CN102427200B - Method for manufacturing ultra-stable ultra-high-fineness micro-optical cavity - Google Patents
Method for manufacturing ultra-stable ultra-high-fineness micro-optical cavity Download PDFInfo
- Publication number
- CN102427200B CN102427200B CN2011103787570A CN201110378757A CN102427200B CN 102427200 B CN102427200 B CN 102427200B CN 2011103787570 A CN2011103787570 A CN 2011103787570A CN 201110378757 A CN201110378757 A CN 201110378757A CN 102427200 B CN102427200 B CN 102427200B
- Authority
- CN
- China
- Prior art keywords
- eyeglass
- micro
- optical cavity
- laser
- fineness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 230000003287 optical effect Effects 0.000 claims abstract description 72
- 238000000411 transmission spectrum Methods 0.000 claims description 18
- 230000010287 polarization Effects 0.000 claims description 13
- 238000002310 reflectometry Methods 0.000 claims description 8
- 230000003595 spectral effect Effects 0.000 claims description 7
- 239000000428 dust Substances 0.000 claims description 6
- 238000002955 isolation Methods 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 108010083687 Ion Pumps Proteins 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 239000003292 glue Substances 0.000 claims description 3
- 239000000741 silica gel Substances 0.000 claims description 3
- 229910002027 silica gel Inorganic materials 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 239000000835 fiber Substances 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims 8
- 230000033228 biological regulation Effects 0.000 claims 2
- 239000007789 gas Substances 0.000 claims 1
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 claims 1
- 239000000919 ceramic Substances 0.000 abstract description 31
- 238000005259 measurement Methods 0.000 abstract description 19
- 238000005516 engineering process Methods 0.000 abstract description 8
- 238000004458 analytical method Methods 0.000 abstract description 5
- 238000012544 monitoring process Methods 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 2
- 239000003814 drug Substances 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 10
- 239000002274 desiccant Substances 0.000 description 8
- 238000011160 research Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000004887 air purification Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005520 electrodynamics Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004454 trace mineral analysis Methods 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
技术领域 technical field
本发明涉及微光学腔,具体为一种超稳定超高精细度微光学腔的制作方法。 The invention relates to a micro-optical cavity, in particular to a manufacturing method of an ultra-stable ultra-high-precision micro-optical cavity.
背景技术 Background technique
光学腔是现代光学测试、光学计量和光学分析以及一般光学实验不可缺少的工具之一,从激光的产生、激光模式的检测、模式选择到腔增强的各种效应,光学腔的用途越来越广泛;其中超稳定超高精细度的微光学腔由于其极高的精细度和极小的膜体积,在目前的高精密测量、微弱信号检测以及光电工程技术和前沿科学研究中占有重要的地位。随着技术的发展和实际需要,高反射多层介质膜技术目前可以做到1-R=1.6ppm,理论上可以达到1-R=10-9,其中R为镜片的反射率;如此高品质的所谓超镜(super-mirror)可以大大提高光学腔的精细度,使高精细度光学腔被广泛应用于腔衰荡技术(Cavity Ring-Down)中进行痕量气体检测、微弱吸收测量、大气监测、湿度测量、极低速度测量、核反应监测、化学检测、分子光谱测定、医学检测和表面物理分析等精密测量和分析。高精细度光学腔因其极窄的线宽,可以获得极高的光学谱分辨率和位移分辨率,在激光光钟、引力波的探测、热噪声的测量方面有着独特的作用;高精细度光学腔还可以极大增加腔内的光功率密度,从而为各种非线性效应的研究和飞秒脉冲的应用提供了理想的平台;同时超高精细度光学腔不但可以在空间选择特定的光学模式,而且可以增强光子的相干性,从而开辟了量子光学研究和量子信息研究的新领域——光频区腔量子电动力学(腔QED)。另外,在原子物理的研究中对单个原子的探测和操控一直是一个很困难的事情,自由空间中2001年法国的Grangier实验组才在偶极力阱中获得较长时间的单个原子的俘获,而利用与原子强耦合的超高精细度微光学腔我们可以实现对极少量原子甚至单个原子的灵敏探测(参见文献 ZHANG Peng-Fei, ZHANG Yu-Chi, LI Gang, DU Jin-Jin, ZHANG Yan-Feng, GUO Yan-Qiang, WANG Jun-Min, ZHANG Tian-Cai, LI Wei-Dong, Chin.Phys.Lett.28,044203(2011))。随着技术的不断进步人们甚至可以利用微光学腔测量单个原子质心运行的轨道信息,国际上美国加州理工学院和德国的马普实验室都曾利用微光学腔来测量单个原子。因此,高品质微光学腔作为一种重要的装置,被越来越多地应用到精密测量(比如单个原子、离子或者分子)以及弱光(单光子)控制和测量方面,是现代微纳光子学领域的重要装置。 Optical cavities are one of the indispensable tools for modern optical testing, optical metrology and optical analysis, as well as general optical experiments. From laser generation, laser mode detection, mode selection to cavity enhancement, the use of optical cavities is becoming more and more Wide range; among them, ultra-stable and ultra-high-definition micro-optical cavity plays an important role in current high-precision measurement, weak signal detection, optoelectronic engineering technology and cutting-edge scientific research due to its extremely high fineness and extremely small film volume . With the development of technology and actual needs, the high-reflection multilayer dielectric film technology can currently achieve 1-R=1.6ppm, and theoretically can reach 1-R=10 -9 , where R is the reflectivity of the lens; such a high quality The so-called super-mirror (super-mirror) can greatly improve the fineness of the optical