CN102353998B - Terahertz (THz) video camera for channel security check - Google Patents
Terahertz (THz) video camera for channel security check Download PDFInfo
- Publication number
- CN102353998B CN102353998B CN201110130356.3A CN201110130356A CN102353998B CN 102353998 B CN102353998 B CN 102353998B CN 201110130356 A CN201110130356 A CN 201110130356A CN 102353998 B CN102353998 B CN 102353998B
- Authority
- CN
- China
- Prior art keywords
- thz
- semiconductor laser
- camera
- safety check
- video camera
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013078 crystal Substances 0.000 claims abstract description 85
- 239000004065 semiconductor Substances 0.000 claims abstract description 76
- 230000003287 optical effect Effects 0.000 claims abstract description 51
- 239000007787 solid Substances 0.000 claims abstract description 42
- 230000005855 radiation Effects 0.000 claims abstract description 34
- 238000005057 refrigeration Methods 0.000 claims abstract description 20
- 238000005086 pumping Methods 0.000 claims description 22
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 20
- 229910052744 lithium Inorganic materials 0.000 claims description 20
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 claims description 13
- 230000001427 coherent effect Effects 0.000 claims description 13
- 239000010409 thin film Substances 0.000 claims description 12
- 238000001069 Raman spectroscopy Methods 0.000 claims description 6
- 230000006698 induction Effects 0.000 claims description 2
- 230000005619 thermoelectricity Effects 0.000 claims 15
- 208000003443 Unconsciousness Diseases 0.000 claims 2
- 241001657258 Pachycare flavogriseum Species 0.000 claims 1
- HGAZMNJKRQFZKS-UHFFFAOYSA-N chloroethene;ethenyl acetate Chemical compound ClC=C.CC(=O)OC=C HGAZMNJKRQFZKS-UHFFFAOYSA-N 0.000 claims 1
- 238000009413 insulation Methods 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 claims 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 abstract description 47
- 238000003384 imaging method Methods 0.000 abstract description 25
- 238000007689 inspection Methods 0.000 abstract description 16
- 230000003321 amplification Effects 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 7
- 230000001360 synchronised effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- SKJCKYVIQGBWTN-UHFFFAOYSA-N (4-hydroxyphenyl) methanesulfonate Chemical compound CS(=O)(=O)OC1=CC=C(O)C=C1 SKJCKYVIQGBWTN-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Landscapes
- Lasers (AREA)
Abstract
本发明涉及一种行道安检THz摄像仪,其由斯特林制冷热电面阵THz摄像头和半导体激光器光泵铌酸锂晶体的固体THz远程辐射源构成,其中斯特林制冷热电面阵THz摄像头和半导体激光器光泵铌酸锂晶体的固体THz远程辐射源对准行道进行反射式THz助视摄像或者对准行道相对对射进行THz摄像。本发明具有充分挖掘提高THz射线出射能量和THz成像的性能,针对行道安检的具体应用和THz透视摄像特性实现实时的行道安检THz摄像仪,能够野外加电长时间工作,使用方便,寿命长,实现本发明的目的。
The invention relates to a road safety inspection THz camera, which is composed of a Stirling refrigeration thermoelectric surface array THz camera and a solid THz remote radiation source of a semiconductor laser optical pump lithium niobate crystal, wherein the Stirling refrigeration thermoelectric surface array THz camera and The solid-state THz remote radiation source of the semiconductor laser optically pumped lithium niobate crystal is aimed at the roadway for reflective THz vision-aided imaging or is aligned with the roadway for THz imaging. The invention has the performance of fully digging and improving THz ray emission energy and THz imaging, realizes a real-time road safety inspection THz camera for the specific application of road safety inspection and the characteristics of THz perspective imaging, can work for a long time in the field, is convenient to use, and has a long life. Realize the purpose of the present invention.
Description
技术领域 technical field
本发明涉及辐射成像和安检技术领域,特别涉及一种固体THz发生器加斯特林热电面阵的行道安检THz摄像仪,该行道安检THz摄像仪采用半导体激光器光泵截面为平弧门式的铌酸锂晶体棒与其拉曼散射光差频产生的强THz射线照射行道,并依靠斯特林机致冷的热电薄膜面阵进行THz波段摄像。The present invention relates to the technical field of radiation imaging and security inspection, in particular to a road security inspection THz camera with a solid THz generator plus Stirling thermoelectric array. The strong THz rays generated by the difference frequency between the lithium niobate crystal rod and its Raman scattered light irradiate the roadway, and the thermoelectric thin film area array cooled by the Stirling machine is used for THz band imaging.
背景技术 Background technique
现有的太赫兹成像技术,大多数是用飞秒激光照射碲化锌等非线性晶体产生脉冲THz射线作时域二维的扫描,由碲化锌等非线性晶体接收扫描的THz射线作光电转换获得太赫兹成像信号,这种方法已有商品可售,但由于一秒钟约数十次的点脉冲无法在短时间内扫描完大面积的人体与物体,仅能短时间对小物体完成太赫兹成像,实用性较低。Most of the existing terahertz imaging technologies use femtosecond lasers to irradiate nonlinear crystals such as zinc telluride to generate pulsed THz rays for two-dimensional scanning in the time domain, and the nonlinear crystals such as zinc telluride receive scanned THz rays for photoelectric imaging. This method is available for sale by converting and obtaining terahertz imaging signals, but because the point pulses of about tens of times per second cannot scan a large area of human body and objects in a short time, it can only be completed for small objects in a short time Terahertz imaging is less practical.
目前实验室还采用二束波长相差约十纳米的激光照射一非线性晶体进行混频得差频THz射线输出,但效率不高,体积增大,难以得到较大功率THz射线输出作远程摄像。At present, the laboratory also uses two laser beams with a wavelength difference of about ten nanometers to irradiate a nonlinear crystal for frequency mixing to obtain THz ray output at a difference frequency.
另外实验室在发展的量子级联THz激光器、THz半导体激光器等THz源,由于输出功率低,难以作远程反射式太赫兹摄像。自由电子THz激光器输出功率很大,但体积非常庞大,不适宜作为行道安检太赫兹摄像用助视辐射源。In addition, THz sources such as quantum cascade THz lasers and THz semiconductor lasers that the laboratory is developing are difficult to perform remote reflection THz imaging due to low output power. The free electron THz laser has a large output power, but its volume is very large, so it is not suitable as a vision-aiding radiation source for terahertz photography in road security checks.
摄像用的THz传感器若用点传感器作扫描时域成像,目前扫描一帧图像成像时间太长而难以实用;进行长时间远程行道安检适宜用快速成像的THz面阵传感器。If the THz sensor used for photography uses a point sensor for scanning time-domain imaging, the scanning time for one frame of image imaging is too long to be practical; it is suitable to use a fast-imaging THz area sensor for long-term remote road security inspection.
发明内容 Contents of the invention
本发明的目的在于提供针对现有技术的提高,而提供一种行道安检THz摄像仪,达到远程行道对人对物的长时间太赫兹反射摄像或透视摄像,探测携带的危险物品安检目的。The purpose of the present invention is to improve the prior art and provide a roadside security inspection THz camera to achieve the purpose of long-term terahertz reflection imaging or perspective imaging of people and objects on the remote roadway, and to detect the security inspection of dangerous goods carried.
本发明解决的技术问题可以采用以下技术方案来实现:The technical problem that the present invention solves can adopt following technical scheme to realize:
一种行道安检THz摄像仪,其特征在于,由斯特林机制冷热电面阵THz摄像头和半导体激光器光泵截面为平弧门式铌酸锂晶体棒的固体THz远程辐射源构成,其中斯特林机制冷热电面阵THz摄像头和半导体激光器光泵截面为平弧门式铌酸锂晶体棒的固体THz远程辐射源对准行道进行反射式THz助视摄像或者对准行道相向对射进行THz摄像。A road safety inspection THz camera is characterized in that it is composed of a Stirling machine cooling thermoelectric surface array THz camera and a solid THz remote radiation source whose optical pump section of a semiconductor laser is a flat arc gate type lithium niobate crystal rod, wherein The solid THz long-distance radiation source with a THz cooling thermoelectric surface array THz camera and a semiconductor laser optical pump whose cross-section is a flat-arc gate type lithium niobate crystal rod is aligned with the roadway for reflective THz vision-aided photography or aligned with the roadway for opposite shooting. THz camera.
在本发明一个优选实施例中,所述斯特林机制冷热电面阵THz摄像头和半导体激光器光泵截面为平弧门式铌酸锂晶体棒的固体THz远程辐射源分别通过第一角度可调支架和第二角度可调支架安装在云台上,对准所述行道安检位置上的人或物进行反射式THz助视摄像。In a preferred embodiment of the present invention, the Stirling machine refrigerated thermoelectric surface array THz camera and the semiconductor laser optical pump whose cross-section is a solid THz remote radiation source with a planar arc gate type lithium niobate crystal rod can respectively pass through the first angle. The adjustable bracket and the second angle-adjustable bracket are installed on the pan-tilt, aiming at the person or object on the security check position of the roadway to perform reflective THz vision-aided camera.
所述半导体激光器光泵截面为平弧门式铌酸锂晶体棒的固体THz远程辐射源的THz射线出射方向与所述斯特林机制冷热电面阵THz摄像头的摄像方向在所述行道安检位置处交汇。The cross-section of the semiconductor laser optical pump is a flat-arc gate type lithium niobate crystal rod. The THz ray emission direction of the solid THz remote radiation source and the imaging direction of the Stirling machine cooling thermoelectric array THz camera are within the road security check intersection at the location.
所述第一角度可调支架的调节角度为0~40度;所述第二角度可调支架的调节角度为0~40度。The adjustment angle of the first angle-adjustable bracket is 0-40 degrees; the adjustment angle of the second angle-adjustable bracket is 0-40 degrees.
在本发明一个优选实施例中,所述斯特林机制冷热电面阵THz摄像头和半导体激光器光泵截面为平弧门式铌酸锂晶体棒的固体THz远程辐射源分别通过第一固定支架和第二固定支架分别安装在所述行道安检位置的两侧,相向对准所述行道安检位置上的人或物形成对射进行THz摄像。In a preferred embodiment of the present invention, the Stirling machine refrigerated thermoelectric surface array THz camera and the solid THz remote radiation source whose cross-section is a planar gate type lithium niobate crystal rod of the semiconductor laser optical pump respectively pass through the first fixed bracket and the second fixed bracket are respectively installed on both sides of the security check position of the walkway, and are aimed at the people or objects on the security check position of the walkway to form opposite shots for THz imaging.
所述斯特林机制冷热电面阵THz摄像头和半导体激光器光泵截面为平弧门式铌酸锂晶体棒的固体THz远程辐射源分别安装在所述行道安检位置的两侧时,二者相向安装的光轴穿过安检位置中心,安装平均高度为半人高度。When the Stirling machine refrigerated thermoelectric area THz camera and the solid THz remote radiation source whose cross-section is a flat arc gate type lithium niobate crystal rod are respectively installed on both sides of the roadway security check position, the two The optical axes installed oppositely pass through the center of the security check position, and the average installation height is half a person's height.
在本发明的一个优选实施例中,所述斯特林机制冷热电面阵THz摄像头通过电扫描和电信号放大处理输出视频THz摄像电视信号并且电扫描帧同步相位由仪器锁定。In a preferred embodiment of the present invention, the Stirling machine thermoelectric surface array THz camera outputs a video THz camera TV signal through electrical scanning and electrical signal amplification processing, and the electrical scanning frame synchronization phase is locked by the instrument.
在本发明的一个优选实施例中,所述斯特林机制冷热电面阵THz摄像头包括:In a preferred embodiment of the present invention, the Stirling machine thermoelectric area array THz camera includes:
一摄像头壳体;a camera housing;
配置在所述摄像头壳体内中间位置的斯特林制冷机;A Stirling refrigerator disposed in the middle of the camera housing;
配置在所述摄像头壳体内且位于所述斯特林制冷机的前端的冷仓,所述冷仓内抽真空隔热;A cold chamber arranged in the housing of the camera and located at the front end of the Stirling refrigerator, the interior of the cold chamber is evacuated and insulated;
配置在所述摄像头壳体内且位于冷仓的冷壁上的钽酸锂薄膜热电面阵传感器,其中所述钽酸锂薄膜热电面阵传感器热电感应达到对THz波段敏感;A lithium tantalate thin film pyroelectric area sensor disposed in the camera housing and located on the cold wall of the cold store, wherein the pyroelectric induction of the lithium tantalate thin film pyroelectric area sensor is sensitive to the THz band;
配置在所述摄像头壳体内且位于钽酸锂薄膜热电面阵传感器光轴前的物镜接口;The objective lens interface configured in the camera housing and located in front of the optical axis of the lithium tantalate thin film pyroelectric area sensor;
配置在物镜接口上的THz物镜;THz objective lens configured on the objective lens interface;
配置在所述摄像头壳体内的THz摄像头的电扫描同步控制与信号放大处理电路板,所述钽酸锂薄膜热电面阵传感器的信号控制引脚通过屏蔽的短引线引出冷仓外与所述THz摄像头的电扫描同步控制与信号放大处理电路板各端点进行电连接;The electronic scanning synchronous control and signal amplification processing circuit board of the THz camera arranged in the camera housing, the signal control pin of the lithium tantalate thin film pyroelectric area sensor leads out of the cold chamber and the THz sensor through a shielded short lead wire. The electric scan synchronous control of the camera is electrically connected to each terminal of the signal amplification processing circuit board;
配置在所述摄像头壳体内的电源模块,所述电源模块给所述THz摄像头的电扫描同步控制与信号放大处理电路板、钽酸锂薄膜热电面阵传感器和斯特林制冷机供电。The power supply module configured in the camera housing, the power supply module supplies power to the electronic scanning synchronous control and signal amplification processing circuit board of the THz camera, the lithium tantalate thin film thermoelectric area sensor and the Stirling refrigerator.
所述THz物镜为金面反射式物镜或用聚乙烯镜片的折射式THz物镜。The THz objective lens is a gold reflective objective lens or a refractive THz objective lens with a polyethylene lens.
所述斯特林制冷机配置有100大气压的压缩机。The Stirling refrigerator is equipped with a 100 atmosphere compressor.
在本发明的一个优选实施例中,所述半导体激光器光泵截面为平弧门式铌酸锂晶体棒的固体THz远程辐射源包括一半导体激光器光泵铌酸锂晶体固体THz发生器和配置在所述半导体激光器光泵铌酸锂晶体固体THz发生器输出光轴上的一组聚光扩束镜,所述一组聚光扩束镜将半导体激光器光泵铌酸锂晶体固体THz发生器输出的能量集中在与所述斯特林机制冷热电面阵THz摄像头视场角相近的立体角出射。In a preferred embodiment of the present invention, the solid-state THz remote radiation source whose semiconductor laser optically pumped cross-section is a flat-arc gate type lithium niobate crystal rod includes a semiconductor laser optically pumped lithium niobate crystal solid THz generator and is configured in A group of light-condensing beam expanders on the output optical axis of the semiconductor laser optically pumped lithium niobate crystal solid THz generator. The energy is concentrated at a solid angle close to the viewing angle of the Stirling machine thermoelectric surface array THz camera.
所述半导体激光器光泵铌酸锂晶体固体THz发生器由半导体激光器作泵浦源经泵浦Nd:YAG谐振元件加调谐器而产生1064nm相干脉冲激光。The semiconductor laser optically pumped lithium niobate crystal solid THz generator uses a semiconductor laser as a pumping source to generate 1064nm coherent pulsed laser light by pumping a Nd:YAG resonant element and adding a tuner.
所述1064nm相干短脉冲激光的频率是所述斯特林机制冷热电面阵THz摄像头的摄像帧频的整数倍且锁相在非消隐期间。The frequency of the 1064nm coherent short-pulse laser is an integer multiple of the imaging frame rate of the Stirling machine thermoelectric array THz camera, and the phase is locked in the non-blanking period.
所述半导体激光器光泵铌酸锂晶体固体THz发生器,包括The semiconductor laser optically pumped lithium niobate crystal solid THz generator includes
一发生器壳体;所述一组聚光扩束镜配置在所述发生器壳体的最前端;A generator housing; the set of condenser beam expanders is arranged at the front end of the generator housing;
配置在所述发生器壳体内最后端的半导体激光器;a semiconductor laser arranged at the rearmost end of the generator housing;
配置在所述发生器壳体内且位于半导体激光器前端的半导体激光器输出光轴上的Nd:YAG谐振元件与电光调谐器;Nd:YAG resonant element and electro-optic tuner arranged in the generator housing and on the output optical axis of the semiconductor laser at the front end of the semiconductor laser;
配置在所述发生器壳体内且位于Nd:YAG谐振元件前端输出光轴上的截面为平弧门式铌酸锂晶体棒,所述泵浦Nd:YAG谐振元件产生的1064nm相干脉冲激光对所述铌酸锂晶体棒进行光泵,使铌酸锂晶体产生泵浦光和拉曼光混频发射THz,由所述一组聚光扩束镜输出;The cross-section arranged in the generator housing and positioned on the output optical axis of the front end of the Nd:YAG resonant element is a flat arc gate type lithium niobate crystal rod, and the 1064nm coherent pulse laser generated by the pumping Nd:YAG resonant element has a great impact on the The lithium niobate crystal rod is optically pumped, so that the lithium niobate crystal generates pump light and Raman light to mix and emit THz, which is output by the group of light-condensing beam expanders;
配置在所述发生器壳体内电源和控制部件,所述电源和控制部件给所述半导体激光器供电并控制半导体激光器工作。A power supply and a control part are arranged in the housing of the generator, and the power supply and control part supply power to the semiconductor laser and control the operation of the semiconductor laser.
在本发明一个优选实施例中,在所述发生器壳体内配置有一第一聚准直镜,所述第一聚准直镜位于所述半导体激光器与所述Nd:YAG谐振元件之间的半导体激光器输出光轴上,该第一聚准直镜将所述半导体激光器射出的激光会聚成一束较细的强激光束射入所述的Nd:YAG谐振元件中,在谐振腔光轴上加电光调谐器产生1064nm相干脉冲激光。In a preferred embodiment of the present invention, a first collimating mirror is arranged in the housing of the generator, and the first collimating mirror is located on the semiconductor laser between the semiconductor laser and the Nd:YAG resonant element. On the output optical axis of the laser, the first collimating mirror converges the laser light emitted by the semiconductor laser into a thinner strong laser beam and injects it into the Nd:YAG resonant element, and the electro-optic light is applied on the optical axis of the resonant cavity. The tuner generates 1064nm coherent pulsed laser light.
在本发明一个优选实施例中,在所述发生器壳体内配置有一第二聚准直镜,所述第二聚准直镜位于所述Nd:YAG谐振元件与所述铌酸锂晶体棒之间的光轴上,该第二聚准直镜将所述Nd:YAG谐振元件泵浦出的1064nm相干脉冲激光会聚成一束较细的强激光束对准所述铌酸锂晶体,使铌酸锂晶体产生1064nm泵浦光和拉曼散射的闲频光在自身非线性混频中差频辐射输出在THz波段射线,由所述一组聚光扩束镜输出。In a preferred embodiment of the present invention, a second collimating mirror is disposed in the generator housing, and the second collimating mirror is located between the Nd:YAG resonant element and the lithium niobate crystal rod On the optical axis between them, the second collimating mirror converges the 1064nm coherent pulsed laser pumped by the Nd:YAG resonant element into a thinner intense laser beam aimed at the lithium niobate crystal, so that the niobate The lithium crystal generates 1064nm pump light and Raman scattered idler light, and the difference frequency radiation in its own nonlinear mixing is output in the THz band ray, which is output by the set of condensing beam expanders.
在本发明一个优选实施例中,所述铌酸锂晶体棒的形状取截面为平弧门式结构,以增强对泵浦源的辐射波导作用。In a preferred embodiment of the present invention, the shape of the lithium niobate crystal rod is a planar gate structure in cross-section, so as to enhance the radiation waveguide effect on the pump source.
在本发明一个优选实施例中,在所述铌酸锂晶体平侧面刻上THz波长光栅,使沿THz波长光栅输出的THz射线能量进一步提高,减少晶体吸收。In a preferred embodiment of the present invention, a THz wavelength grating is engraved on the flat side of the lithium niobate crystal to further increase the energy of THz rays output along the THz wavelength grating and reduce crystal absorption.
在本发明一个优选实施例中,在THz波长光栅输出方向的法线、铌酸锂晶体二端各设一反射镜,以减少铌酸锂晶体端面损失,增加THz射线发射能量和效率。In a preferred embodiment of the present invention, a reflector is provided at the normal to the output direction of the THz wavelength grating and at both ends of the lithium niobate crystal to reduce the end face loss of the lithium niobate crystal and increase the emission energy and efficiency of THz rays.
在本发明一个优选实施例中,在所述发生器壳体内配置有一1064nm反射镜,所述1064nm反射镜位于所述铌酸锂晶体前的光轴上。In a preferred embodiment of the present invention, a 1064nm reflector is disposed inside the generator casing, and the 1064nm reflector is located on the optical axis in front of the lithium niobate crystal.
在本发明一个优选实施例中,所述Nd:YAG谐振元件由Nd:YAG晶体棒、电光调Q锁模器以及前、后谐振凹镜构成,其中所述后谐振凹镜位于所述Nd:YAG晶体棒输入端的半导体激光器输出光轴上,所述电光调Q锁模器位于所述Nd:YAG晶体棒输出端的半导体激光器输出光轴上,所述前谐振凹镜位于所述电光调Q锁模器输出端的半导体激光器输出光轴上,其中Nd:YAG晶体棒在半导体激光器泵浦下产生1064nm相干脉冲激光,并被电光调Q锁模器锁相在非消隐期间。In a preferred embodiment of the present invention, the Nd:YAG resonant element is composed of a Nd:YAG crystal rod, an electro-optic Q-switched mode locker, and a front and rear resonant concave mirror, wherein the rear resonant concave mirror is located on the Nd: On the output optical axis of the semiconductor laser at the input end of the YAG crystal rod, the electro-optic Q-switching mode locker is located on the output optical axis of the semiconductor laser at the output end of the Nd:YAG crystal rod, and the front resonant concave mirror is located at the electro-optic Q-switching lock The semiconductor laser at the output end of the modulator is on the output optical axis, where the Nd:YAG crystal rod generates 1064nm coherent pulsed laser light under the pumping of the semiconductor laser, and is phase-locked by the electro-optical Q-switched mode-locker in the non-blanking period.
在本发明一个优选实施例中,所述前、后谐振凹镜之间的光程为1/2加n个波长。In a preferred embodiment of the present invention, the optical distance between the front and rear resonant concave mirrors is 1/2 plus n wavelengths.
在本发明一个优选实施例中,所述前谐振凹镜为半透半反1064nm的谐振凹镜,所述后谐振凹镜为全透808nm全反1064nm的谐振凹镜。In a preferred embodiment of the present invention, the front resonant concave mirror is a transflective 1064 nm resonant concave mirror, and the rear resonant concave mirror is a fully transparent 808 nm fully reflective 1064 nm resonant concave mirror.
在本发明一个优选实施例中,所述半导体激光器为808nm半导体激光器。In a preferred embodiment of the present invention, the semiconductor laser is an 808nm semiconductor laser.
本发明的行道安检THz摄像仪采用斯特林机制冷热电面阵THz摄像头和半导体激光器光泵截面为平弧门式铌酸锂晶体棒的固体THz远程辐射源构成,具有充分挖掘提高THz射线出射能量和THz成像的性能,能够野外加电长时间工作,使用方便,寿命长。The roadway security inspection THz camera of the present invention is composed of a Stirling machine cooling thermoelectric surface array THz camera and a semiconductor laser optical pump with a solid THz remote radiation source whose cross-section is a flat-arc gate type lithium niobate crystal rod, and has the ability to fully excavate and improve THz radiation. The output energy and THz imaging performance can work for a long time in the field, easy to use, and long life.
本发明的特点可参阅本案图式及以下较好实施方式的详细说明而获得清楚地了解。The features of the present invention can be clearly understood by referring to the drawings of the present invention and the detailed description of the following preferred embodiments.
附图说明 Description of drawings
图1为本发明实施例1的应用布置示意图。FIG. 1 is a schematic diagram of the application layout of Embodiment 1 of the present invention.
图2为本发明实施例2的应用布置示意图。Fig. 2 is a schematic diagram of the application layout of Embodiment 2 of the present invention.
图3为本发明的特林制冷热电面阵THz摄像头结构示意图。Fig. 3 is a structural schematic diagram of the THz camera head of the Tring cooling thermoelectric array of the present invention.
图4为本发明的半导体激光器光泵铌酸锂晶体的固体THz远程辐射源结构示意图。Fig. 4 is a schematic structural diagram of a solid THz remote radiation source of a semiconductor laser optically pumped lithium niobate crystal of the present invention.
具体实施方式 Detailed ways
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体图示,进一步阐述本专利。In order to make the technical means, creative features, goals and effects achieved by the present invention easy to understand, the patent will be further elaborated below in conjunction with specific illustrations.
实施例1Example 1
如图1所示,本发明的行道安检THz摄像仪由斯特林制冷热电面阵THz摄像头100和半导体激光器光泵铌酸锂晶体的固体THz远程辐射源200构成,斯特林制冷热电面阵THz摄像头100和半导体激光器光泵铌酸锂晶体的固体THz远程辐射源200分别通过角度可调支架400、500安装一云台600上,半导体激光器光泵铌酸锂晶体的固体THz远程辐射源200的THz射线出射方向200a与斯特林制冷热电面阵THz摄像头100的摄像方向100a在行道安检位置处交汇,对准行道被安检的人、物300进行反射式THz助视摄像。通过角度可调支架400、500可分别调节斯特林制冷热电面阵THz摄像头100和半导体激光器光泵铌酸锂晶体的固体THz远程辐射源200的角度。As shown in Figure 1, the roadside security inspection THz camera of the present invention is composed of a Stirling refrigeration thermoelectric surface
实施例2Example 2
参见图2,本发明的行道安检THz摄像仪由斯特林制冷热电面阵THz摄像头100和半导体激光器光泵铌酸锂晶体的固体THz远程辐射源200构成,其中斯特林制冷热电面阵THz摄像头100和半导体激光器光泵铌酸锂晶体的固体THz远程辐射源200分别通过固定支架710、720分别安装在行道安检位置的两侧半人高度的位置,斯特林制冷热电面阵THz摄像头100和半导体激光器光泵铌酸锂晶体的固体THz远程辐射源200的光轴平行在半人高处。Referring to Fig. 2, the roadway security inspection THz camera of the present invention is composed of a Stirling refrigeration thermoelectric surface
半导体激光器光泵铌酸锂晶体的固体THz远程辐射源200的THz射线出射方向200a与斯特林制冷热电面阵THz摄像头100的摄像方向100a相向对准行道安检位置上的人或物300形成对射进行THz摄像。The THz
参看图3,上述实施例中的斯特林热电面阵THz摄像头100包括一摄像头壳体160,在摄像头壳体160内的中间位置配置有斯特林制冷机110,斯特林制冷机110配置有100大气压的压缩机。在斯特林制冷机的前端设有一冷仓112。冷仓112用镜面抛光的聚乙烯薄平板122作窗口,冷仓抽真空隔热。将厚度不到4微米的钽酸锂薄膜热电面阵传感器120置于冷仓112的冷壁,致冷至90K左右。钽酸锂薄膜热电面阵传感器120的信号控制引脚通过屏蔽的短引线引出冷仓112外与THz摄像头的电扫描同步控制和信号放大处理电路板130各端点进行电连接,电扫描同步控制和信号放大处理电路板130和斯特林制冷机110由电源模块140供电。Referring to Fig. 3, the Stirling thermoelectric surface
在钽酸锂薄膜热电面阵传感器120的光轴前根据物镜后截距设置物镜接口124,配上适合安检距离视场角的合适焦距THz物镜150。THz物镜为反射式物镜或用聚乙烯镜片的折射式THz物镜。In front of the optical axis of the lithium tantalate thin film
斯特林热电面阵THz摄像头100通过电扫描和电信号放大处理输出THz摄像电视信号并且电扫描帧同步相位由仪器锁定进行THz摄像。The Stirling pyroelectric area
参见图4,上述实施例中的半导体激光器光泵铌酸锂晶体的固体THz远程辐射源200包括一半导体激光器光泵铌酸锂晶体固体THz发生器和配置在半导体激光器光泵铌酸锂晶体固体THz发生器THz输出方向上的一组聚光扩束镜250。而半导体激光器光泵铌酸锂晶体固体THz发生器包括一个发生器壳体270,在发生器壳体270内的最后端设置有一808nm半导体激光器210,在发生器壳体270内,808nm半导体激光器210前端由后向前依次设置有聚准直镜212、Nd:YAG谐振元件220、聚准直镜232、截面形状为平弧门式的铌酸锂晶体234、1064nm反射镜236,808nm半导体激光器210和聚准直镜212、Nd:YAG谐振元件220、聚准直镜232、截面形状为平弧门式的铌酸锂晶体234、1064nm反射镜236处于同一光轴上。Referring to Fig. 4, the solid THz
Nd:YAG谐振元件220包括由Nd:YAG晶体棒222、电光调Q锁模器224以及前、后谐振凹镜226、228构成,其中后谐振凹镜226位于Nd:YAG晶体棒222输入端的后侧,电光调Q锁模器224位于Nd:YAG晶体棒222输出端的前侧,前谐振凹镜228位于电光调Q锁模器224输出端的前侧,Nd:YAG晶体棒222、电光调Q锁模器224以及前、后谐振凹镜226、228位于同一光轴上。前谐振凹镜228为半透半反1064nm的谐振凹镜,后谐振凹镜226为全透808nm全反1064nm的谐振凹镜,两者之间的光程为1/2加n个波长。The Nd:YAG
808nm半导体激光器210发出的激光束经过聚准直镜212会聚出较细的强激光束泵浦Nd:YAG晶体棒222,产生1064nm相干脉冲激光并被电光调Q锁模器224锁相在非消隐期间。1064nm相干脉冲激光的脉冲频率设置在斯特林制冷热电面阵THz摄像头100的摄像帧频的整数倍上。The laser beam emitted by the
Nd:YAG晶体棒222输出1064nm脉冲激光细束对准铌酸锂晶体234进行光泵,使铌酸锂晶体234产生泵浦光与拉曼散射的光混频发射THz射线辐射出去。选择铌酸锂晶体234尺寸形状使辐射波导作用强,在铌酸锂晶体侧面刻上THz波出射光栅238,以减少THz波的吸收;并在THz输出方向的法线方向、铌酸锂晶体234二端设硅反射镜240、240a,以增大耦合和辐射强度,使输出THz波功率最大。The Nd:
在发生器壳体270的最前端配置有一组聚光扩束镜250,该一组聚光扩束镜250位于THz输出方向上,将铌酸锂晶体234输出能量集中在与THz摄像头物镜视场角相近的立体角出射。当半导体激光器光泵铌酸锂晶体的固体THz远程辐射源200的照射位置调在斯特林制冷热电面阵THz摄像头100的拍摄视场中,通过THz波对行道安检人、物的照射助视,行道安检THz摄像仪输出安检人、物的THz波反射或穿透的强弱图像的视频信号。A group of
配置在发生器壳体270内的电源和控制部件260给半导体激光器210供电并控制半导体激光器210工作。The power supply and
以上显示与描述了本发明的基本原理和主要特征及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内,本发明要求保护范围由所附的权利要求书及其等效物界定。The basic principles and main features of the present invention and the advantages of the present invention have been shown and described above. Those skilled in the industry should understand that the present invention is not limited by the above-mentioned embodiments. What are described in the above-mentioned embodiments and the description only illustrate the principle of the present invention. Without departing from the spirit and scope of the present invention, the present invention will also have Various changes and improvements fall within the scope of the claimed invention, which is defined by the appended claims and their equivalents.
Claims (21)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201110130356.3A CN102353998B (en) | 2011-05-19 | 2011-05-19 | Terahertz (THz) video camera for channel security check |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201110130356.3A CN102353998B (en) | 2011-05-19 | 2011-05-19 | Terahertz (THz) video camera for channel security check |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102353998A CN102353998A (en) | 2012-02-15 |
| CN102353998B true CN102353998B (en) | 2013-12-25 |
Family
ID=45577589
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201110130356.3A Expired - Fee Related CN102353998B (en) | 2011-05-19 | 2011-05-19 | Terahertz (THz) video camera for channel security check |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102353998B (en) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105158196B (en) * | 2015-05-12 | 2017-09-29 | 上海理工大学 | A kind of THz wave 3D rendering acquisition methods and system |
| CN104849294A (en) * | 2015-06-05 | 2015-08-19 | 公安部第三研究所 | Article examining and detecting device based on extremely high-frequency impulse electromagnetic wave |
| CN108182663B (en) * | 2017-12-26 | 2021-11-30 | 北京无线电计量测试研究所 | Millimeter wave image effect enhancement method and device and readable storage medium |
| CN108627880B (en) * | 2018-06-29 | 2021-03-19 | 深圳市重投华讯太赫兹科技有限公司 | Security inspection system and security inspection method |
| EP3709000B1 (en) | 2019-03-14 | 2024-07-10 | Canon Kabushiki Kaisha | Processing system |
| US20200293806A1 (en) * | 2019-03-14 | 2020-09-17 | Canon Kabushiki Kaisha | Camera system and facility |
| CN115407418B (en) * | 2021-05-27 | 2025-04-11 | 宝山钢铁股份有限公司 | A method for judging shearing of steel plates |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1875295A (en) * | 2003-09-15 | 2006-12-06 | 中心实验室研究委员会 | Millimeter and submillimeter imaging setup |
| CN101061709A (en) * | 2004-08-04 | 2007-10-24 | 中心实验室研究委员会 | Scanning portal imager |
| CN101238393A (en) * | 2005-06-02 | 2008-08-06 | 思拉视象有限公司 | Scanning method and apparatus |
| CN201141981Y (en) * | 2008-01-02 | 2008-10-29 | 张敏 | Continuous wave Terahertz real-time imaging device |
| CN101846752A (en) * | 2010-06-03 | 2010-09-29 | 北京理工大学 | Single wave beam scanning imaging method of passive THz wave imaging system |
-
2011
- 2011-05-19 CN CN201110130356.3A patent/CN102353998B/en not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1875295A (en) * | 2003-09-15 | 2006-12-06 | 中心实验室研究委员会 | Millimeter and submillimeter imaging setup |
| CN101061709A (en) * | 2004-08-04 | 2007-10-24 | 中心实验室研究委员会 | Scanning portal imager |
| CN101238393A (en) * | 2005-06-02 | 2008-08-06 | 思拉视象有限公司 | Scanning method and apparatus |
| CN201141981Y (en) * | 2008-01-02 | 2008-10-29 | 张敏 | Continuous wave Terahertz real-time imaging device |
| CN101846752A (en) * | 2010-06-03 | 2010-09-29 | 北京理工大学 | Single wave beam scanning imaging method of passive THz wave imaging system |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102353998A (en) | 2012-02-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102353998B (en) | Terahertz (THz) video camera for channel security check | |
| US5181211A (en) | Eye-safe laser system | |
| US5088096A (en) | Tunable power laser | |
| CN101592845B (en) | Dual-wavelength tunable intracavity terahertz parametric oscillator and method of use thereof | |
| CN101324734A (en) | Device for Generating Tunable Narrowband Terahertz Waves Using Optical Difference Frequency | |
| CN104503183B (en) | Self frequency-changing's tera-hertz parametric oscillator | |
| CN107132029A (en) | It is a kind of while measuring the method for the reflectivity of high reflection/highly transmissive optical element, transmitance, scattering loss and absorption loss | |
| CN104158077B (en) | Rapid tuning terahertz parametric oscillation radiation source device and method based on rowland circle | |
| Gordienko et al. | Powerful 3 μ m YSGG: Cr: Er and YSGG: Cr: Yb: Ho Q-Switched Lasers Operating in the Repetition-Rate Mode | |
| CN106654837B (en) | Seed light injection high-power terahertz difference frequency source system | |
| CN106451032B (en) | A kind of inner cavity tera wave parametric oscillator of THz wave enhancing | |
| CN111370988A (en) | A 1.55μm band Q-switched pulsed laser | |
| CN206283093U (en) | Seed light injects high power Terahertz difference frequency origin system | |
| CN103794293A (en) | Terahertz parameter source based on potassium titanyl phosphate crystal and application thereof | |
| CN117937223A (en) | Passive Q-switched laser and Raman-LIBS combined device | |
| Sato et al. | Tabletop terahertz-wave parametric generator using a compact, diode-pumped Nd: YAG laser | |
| Gordienko et al. | Generation of superintense femtosecond pulses by the Cr: forsterite laser system | |
| CN110649459B (en) | An Active Illuminated Beacon System Based on Alkali Metal Vapor Laser | |
| CN106374323B (en) | Laser up-conversion terahertz difference frequency source detection system | |
| Jin et al. | Research on portable underwater laser range gated imaging system | |
| Vogelmann et al. | Transverse-pumping approach for a powerful single-mode Ti: sapphire laser for near infrared lidar applications | |
| CN116539557A (en) | Terahertz wave imaging system and method based on Redberg atoms | |
| Freidman et al. | Multicascade broadband optical parametric chirped pulse amplifier based on KD* P crystals | |
| CN109167236B (en) | A three-dimensional terahertz wave parametric oscillator | |
| WO2020221852A1 (en) | Optical apparatus and methods |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131225 Termination date: 20160519 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |