CN102372500A - Method for preparing Cu diffusion doped ZnO base semiconductor by adopting laser pulse deposition method - Google Patents
Method for preparing Cu diffusion doped ZnO base semiconductor by adopting laser pulse deposition method Download PDFInfo
- Publication number
- CN102372500A CN102372500A CN2011101433961A CN201110143396A CN102372500A CN 102372500 A CN102372500 A CN 102372500A CN 2011101433961 A CN2011101433961 A CN 2011101433961A CN 201110143396 A CN201110143396 A CN 201110143396A CN 102372500 A CN102372500 A CN 102372500A
- Authority
- CN
- China
- Prior art keywords
- zno
- diffusion
- preparing
- thin film
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 18
- 238000009792 diffusion process Methods 0.000 title claims abstract description 15
- 238000000151 deposition Methods 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 title claims abstract description 10
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 239000010409 thin film Substances 0.000 claims abstract description 20
- 230000008021 deposition Effects 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000013078 crystal Substances 0.000 claims abstract description 3
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 3
- 239000010703 silicon Substances 0.000 claims abstract description 3
- 238000004549 pulsed laser deposition Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims 1
- 239000011159 matrix material Substances 0.000 claims 1
- 238000004544 sputter deposition Methods 0.000 abstract description 5
- 238000000576 coating method Methods 0.000 abstract description 2
- 239000013077 target material Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 230000005693 optoelectronics Effects 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
Landscapes
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明涉及半导体薄膜材料制备方法。所制材料包括衬底,ZnO基层,扩散层。其扩散层为沉积Cu高温扩散掺杂进入ZnO基层形成的扩散层。薄膜采用脉冲激光沉积方法制备,衬底为(100)硅单晶,激光脉冲腔内真空度5×10-4Pa,沉积温度为450℃,激光频率4Hz,激光能量190kV,ZnO基薄膜溅射时间40分钟,在上述基础上加镀Cu层,沉积时间为2分钟,保温30分钟,所制备Cu扩散掺杂的ZnO基薄膜在腔体内自然冷却至室温而形成。本发明在制备掺杂ZnO基半导体薄膜时优于以往烧结靶材溅射镀膜工艺,在制备不同含量ZnO基半导体薄膜时较为方便。The invention relates to a method for preparing a semiconductor thin film material. The prepared materials include substrate, ZnO base layer and diffusion layer. Its diffusion layer is a diffusion layer formed by deposition of high-temperature diffusion and doping of Cu into the ZnO base layer. The thin film is prepared by pulse laser deposition method, the substrate is (100) silicon single crystal, the vacuum degree in the laser pulse cavity is 5×10 -4 Pa, the deposition temperature is 450°C, the laser frequency is 4Hz, the laser energy is 190kV, and the ZnO-based thin film is sputtered The time is 40 minutes, a Cu layer is added on the above basis, the deposition time is 2 minutes, and the temperature is kept for 30 minutes. The prepared Cu diffusion-doped ZnO-based thin film is naturally cooled to room temperature in the cavity to form. The present invention is superior to the previous sintered target material sputtering coating process when preparing doped ZnO-based semiconductor thin films, and is more convenient when preparing ZnO-based semiconductor thin films with different contents.
Description
技术领域 本发明涉及一种利用脉冲激光沉积方法制备Cu扩散掺杂ZnO基半导体薄膜的方法,属于半导体材料技术领域。 Technical field The present invention relates to a method for preparing Cu diffusion-doped ZnO-based semiconductor thin film by pulse laser deposition method, which belongs to the technical field of semiconductor materials. the
背景技术 ZnO是一种具有优异性能的宽禁带氧化物半导体材料,在电子和光电子器件应用方面具有很多优点,被认为是新一代的光电半导体材料,在光电子器件和信息材料中,具有广阔的应用前景。但制备掺杂ZnO基半导体薄膜一般采用烧结靶材溅射镀膜工艺,在制备不同含量ZnO基半导体薄膜时较为复杂。 Background technology ZnO is a wide bandgap oxide semiconductor material with excellent performance. It has many advantages in the application of electronic and optoelectronic devices. It is considered to be a new generation of optoelectronic semiconductor materials. It has broad applications in optoelectronic devices and information materials. Application prospects. However, the preparation of doped ZnO-based semiconductor thin films generally adopts a sintered target sputtering coating process, which is more complicated when preparing ZnO-based semiconductor thin films with different contents. the
发明内容 为了克服现有制备不同含量ZnO基半导体薄膜的复杂工艺,本发明提供一种利用脉冲激光沉积方法制备Cu扩散掺杂ZnO基半导体薄膜的方法,能够较为简便的制备掺杂半导体。 Summary of the invention In order to overcome the existing complex process of preparing ZnO-based semiconductor thin films with different contents, the present invention provides a method for preparing Cu diffusion-doped ZnO-based semiconductor thin films by pulsed laser deposition, which can prepare doped semiconductors more easily. the
本发明采用脉冲激光沉积方法制备Cu扩散掺杂ZnO基半导体薄膜方法,所制材料包括衬底,ZnO基层,扩散层。其特征在于,所述的扩散层为沉积Cu高温扩散掺杂进入ZnO基层形成的扩散层。 The invention adopts a pulse laser deposition method to prepare a Cu diffusion-doped ZnO-based semiconductor thin film method, and the prepared materials include a substrate, a ZnO base layer and a diffusion layer. It is characterized in that the diffusion layer is a diffusion layer formed by deposition of high-temperature diffusion doping of Cu into the ZnO base layer. the
本发明具有Cu扩散掺杂ZnO基半导体薄膜,采用脉冲激光沉积方法制备,衬底为(100)硅单晶,激光脉冲腔内真空度5×10-4Pa,沉积温度为450℃,激光频率4Hz,激光能量190kV,ZnO薄膜溅射时间40分钟,在上述基础上加镀Cu层,沉积时间为2分钟,450℃保温30分钟,制备Cu扩散掺杂的ZnO基薄膜。薄膜在腔体内自然冷却至室温而形成。 The present invention has Cu diffusion-doped ZnO-based semiconductor film, which is prepared by pulse laser deposition method, the substrate is (100) silicon single crystal, the vacuum degree in the laser pulse cavity is 5×10 -4 Pa, the deposition temperature is 450°C, and the laser frequency is 4Hz, laser energy 190kV, ZnO thin film sputtering time 40 minutes, Cu layer was added on the above basis, deposition time was 2 minutes, 450°C was kept for 30 minutes, and Cu diffusion-doped ZnO-based thin film was prepared. The thin film is naturally cooled to room temperature in the cavity to form.
采用脉冲激光沉积制备Cu扩散掺杂ZnO基半导体薄膜技术如下: The technique of preparing Cu diffusion-doped ZnO-based semiconductor thin film by pulsed laser deposition is as follows:
(1)本实验所采用的衬底为2英寸的单晶Si(100)衬底,单面抛光。将Si片浸没在丙酮中,置于超声波发生器中清洗一小时,无水乙醇超声清洗一小时,离子水超声清洗一小时,取出置于恒温干燥箱中烘干。 (1) The substrate used in this experiment is a 2-inch single-crystal Si (100) substrate, which is polished on one side. Submerge the Si sheet in acetone, clean it in an ultrasonic generator for one hour, ultrasonically clean it with anhydrous ethanol for one hour, and clean it with ion water for one hour, then take it out and place it in a constant temperature drying oven for drying. the
(2)将ZnO基靶、Cu靶靶材和衬底分别固定在相应的样品架上,调整衬底与靶材的距离为50mm,然后旋紧阀门,关闭真空室。 (2) Fix the ZnO-based target, the Cu target and the substrate on the corresponding sample holders, adjust the distance between the substrate and the target to 50mm, then tighten the valve and close the vacuum chamber. the
(3)打开分子泵冷却水,打开电源,开启机械泵,打开旁抽阀,数分钟后打开真空计。当系统真空度达到2-3Pa时,关闭旁抽阀,打开隔断阀,并启动分子泵。 (3) Turn on the cooling water of the molecular pump, turn on the power, turn on the mechanical pump, open the side pumping valve, and turn on the vacuum gauge after a few minutes. When the system vacuum reaches 2-3 Pa, close the bypass valve, open the isolation valve, and start the molecular pump.
(4)设定衬底温度,当系统真空度达到5×10-4Pa以上时先在低功率下预热炉丝3分钟,升温速率控制在15~20℃/分钟,升温至薄膜生长所需的温度。 (4) Set the substrate temperature. When the vacuum degree of the system reaches 5×10 -4 Pa or above, preheat the furnace filament at low power for 3 minutes, control the heating rate at 15-20°C/min, and raise the temperature to the required temperature for film growth. required temperature.
(5)当衬底温度和反应室内压强达到预设值时,先溅射ZnO基靶在衬底上形成一层ZnO基薄膜(40分钟),再溅射Cu靶,通过控制溅射时间来控制薄膜中Cu的含量。450℃保温30分钟以确保Cu在ZnO基薄膜中扩散充分。 (5) When the substrate temperature and the pressure in the reaction chamber reach the preset value, first sputter the ZnO-based target to form a layer of ZnO-based thin film on the substrate (40 minutes), and then sputter the Cu target, by controlling the sputtering time to Control the content of Cu in the film. 450 ° C for 30 minutes to ensure sufficient Cu diffusion in the ZnO-based film. the
具体实施方式 Detailed ways
(1)衬底清洗 (1) Substrate cleaning
本实验所采用的衬底为2英寸的单晶Si(100)衬底,单面抛光,其电阻率为1.9~2.6×103Ω/cm。首先将Si片浸没在丙酮中,置于超声波发生器中清洗一小时,无水乙醇超声清洗一小时,离子水超声清洗一小时,取出置于恒温干燥箱中烘干。 The substrate used in this experiment is a 2-inch single-crystal Si (100) substrate, polished on one side, and its resistivity is 1.9-2.6×10 3 Ω/cm. First, immerse the Si sheet in acetone, place it in an ultrasonic generator for cleaning for one hour, clean it ultrasonically for one hour with anhydrous ethanol, and clean it ultrasonically for one hour with ionized water, then take it out and place it in a constant temperature drying oven for drying.
(2)靶材及衬底的安装 (2) Installation of target and substrate
将ZnO基靶、Cu靶靶材和衬底分别固定在相应的样品架上,调整衬底与靶材的距离为50mm,然后旋紧阀门,关闭真空室。 Fix the ZnO-based target, the Cu target and the substrate on the corresponding sample holders, adjust the distance between the substrate and the target to 50mm, then tighten the valve and close the vacuum chamber. the
(3)抽真空 (3) vacuuming
首先打开分子泵冷却水,打开电源,开启机械泵,打开旁抽阀,数分钟后打开真空计;当系统真空度达到2-3Pa时,关闭旁抽阀,打开隔断阀,并启动分子泵。 First turn on the cooling water of the molecular pump, turn on the power, turn on the mechanical pump, open the side pumping valve, and turn on the vacuum gauge after a few minutes; when the vacuum degree of the system reaches 2-3 Pa, close the side pumping valve, open the isolation valve, and start the molecular pump .
(4)衬底加热 (4) Substrate heating
设定衬底温度,当系统真空度达到5×10-4Pa以上时先在低功率下预热炉丝3分钟,升温速率控制在15~20℃/分钟,升温至薄膜生长所需的温度。 Set the substrate temperature. When the vacuum degree of the system reaches 5×10 -4 Pa or above, preheat the furnace wire under low power for 3 minutes, control the heating rate at 15-20°C/min, and raise the temperature to the temperature required for film growth .
(5)Cu扩散掺杂ZnO基样品的制备 (5) Preparation of Cu diffusion-doped ZnO-based samples
当衬底温度和反应室内压强达到预设值时,先溅射ZnO基靶在衬底上形成一层ZnO基薄膜(40分钟),再溅射Cu靶,通过控制溅射时间来控制薄膜中Cu的含量。450℃保温30分钟以确保Cu在ZnO基薄膜中扩散充分。 When the temperature of the substrate and the pressure in the reaction chamber reach the preset values, the ZnO-based target is first sputtered to form a layer of ZnO-based film on the substrate (40 minutes), and then the Cu target is sputtered, and the sputtering time is controlled to control the amount of time in the film. Cu content. 450 ° C for 30 minutes to ensure sufficient Cu diffusion in the ZnO-based film. the
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2011101433961A CN102372500A (en) | 2011-05-31 | 2011-05-31 | Method for preparing Cu diffusion doped ZnO base semiconductor by adopting laser pulse deposition method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2011101433961A CN102372500A (en) | 2011-05-31 | 2011-05-31 | Method for preparing Cu diffusion doped ZnO base semiconductor by adopting laser pulse deposition method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN102372500A true CN102372500A (en) | 2012-03-14 |
Family
ID=45791790
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2011101433961A Pending CN102372500A (en) | 2011-05-31 | 2011-05-31 | Method for preparing Cu diffusion doped ZnO base semiconductor by adopting laser pulse deposition method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102372500A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104593733A (en) * | 2015-02-13 | 2015-05-06 | 哈尔滨工业大学 | Pulsed laser deposition preparation method for copper-doped zinc oxide nanorod |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1933205A (en) * | 2005-08-12 | 2007-03-21 | 三星电子株式会社 | Single-crystal nitride-based semiconductor substrate and method of manufacturing high-quality nitride-based light emitting device by using the same |
| US20080187684A1 (en) * | 2007-02-07 | 2008-08-07 | Imra America, Inc. | Method for depositing crystalline titania nanoparticles and films |
-
2011
- 2011-05-31 CN CN2011101433961A patent/CN102372500A/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1933205A (en) * | 2005-08-12 | 2007-03-21 | 三星电子株式会社 | Single-crystal nitride-based semiconductor substrate and method of manufacturing high-quality nitride-based light emitting device by using the same |
| US20080187684A1 (en) * | 2007-02-07 | 2008-08-07 | Imra America, Inc. | Method for depositing crystalline titania nanoparticles and films |
Non-Patent Citations (2)
| Title |
|---|
| XIAO-LI,LI ET AL.: "Role of donor defects in enhancing ferromagnetism of Cu-doped ZnO films", 《JOURNAL OF APPLIED PHYSICS》, vol. 105, 31 December 2009 (2009-12-31) * |
| 于业梅: "脉冲激光沉积制备Cu掺杂ZnO薄膜的研究", 《中国优秀硕士学位论文全文数据库 基础科学辑》, 15 March 2010 (2010-03-15) * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104593733A (en) * | 2015-02-13 | 2015-05-06 | 哈尔滨工业大学 | Pulsed laser deposition preparation method for copper-doped zinc oxide nanorod |
| CN104593733B (en) * | 2015-02-13 | 2017-01-04 | 哈尔滨工业大学 | The pulsed laser deposition preparation method of copper doped zinc oxide nanometer rods |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105826362B (en) | A kind of gallium oxide nano-wire array and preparation method thereof | |
| CN105018881B (en) | One kind contains V6O13The amorphous oxide vanadium thin-film material and preparation method of crystal | |
| CN101514440B (en) | Method for preparation of indium oxide transparent film with high electron mobility | |
| CN100575539C (en) | Method for preparing indium-gallium-antimony-based polycrystalline thin films by multiple co-evaporation | |
| CN102212782A (en) | Quick thermal treatment method for preparing vanadium dioxide film | |
| CN101740358A (en) | Method for preparing P type poly-silicon thin film on glass substrate | |
| CN107058962A (en) | A kind of method that low temperature magnetic sputtering prepares low-resistivity titanium nitride membrane | |
| CN101651148B (en) | ZnO group heterojunction and preparation method thereof | |
| CN103904160A (en) | X-ray detector manufacturing method based on CdZnTe film | |
| CN103757594A (en) | Method for preparing high-performance AZO transparent electro-conductive film on flexible substrate at room temperature | |
| CN102732847A (en) | Phase change vanadium dioxide film prepared by rapid thermal oxidation method | |
| CN102586880A (en) | Preparation method of oriented ZeTe nanocrystals | |
| CN104404462B (en) | A kind of method that cosputtering low temperature quickly prepares polysilicon membrane | |
| CN108930019B (en) | A kind of preparation method of TSC ceramic film and its product and application | |
| CN104790032A (en) | Method for laser pulse sputtering deposition preparation of polycrystalline silicon thin film | |
| CN102709404A (en) | Method for preparing polycrystalline silicon film by carrying out induced crystallization on amorphous silicon film by using metallic copper under low temperature | |
| CN105331950A (en) | Manufacturing method of two-dimensional perovskite film | |
| CN103774098B (en) | Tin monoxide textured film and preparation method thereof | |
| CN104790029B (en) | A kind of method for preparing SnO epitaxial films | |
| CN105349953B (en) | Thermal oxide Zn3N2:The method that group-III element prepares p-type zinc oxide | |
| CN102372500A (en) | Method for preparing Cu diffusion doped ZnO base semiconductor by adopting laser pulse deposition method | |
| CN107022749A (en) | A kind of method that utilization substep annealing technology prepares submicron order flawless ferrite film | |
| CN105200518B (en) | A kind of method that lead selenide polycrystal film is prepared based on oxygen ion beam assistant depositing | |
| CN107326326A (en) | The method for preparing zinc oxide thin film that a kind of electricity device is adulterated with Al | |
| CN103147061B (en) | Method for preparing amorphous transparent zinc oxide film |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| DD01 | Delivery of document by public notice |
Addressee: Anhui University Fang Qingqing Document name: Notice of amendment |
|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120314 |