cavity, so that the high-precision optical cavity is widely used in the cavity ring-down technology (Cavity Ring-Down) for trace gas detection, weak absorption measurement, atmospheric Precision measurement and analysis such as monitoring, humidity measurement, extremely low speed measurement, nuclear reaction monitoring, chemical detection, molecular spectrometry, medical detection and surface physical analysis. Due to its extremely narrow linewidth, the high-precision optical cavity can obtain extremely high optical spectral resolution and displacement resolution, and has a unique role in laser optical clocks, gravitational wave detection, and thermal noise measurement; high-precision The optical cavity can also greatly increase the optical power density in the cavity, thus providing an ideal platform for the research of various nonlinear effects and the application of femtosecond pulses; at the same time, the ultra-high-precision optical cavity can not only select specific optical mode, and can enhance the coherence of photons, thus opening up a new field of quantum optics research and quantum information research - cavity quantum electrodynamics (cavity QED) in the optical frequency region. In addition, in the research of atomic physics, the detection and manipulation of a single atom has always been a very difficult task. In 2001, in free space, the French Grangier experimental group obtained a long-term capture of a single atom in a dipole force trap, and Using ultra-high-precision micro-optical cavities that are strongly coupled to atoms, we can achieve sensitive detection of very small amounts of atoms or even single atoms (see literature ZHANG Peng-Fei, ZHANG Yu-Chi, LI Gang, DU Jin-Jin, ZHANG Yan- Feng, GUO Yan-Qiang, WANG Jun-Min, ZHANG Tian-Cai, LI Wei-Dong, Chin. Phys. Lett. 28, 044203 (2011)). With the continuous advancement of technology, people can even use micro-optical cavities to measure the orbital information of the center of mass of a single atom. Internationally, the California Institute of Technology in the United States and the Max Planck Laboratory in Germany have used micro-optical cavities to measure single atoms. Therefore, as an important device, high-quality micro-optical cavities are increasingly used in precision measurement (such as single atoms, ions or molecules) and weak light (single photon) control and measurement. An important device in the field of science.
高精细度光学腔在工程中得到广泛应用的同时,也为一些基本物理参数的精密测量提供了有力的工具,而基本物理参数的精密测量一直是物理学的重要基础。一个精细度为10 万的光学腔,使其相应的频率起伏量控制在其线宽的十分之一时,所要求的腔长起伏必须小于 10-13m,这一尺度已经远远小于一个原子;而在一些极低信号测量,比如引力波的测量装置中,对其腔长起伏量的要求更是达到了惊人的2×10-18m。这就需要更高品质的光学腔,给人们带来了巨大的挑战。实际上目前许多物理测量过程已经达到量子极限,因此人们迫切需要寻求克服量子涨落、实现超越量子噪声测量的新途径,实现原子与其强耦合的微光学腔能够非常敏感地感受单个原子或者单个光子,从而使其能够作为一种超低信号测量和痕量分析的重要工具,其在微小位相检测、引力波探测、频率标准等方面都有着巨大的应用潜力;这就使得超高精细度光学微光学腔成了人们迫切需要的测量工具,而现有的微光学腔都无法满足其测量需求。 While high-definition optical cavities are widely used in engineering, they also provide powerful tools for the precise measurement of some basic physical parameters, and the precise measurement of basic physical parameters has always been an important foundation of physics. For an optical cavity with a fineness of 100,000, when the corresponding frequency fluctuation is controlled at one tenth of its line width, the required cavity length fluctuation must be less than 10 -13 m, which is already far smaller than a Atoms; and in some extremely low-signal measurements, such as gravitational wave measurement devices, the requirement for the fluctuation of the cavity length has reached an astonishing 2×10 -18 m. This requires higher-quality optical cavities, which has brought great challenges to people. In fact, many physical measurement processes have reached the quantum limit. Therefore, people urgently need to find new ways to overcome quantum fluctuations and achieve measurements beyond quantum noise. The micro-optical cavities that realize atoms and their strong coupling can sense single atoms or single photons very sensitively. , so that it can be used as an important tool for ultra-low signal measurement and trace analysis, and it has great application potential in micro-phase detection, gravitational wave detection, frequency standards, etc.; Optical cavities have become a measurement tool that people urgently need, but none of the existing micro-optical cavities can meet their measurement needs.
发明内容 Contents of the invention
本发明是为了解决现有微光学腔精细度较低无法满足测量要求的问题,提供了一种超稳定超高精细度微光学腔的制作方法。 The invention aims to solve the problem that the existing micro-optical cavity has low fineness and cannot meet the measurement requirements, and provides a method for manufacturing an ultra-stable ultra-high-precision micro-optical cavity.
本发明是采用如下技术手段实现的:一种超稳定超高精细度微光学腔的制作方法,包括如下步骤: The present invention is realized by adopting the following technical means: a method for manufacturing an ultra-stable ultra-high-definition micro-optical cavity, comprising the following steps:
(1) 用生物显微镜选两片膜层完好、无污渍、无划痕、无凹坑且反射率大于99.999%的第一镜片、第二镜片,第一镜片、第二镜片的反射面端均为锥状;除去第一镜片和第二镜片表面的灰尘,先用清洁压缩气体除去其表面的灰尘,接着放置于丙酮中进行超声波清洗,如仍有微小的难以去除的灰尘,可用吸有光谱纯级别丙酮的镜纸轻轻拭去; (1) Use a biological microscope to select two pieces of the first lens and the second lens with intact film layers, no stains, no scratches, no pits, and a reflectivity greater than 99.999%. The reflective surfaces of the first and second lenses are uniform. It is cone-shaped; to remove the dust on the surface of the first lens and the second lens, first use clean compressed air to remove the dust on the surface, and then place it in acetone for ultrasonic cleaning. If there is still tiny dust that is difficult to remove, use an absorption spectrum Gently wipe off the mirror paper with pure grade acetone;
(2)由于镜片反射率极高,很容易受到外界空气中灰尘的污染而严重影响其反射率,造成制作出的微光学腔精细度下降,所以需要构建用于制作微光学腔的空气净化装置,空气净化装置包括依次级联的空气泵、第一密封广口瓶、第二密封广口瓶、以及第三密封广口瓶;第一密封广口瓶、第二密封广口瓶内均装有水,第三密封广口瓶内装有干燥剂;第三密封广口瓶与密闭操作空间相连;干燥剂可采用液态、或固态干燥剂,当选用固态干燥剂时在干燥剂上方设置过滤层(过滤层可采用脱脂棉或滤纸)来防止干燥剂的细小颗粒进入密闭操作空间内;工作时空气泵抽取外界空气依次经过第一密封广口瓶、第二密封广口瓶、第三密封广口瓶进行净化后进入密闭操作空间;密闭操作空间上开有出气口,这样可使操作空间内的空气与外界空气进行循环; (2) Due to the extremely high reflectivity of the lens, it is easily polluted by dust in the outside air and seriously affects its reflectivity, resulting in a decrease in the fineness of the produced micro-optical cavity, so it is necessary to construct an air purification device for making the micro-optical cavity , the air purification device includes sequentially cascaded air pumps, the first sealed jar, the second sealed jar, and the third sealed jar; both the first sealed jar and the second sealed jar are filled with If there is water, the third sealed jar is equipped with a desiccant; the third sealed jar is connected to the closed operating space; the desiccant can be liquid or solid desiccant, and a filter layer is set above the desiccant when the solid desiccant is selected (The filter layer can use absorbent cotton or filter paper) to prevent the fine particles of the desiccant from entering the closed operating space; when working, the air pump draws the outside air through the first sealed jar, the second sealed jar, and the third sealed jar in turn. Enter the airtight operating space after purification; there is an air outlet on the airtight operating space, so that the air in the operating space can circulate with the outside air;
(3) 在密闭操作空间中用真空胶将第一镜片粘接在工作于剪切模式的第一片状压电陶瓷上后一起放在操作平台上,距第一片状压电陶瓷水平方向2.8-3.2mm处放置工作于剪切模式的第二片状压电陶瓷并使第一片状压电陶瓷、第二片状压电陶瓷的剪切方向均为欲构建光学腔的腔轴方向;将第二镜片粘接在支撑于操作平台上的五维精密镜架底部并从顶部靠近第二片状压电陶瓷直至距第二片状压电陶瓷的上表面0.5mm处,调整第二镜片的位置使得第一镜片与第二镜片处于同一光轴上且反射面相对; (3) In the closed operating space, use vacuum glue to bond the first lens to the first sheet piezoelectric ceramics working in shear mode, and then place them together on the operating platform, at a distance from the first sheet piezoelectric ceramics in the horizontal direction 2.8-3.2mm place the second piece of piezoelectric ceramics working in shear mode and make the shear direction of the first piece of piezoelectric ceramics and the second piece of piezoelectric ceramics be the cavity axis direction of the optical cavity to be constructed ; Bond the second lens to the bottom of the five-dimensional precision frame supported on the operating platform and approach the second sheet piezoelectric ceramic from the top until it is 0.5mm away from the upper surface of the second sheet piezoelectric ceramic, adjust the second The position of the lens is such that the first lens and the second lens are on the same optical axis and the reflecting surfaces are opposite;
(4) 用CCD或放大镜观测将第一镜片、第二镜片的反射面靠近使其距离为10um-500um;将波长调节范围在0-20nm的激光器发出的具有工作波长的不可见激光与可见光激光器发出的可见激光注入光束空间重合器件(光束空间重合器件可选用单模光纤、偏振分束棱镜、以及双色镜)中使其出射光在空间中重合后经透镜组合(透镜组合可采用单个凸透镜、两个凸透镜、以及两个凸透镜和一个凹透镜的组合)一起入射到第一镜片上;将高压放大器与第一片状压电陶瓷相连扫描第一镜片并调节第二镜片的位置和俯仰角度使得可见激光位于第一镜片与第二镜片的左右表面之间的干涉环均重合;此时第一镜片、第二镜片的位置对齐,第一镜片、第二镜片、第一片状压电陶瓷、以及第二片状压电陶瓷形成光学腔; (4) Use a CCD or a magnifying glass to observe the reflective surface of the first lens and the second lens so that the distance is 10um-500um; the invisible laser and the visible laser with a working wavelength emitted by a laser with a wavelength adjustment range of 0-20nm The emitted visible laser is injected into the beam space coincidence device (the beam space coincidence device can choose single-mode fiber, polarization beam splitter prism, and dichroic mirror) so that the outgoing light is combined in space and then combined by lens (the lens combination can use a single convex lens, Two convex lenses, and a combination of two convex lenses and one concave lens) are incident on the first lens together; a high-voltage amplifier is connected to the first sheet piezoelectric ceramic to scan the first lens and adjust the position and pitch angle of the second lens to make it visible The interference rings where the laser is located between the left and right surfaces of the first lens and the second lens are all coincident; at this time, the positions of the first lens and the second lens are aligned, and the first lens, the second lens, the first sheet piezoelectric ceramics, and The second piezoelectric ceramic sheet forms an optical cavity;
(5) 关闭可见光激光器,用位于光学腔另一侧的高带宽光电探测器探测不可见激光的腔透射光强变化,微细调节第二镜片的位置和俯仰角度使光学腔中基模占有90%以上的能量(如图3所示),将第二镜片与第二片状压电陶瓷粘结在一起,取走五维精密镜架;接着调节不可见激光的波长使其与光学腔的相邻两个纵模共振,用波长计记录两个共振波长得到光学腔的自由光谱区从而确定光学腔的腔长; (5) Turn off the visible light laser, use a high-bandwidth photodetector located on the other side of the optical cavity to detect changes in the transmitted light intensity of the invisible laser, and fine-tune the position and pitch angle of the second lens so that the fundamental mode in the optical cavity occupies 90% The above energy (as shown in Figure 3) bonds the second lens and the second sheet piezoelectric ceramic together, and takes away the five-dimensional precision frame; then adjusts the wavelength of the invisible laser to make it match the optical cavity Adjacent to two longitudinal mode resonances, use a wavelength meter to record the two resonance wavelengths to obtain the free spectral region of the optical cavity to determine the cavity length of the optical cavity;
(6)由于微光学腔腔长很小且具有超高的精细度,十分微小的机械扰动都将使得腔轴产生大的偏转角度,这会使得腔内光场发生剧烈的变化而造成光学腔难以控制,为了提高光学腔的稳定性将光学腔放于由交叉排列的三层无氧铜块和三层硅胶制成的弹性缓冲块构成的三级微腔被动隔振底座上,用电光调制器在入射到第一镜片前的不可见激光上加5-500Mhz的调制信号,线性扫描光学腔的腔长得到光学腔的透射谱(如图5所示),在透射谱上得到主模和调制边带从而计算出光学腔的线宽(所述线宽是指光学腔的基模透射光谱降到峰值一半处所对应的频率差,也称为腔透射谱的半高全宽);多次扫描光学腔的腔长得到多组透射谱从而计算出线宽平均值,用得到的自由光谱区和线宽的平均值相比计算出微腔的精细度,继而根据精细度计算出光学腔的总体损耗和品质因子; (6) Since the cavity length of the micro-optical cavity is very small and has ultra-high precision, a very small mechanical disturbance will cause a large deflection angle of the cavity axis, which will cause drastic changes in the optical field in the cavity and cause the optical cavity It is difficult to control. In order to improve the stability of the optical cavity, the optical cavity is placed on a three-stage microcavity passive vibration isolation base composed of three layers of oxygen-free copper blocks arranged crosswise and elastic buffer blocks made of three layers of silica gel. The modulator adds a 5-500Mhz modulation signal to the invisible laser incident in front of the first lens, linearly scans the cavity length of the optical cavity to obtain the transmission spectrum of the optical cavity (as shown in Figure 5), and obtains the main mode on the transmission spectrum and modulate the sidebands to calculate the linewidth of the optical cavity (the linewidth refers to the frequency difference corresponding to the half-maximum transmission spectrum of the optical cavity's fundamental mode transmission spectrum, also known as the full width at half maximum of the cavity transmission spectrum); multiple scans The cavity length of the optical cavity obtains multiple sets of transmission spectra to calculate the average line width, and calculates the fineness of the microcavity by comparing the obtained free spectral region with the average line width, and then calculates the overall loss of the optical cavity according to the fineness and quality factor;
(7)在微光学腔的构建过程中,因为前期镜片磨制过程和粘接过程引起的应力形变会导致膜层在不同方向的折射率不同,而且镜片的反射率极高,光子在腔内的振荡次数也被极大的提高,从而形成明显的双折射现象,双折射现象会使微光学腔内部的光场偏振态发生改变,影响微光学腔的使用;在光束空间重合器件与透镜组合之间设置偏振镜片,转动偏振镜片从而改变不可见激光的偏振方向,用高带宽光电探测器探测得到光学腔的透射谱,在透射谱上得到不同偏振方向的主模频率差从而计算出光学腔的双折射光轴,继而确定不可见激光的偏振方向; (7) During the construction of the micro-optical cavity, the refractive index of the film layer in different directions will be different due to the stress deformation caused by the grinding process of the lens and the bonding process in the early stage, and the reflectivity of the lens is extremely high, and the photons in the cavity The number of oscillations has also been greatly increased, thus forming an obvious birefringence phenomenon. The birefringence phenomenon will change the polarization state of the light field inside the micro-optical cavity, which will affect the use of the micro-optical cavity; A polarizing lens is set between them, and the polarizing lens is rotated to change the polarization direction of the invisible laser, and the transmission spectrum of the optical cavity is obtained by detecting with a high-bandwidth photodetector, and the main mode frequency difference of different polarization directions is obtained on the transmission spectrum to calculate the optical cavity The birefringent optical axis of , and then determine the polarization direction of the invisible laser;
(8) 把光学腔放置于真空气室中,将第一片状压电陶瓷、第二片状压电陶瓷与安装于真空气室内的控制电极用耐150摄氏度高温的导线连接;经过烘烤抽气后,用真空离子泵维持真空气室内的真空度为为10-8Pa;这样可以减少污浊空气对腔镜的污染而保持光学腔的品质,同时减少空气流动对光学腔稳定性的影响。 (8) Place the optical cavity in a vacuum chamber, connect the first sheet piezoelectric ceramics, the second sheet piezoelectric ceramics and the control electrode installed in the vacuum chamber with wires resistant to high temperatures of 150 degrees Celsius; after baking After evacuation, use a vacuum ion pump to maintain the vacuum degree in the vacuum chamber at 10 -8 Pa; this can reduce the pollution of dirty air to the cavity mirror and maintain the quality of the optical cavity, while reducing the impact of air flow on the stability of the optical cavity .
本发明具有以下有益效果: The present invention has the following beneficial effects:
(1)在微光学腔搭建过程中采用反射率高达99.999%的“超镜”镜片来搭建,其精细度可达几十万,搭建过程中采用参考光(可见激光)和工作光(不可见激光)同时注入完成光学腔的准直和调节;并且利用可大范围调节波长的激光器来分别确定微光学腔相邻两纵模之间的频率差来确定腔长,利用电光调制器测量微光学腔线宽最终确定光学腔的精细度;所以本发明所述方法制作的微光学腔精细度高达33万。 (1) In the process of building the micro-optical cavity, a "super mirror" lens with a reflectivity as high as 99.999% is used to build it, and its fineness can reach hundreds of thousands. In the process of building, reference light (visible laser) and working light (invisible Laser) is injected simultaneously to complete the collimation and adjustment of the optical cavity; and the laser that can adjust the wavelength in a wide range is used to determine the frequency difference between two adjacent longitudinal modes of the micro-optical cavity to determine the cavity length, and the electro-optic modulator is used to measure the micro-optical The line width of the cavity finally determines the fineness of the optical cavity; therefore, the fineness of the micro-optical cavity manufactured by the method of the present invention is as high as 330,000.
(2)高品质微光学腔的特性决定了其必须在其稳定的环境下工作,为此本发明中在微光学腔搭建过程中采用三级微腔被动隔振底座,极大地降低了外界环境对微光学腔的干扰,为微光学腔的主动控制和调谐提供有利的条件;如图4所示,微光学腔在100Hz时达到了大于35dB的隔振效果,即微光学腔隔震后其振动幅度小于未隔震前的1/3200。 (2) The characteristics of a high-quality micro-optical cavity determine that it must work in a stable environment. For this reason, in the present invention, a three-stage micro-cavity passive vibration isolation base is used during the construction of the micro-optical cavity, which greatly reduces the external environment. The interference to the micro-optical cavity provides favorable conditions for the active control and tuning of the micro-optical cavity; The vibration amplitude is less than 1/3200 of that before isolation.
(3)为了使得所搭建的微光学腔的腔长尽可能小,在搭建过程中使用CCD等辅助手段来减小腔长,并在腔镜的前端将其磨制成锥状以最大限度的减少腔长,从而极大地提高了光学腔的探测灵敏度。 (3) In order to make the cavity length of the built micro-optical cavity as small as possible, auxiliary means such as CCD are used to reduce the cavity length during the construction process, and the front end of the cavity mirror is ground into a tapered shape to maximize the The cavity length is reduced, thereby greatly improving the detection sensitivity of the optical cavity.
(4)采用两个工作于剪切模式的片状压电陶瓷同时运行,使微光学腔的腔长能够精密地调节,结合各种主动反馈技术,可以使微光学腔工作在不同的波段,能精密控制其腔长。 (4) Two sheet piezoelectric ceramics working in the shear mode are used to operate simultaneously, so that the cavity length of the micro-optical cavity can be precisely adjusted, and combined with various active feedback technologies, the micro-optical cavity can work in different wavelength bands. The cavity length can be precisely controlled.
(5) 将微光学腔放置在超高真空气室中可以保持其长期稳定性和品质,保持所搭建的微光学腔的腔镜镜片不被污染,始终保持超高的精细度;同时减少空气流动对微光学腔稳定性的影响。 (5) Placing the micro-optical cavity in an ultra-high vacuum chamber can maintain its long-term stability and quality, keep the cavity lens of the built micro-optical cavity from being polluted, and always maintain ultra-high fineness; at the same time reduce air The effect of flow on the stability of micro-optical cavities.
本发明制作出的光学腔精细度可达33万,解决了现有微光学腔精细度较低无法满足测量要求的问题,可广泛适用于环境监测、材料分析、生物医药、食品卫生、安全生产以及信息技术领域。 The fineness of the optical cavity produced by the invention can reach 330,000, which solves the problem that the existing micro-optical cavity has a low fineness and cannot meet the measurement requirements, and can be widely used in environmental monitoring, material analysis, biomedicine, food hygiene, and safe production and the field of information technology.
附图说明 Description of drawings
图1是本发明空气净化装置的连接示意图。 Fig. 1 is a schematic diagram of the connection of the air cleaning device of the present invention.
图2是本发明密闭操作空间中的装置位置图。 Fig. 2 is a diagram of the location of the device in the enclosed operating space of the present invention.
图3是本发明第五步中光学腔透射光强的信号示意图;其中高峰为基模(TEM00模),低峰为高阶横模(TEM10模和TEM01模)。 Fig. 3 is a schematic diagram of the signal of the transmitted light intensity of the optical cavity in the fifth step of the present invention; the peak is the fundamental mode (TEM00 mode), and the low peak is the high-order transverse mode (TEM10 mode and TEM01 mode).
图4本发明中三级微腔被动隔振底座的频率响应特征曲线。 Fig. 4 is the frequency response characteristic curve of the three-stage microcavity passive vibration isolation base in the present invention.
图5本发明加调制信号后线性扫描光学腔腔长后得到的透射谱曲线图;其中:中间的峰为主模,两侧的峰均为调制边带。 Fig. 5 is a graph of the transmission spectrum obtained by linearly scanning the length of the optical cavity after adding a modulation signal in the present invention; wherein: the peak in the middle is the main mode, and the peaks on both sides are modulation sidebands.
图中:1-空气泵;2-第一密封广口瓶;3-第二密封广口瓶;4-第三密封广口瓶;5-干燥剂;6-密闭操作空间;7-第一镜片;8-第二镜片;9-第一片状压电陶瓷;10-第二片状压电陶瓷;11-五维精密调节架;12-波长调节范围在0-20nm的激光器;13-可见光激光器;14-光束空间重合器件;15-透镜组合;16-偏振镜片;17-高带宽光电探测器。 In the figure: 1-air pump; 2-first sealed jar; 3-second sealed jar; 4-third sealed jar; 5-desiccant; 6-closed operating space; 7-first Lens; 8-second lens; 9-first sheet piezoelectric ceramic; 10-second sheet piezoelectric ceramic; 11-five-dimensional precision adjustment frame; 12-laser with a wavelength adjustment range of 0-20nm; 13- Visible light laser; 14-beam spatial coincidence device; 15-lens combination; 16-polarization lens; 17-high bandwidth photodetector.
具体实施方式 Detailed ways
一种超稳定超高精细度微光学腔的制作方法,包括如下步骤: A method for manufacturing an ultra-stable ultra-high-definition micro-optical cavity, comprising the following steps:
(1)用生物显微镜选两片膜层完好、无污渍、无划痕、无凹坑且反射率大于99.999%的第一镜片7、第二镜片8,第一镜片7、第二镜片8的反射面端均为锥状;除去第一镜片7和第二镜片8表面的灰尘;
(1) Use a biological microscope to select two pieces of the first lens 7, the
(2)构建用于制作微光学腔的空气净化装置,空气净化装置包括依次级联的空气泵1、第一密封广口瓶2、第二密封广口瓶3、以及第三密封广口瓶4;第一密封广口瓶2、第二密封广口瓶3内均装有水,第三密封广口瓶内装有干燥剂5;第三密封广口瓶4与密闭操作空间6相连,密闭操作空间6上开有出气口;
(2) Build an air purification device for making a micro-optical cavity, the air purification device includes an air pump 1 cascaded in sequence, a first sealed jar 2, a second sealed jar 3, and a third sealed jar 4; water is housed in the first sealed jar 2 and the second sealed jar 3, and
(3) 在密闭操作空间6中用真空胶将第一镜片7粘接在工作于剪切模式的第一片状压电陶瓷9上后一起放在操作平台上,距第一片状压电陶瓷9水平方向2.8-3.2mm(2.8mm、3.0mm、3.2mm)处放置工作于剪切模式的第二片状压电陶瓷10并使第一片状压电陶瓷9、第二片状压电陶瓷10的剪切方向均为欲构建光学腔的腔轴方向;将第二镜片8粘接在支撑于操作平台上的五维精密镜架11底部并从顶部靠近第二片状压电陶瓷10直至距第二片状压电陶瓷10的上表面0.5mm处,调整第二镜片8的位置使得第一镜片7与第二镜片8处于同一光轴上且反射面相对;
(3) In the airtight operating space 6, use vacuum glue to bond the first lens 7 to the first sheet piezoelectric ceramic 9 working in the shearing mode, and then put them together on the operating platform. Place the second sheet piezoelectric ceramic 10 working in the shear mode at 2.8-3.2mm (2.8mm, 3.0mm, 3.2mm) in the horizontal direction of the ceramic 9 and make the first
(4)用CCD或放大镜观测将第一镜片7、第二镜片8的反射面靠近使其距离为10um-500um;将波长调节范围在0-20nm的激光器12发出的具有工作波长的不可见激光与可见光激光器13发出的可见激光注入光束空间重合器件14中使其出射光在空间中重合后经透镜组合15一起入射到第一镜片7上;将高压放大器与第一片状压电陶瓷9相连扫描第一镜片7并调节第二镜片8的位置和俯仰角度使得可见激光位于第一镜片7与第二镜片8的左右表面之间的干涉环均重合;此时第一镜片7、第二镜片8的位置对齐,第一镜片7、第二镜片8、第一片状压电陶瓷9、以及第二片状压电陶瓷10形成光学腔;
(4) Observing with a CCD or a magnifying glass, the reflective surfaces of the first mirror 7 and the
(5)关闭可见光激光器13,用位于光学腔另一侧的高带宽光电探测器17探测不可见激光的腔透射光强变化,微细调节第二镜片8的位置和俯仰角度使光学腔中基模占有90%以上的能量,将第二镜片8与第二片状压电陶瓷10粘结在一起,取走五维精密镜架11;接着调节不可见激光的波长使其与光学腔的相邻两个纵模共振,用波长计记录两个共振波长得到光学腔的自由光谱区从而确定光学腔的腔长;
(5) Turn off the
(6)将光学腔放于由交叉排列的三层无氧铜块和三层硅胶制成的弹性缓冲块构成的三级微腔被动隔振底座上,用电光调制器在入射到第一镜片7前的不可见激光上加5-500Mhz(5Mhz、300Mhz、500Mhz)的调制信号,线性扫描光学腔的腔长得到光学腔的透射谱,在透射谱上得到主模和调制边带从而计算出光学腔的线宽;多次扫描光学腔的腔长得到多组透射谱从而计算出线宽平均值,用得到的自由光谱区和线宽的平均值相比计算出微腔的精细度,继而根据精细度计算出光学腔的总体损耗和品质因子; (6) Place the optical cavity on a three-stage microcavity passive vibration isolation base composed of three layers of oxygen-free copper blocks arranged crosswise and elastic buffer blocks made of three layers of silica gel. Add a 5-500Mhz (5Mhz, 300Mhz, 500Mhz) modulation signal to the invisible laser in front of the lens 7, linearly scan the cavity length of the optical cavity to obtain the transmission spectrum of the optical cavity, and obtain the main mode and modulation sidebands on the transmission spectrum to calculate The line width of the optical cavity is obtained; the cavity length of the optical cavity is scanned multiple times to obtain multiple sets of transmission spectra to calculate the average line width, and the fineness of the microcavity is calculated by comparing the obtained free spectral region with the average line width, and then Calculate the overall loss and quality factor of the optical cavity according to the fineness;
(7)在光束空间重合器件14与透镜组合15之间设置偏振镜片16,转动偏振镜片16从而改变不可见激光的偏振方向,用高带宽光电探测器17探测得到光学腔的透射谱,在透射谱上得到不同偏振方向的主模频率差从而计算出光学腔的双折射光轴,继而确定不可见激光的偏振方向;
(7) A
(8)把光学腔放置于真空气室中,将第一片状压电陶瓷9、第二片状压电陶瓷10与安装于真空气室内的控制电极用耐150摄氏度高温的导线连接;经过烘烤抽气后,用真空离子泵维持真空气室内的真空度为为10-8Pa。
(8) The optical cavity is placed in a vacuum chamber, and the first
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2011103787570A CN102427200B (en) | 2011-11-25 | 2011-11-25 | Method for manufacturing ultra-stable ultra-high-fineness micro-optical cavity |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2011103787570A CN102427200B (en) | 2011-11-25 | 2011-11-25 | Method for manufacturing ultra-stable ultra-high-fineness micro-optical cavity |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102427200A CN102427200A (en) | 2012-04-25 |
| CN102427200B true CN102427200B (en) | 2012-11-21 |
Family
ID=45961150
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2011103787570A Expired - Fee Related CN102427200B (en) | 2011-11-25 | 2011-11-25 | Method for manufacturing ultra-stable ultra-high-fineness micro-optical cavity |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102427200B (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106768873B (en) * | 2016-11-22 | 2018-12-07 | 山西大学 | A kind of method and device measuring high-fineness fineness of cavity |
| CN109246340B (en) * | 2018-09-18 | 2020-11-27 | 杭州行开科技有限公司 | A light field image processing and display system and method |
| CN110208214A (en) * | 2019-06-24 | 2019-09-06 | 福建师范大学 | A kind of hydroscope excitation microcavity laser sensor-based system and method |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101949688A (en) * | 2010-08-17 | 2011-01-19 | 中国科学院光电技术研究所 | A Tunable Laser Linewidth Measurement Method Based on Optical Cavity Ring-Down Spectroscopy |
| CN102053007A (en) * | 2009-10-29 | 2011-05-11 | 龙兴武 | Absolute measuring method for intramembranous loss parameter of high-reflectivity membrane |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1307714A4 (en) * | 2000-07-12 | 2007-04-04 | Macquarie Res Ltd | Optical heterodyne detection in optical cavity ringdown spectroscopy |
-
2011
- 2011-11-25 CN CN2011103787570A patent/CN102427200B/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102053007A (en) * | 2009-10-29 | 2011-05-11 | 龙兴武 | Absolute measuring method for intramembranous loss parameter of high-reflectivity membrane |
| CN101949688A (en) * | 2010-08-17 | 2011-01-19 | 中国科学院光电技术研究所 | A Tunable Laser Linewidth Measurement Method Based on Optical Cavity Ring-Down Spectroscopy |
Non-Patent Citations (3)
| Title |
|---|
| Novel method for high resolution measurement of laser output spectrum;T. Okoshi et al;《Electronics Letters》;19800731;第16卷(第16期);第630-631页 * |
| T. Okoshi et al.Novel method for high resolution measurement of laser output spectrum.《Electronics Letters》.1980,第16卷(第16期),第630-631页. |
| 陈艳丽等.利用模清洁器降低单频Nd:YVO4激光器的强度噪声.《中国激光》.2001,第28卷(第3期),第197-200页. * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102427200A (en) | 2012-04-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105403178B (en) | Film thickness measuring apparatus and membrane thickness measured method | |
| CN209766848U (en) | 780nm Femtosecond Laser Based on Full Polarization Maintaining Fiber System | |
| Mosley et al. | Direct Measurement of the Spatial-Spectral Structure<? format?> of Waveguided Parametric Down-Conversion | |
| CN102735646B (en) | Measuring apparatus and measuring method for refractive index of transparent medium | |
| CN112436818B (en) | Graphene resonator and phonon maser and method based on graphene resonator | |
| CN104104006B (en) | Device and method for generating high-power vacuum ultraviolet laser by direct frequency doubling | |
| CN106768859B (en) | A kind of spectrum widening device based on large mode field antiresonance hollow-core photonic crystal fiber | |
| CN102427200B (en) | Method for manufacturing ultra-stable ultra-high-fineness micro-optical cavity | |
| CN110112642B (en) | Optical parametric oscillator | |
| CN105161961A (en) | Micro-pulse laser radar light source with high pulse energy | |
| CN109323776A (en) | Optical fiber temperature sensor based on liquid crystal Fabry-Perot resonator and its fabrication method | |
| CN108631147B (en) | A method for synchronously tunable wavelength and repetition rate in passively mode-locked lasers | |
| CN103185665B (en) | The measuring method of birefringence element optical axis | |
| CN115031874B (en) | A pressure sensor based on UV glue microsphere resonant cavity and its preparation method | |
| CN210007100U (en) | kinds of optical parametric oscillator | |
| CN104836107A (en) | Monoblock crystal cavity blue light frequency multiplier | |
| CN106159650A (en) | A kind of Optical devices of the Er-doped fiber femtosecond light comb generator of miniaturization | |
| Yang et al. | Generation of stimulated Brillouin scattering in a packaged CaF2 micro-disk resonator with ultra-high-Q factor | |
| CN103018200B (en) | Monitoring device and method for refractive index of transparent medium | |
| US9341781B2 (en) | Laser machining and mechanical control of optical microresonators | |
| CN103166098B (en) | L-shaped optical pump gas terahertz laser resonant cavity using quartz crystal wafer as beam splitting wafer, and laser device with resonant cavity | |
| CN106785873B (en) | A wavelength-tunable sum-frequency laser in yellow, orange and red bands | |
| Fernandez-Gonzalvo et al. | A Fully Fiber-Integrated Ion Trap for Portable Optical Atomic Clocks | |
| Qiao et al. | A study on SF6 gas sensor on MEMS | |
| Faheem et al. | Spectral hole burning of acetylene gas inside a photonic bandgap optical fiber |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121121 Termination date: 20151125 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |