CN102387654A - Microscale low-temperature plasma jet generating device of atmospheric pressure - Google Patents
Microscale low-temperature plasma jet generating device of atmospheric pressure Download PDFInfo
- Publication number
- CN102387654A CN102387654A CN2011103350060A CN201110335006A CN102387654A CN 102387654 A CN102387654 A CN 102387654A CN 2011103350060 A CN2011103350060 A CN 2011103350060A CN 201110335006 A CN201110335006 A CN 201110335006A CN 102387654 A CN102387654 A CN 102387654A
- Authority
- CN
- China
- Prior art keywords
- quartz glass
- glass tube
- flat metal
- plasma
- metal electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000002184 metal Substances 0.000 claims abstract description 15
- 230000005284 excitation Effects 0.000 claims abstract description 8
- 230000005684 electric field Effects 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 5
- 238000010521 absorption reaction Methods 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 claims description 2
- 238000007493 shaping process Methods 0.000 claims description 2
- 238000002834 transmittance Methods 0.000 claims description 2
- 238000004659 sterilization and disinfection Methods 0.000 abstract description 4
- 238000003754 machining Methods 0.000 abstract description 3
- 230000001954 sterilising effect Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000001311 chemical methods and process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
Images
Landscapes
- Apparatus For Disinfection Or Sterilisation (AREA)
Abstract
一种大气压微尺度低温等离子体射流发生装置,属于低温等离子体技术领域。其特征是等离子体射流在石英玻璃管内产生,激励电场由安放在石英玻璃管外侧相对位置的平板形金属电极建立,在平板形金属电极的上、下表面上分别放置石英玻璃板,其外侧正对着石英玻璃管的位置附近分别放置紫外光源,平板形金属电极由具有脉冲调制功能的射频电源经过网络匹配器驱动,另一个平板形金属电极接地。本发明的效果和益处是在常压条件下获得了没有等离子体污染的物理尺寸能按比例改变的微尺度等离子体射流,而且通过调整脉冲占空比控制等离子体的气体温度,在生物医疗的杀菌消毒和高精密的微纳机械加工等诸多相关领域得到应用。
The invention relates to an atmospheric pressure micro-scale low-temperature plasma jet generating device, which belongs to the technical field of low-temperature plasma. It is characterized in that the plasma jet is generated in the quartz glass tube, and the excitation electric field is established by a flat metal electrode placed on the opposite side of the quartz glass tube. Quartz glass plates are respectively placed on the upper and lower surfaces of the flat metal electrode, and the outside is positive An ultraviolet light source is placed near the position facing the quartz glass tube, the flat metal electrode is driven by a radio frequency power supply with pulse modulation function through a network matcher, and the other flat metal electrode is grounded. The effect and benefit of the present invention is to obtain the micro-scale plasma jet with no plasma pollution and the physical size can be changed in proportion under the condition of normal pressure, and control the gas temperature of the plasma by adjusting the pulse duty ratio, which can be used in biomedicine Sterilization and high-precision micro-nano machining and many other related fields have been applied.
Description
技术领域 technical field
本发明属于低温等离子体技术领域,涉及一种应用在微纳刻蚀技术领域和生物医疗中杀菌消毒的大气压微尺度低温等离子体射流发生装置。 The invention belongs to the field of low-temperature plasma technology, and relates to an atmospheric-pressure micro-scale low-temperature plasma jet generating device used in the field of micro-nano etching technology and biomedicine for sterilization and disinfection. the
背景技术 Background technique
大气压等离子体技术经过十几年的发展过程中衍生出的一个重要分支是等离子体射流技术。着眼于生物,医疗,以及工业用无机,有机和金属材料表面改性和微纳刻蚀加工等应用所开展的等离子体射流技术研究工作日益受到医学,生物,以及机械超精密加工等其他学科研究者的关注。在大气压下产生等离子体不仅因为不需要真空环境而大大减少了真空设备的投资,而且由于安装空间不受真空腔的限制使得等离子体设备与其他设备的结合和配套的灵活性大大增加,还有,等离子体射流中所产生大量的电中性的活性自由基较带电粒子相比无论从产生的粒子数密度还是与被处理材料相互作用的物理化学过程都显得更为重要和直接。 An important branch derived from atmospheric pressure plasma technology after more than ten years of development is plasma jet technology. Focusing on the application of biological, medical, and industrial inorganic, organic, and metal materials surface modification and micro-nano etching processing, the research work of plasma jet technology is increasingly being researched by other disciplines such as medical, biological, and mechanical ultra-precision processing attention. Generating plasma under atmospheric pressure not only greatly reduces the investment in vacuum equipment because it does not require a vacuum environment, but also greatly increases the flexibility of combining and supporting plasma equipment with other equipment because the installation space is not limited by the vacuum chamber. Compared with charged particles, a large number of electrically neutral active free radicals generated in the plasma jet are more important and direct in terms of the number density of generated particles and the physical and chemical process of interacting with the processed materials. the
通常在大气压下对温度敏感材料的处理以及在低温精密加工过程中,一方面要求有低的气体温度,另一方面等离子体电子温度越高越有利于通过物理化学过程得到活性自由基以及各种激发态粒子。通常所采用的技术方法中通过增加功率来获得高电子温度等离子体的方式往往会导致气体温度也会随之升高,使得很多现有的等离子体射流形态在应用中受到局限。 Usually, in the treatment of temperature-sensitive materials under atmospheric pressure and in the process of low-temperature precision machining, on the one hand, a low gas temperature is required, and on the other hand, the higher the plasma electron temperature, the more favorable it is to obtain active free radicals and various materials through physical and chemical processes. excited particles. In the commonly used technical method, increasing the power to obtain high electron temperature plasma often leads to the increase of gas temperature, which limits the application of many existing plasma jet forms. the
发明内容 Contents of the invention
本发明的目的在于提供一种大气压微尺度低温等离子体射流发生装置,在大气压下以脉冲调制方式实现微尺度等离子体射流的激发和维持,本装置能够 在脉冲的工作期间内获得高电子温度和电子密度的等离子体的同时通过脉冲占空比的调节控制等离子体的气体温度,从而实现生物医疗中杀菌消毒和高精密微纳加工等各种不同实际应用的要求。 The object of the present invention is to provide an atmospheric pressure micro-scale low-temperature plasma jet generating device, which can realize the excitation and maintenance of the micro-scale plasma jet in the form of pulse modulation under atmospheric pressure. This device can obtain high electron temperature and The plasma of electron density controls the gas temperature of the plasma through the adjustment of the pulse duty ratio, so as to realize the requirements of various practical applications such as sterilization and high-precision micro-nano processing in biomedicine. the
本发明的研究技术思路是采用脉冲调制的射频电源来激励大气压等离子体射流,通过脉冲占空比的调整来降低等离子体温度的同时在脉冲工作期间可以产生高电子密度,高电子温度的等离子体放电和高密度活性自由基的等离子体射流;还有,为了避免等离子体污染我们采用了介质阻挡放电的形态对介质管内的工作气体进行横向激励,这样相对于多数采用纵向激励电场获得等离子体射流的放电形态来说又大大降低了激发维持电压,使得电源的其它性能指标,如纹波系数等,得以提高,从而增加等离子体的稳定性;另外,本发明采用了紫外光辅助电离的方法,更加有利于在每一个放电周期中的电离激发,能够进一步降低所需的激发维持电压。 The research technical idea of the present invention is to use a pulse-modulated radio frequency power supply to excite the atmospheric pressure plasma jet, and reduce the plasma temperature by adjusting the pulse duty cycle, and at the same time, a plasma with high electron density and high electron temperature can be generated during the pulse working period. Discharge and plasma jets of high-density active radicals; In addition, in order to avoid plasma pollution, we adopt the form of dielectric barrier discharge to excite the working gas in the dielectric tube laterally, so that compared with most of the plasma jets obtained by longitudinal excitation electric field In terms of the discharge form, the excitation and maintenance voltage is greatly reduced, so that other performance indicators of the power supply, such as ripple coefficient, etc., can be improved, thereby increasing the stability of the plasma; It is more conducive to the ionization and excitation in each discharge cycle, and can further reduce the required excitation and maintenance voltage. the
本发明的技术方案是等离子体射流在石英玻璃管1内产生,石英玻璃管内的激励电场由安放在石英玻璃管两侧相对着的位置的平板形金属电极2和3建立,在平板形金属电极的上表面和下表面上分别放置石英玻璃板5和石英玻璃板4来固定整个平板形金属电极2和3以及石英玻璃管1,在石英玻璃板4和5的外侧正对着石英玻璃管1的位置附近分别放置紫外光源8和紫外光源9使得发射的紫外光透过石英玻璃板4或5以及石英玻璃管1的管壁照射在石英玻璃管1内流过的工作气体,这样构成所述等离子体放电部件;平板形金属电极2接地,平板形金属电极3由具有脉冲调制功能的射频电源6经过网络匹配器7驱动;在石英玻璃管1的射流输出端按实际要求安装相应尺寸的射流整形喷嘴。
The technical scheme of the present invention is that the plasma jet is generated in the quartz glass tube 1, and the excitation electric field in the quartz glass tube is established by the
本发明所述大气压微尺度低温等离子体射流发生装置,射频电源6工作频率为13.56MHz的工业标准频率,脉冲调制占空比在1%到100%范围内变化; 所述石英玻璃管的内径取值范围为3微米到2毫米;所述石英玻璃管和石英玻璃板材料具有对紫外光低吸收,低散射和高透过率的光学特性。
The atmospheric pressure micro-scale low-temperature plasma jet generating device of the present invention, the radio
本发明的有益效果是在常压开放的条件下获得了没有等离子体污染的物理尺寸能够比例改变的微尺度等离子体射流,而且通过调整脉冲占空比控制等离子体的气体温度,在生物医疗的杀菌消毒和高精密的微纳机械加工等诸多相关领域得到应用。 The beneficial effect of the present invention is to obtain a micro-scale plasma jet with no plasma pollution and a proportionally changeable physical size under the condition of normal pressure and openness, and to control the gas temperature of the plasma by adjusting the pulse duty cycle, which can be used in biomedicine Sterilization and high-precision micro-nano machining and many other related fields have been applied. the
附图说明 Description of drawings
附图是大气压微尺度低温等离子体射流发生装置结构示意图。 The accompanying drawing is a structural schematic diagram of an atmospheric pressure micro-scale low-temperature plasma jet generating device. the
图中:1石英玻璃管;2平板形金属电极;3平板形金属电极;4石英玻璃板;5石英玻璃板;6射频电源;7网络匹配器;8紫外光源;9紫外光源。 In the figure: 1 quartz glass tube; 2 flat metal electrode; 3 flat metal electrode; 4 quartz glass plate; 5 quartz glass plate; 6 radio frequency power supply; 7 network matcher; 8 ultraviolet light source; 9 ultraviolet light source. the
具体实施方式 Detailed ways
以下结合技术方案和附图详细叙述本发明的具体实施方式。 The specific embodiments of the present invention will be described in detail below in conjunction with the technical solutions and accompanying drawings. the
首先,在石英玻璃管1内通入载气并设定射频电源6的工作方式为连续输出方式,开启紫外光源8和紫外光源9,接通射频电源6,调节射频电源的输出电压以及网络匹配器7使得在石英玻璃管1内产生的等离子体放电稳定并充满整个石英玻璃管1,然后,按一定比例加入活性工作气体,再次调整射频电源输出电压、紫外光源8和9的辐射强度、以及网络匹配器7,使得反射功率最小并且放电状态稳定,接着,按照应用的要求调节射频电源6的调制频率来控制等离子体的温度,并把所产生的等离子体射流以一定的距离和角度喷射在待处理或待加工的样品表面上。
Firstly, feed the carrier gas into the quartz glass tube 1 and set the working mode of the
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2011103350060A CN102387654A (en) | 2011-10-29 | 2011-10-29 | Microscale low-temperature plasma jet generating device of atmospheric pressure |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2011103350060A CN102387654A (en) | 2011-10-29 | 2011-10-29 | Microscale low-temperature plasma jet generating device of atmospheric pressure |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN102387654A true CN102387654A (en) | 2012-03-21 |
Family
ID=45826452
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2011103350060A Pending CN102387654A (en) | 2011-10-29 | 2011-10-29 | Microscale low-temperature plasma jet generating device of atmospheric pressure |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102387654A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104470182A (en) * | 2014-10-28 | 2015-03-25 | 大连理工大学 | A Microwave Plasma Atmospheric Pressure Jet Device Based on Surface Plasmons |
| CN113347773A (en) * | 2021-05-17 | 2021-09-03 | 安徽中科大禹科技有限公司 | Plasma jet diagnosis device |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001078469A2 (en) * | 2000-04-06 | 2001-10-18 | Plex Llc | Z-pinch plasma x-ray source using surface discharge preionization |
| US20040071267A1 (en) * | 2002-10-15 | 2004-04-15 | Science Research Laboratory, Inc. | Dense plasma focus radiation source |
| CN101583233A (en) * | 2009-03-24 | 2009-11-18 | 新奥光伏能源有限公司 | Normal-pressure plasma device |
| CN101835339A (en) * | 2010-05-20 | 2010-09-15 | 大连理工大学 | Radio Frequency Capacitive Coupled Argon Oxygen/Argon Nitrogen Plasma Generator with Flat Electrode at Normal Pressure |
| CN102056392A (en) * | 2010-12-17 | 2011-05-11 | 中国科学技术大学 | Method for generating cold plasma by discharge under high pressure and dielectric barrier discharge device |
| CN201986252U (en) * | 2011-01-21 | 2011-09-21 | 中国科学院西安光学精密机械研究所 | Atmospheric pressure low temperature plasma brush generating device and its array combination |
| CN102215626A (en) * | 2011-05-23 | 2011-10-12 | 中国科学院物理研究所 | Device capable of producing discharge plasma under lower voltage condition |
-
2011
- 2011-10-29 CN CN2011103350060A patent/CN102387654A/en active Pending
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001078469A2 (en) * | 2000-04-06 | 2001-10-18 | Plex Llc | Z-pinch plasma x-ray source using surface discharge preionization |
| US20040071267A1 (en) * | 2002-10-15 | 2004-04-15 | Science Research Laboratory, Inc. | Dense plasma focus radiation source |
| CN101583233A (en) * | 2009-03-24 | 2009-11-18 | 新奥光伏能源有限公司 | Normal-pressure plasma device |
| CN101835339A (en) * | 2010-05-20 | 2010-09-15 | 大连理工大学 | Radio Frequency Capacitive Coupled Argon Oxygen/Argon Nitrogen Plasma Generator with Flat Electrode at Normal Pressure |
| CN102056392A (en) * | 2010-12-17 | 2011-05-11 | 中国科学技术大学 | Method for generating cold plasma by discharge under high pressure and dielectric barrier discharge device |
| CN201986252U (en) * | 2011-01-21 | 2011-09-21 | 中国科学院西安光学精密机械研究所 | Atmospheric pressure low temperature plasma brush generating device and its array combination |
| CN102215626A (en) * | 2011-05-23 | 2011-10-12 | 中国科学院物理研究所 | Device capable of producing discharge plasma under lower voltage condition |
Non-Patent Citations (2)
| Title |
|---|
| JIN-OH JO等: "In-situ production of ozone and ultraviolet light using a barrier discharge reactor for wastewater treatment", 《JOURNAL OF ZHEJIANG UNIVERSITY(SCIENCE A:AN INTERNATIONAL APPLIED PHYSICS & ENGINEERING JOURNAL)》 * |
| 江南等: "一种大气压放电氦等离子体射流的实验研究", 《物理学报》 * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104470182A (en) * | 2014-10-28 | 2015-03-25 | 大连理工大学 | A Microwave Plasma Atmospheric Pressure Jet Device Based on Surface Plasmons |
| CN113347773A (en) * | 2021-05-17 | 2021-09-03 | 安徽中科大禹科技有限公司 | Plasma jet diagnosis device |
| CN113347773B (en) * | 2021-05-17 | 2025-05-23 | 安徽中科大禹科技有限公司 | Plasma jet diagnosis device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Chu et al. | Low temperature plasma technology: methods and applications | |
| Seo et al. | Comparative studies of atmospheric pressure plasma characteristics between He and Ar working gases for sterilization | |
| CN101330794B (en) | A Jet Device for Generating Low Temperature Plasma by Atmospheric Pressure Dielectric Barrier Discharge | |
| CN103945627B (en) | A kind of hand-held large area low temperature plasma generating means | |
| US7164095B2 (en) | Microwave plasma nozzle with enhanced plume stability and heating efficiency | |
| CN104936370B (en) | Atmos low-temperature plasma jet array adjustable device | |
| CN102343106B (en) | Atmospheric-pressure low-temperature plasma sterilizing device and sterilizing method | |
| Lu et al. | On the active species concentrations of atmospheric pressure nonequilibrium plasma jets | |
| CN201923870U (en) | Underwater pulse radio-frequency plasma discharging device for wastewater treatment | |
| CN102510654A (en) | Atmospheric-pulse-modulated microwave plasma generation device | |
| WO2010122459A3 (en) | Method and apparatus for high aspect ratio dielectric etch | |
| US20140162338A1 (en) | Device and method for producing a cold, homogeneous plasma under atmospheric pressure conditions | |
| CN102503177A (en) | Plasma processing device used for super-smooth surface | |
| Tschang et al. | Effect of external axial magnetic field on a helium atmospheric pressure plasma jet and plasma-treated water | |
| CN103997842A (en) | Method of improving space uniformity of atmospheric pressure plasma jet array | |
| CN108337797A (en) | Gas-liquid two-phase discharge plasma material surface processing unit | |
| CN102387654A (en) | Microscale low-temperature plasma jet generating device of atmospheric pressure | |
| CN104853513B (en) | Device for realizing large-area uniform dielectric barrier discharge and method | |
| CN102215626A (en) | Device capable of producing discharge plasma under lower voltage condition | |
| Nguyen et al. | Generation of multiple jet capillaries in advanced dielectric barrier discharge for large-scale plasma jets | |
| CN102497720A (en) | Atmospheric pressure optical fiber plasma brush device and its discharge method | |
| CN108289365A (en) | A kind of atmosphere pressure discharging multi-modes device | |
| CN105555001A (en) | Normal-voltage glow plasma device | |
| CN103922457B (en) | Plasma discharging device | |
| CN202841676U (en) | Linear Array Atmospheric Pressure Cooled Plasma Jet Generator |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120321 |