的两相邻分隔线在阵列探测器上覆盖了m个像素,分别按0,1,2,……,m-1编号,如果检测线36所在位置的像素序号为m′,那么细分码的读数为As shown in Figure 5, the fine code acquisition method is as follows, assuming that the detected two adjacent separation lines cover m pixels on the array detector, respectively numbered according to 0, 1, 2, ..., m-1, if The pixel sequence number at the position of the
从而,最终的测量角度可表示为:Thus, the final measured angle can be expressed as:
三、数据处理电路3. Data processing circuit
数据处理电路6选用Altera公司EP2C5T144型号FPGA作为主控处理芯片,实现数据采集和数据处理功能。硬件系统的基本框架如下:The
如图6所示,所述的数据处理电路6包括阵列探测器控制模块61,数据接收模块62,解粗码模块63,解细码模块64,获取角度信息模块65和数据输出模块66;用于输出控制信号的阵列探测器控制模块61和用于接收阵列探测器数据的数据接收模块62两者分别与阵列探测器5相连接,数据接收模块62分别经过解粗码模块63和解细码模块64后与获取角度信息模块65相连接,获取角度信息模块65与数据输出模块66相连接。As shown in Figure 6, described
硬件系统采用可编程逻辑器件FPGA作为主要芯片,根据阵列探测器5要求,FPGA的阵列探测器控制模块61产生控制信号,驱动阵列探测器5工作,阵列探测器5所采集到的编码盘3局部放大图像信息被FPGA的数据接收模块62接收,根据权利要求2所述的编码盘3特点,FPGA对接收到的数据分别通过解粗码模块63和解细码模块64进行解码,两者所得结果相结合通过获取角度信息模块65计算出角度结果,通过数据输出模块66可输出角度结果。The hardware system uses a programmable logic device FPGA as the main chip. According to the requirements of the
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201110149465A CN102322882A (en) | 2011-06-02 | 2011-06-02 | Absolute shaft angle encoding system based on array detector |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201110149465A CN102322882A (en) | 2011-06-02 | 2011-06-02 | Absolute shaft angle encoding system based on array detector |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN102322882A true CN102322882A (en) | 2012-01-18 |
Family
ID=45450676
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201110149465A Pending CN102322882A (en) | 2011-06-02 | 2011-06-02 | Absolute shaft angle encoding system based on array detector |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102322882A (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016174516A2 (en) | 2015-04-30 | 2016-11-03 | Anatech B.V. | Autosamplers, autoloaders and systems and devices using them |
| WO2016174517A1 (en) | 2015-04-30 | 2016-11-03 | Anatech B.V. | Encoders, encoding methods and systems and devices using them |
| CN106482669A (en) * | 2016-11-29 | 2017-03-08 | 中国科学院长春光学精密机械与物理研究所 | A kind of angle displacement measurement system of employing twin-line array image detector |
| CN107356274A (en) * | 2015-01-09 | 2017-11-17 | 杭州谷立电气技术有限公司 | The method that motor positioning is carried out using novel encoder structure |
| CN108700410A (en) * | 2017-04-28 | 2018-10-23 | 深圳市大疆创新科技有限公司 | Position detection device, method and rotation system |
| CN109238176A (en) * | 2018-09-14 | 2019-01-18 | 中国科学院长春光学精密机械与物理研究所 | A kind of angle displacement measuring device and its measurement method |
| CN109506900A (en) * | 2018-11-05 | 2019-03-22 | 苏州工业职业技术学院 | A kind of imaging frame rate detection system and its detection method near infrared camera |
| CN110726425A (en) * | 2019-10-14 | 2020-01-24 | 中国科学院光电技术研究所 | Image type decoding method of single-ring absolute type photoelectric code disc |
| CN113390448A (en) * | 2021-07-15 | 2021-09-14 | 中国科学院长春光学精密机械与物理研究所 | Method and system for decoding Heidenhain absolute grating ruler |
| CN113984094A (en) * | 2021-09-08 | 2022-01-28 | 广州南方卫星导航仪器有限公司 | Decoding method, device, medium and product of an absolute value encoder |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4507647A (en) * | 1980-04-30 | 1985-03-26 | Tokyo Kagaku Kikai K.K. | Encoder |
| CN1493853A (en) * | 2003-10-10 | 2004-05-05 | 杨俊志 | Universal coding method of single loop absolute type angle coder |
| CN1615428A (en) * | 2002-01-17 | 2005-05-11 | 约翰尼斯海登海恩博士股份有限公司 | Position measuring device |
| CN101153808A (en) * | 2007-09-19 | 2008-04-02 | 苏州一光仪器有限公司 | Single-code track absolute angle coded circle and encoder using the same |
| CN101206126A (en) * | 2007-11-26 | 2008-06-25 | 桂林市晶瑞传感技术有限公司 | Absoluteness type round grating sensor measuring apparatus for measuring absolute location |
| CN101476902A (en) * | 2009-01-13 | 2009-07-08 | 常州大地测绘科技有限公司 | Single-code channel absolute position encoding method |
| CN101506621A (en) * | 2006-08-18 | 2009-08-12 | 莱卡地球系统公开股份有限公司 | Optoelectronic angle sensor and method for determining a rotational angle about an axis |
| CN202083361U (en) * | 2011-06-02 | 2011-12-21 | 浙江大学 | An Absolute Shaft Angle Encoding System Based on Array Detector |
-
2011
- 2011-06-02 CN CN201110149465A patent/CN102322882A/en active Pending
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4507647A (en) * | 1980-04-30 | 1985-03-26 | Tokyo Kagaku Kikai K.K. | Encoder |
| CN1615428A (en) * | 2002-01-17 | 2005-05-11 | 约翰尼斯海登海恩博士股份有限公司 | Position measuring device |
| CN1493853A (en) * | 2003-10-10 | 2004-05-05 | 杨俊志 | Universal coding method of single loop absolute type angle coder |
| CN101506621A (en) * | 2006-08-18 | 2009-08-12 | 莱卡地球系统公开股份有限公司 | Optoelectronic angle sensor and method for determining a rotational angle about an axis |
| CN101153808A (en) * | 2007-09-19 | 2008-04-02 | 苏州一光仪器有限公司 | Single-code track absolute angle coded circle and encoder using the same |
| CN101206126A (en) * | 2007-11-26 | 2008-06-25 | 桂林市晶瑞传感技术有限公司 | Absoluteness type round grating sensor measuring apparatus for measuring absolute location |
| CN101476902A (en) * | 2009-01-13 | 2009-07-08 | 常州大地测绘科技有限公司 | Single-code channel absolute position encoding method |
| CN202083361U (en) * | 2011-06-02 | 2011-12-21 | 浙江大学 | An Absolute Shaft Angle Encoding System Based on Array Detector |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107356274A (en) * | 2015-01-09 | 2017-11-17 | 杭州谷立电气技术有限公司 | The method that motor positioning is carried out using novel encoder structure |
| CN107356274B (en) * | 2015-01-09 | 2019-11-05 | 杭州谷立电气技术有限公司 | The method for carrying out motor positioning using coder structure |
| US10359444B2 (en) | 2015-04-30 | 2019-07-23 | Perkinelmer Health Sciences, Inc. | Autosamplers, autoloaders and systems and devices using them |
| WO2016174517A1 (en) | 2015-04-30 | 2016-11-03 | Anatech B.V. | Encoders, encoding methods and systems and devices using them |
| WO2016174516A3 (en) * | 2015-04-30 | 2016-12-08 | Anatech B.V. | Autosamplers, autoloaders and systems and devices using them |
| JP2018524554A (en) * | 2015-04-30 | 2018-08-30 | パーキンエルマー・ヘルス・サイエンシーズ・インコーポレイテッドPerkinelmer Health Sciences, Inc. | Autosampler, autoloader, and system and apparatus using them |
| US10222242B2 (en) | 2015-04-30 | 2019-03-05 | Perkinelmer Health Sciences, Inc. | Encoders, encoding methods and systems and devices using them |
| WO2016174516A2 (en) | 2015-04-30 | 2016-11-03 | Anatech B.V. | Autosamplers, autoloaders and systems and devices using them |
| CN106482669B (en) * | 2016-11-29 | 2018-10-26 | 中国科学院长春光学精密机械与物理研究所 | A kind of angle displacement measurement system using twin-line array image detector |
| CN106482669A (en) * | 2016-11-29 | 2017-03-08 | 中国科学院长春光学精密机械与物理研究所 | A kind of angle displacement measurement system of employing twin-line array image detector |
| CN108700410A (en) * | 2017-04-28 | 2018-10-23 | 深圳市大疆创新科技有限公司 | Position detection device, method and rotation system |
| WO2018195966A1 (en) * | 2017-04-28 | 2018-11-01 | 深圳市大疆创新科技有限公司 | Position detecting device, method, and rotating system |
| CN109238176A (en) * | 2018-09-14 | 2019-01-18 | 中国科学院长春光学精密机械与物理研究所 | A kind of angle displacement measuring device and its measurement method |
| CN109506900A (en) * | 2018-11-05 | 2019-03-22 | 苏州工业职业技术学院 | A kind of imaging frame rate detection system and its detection method near infrared camera |
| CN109506900B (en) * | 2018-11-05 | 2023-11-14 | 苏州工业职业技术学院 | Imaging frame rate detection system and detection method for near infrared camera |
| CN110726425A (en) * | 2019-10-14 | 2020-01-24 | 中国科学院光电技术研究所 | Image type decoding method of single-ring absolute type photoelectric code disc |
| CN113390448A (en) * | 2021-07-15 | 2021-09-14 | 中国科学院长春光学精密机械与物理研究所 | Method and system for decoding Heidenhain absolute grating ruler |
| CN113984094A (en) * | 2021-09-08 | 2022-01-28 | 广州南方卫星导航仪器有限公司 | Decoding method, device, medium and product of an absolute value encoder |
| CN113984094B (en) * | 2021-09-08 | 2024-01-09 | 广州南方卫星导航仪器有限公司 | Decoding method, device, medium and product of absolute value encoder |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102322882A (en) | Absolute shaft angle encoding system based on array detector | |
| CN103759749B (en) | Single-code-channel absolute position encoder | |
| CN100476366C (en) | Single track absolute angle encoding dial and encoder using the same | |
| CN106482669B (en) | A kind of angle displacement measurement system using twin-line array image detector | |
| CN109238176B (en) | An angular displacement measuring device and its measuring method | |
| CN202083361U (en) | An Absolute Shaft Angle Encoding System Based on Array Detector | |
| CN104677394B (en) | A kind of position or the coding and device of Angle Position sensing | |
| CN102095439B (en) | Single-code-channel absolute-position encoding method, decoding method and measuring device | |
| CN108106646B (en) | Reflection type absolute value photoelectric encoder | |
| CN102095379A (en) | Absolute grating scale | |
| CN110726425B (en) | An image decoding method of a single-turn absolute photoelectric encoder | |
| KR20130106315A (en) | Encoder | |
| CN102003976B (en) | Single-code channel absolute position coding method, decoding method and measuring device | |
| CN106197490A (en) | A kind of absolute type azimuth photoelectric encoder | |
| CN1264001C (en) | Universal coding method of single loop absolute type angle coder | |
| CN110006366A (en) | An image reflection type angular displacement measuring device and method thereof | |
| CN102788602A (en) | Quasi absolute type optical encoder | |
| CN102788601B (en) | Subdividing and decoding circuit for quasi absolute type optical encoder and realization method thereof | |
| CN103411635A (en) | Code micro-macro combined collection method of absolute grating ruler | |
| CN112880571A (en) | Absolute grating ruler | |
| CN110411485A (en) | Transmissive absolute rotary encoder and measurement method based on mask to filter out light interference | |
| CN118129806A (en) | Single-circle absolute photoelectric axial angle encoder based on m-sequence code and design method thereof | |
| CN116558424B (en) | Displacement measuring device adopting point light source reflection imaging | |
| CN113029002A (en) | Linear displacement measuring device and method | |
| JP3093924B2 (en) | Absolute encoder |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120118 |