[go: up one dir, main page]

CN102427507A - Football video highlight automatic synthesis method based on event model - Google Patents

Football video highlight automatic synthesis method based on event model Download PDF

Info

Publication number
CN102427507A
CN102427507A CN2011102943849A CN201110294384A CN102427507A CN 102427507 A CN102427507 A CN 102427507A CN 2011102943849 A CN2011102943849 A CN 2011102943849A CN 201110294384 A CN201110294384 A CN 201110294384A CN 102427507 A CN102427507 A CN 102427507A
Authority
CN
China
Prior art keywords
football
video
event
action
highlight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011102943849A
Other languages
Chinese (zh)
Other versions
CN102427507B (en
Inventor
赵沁平
陈小武
蒋恺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201110294384.9A priority Critical patent/CN102427507B/en
Publication of CN102427507A publication Critical patent/CN102427507A/en
Application granted granted Critical
Publication of CN102427507B publication Critical patent/CN102427507B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本发明是一种基于事件模型的足球视频集锦自动合成方法,包括:针对足球比赛视频集锦,定义足球视频集锦片段是可分解为多动作组合的足球视频事件;构建核心-周围事件模型表示足球集锦片段;利用足球比赛视频及其对应文本解说词构建训练集,选择进球和红黄牌作为两类足球集锦,训练事件模型;输入一段没有解说词的足球比赛视频,识别足球集锦片段在输入视频中的出现位置,并给出匹配分数;根据用户需求,将分数较高的足球集锦片段自动合成为一个足球视频集锦。本发明生成足球视频集锦的方法能够突破输入视频的镜头远近、视频长度等因素的限制,能够广泛应用推广到个人数字娱乐、体育影视制作等领域。

Figure 201110294384

The present invention is an event model-based automatic synthesis method of football video highlights, including: aiming at football match video highlights, defining football video highlight segments as football video events that can be decomposed into multi-action combinations; constructing a core-surrounding event model to represent football highlights Fragment; use the football game video and its corresponding text commentary to build a training set, select goals and red and yellow cards as two types of football highlights, and train the event model; input a football game video without commentary, and identify the football highlight clips in the input video The appearance position of the match score is given; according to the user's needs, the football highlight clips with higher scores are automatically synthesized into a football video highlight. The method for generating football video collections of the present invention can break through the limitations of factors such as the distance of the input video lens and the length of the video, and can be widely applied to the fields of personal digital entertainment, sports film and television production, and the like.

Figure 201110294384

Description

一种基于事件模型的足球视频集锦自动合成方法A method of automatic synthesis of football video highlights based on event model

技术领域 technical field

本发明涉及计算机视觉、视频处理和增强现实领域,具体地说是一种基于事件模型的足球视频集锦自动合成方法。The invention relates to the fields of computer vision, video processing and augmented reality, in particular to a method for automatically synthesizing football video highlights based on an event model.

背景技术 Background technique

体育视频集锦作为体育影视节目的一种,由于能够在较短时间获取充分的信息,其短小精悍的特点深受观众喜爱。尤其在足球赛事方面,仅仅为了看到喜爱的球员或精彩的射门镜头而观看长达90分钟的比赛视频非常耗时,因此经常采用足球比赛集锦的方式记录精彩镜头回放、赛事总结、球员个人经历等赛事相关话题。传统视频集锦由人工剪辑比赛视频,虽然剪辑精准度较高且富有感情色彩,但是需要耗费大量人力逐帧检查视频以寻找所需的精彩镜头,且对剪辑师赛事经验知识要求较高。随着视频理解、计算机视觉领域的研究不断进步,为体育赛事视频自动生成集锦视频逐渐成为一个技术和研究热点。As a kind of sports film and television program, sports video highlights are popular among audiences because they can obtain sufficient information in a relatively short period of time. Especially in football matches, it is very time-consuming to watch a 90-minute game video just to see a favorite player or a wonderful shot. Therefore, football match highlights are often used to record highlights, game summaries, and personal experiences of players. and other topics related to the competition. Traditional video highlights are edited by humans. Although the editing accuracy is high and full of emotion, it takes a lot of manpower to check the video frame by frame to find the desired highlights, and requires a high level of experience and knowledge of the editor. With the continuous progress of research in the field of video understanding and computer vision, automatic generation of highlight videos for sports event videos has gradually become a technology and research hotspot.

目前,根据视频片源不同,为体育赛事视频自动生成集锦视频可以分为两大类。一类是针对电视转播视频的自动集锦。由于电视转播视频加入了转播师对赛事的理解,在处理时能够将转播技巧作为视频集锦的隐含线索。例如,足球比赛转播时,特写镜头或慢放镜头通常会出现在进球之后;两次镜头切换之间通常发生着同一个事件;远景镜头通常意味着开场或球的大范围运动轨迹等等。这类方法通过在足球视频中检测上述线索,完成足球集锦片段检测并最终生成集锦视频,或者直接在视频中检测屏显文字(例如比分牌)来确定足球集锦片段发生时间。这类方法虽然在一定程度上能够获得较好的集锦结果,但是其过分依赖于电视转播视频,在适用范围上有很大局限。At present, according to different video sources, automatically generating highlight videos for sports event videos can be divided into two categories. One is automated highlights for televised video. Since the TV broadcast video has added the broadcaster's understanding of the event, the broadcasting skills can be used as the implicit clue of the video highlights when processing. For example, when broadcasting a football game, close-ups or slow-motion shots usually appear after the goal; the same event usually occurs between two camera cuts; long shot usually means the opening or the ball's large-scale trajectory, etc. This type of method detects the above clues in the football video, completes the detection of the football highlight segment and finally generates the highlight video, or directly detects the on-screen text (such as the scoreboard) in the video to determine the occurrence time of the football highlight segment. Although this type of method can obtain better collection results to a certain extent, it relies too much on TV broadcast video, which has great limitations in the scope of application.

另一类是针对非电视转播视频的自动集锦。其中,对视频主题有较强针对性的方法,通常利用该视频主题的特殊先验知识(例如足球视频中的网状球门、大片绿色草坪、观众欢呼声等先验知识),获得关于该视频主题的精彩镜头检测线索。其较强的针对性决定了该类方法模型固定,可重用性差。而较有研究价值的是在一定范围内具有普遍适用性的集锦方法。目前该方面的研究主要集中在两个方向:(1)视频事件分析;(2)视频内容摘要。The other category is automated highlights for non-televisioned video. Among them, the method with strong pertinence to the video topic usually uses the special prior knowledge of the video topic (such as the prior knowledge of the mesh goal in the football video, the large green lawn, the cheers of the audience, etc.) to obtain information about the video. A great shot of the subject detects clues. Its strong pertinence determines that the model of this type of method is fixed and its reusability is poor. What is more valuable for research is the collection method which has universal applicability within a certain range. At present, research in this area mainly focuses on two directions: (1) video event analysis; (2) video content summarization.

在视频事件分析方面,2010年的ECCV会议上,斯坦福大学的Li Fei-Fei等人提出了一种基于人类动作时序关系的行为模型。该模型将动作表示为不同时间点的行为分割。该方法训练出两种模型,分别为判别式模型与外观模型:判定模型用来编码基于时间分解的视频序列,外观模型用于每个行为分割。在识别过程中,通过学习特征与行为分割分解来进行视频与模型的匹配。该方法通过引入时间结构,可以较好的识别简单与复杂人类动作,但由于其时间结构模式固定,无法胜任由动作组成的复杂事件。在2009年的CVPR会议上,马里兰大学的Larry S.Davis等人提出一种从带有弱标记数据的视频中学习出完整的可视化故事情节模型的方法。其中故事情节模型以与或图的形式来表达,可以将视频中的故事情节变化进行简单编码。与或图中的边相当于基于时空约束的因果关系。用这个模型和学习得到的训练数据,可以进行行为识别与故事情节提取。考虑到视频帧中人体姿态与周围物体的关联关系,2010年美国加州大学的Fowlkes等人提出一种基于人体姿态与周围物体关联关系建模,来识别动作的方法。该方法主要解决静态图像的动作识别问题并将其转化为潜在结构标记问题。In terms of video event analysis, at the ECCV conference in 2010, Li Fei-Fei et al. of Stanford University proposed a behavior model based on the temporal relationship of human actions. The model represents actions as behavioral segmentations at different time points. This method trains two models, the discriminative model and the appearance model: the decision model is used to encode video sequences based on time decomposition, and the appearance model is used for each behavior segmentation. In the recognition process, the video is matched with the model by learning feature and behavior segmentation decomposition. By introducing temporal structure, this method can better recognize simple and complex human actions, but due to its fixed temporal structure pattern, it cannot handle complex events composed of actions. At the CVPR conference in 2009, Larry S. Davis et al. of the University of Maryland proposed a method for learning a complete visual storyline model from videos with weakly labeled data. The storyline model is expressed in the form of an AND or graph, which can simply encode the storyline changes in the video. Edges in an AND-OR graph are equivalent to causality based on spatio-temporal constraints. Using this model and the learned training data, behavior recognition and storyline extraction can be performed. Considering the relationship between human body posture and surrounding objects in the video frame, in 2010, Fowlkes et al. of the University of California, USA proposed a method for recognizing actions based on modeling of the relationship between human body posture and surrounding objects. This method mainly addresses the problem of action recognition from static images and transforms it into a latent structure labeling problem.

在视频内容摘要方面,Pritch等人在2008年的PAMI期刊上提出的方法通过分析视频能够将一段长视频浓缩为一小段摘要,并在每帧上面同时显示多帧的运动信息,但该方法的局限性在于无法处理视频中整个场景都在运动的情况与经过编辑的视频。华盛顿大学的Hwang等人提出一种基于视频物体分割的关键帧提取方法并设计实现了相应系统,能快速、有效的进行在线处理。2005年的CVPR会议上,微软研究院的Jojic等人针对监控视频提出一种新的交互模型来索引和分析视频。另外,佛蒙特州大学的Wu等人提出了一种分层视频摘要策略,通过分析视频内容结构给用户提供多尺度、多级别的视频总结。In terms of video content summary, the method proposed by Pritch et al. in the PAMI journal in 2008 can condense a long video into a short summary by analyzing the video, and display the motion information of multiple frames on each frame at the same time, but the method’s The limitation is that it cannot handle situations where the entire scene of the video is in motion and edited video. Hwang et al. from the University of Washington proposed a key frame extraction method based on video object segmentation and designed and implemented a corresponding system, which can perform online processing quickly and effectively. At the CVPR conference in 2005, Jojic et al. of Microsoft Research proposed a new interaction model for surveillance video to index and analyze video. In addition, Wu et al. from the University of Vermont proposed a hierarchical video summarization strategy, which provides users with multi-scale and multi-level video summaries by analyzing the video content structure.

综上所述,目前在视频集锦技术上,主要存在以下两个方面的问题:(1)严重依赖于输入视频质量,适用范围较窄。使用镜头切换、哨声、转场等富有语义暗示信息的线索进行视频集锦虽然能够较快探测出足球集锦片段,但是无法了解足球事件进行过程,因此很难提取出事件发生的时间区间。(2)较少以事件为单元进行视频集锦。由于视频事件丰富多样,直接采用特征统计方法的模型难以完全涵盖事件的变化,如何合理利用领域知识,结合事件的视觉特征对事件建模是一个难点和研究热点。To sum up, there are mainly two problems in the current video collection technology: (1) It depends heavily on the quality of the input video, and its application range is narrow. Although video highlights using clues rich in semantic hints such as camera cuts, whistles, and transitions can quickly detect football highlights, they cannot understand the progress of football events, so it is difficult to extract the time interval of events. (2) Less video highlights are performed in units of events. Due to the rich variety of video events, it is difficult to fully cover the changes of events by directly adopting the feature statistics method. How to make reasonable use of domain knowledge and combine the visual features of events to model events is a difficult point and a research hotspot.

发明内容 Contents of the invention

根据上述实际需求和关键问题,本发明的目的在于:提出一种基于事件模型的足球视频集锦自动合成方法。该方法能够突破输入视频的镜头远近、视频长度、视频声音等因素的限制,尤其当输入视频为非转播视频,无法从中获取特写镜头、欢呼声等集锦关键线索时,本发明提出的基于事件模型的集锦方法尤为适用。According to the above-mentioned actual needs and key problems, the object of the present invention is to propose a method for automatically synthesizing football video highlights based on an event model. This method can break through the limitations of factors such as the distance of the input video, the length of the video, and the sound of the video. Especially when the input video is a non-rebroadcast video, and key clues such as close-up shots and cheers cannot be obtained from it, the event-based model proposed by the present invention The collection method of is especially applicable.

本发明认为足球视频集锦是若干足球集锦片段组合而成的合成视频,每一个集锦片段中含有一个重要足球事件。与其他运动项目视频相比,足球比赛视频具有两个特点:第一,较难从视频中找到视频事件的开始及结束线索;第二,足球比赛规则复杂,同类型重要足球事件(例如进球或红黄牌)每次出现时其持续时间、事件经过往往各不相同。通过大量观察得知,重要足球事件通常能够分解成若干动作的组合,其中含有一个经常出现的重要动作,称为核心动作;相对而言,其他动作被称为周围动作。因此,本发明认为,足球比赛视频集锦片段可以用一个核心-周围事件模型表示。The present invention considers that the football video highlight is a synthetic video composed of several football highlight segments, and each highlight segment contains an important football event. Compared with other sports videos, football game videos have two characteristics: first, it is difficult to find the beginning and end clues of video events from the video; second, the rules of football games are complex, and the same type of important football events (such as scoring or red and yellow cards) each time it appears, its duration and course of events are often different. Through a large number of observations, it is known that important football events can usually be decomposed into a combination of several actions, including a frequently occurring important action called core action; relatively speaking, other actions are called peripheral actions. Therefore, the present invention considers that the highlight segment of football game video can be represented by a core-surrounding event model.

为了将足球比赛视频浓缩为足球集锦视频,需要在输入视频中检测并提取足球集锦片段。因此,本发明首先构建一个核心-周围事件模型,建模事件及组成事件的各动作之间的语义关系、时序关系及视觉特征。In order to condense a football game video into a football highlight video, it is necessary to detect and extract football highlight segments in the input video. Therefore, the present invention first constructs a core-surrounding event model to model the semantic relationship, temporal relationship and visual features between the events and the actions that make up the event.

核心-周围事件模型的训练过程包含以下步骤:(1)输入一系列足球比赛视频及其对应的文本解说词,从解说词中提取关键词,并根据解说词的事件记录,统计每个关键词的出现概率,以及多个关键词同时出现的概率;(2)选定出现概率最大的关键词为核心关键词;(3)将解说词与足球比赛视频相对应,记录关键词出现时间,并统计关键词表示的动作持续时间与事件持续时间;(4)在关键词出现时间段计算时空兴趣点的梯度特征和光流特征,统计梯度直方图和光流直方图作为动作的局部视觉特征。The training process of the core-surrounding event model includes the following steps: (1) Input a series of football game videos and their corresponding text commentary, extract keywords from the commentary, and count each keyword according to the event record of the commentary The probability of occurrence of the keyword, and the probability of multiple keywords appearing at the same time; (2) select the keyword with the highest probability of occurrence as the core keyword; (3) correspond the commentary to the football game video, record the keyword appearance time, and Count the action duration and event duration represented by the keywords; (4) Calculate the gradient features and optical flow features of the spatio-temporal interest points during the keyword appearance period, and count the gradient histogram and optical flow histogram as the local visual features of the action.

概括而言,核心-周围事件模型建模的内容包括:每个动作的视觉统计特征;动作在事件发生过程中的先后顺序;动作持续时间与事件持续时间的比值;每个动作发生的概率。In a nutshell, the modeling content of the core-surrounding event model includes: the visual statistical characteristics of each action; the sequence of actions in the event occurrence process; the ratio of action duration to event duration; the probability of each action occurring.

模型经过训练后,用于视频事件的检测和提取。总的来说,输入一段足球比赛视频,合成足球集锦视频的步骤可以分为:(1)提取集锦片段。对于每类足球集锦片段,首先根据该类集锦片段所含的重要足球事件,在输入视频上分别检测组成该事件的核心动作和周围动作,得到每个动作的出现时间段;然后,以核心动作为基准,结合动作时序关系确定事件发生时间段,计为候选集锦片段的时间段;最后,在候选集锦片段匹配事件模型,得出模型匹配分数。(2)合成集锦视频。首先通过步骤(1)为每种类型的足球集锦片段得出一个候选集锦片段列表,将其按照模型匹配分数由高到低排序;然后根据用户需要的集锦片段类别和集锦视频长度选取若干足球集锦片段,并按其发生时间排列;最后选择前一个足球集锦片段的末尾若干帧与后一个片段的开始若干帧做平滑过渡处理,使其更符合视觉感官效果。After the model is trained, it is used for the detection and extraction of video events. In general, inputting a football game video, the steps of synthesizing a football highlight video can be divided into: (1) extracting highlight segments. For each type of football highlight segment, firstly, according to the important football events contained in this type of highlight segment, the core action and surrounding actions that make up the event are detected on the input video, and the time period of each action is obtained; then, the core action As a benchmark, the event occurrence time period is determined in combination with the action timing relationship, which is counted as the time period of the candidate highlight segment; finally, the event model is matched with the candidate highlight segment to obtain a model matching score. (2) Synthesize video highlights. First, obtain a list of candidate highlight segments for each type of football highlight segment through step (1), and sort them according to the model matching score from high to low; then select several football highlight segments according to the highlight segment category and highlight video length required by the user clips, and arrange them according to their occurrence time; finally, select the last few frames of the previous football highlight clip and the first few frames of the next clip to make a smooth transition to make it more in line with the visual sensory effect.

与其他视频集锦方法相比,本发明的优势在于:(1)适用视频片源广泛。相较于其他视频集锦方法需要依赖电视台转播视频时的镜头特写和转场切换等线索,本发明通过分析视频事件的视觉特征,检测和识别视频中的各类事件,从而能够广泛适用于个人数字娱乐、体育科学研究、电视节目制作等视频集锦。(2)集锦片段组合灵活。由于本发明采用视频事件为视频集锦片段单元,用户指定其需要的集锦片段类型、集锦视频长度、等条件,从而能够合成符合用户需求的个性化视频集锦产品。Compared with other video collection methods, the present invention has the following advantages: (1) It is applicable to a wide range of video sources. Compared with other video collection methods that need to rely on clues such as close-up shots and transitions when TV stations rebroadcast videos, the present invention detects and recognizes various events in videos by analyzing the visual features of video events, thus being widely applicable to personal digital Video highlights from entertainment, sports science research, TV programming, and more. (2) The combination of collection fragments is flexible. Since the present invention uses video events as the unit of video highlights, the user can specify the type of highlights, the length of highlights, and other conditions, so that personalized video highlights that meet user needs can be synthesized.

附图说明: Description of drawings:

图1是本发明的核心-周围事件模型结构图;Fig. 1 is a core-surrounding event model structural diagram of the present invention;

图2是本发明的模型训练过程示意图;Fig. 2 is a schematic diagram of the model training process of the present invention;

图3是本发明的语义层事件模型建模流程图;Fig. 3 is the modeling flowchart of semantic layer event model of the present invention;

图4是本发明的视觉层事件模型训练过程流程图;Fig. 4 is the flow chart of visual layer event model training process of the present invention;

图5是本发明的足球集锦片段提取过程示意图;Fig. 5 is a schematic diagram of the extraction process of football highlights fragments of the present invention;

图6是本发明的足球集锦片段合成示意图。Fig. 6 is a schematic diagram of synthesizing football highlight fragments in the present invention.

具体实施方式: Detailed ways:

下面结合附图对本发明作详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings.

本发明定义足球视频集锦定义为足球比赛中发生、以视频为载体的重要足球事件集合。足球视频集锦由一系列足球集锦片段组合而成,每一个足球集锦片段包含一个重要足球事件。本发明构建的核心-周围事件模型用于检测和识别足球比赛视频中的重要足球事件,进而提取足球集锦片段。足球集锦片段根据其中包含的重要足球事件类型不同,而具有不同类别。例如,进球和红黄牌属于不同的重要足球事件,因此,包含进球的足球集锦片段和包含红黄牌的足球集锦片段属于不同类别的足球集锦片段。The present invention defines a football video collection as a collection of important football events that take place in a football match and take video as a carrier. Football video highlights are composed of a series of football highlight clips, and each football highlight clip contains an important football event. The core-surrounding event model constructed by the present invention is used to detect and identify important football events in football game videos, and then extract football highlights. Football highlight clips have different categories depending on the type of important football events they contain. For example, goals and yellow cards belong to different important football events, therefore, football highlight clips containing goals and football highlight clips containing yellow cards belong to different categories of football highlight clips.

参阅图1本发明的核心-周围事件模型结构图,本发明构建的核心-周围事件模型同时在语义和视觉上对足球集锦片段中包含的重要足球事件进行建模。该模型主要包括3个部分:(1)语义关系,该部分主要建模核心动作和每个周围动作同时出现的可能性,以及每个动作在该重要足球事件中出现的可能性。(2)时间顺序,该部分主要建模在重要足球事件发生过程中,各个动作可能出现的时间位置及持续时间长度。(3)视觉外观,该部分主要指动作所在时间区间的视频中时空兴趣点上的视觉特征统计。对于同类重要足球事件,选择一个最可能发生的动作视为核心动作,其他动作视为支持该事件的周围动作。因此,周围动作与核心动作之间的时序关系约束被隐式的建入模型,这对于在视频中定位事件非常有帮助。Referring to Fig. 1, the structure diagram of the core-surrounding event model of the present invention, the core-surrounding event model constructed by the present invention models the important football events contained in the football highlights segment both semantically and visually. The model mainly includes 3 parts: (1) Semantic relationship, which mainly models the possibility of the core action and each surrounding action at the same time, and the possibility of each action appearing in this important football event. (2) Time sequence. This part mainly models the possible time position and duration of each action during the occurrence of important football events. (3) Visual appearance, this part mainly refers to the visual feature statistics on the spatio-temporal interest points in the video of the time interval of the action. For similar important football events, the most likely action is selected as the core action, and other actions are regarded as surrounding actions supporting the event. Therefore, temporal relationship constraints between surrounding actions and core actions are implicitly built into the model, which is very helpful for localizing events in videos.

该核心-周围事件模型在训练时能够分为两层:语义层和视觉层。对于一类事件E以及描述它的动作集{ai,i=1,...,n},语义层建模事件E中ai的发生概率以及ai是否是E的核心。视觉层建模事件的视觉外观,并将语义层模型作为先验概率引入。视觉层模型有三个参数:识别某动作ai的最好的分类器Ai;分类器Ai的最佳出现时间锚点ti;Ai在事件发生过程中的时间区间riThe core-surrounding event model can be trained in two layers: a semantic layer and a visual layer. For a class of event E and its action set {a i , i=1,...,n}, the semantic layer models the occurrence probability of a i in event E and whether a i is the core of E. The visual layer models the visual appearance of events and introduces the semantic layer model as a prior probability. The visual layer model has three parameters: the best classifier A i to recognize an action a i ; the best appearance time anchor point t i of the classifier A i ; the time interval r i of A i during the occurrence of the event.

事件模型的的训练集包括视频段{V1,...,VN},以及相应动作的类别标签yi(yi∈{-1,1},i=1,...,N)。采用隐式支撑向量机LSVM学习该模型,在LSVM框架中,能量函数是根据隐变量最大化的,这里的隐变量指动作分类器的最佳出现位置,该位置并非精确给出,而是通过训练样本隐式的训练得到。The training set of the event model includes video segments {V 1 ,...,V N }, and the category labels y i of the corresponding actions (y i ∈ {-1, 1}, i=1,...,N) . The implicit support vector machine (LSVM) is used to learn the model. In the LSVM framework, the energy function is maximized according to the hidden variable. The hidden variable here refers to the best position of the action classifier. This position is not given precisely, but by The training samples are implicitly trained.

参阅图2本发明的足球集锦片段模型训练过程示意图,本发明的模型训练过程主要分为三个步骤:(1)语义关系建模。其具体过程如图3所示,首先将带有时间和事件标识的解说词作为训练文本,经过句子成分分析,提取其动词性、动名词性关键词,并构建表示事件的关键词集;基于WordNet词汇分类,将关键词映射到不同类别,并将该类别标签作为动作类别标签;统计每个动作在本类别集锦片段出现次数及出现总次数,计算每个动作对该类别集锦片段的标识度,并选择标识度最大的动作作为核心动作;记录动作发生次数,并计算其发生概率为先验概率。(2)动作视觉特征统计。根据解说词的时间标识和动作类别标签,获得该动作发生的视频时间区间;将该视频时间区间内的视频段分割为若干份,在每一份计算时空兴趣点上的梯度直方图和光流直方图。(3)时序关系建模。根据解说词的时间标识、事件标识和动作类别标签,得出同类足球集锦片段所含事件的动作发生顺序图,根据事件视觉层模型,利用LSVM训练每个动作最佳发生位置。Referring to Fig. 2, the schematic diagram of the training process of the football highlights segment model of the present invention, the model training process of the present invention is mainly divided into three steps: (1) Semantic relationship modeling. The specific process is shown in Figure 3. First, the commentary with time and event marks is used as the training text, and after sentence component analysis, the verb and gerund keywords are extracted, and the keyword set representing the event is constructed; based on WordNet vocabulary classification, mapping keywords to different categories, and using the category label as an action category label; counting the number of occurrences and total number of occurrences of each action in this category of highlights, and calculating the identification degree of each action to the category of highlights , and select the action with the highest identification degree as the core action; record the number of times the action occurs, and calculate its occurrence probability as the prior probability. (2) Action visual feature statistics. According to the time stamp and action category label of the commentary, the video time interval in which the action occurred is obtained; the video segment in the video time interval is divided into several parts, and the gradient histogram and optical flow histogram on the spatiotemporal interest points are calculated in each part picture. (3) Time series relationship modeling. According to the time mark, event mark and action category label of the commentary, the action occurrence sequence diagram of the events contained in the similar football highlight clips is obtained. According to the event visual layer model, LSVM is used to train the best occurrence position of each action.

参阅图4本发明的视觉层事件模型训练过程流程图,本发明的事件模型在视觉层上的训练过程如下:(1)计算特征点,将训练集中的每个视频Vp(p∈{1,...,N})平均分割为M个视频段检测

Figure BDA0000095269790000052
的时空兴趣点
Figure BDA0000095269790000053
其中
Figure BDA0000095269790000054
为视频段
Figure BDA0000095269790000055
中的时空兴趣点个数。(2)统计stl的梯度直方图
Figure BDA0000095269790000056
和光流直方图
Figure BDA0000095269790000057
其中梯度直方图的横坐标是梯度向量区间,区间个数用ng表示,纵坐标表示落在每个向量区间的梯度向量个数;光流直方图的横坐标是光流向量区间,区间个数用nf表示,纵坐标表示落在每个向量区间的光流向量个数。(3)将每个视频段时空兴趣点的梯度直方图和光流直方图归一化为一个nd维向量,其中nd=ng+nf,并利用k-means算法将
Figure BDA0000095269790000058
个向量聚为K类,构造出视频段视觉统计特征的编码表。(4)初始化分类器Ai的最佳出现时间锚点ti和Ai在事件发生过程中的时间区间ri,然后通过步骤(5)(6)训练分类器Ai。(5)根据ti和ri截取视频Vp的若干视频段,统计其包含的时空兴趣点向量,并映射到编码表构成一个长度为K的向量分布直方图
Figure BDA0000095269790000061
将该直方图归一化为K维向量加入正例集Ψ。(6)以ri确定截取窗口大小,在视频Vp上滑动,计算在时间锚点t处所截取视频段的向量分布直方图
Figure BDA0000095269790000062
计算该直方图构成的K维向量与正例集中向量的距离
Figure BDA0000095269790000063
Figure BDA0000095269790000064
(ε为某极小量),则将
Figure BDA0000095269790000065
代替加入正例集,重复本步骤;否则结束本步骤。(7)统计t在视频Vp中出现的位置,将其拟合为二次抛物曲线其中{αi,βi}为二次曲线参数。该二次抛物曲线横坐标表示归一化后的t的出现时间,纵坐标表示在该时间上的出现次数,作为时间惩罚函数留待识别过程使用。Referring to Fig. 4 visual layer event model training process flowchart of the present invention, the training process of event model of the present invention on the visual layer is as follows: (1) calculate feature point, each video V p (p ∈ {1 ,...,N}) are evenly divided into M video segments detection
Figure BDA0000095269790000052
spatio-temporal points of interest
Figure BDA0000095269790000053
in
Figure BDA0000095269790000054
for the video segment
Figure BDA0000095269790000055
The number of spatiotemporal interest points in . (2) Gradient histogram of statistical st l
Figure BDA0000095269790000056
and optical flow histogram
Figure BDA0000095269790000057
The abscissa of the gradient histogram is the gradient vector interval, the number of intervals is represented by ng, and the ordinate indicates the number of gradient vectors falling in each vector interval; the abscissa of the optical flow histogram is the optical flow vector interval, the number of intervals Represented by nf, the ordinate indicates the number of optical flow vectors falling in each vector interval. (3) Normalize the gradient histogram and optical flow histogram of the spatiotemporal interest points of each video segment into an nd-dimensional vector, where nd=ng+nf, and use the k-means algorithm to
Figure BDA0000095269790000058
The vectors are clustered into K classes, and the coding table of the visual statistical features of the video segment is constructed. (4) Initialize the best appearance time anchor point t i of the classifier A i and the time interval r i of A i in the event occurrence process, and then train the classifier A i through steps (5) (6). (5) Intercept several video segments of video V p according to t i and r i , count the spatio-temporal interest point vectors contained in them, and map them to the encoding table to form a vector distribution histogram with a length of K
Figure BDA0000095269790000061
Normalize the histogram to a K-dimensional vector and add it to the positive example set Ψ. (6) Use ri to determine the interception window size, slide on the video Vp , and calculate the vector distribution histogram of the intercepted video segment at the time anchor point t
Figure BDA0000095269790000062
Calculate the distance between the K-dimensional vector formed by the histogram and the positive example set vector
Figure BDA0000095269790000063
like
Figure BDA0000095269790000064
(ε is a very small amount), then the
Figure BDA0000095269790000065
replace Add positive examples and repeat this step; otherwise end this step. (7) Count the position where t appears in the video Vp , and fit it to a quadratic parabolic curve Where {α i , β i } are parameters of the quadratic curve. The abscissa of the quadratic parabolic curve represents the time of occurrence of the normalized t, and the ordinate represents the number of occurrences at this time, which is used as a time penalty function for the recognition process.

参阅图5本发明的足球集锦片段提取过程示意图,该提取过程主要包括以下步骤:(1)对于输入足球比赛视频段,检测所有可能出现的动作;(2)以某类足球集锦片段为例,使用该类足球集锦片段所含重要足球事件的核心动作定位该足球集锦片段的粗略时间段作为该足球集锦片段的候选时间段;(3)计算该候选时间段与对应事件模型的匹配度,并以分数表示,称为该候选时间段对于该足球集锦片段的匹配得分。将同类足球集锦片段的所有候选时间段按照匹配得分由高到低的顺序排列。候选足球集锦片段与事件模型的匹配过程步骤如下:(1)将候选足球集锦片段VF根据训练集视频划分尺度划分为视频段

Figure BDA0000095269790000068
(2)取分类器Ai,根据其时间区间ri划定滑动窗口大小,在VF的Q段视频段上滑动,计算在时间锚点t处所截取视频段的向量分布直方图
Figure BDA0000095269790000069
计算该直方图构成的K维向量与正例集中向量相似度
Figure BDA00000952697900000610
(3)计算时间锚点t处的时间惩罚
Figure BDA00000952697900000611
(4)根据公式
Figure BDA00000952697900000612
计算分类器Ai在候选足球集锦片段VF上的最好得分作为分类器Ai的匹配分数;(5)累加模型匹配分数,并返回步骤(2)直至所有分类器匹配完毕。Referring to Fig. 5 the schematic diagram of the extraction process of the football highlight segment of the present invention, the extraction process mainly includes the following steps: (1) for the input football game video segment, detect all possible actions; (2) take a certain type of football highlight segment as an example, Use the core action of the important football event contained in this type of football highlight segment to locate the rough time period of the football highlight segment as the candidate time period of the football highlight segment; (3) calculate the matching degree of the candidate time period and the corresponding event model, and It is represented by a score, which is called the match score of the candidate time period for the football highlight segment. Arrange all candidate time periods of the same football highlight segment in descending order of matching score. The matching process steps of the candidate football highlight segment and the event model are as follows: (1) Divide the candidate football highlight segment V F into video segments according to the video division scale of the training set
Figure BDA0000095269790000068
(2) Take the classifier A i , define the size of the sliding window according to its time interval r i , slide on the Q segment video segment of VF , and calculate the vector distribution histogram of the video segment intercepted at the time anchor point t
Figure BDA0000095269790000069
Calculate the similarity between the K-dimensional vector formed by the histogram and the vector in the positive example set
Figure BDA00000952697900000610
(3) Calculate the time penalty at the time anchor point t
Figure BDA00000952697900000611
(4) According to the formula
Figure BDA00000952697900000612
Calculate the best score of classifier A i on the candidate football highlights segment VF as the matching score of classifier A i ; (5) accumulate model matching scores, and return to step (2) until all classifiers are matched.

参阅图6本发明的足球集锦片段合成示意图,根据用户需要的足球集锦片段类型和集锦视频长度,通过编辑每两个足球集锦片段之间的过渡效果,以完成视频集锦。选取足球集锦片段A的最后N帧以及足球集锦片段B的开始N帧作为过渡区域,调整每帧的透明度,并使调整后的A的第x帧透明度

Figure BDA00000952697900000613
和B的第x帧透明度
Figure BDA00000952697900000614
满足 Referring to Fig. 6, a schematic diagram of synthesizing a football highlight segment of the present invention, according to the type of football highlight segment and the length of the highlight video required by the user, the video highlight is completed by editing the transition effect between every two football highlight segments. Select the last N frames of football highlight clip A and the first N frames of football highlight clip B as the transition area, adjust the transparency of each frame, and make the adjusted x-th frame of A transparent
Figure BDA00000952697900000613
and the x-th frame transparency of B
Figure BDA00000952697900000614
satisfy

本发明能够支持根据用户需求集锦足球比赛视频。(1)给定集锦视频长度,生成一场足球比赛的集锦视频。(2)指定足球集锦片段类型,生成关于指定集锦片段类型的足球集锦视频。(3)同时指定集锦视频长度和集锦片段类型,生成关于该类集锦片段的特定长度的足球集锦视频。The present invention can support summarizing football game videos according to user needs. (1) Given the length of the highlight video, generate a highlight video of a football match. (2) Designate a football highlight segment type, and generate a football highlight video about the specified highlight segment type. (3) Designate the length of the highlight video and the type of the highlight segment at the same time, and generate a football highlight video of a specific length for this type of highlight segment.

以上所述仅为本发明的一些基本说明,依据本发明的技术方案所做的任何等效变换,均应属于本发明的保护范围。The above descriptions are only some basic explanations of the present invention, and any equivalent transformation made according to the technical solution of the present invention shall fall within the scope of protection of the present invention.

Claims (6)

1.一种基于事件模型的足球视频集锦自动合成方法,其特征在于包含以下步骤:1. A method for automatically synthesizing football video highlights based on an event model, characterized in that it comprises the following steps: (1)定义足球视频集锦片段是由单人或多人进行的、可分解为多动作组合的重要足球事件;(1) The definition of a football video highlight segment is an important football event that is performed by a single person or multiple people and can be decomposed into multiple action combinations; (2)构建一个核心-周围事件模型,根据动作发生概率,指定最可能发生的动作为核心动作,其余动作均为周围动作,该事件模型具体包括动作语义关系、动作时序关系和局部视觉特征三个部分;(2) Construct a core-surrounding event model. According to the probability of action occurrence, the most likely action is designated as the core action, and the rest of the actions are surrounding actions. The event model specifically includes three parts: action semantic relationship, action timing relationship and local visual features. parts; (3)利用足球比赛视频及其对应的文本解说词构建训练集,选择进球和红黄牌作为两类足球集锦,分别从动作语义关系、动作时序关系和局部视觉特征三个方面训练所述核心-周围事件模型;(3) Use football game videos and their corresponding text commentaries to construct a training set, select goals and red and yellow cards as two types of football highlights, and train the core from the three aspects of action semantic relationship, action timing relationship and local visual features - surrounding event model; (4)输入一段没有解说词的足球比赛视频,利用训练得到的事件模型在输入视频中提取足球集锦片段,并给出候选集锦片段与模型的匹配分数;(4) Input a football game video without commentary, use the event model trained to extract football highlight segments in the input video, and give the matching score of the candidate highlight segments and the model; (5)将足球集锦片段分类按照匹配分数排序,将分数较高的足球集锦片段自动合成为一个足球视频集锦。(5) Sort the football highlight segments according to their matching scores, and automatically synthesize the football highlight segments with higher scores into a football video highlight. 2.根据权利要求1所述的基于事件模型的足球视频集锦自动合成方法,其特征在于:步骤(1)中以视频事件作为足球集锦片段单元,针对某个类型的足球集锦片段单独进行足球视频集锦。2. the automatic synthesis method of football video highlights based on event model according to claim 1, it is characterized in that: in step (1), use video event as football highlight segment unit, carry out football video separately for a certain type of football highlight segment Highlights. 3.根据权利要求1所述的基于事件模型的足球视频集锦自动合成方法,其特征在于:步骤(2)的核心-周围事件模型要求事件可被分解为多个动作,所述核心-周围事件模型主要建模三个部分内容:3. the automatic synthesis method of football video highlights based on event model according to claim 1, is characterized in that: the core of step (2)-surrounding event model requires event can be decomposed into a plurality of actions, and described core-surrounding event The model mainly models three parts: (2.1)动作语义关系包括每个动作发生的概率,以及每个周围动作和核心动作同时出现的概率;(2.1) Action semantic relations include the probability of occurrence of each action, and the probability of simultaneous occurrence of each surrounding action and core action; (2.2)动作时序关系包括动作在事件发生过程中的先后顺序,以及动作持续时间与事件持续时间的比值;(2.2) The timing relationship of actions includes the sequence of actions in the event occurrence process, and the ratio of action duration to event duration; (2.3)局部视觉特征包括每个动作在运动持续过程中的梯度和光流统计特征。(2.3) Local visual features include the gradient and optical flow statistical features of each action during the motion duration. 4.根据权利要求1所述的基于事件模型的足球视频集锦自动合成方法,其特征在于:步骤(3)中要求输入的足球比赛视频文本解说词含有时间记录及事件记录,能够与视频时间相对应,针对某类型足球集锦训练所述核心-周围的步骤如下:4. the automatic synthesis method of football video highlights based on event model according to claim 1, is characterized in that: the football game video text commentary that requires input in the step (3) contains time record and event record, can be correlated with video time Correspondingly, the core-peripheral steps for a certain type of football training are as follows: (3.1)输入一系列足球比赛视频及其对应的文本解说词,从解说词中提取关键词,并根据解说词的事件记录,统计每个关键词的出现概率,以及多个关键词同时出现的概率;(3.1) Input a series of football game videos and their corresponding text commentary, extract keywords from the commentary, and count the occurrence probability of each keyword according to the event records of the commentary, and the occurrence probability of multiple keywords at the same time probability; (3.2)选定出现概率最大的关键词为核心关键词;(3.2) select the keyword with the greatest probability of occurrence as the core keyword; (3.3)将解说词与足球比赛视频相对应,记录关键词出现时间,并统计关键词表示的动作持续时间与事件持续时间;(3.3) The commentary is corresponding to the football game video, the keyword occurrence time is recorded, and the action duration and event duration of the keyword representation are counted; (3.4)在关键词出现时间段计算时空兴趣点的梯度特征和光流特征,统计梯度直方图和光流直方图作为动作的局部视觉特征。(3.4) Calculate the gradient features and optical flow features of the spatio-temporal interest points during the keyword occurrence period, and count the gradient histogram and optical flow histogram as the local visual features of the action. 5.根据权利要求1所述的基于事件模型的足球视频集锦自动合成方法,其特征在于:步骤(4)输入一段足球比赛视频,其集锦片段提取过程分为以下步骤:5. the automatic synthesis method of football video collection based on event model according to claim 1, is characterized in that: step (4) imports a section of football game video, and its collection segment extraction process is divided into the following steps: (4.1)在输入视频上分别检测核心动作和周围动作,得到所有动作的出现时间段;(4.1) Detect core actions and surrounding actions on the input video, and obtain the time periods of all actions; (4.2)以核心动作为基准,结合动作时序关系确定事件发生时间段计为候选足球集锦片段;(4.2) Based on the core action, combined with the timing relationship of the action to determine the event occurrence time period and count it as a candidate football highlight segment; (4.3)在候选足球集锦片段匹配事件模型,得出模型匹配分数。(4.3) Match the event model on the candidate segment to obtain a model matching score. 6.根据权利要求1所述的基于事件模型的足球视频集锦自动合成方法,其特征在于:步骤(5)中将若干候选足球集锦片段组合为足球视频集锦时,根据用户需要的集锦类型和视频长度对每个足球集锦片段开始与结尾部分做过渡处理。6. the automatic synthesis method of football video highlights based on event model according to claim 1, is characterized in that: when some candidate football highlight segments are combined into football video highlights in the step (5), according to the highlight types and video highlights required by users Length transitions the beginning and end of each football highlight clip.
CN201110294384.9A 2011-09-30 2011-09-30 A method of automatic synthesis of football video highlights based on event model Expired - Fee Related CN102427507B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110294384.9A CN102427507B (en) 2011-09-30 2011-09-30 A method of automatic synthesis of football video highlights based on event model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110294384.9A CN102427507B (en) 2011-09-30 2011-09-30 A method of automatic synthesis of football video highlights based on event model

Publications (2)

Publication Number Publication Date
CN102427507A true CN102427507A (en) 2012-04-25
CN102427507B CN102427507B (en) 2014-03-05

Family

ID=45961446

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110294384.9A Expired - Fee Related CN102427507B (en) 2011-09-30 2011-09-30 A method of automatic synthesis of football video highlights based on event model

Country Status (1)

Country Link
CN (1) CN102427507B (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103440274A (en) * 2013-08-07 2013-12-11 北京航空航天大学 Video event sketch construction and matching method based on detail description
CN103886089A (en) * 2014-03-31 2014-06-25 吴怀正 Travelling record video concentrating method based on learning
CN104135667A (en) * 2014-06-10 2014-11-05 腾讯科技(深圳)有限公司 Video remote explanation synchronization method, terminal equipment and system
WO2015196584A1 (en) * 2014-06-26 2015-12-30 北京小鱼儿科技有限公司 Smart recording system
CN105959710A (en) * 2016-05-26 2016-09-21 简极科技有限公司 Sports video live broadcast, cutting and storage system
WO2016202306A1 (en) * 2015-06-17 2016-12-22 北京金山安全软件有限公司 Video processing method and device
CN106899809A (en) * 2017-02-28 2017-06-27 广州市诚毅科技软件开发有限公司 A kind of video clipping method and device based on deep learning
CN106993209A (en) * 2016-01-20 2017-07-28 上海慧体网络科技有限公司 A kind of method that short video clip is carried out based on mobile terminal technology
CN107071528A (en) * 2017-04-20 2017-08-18 暴风集团股份有限公司 A kind of display methods and display device of physical culture schedules
CN107423274A (en) * 2017-06-07 2017-12-01 北京百度网讯科技有限公司 Commentary content generating method, device and storage medium based on artificial intelligence
CN107707931A (en) * 2016-08-08 2018-02-16 阿里巴巴集团控股有限公司 Generated according to video data and explain data, data synthesis method and device, electronic equipment
CN107729821A (en) * 2017-09-27 2018-02-23 浙江大学 A kind of video summarization method based on one-dimensional sequence study
CN108229285A (en) * 2017-05-27 2018-06-29 北京市商汤科技开发有限公司 Object classification method, the training method of object classification device, device and electronic equipment
CN108288475A (en) * 2018-02-12 2018-07-17 成都睿码科技有限责任公司 A kind of sports video collection of choice specimens clipping method based on deep learning
CN108696505A (en) * 2017-04-07 2018-10-23 佳能株式会社 Video distribution apparatus, video reception apparatus, method of video distribution and recording medium
CN108900896A (en) * 2018-05-29 2018-11-27 深圳天珑无线科技有限公司 Video clipping method and device
CN109214330A (en) * 2018-08-30 2019-01-15 北京影谱科技股份有限公司 Video Semantic Analysis method and apparatus based on video timing information
CN109391856A (en) * 2018-10-22 2019-02-26 百度在线网络技术(北京)有限公司 Video broadcasting method, device, computer equipment and storage medium
CN109407826A (en) * 2018-08-31 2019-03-01 百度在线网络技术(北京)有限公司 Ball game analogy method, device, storage medium and electronic equipment
CN109691124A (en) * 2016-06-20 2019-04-26 皮克索洛特公司 Method and system for automatically generating video highlights
CN109710806A (en) * 2018-12-06 2019-05-03 苏宁体育文化传媒(北京)有限公司 The method for visualizing and system of football match data
CN109791632A (en) * 2016-09-26 2019-05-21 国立研究开发法人情报通信研究机构 Scene segment classifier, scene classifier and the computer program for it
CN109844736A (en) * 2017-05-05 2019-06-04 谷歌有限责任公司 Summarize the video content
US10335690B2 (en) 2016-09-16 2019-07-02 Microsoft Technology Licensing, Llc Automatic video game highlight reel
CN109977735A (en) * 2017-12-28 2019-07-05 优酷网络技术(北京)有限公司 Move the extracting method and device of wonderful
CN110121107A (en) * 2018-02-06 2019-08-13 上海全土豆文化传播有限公司 Video material collection method and device
CN110366050A (en) * 2018-04-10 2019-10-22 北京搜狗科技发展有限公司 Processing method, device, electronic equipment and the storage medium of video data
CN110392281A (en) * 2018-04-20 2019-10-29 腾讯科技(深圳)有限公司 Image synthesizing method, device, computer equipment and storage medium
CN110851621A (en) * 2019-10-31 2020-02-28 中国科学院自动化研究所 Method, device and storage medium for predicting video wonderful level based on knowledge graph
CN110933459A (en) * 2019-11-18 2020-03-27 咪咕视讯科技有限公司 Method, device, server, and readable storage medium for editing game video
WO2020177673A1 (en) * 2019-03-05 2020-09-10 腾讯科技(深圳)有限公司 Video sequence selection method, computer device and storage medium
CN111757147A (en) * 2020-06-03 2020-10-09 苏宁云计算有限公司 Method, device and system for event video structuring
CN111935155A (en) * 2020-08-12 2020-11-13 北京字节跳动网络技术有限公司 Method, apparatus, server and medium for generating target video
CN111950332A (en) * 2019-05-17 2020-11-17 杭州海康威视数字技术股份有限公司 Video time sequence positioning method and device, computing equipment and storage medium
CN112182297A (en) * 2020-09-30 2021-01-05 北京百度网讯科技有限公司 Method and device for training information fusion model and generating highlight video
CN112235631A (en) * 2019-07-15 2021-01-15 北京字节跳动网络技术有限公司 Video processing method and device, electronic equipment and storage medium
CN112753226A (en) * 2018-05-18 2021-05-04 图兹公司 Machine learning for identifying and interpreting embedded information card content
WO2021129252A1 (en) * 2019-12-25 2021-07-01 北京影谱科技股份有限公司 Method, apparatus and device for automatically generating shooting highlights of soccer match, and computer readable storage medium
CN113537052A (en) * 2021-07-14 2021-10-22 北京百度网讯科技有限公司 A method, device, device and storage medium for extracting video clips
CN113792654A (en) * 2021-09-14 2021-12-14 湖南快乐阳光互动娱乐传媒有限公司 Video clip integration method and device, electronic equipment and storage medium
WO2022007545A1 (en) * 2020-07-06 2022-01-13 聚好看科技股份有限公司 Video collection generation method and display device
CN113989725A (en) * 2021-11-09 2022-01-28 新华智云科技有限公司 Goal segment classification method based on neural network
CN114768262A (en) * 2016-03-15 2022-07-22 思奇里兹平台股份有限公司 Cross-game analysis in point-to-point game ranking
CN115104137A (en) * 2020-02-15 2022-09-23 利蒂夫株式会社 Method of operating server for providing platform service based on sports video
CN115119050A (en) * 2022-06-30 2022-09-27 北京奇艺世纪科技有限公司 Video clipping method and device, electronic equipment and storage medium
CN115412765A (en) * 2022-08-31 2022-11-29 北京奇艺世纪科技有限公司 Video highlight determining method and device, electronic equipment and storage medium
CN117478824A (en) * 2023-12-27 2024-01-30 苏州元脑智能科技有限公司 Conference video generation method and device, electronic equipment and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040167767A1 (en) * 2003-02-25 2004-08-26 Ziyou Xiong Method and system for extracting sports highlights from audio signals
JP2009100314A (en) * 2007-10-17 2009-05-07 Sony Corp Electronic device, content categorizing method, and program therefor
CN102073864A (en) * 2010-12-01 2011-05-25 北京邮电大学 Football item detecting system with four-layer structure in sports video and realization method thereof
US20110217024A1 (en) * 2010-03-05 2011-09-08 Tondra Schlieski System, method, and computer program product for custom stream generation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040167767A1 (en) * 2003-02-25 2004-08-26 Ziyou Xiong Method and system for extracting sports highlights from audio signals
JP2009100314A (en) * 2007-10-17 2009-05-07 Sony Corp Electronic device, content categorizing method, and program therefor
US20110217024A1 (en) * 2010-03-05 2011-09-08 Tondra Schlieski System, method, and computer program product for custom stream generation
CN102073864A (en) * 2010-12-01 2011-05-25 北京邮电大学 Football item detecting system with four-layer structure in sports video and realization method thereof

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103440274B (en) * 2013-08-07 2016-09-28 北京航空航天大学 A kind of video event sketch construction described based on details and matching process
CN103440274A (en) * 2013-08-07 2013-12-11 北京航空航天大学 Video event sketch construction and matching method based on detail description
CN103886089B (en) * 2014-03-31 2017-12-15 吴怀正 Driving recording video concentration method based on study
CN103886089A (en) * 2014-03-31 2014-06-25 吴怀正 Travelling record video concentrating method based on learning
US9924205B2 (en) 2014-06-10 2018-03-20 Tencent Technology (Shenzhen) Company Limited Video remote-commentary synchronization method and system, and terminal device
CN104135667A (en) * 2014-06-10 2014-11-05 腾讯科技(深圳)有限公司 Video remote explanation synchronization method, terminal equipment and system
CN104135667B (en) * 2014-06-10 2015-06-24 腾讯科技(深圳)有限公司 Video remote explanation synchronization method, terminal equipment and system
WO2015196584A1 (en) * 2014-06-26 2015-12-30 北京小鱼儿科技有限公司 Smart recording system
US11184529B2 (en) 2014-06-26 2021-11-23 Ainemo Inc. Smart recording system
WO2016202306A1 (en) * 2015-06-17 2016-12-22 北京金山安全软件有限公司 Video processing method and device
US10553254B2 (en) 2015-06-17 2020-02-04 Beijing Kingsoft Internet Security Software Co., Ltd. Method and device for processing video
CN106993209A (en) * 2016-01-20 2017-07-28 上海慧体网络科技有限公司 A kind of method that short video clip is carried out based on mobile terminal technology
CN114768262A (en) * 2016-03-15 2022-07-22 思奇里兹平台股份有限公司 Cross-game analysis in point-to-point game ranking
CN114768262B (en) * 2016-03-15 2025-04-08 思奇里兹平台股份有限公司 Cross-match analysis in peer-to-peer ranked games
CN105959710A (en) * 2016-05-26 2016-09-21 简极科技有限公司 Sports video live broadcast, cutting and storage system
CN105959710B (en) * 2016-05-26 2018-10-26 简极科技有限公司 A kind of live streaming of sport video, shearing and storage system
CN109691124A (en) * 2016-06-20 2019-04-26 皮克索洛特公司 Method and system for automatically generating video highlights
CN107707931A (en) * 2016-08-08 2018-02-16 阿里巴巴集团控股有限公司 Generated according to video data and explain data, data synthesis method and device, electronic equipment
US10335690B2 (en) 2016-09-16 2019-07-02 Microsoft Technology Licensing, Llc Automatic video game highlight reel
CN109791632B (en) * 2016-09-26 2023-07-21 国立研究开发法人情报通信研究机构 Scene segment classifier, scene classifier and recording medium
CN109791632A (en) * 2016-09-26 2019-05-21 国立研究开发法人情报通信研究机构 Scene segment classifier, scene classifier and the computer program for it
CN106899809A (en) * 2017-02-28 2017-06-27 广州市诚毅科技软件开发有限公司 A kind of video clipping method and device based on deep learning
CN108696505A (en) * 2017-04-07 2018-10-23 佳能株式会社 Video distribution apparatus, video reception apparatus, method of video distribution and recording medium
US11102527B2 (en) 2017-04-07 2021-08-24 Canon Kabushiki Kaisha Video distribution apparatus, video reception apparatus, video distribution method, and recording medium
CN107071528A (en) * 2017-04-20 2017-08-18 暴风集团股份有限公司 A kind of display methods and display device of physical culture schedules
CN109844736A (en) * 2017-05-05 2019-06-04 谷歌有限责任公司 Summarize the video content
CN109844736B (en) * 2017-05-05 2023-08-22 谷歌有限责任公司 Summarize video content
CN108229285B (en) * 2017-05-27 2021-04-23 北京市商汤科技开发有限公司 Object classification method, object classifier training method and device and electronic equipment
CN108229285A (en) * 2017-05-27 2018-06-29 北京市商汤科技开发有限公司 Object classification method, the training method of object classification device, device and electronic equipment
CN107423274A (en) * 2017-06-07 2017-12-01 北京百度网讯科技有限公司 Commentary content generating method, device and storage medium based on artificial intelligence
US11550998B2 (en) 2017-06-07 2023-01-10 Beijing Baidu Netcom Science And Technology Co., Ltd. Method and apparatus for generating a competition commentary based on artificial intelligence, and storage medium
CN107423274B (en) * 2017-06-07 2020-11-20 北京百度网讯科技有限公司 Method, device and storage medium for generating content of game commentary based on artificial intelligence
CN107729821B (en) * 2017-09-27 2020-08-11 浙江大学 A video generalization method based on one-dimensional sequence learning
CN107729821A (en) * 2017-09-27 2018-02-23 浙江大学 A kind of video summarization method based on one-dimensional sequence study
CN109977735A (en) * 2017-12-28 2019-07-05 优酷网络技术(北京)有限公司 Move the extracting method and device of wonderful
CN110121107A (en) * 2018-02-06 2019-08-13 上海全土豆文化传播有限公司 Video material collection method and device
CN108288475A (en) * 2018-02-12 2018-07-17 成都睿码科技有限责任公司 A kind of sports video collection of choice specimens clipping method based on deep learning
CN110366050A (en) * 2018-04-10 2019-10-22 北京搜狗科技发展有限公司 Processing method, device, electronic equipment and the storage medium of video data
CN110392281A (en) * 2018-04-20 2019-10-29 腾讯科技(深圳)有限公司 Image synthesizing method, device, computer equipment and storage medium
CN110392281B (en) * 2018-04-20 2022-03-18 腾讯科技(深圳)有限公司 Video synthesis method and device, computer equipment and storage medium
CN112753226B (en) * 2018-05-18 2024-01-02 斯特兹有限责任公司 Method, medium and system for extracting metadata from video stream
US12046039B2 (en) 2018-05-18 2024-07-23 Stats Llc Video processing for enabling sports highlights generation
CN112753226A (en) * 2018-05-18 2021-05-04 图兹公司 Machine learning for identifying and interpreting embedded information card content
CN108900896A (en) * 2018-05-29 2018-11-27 深圳天珑无线科技有限公司 Video clipping method and device
CN109214330A (en) * 2018-08-30 2019-01-15 北京影谱科技股份有限公司 Video Semantic Analysis method and apparatus based on video timing information
CN109407826A (en) * 2018-08-31 2019-03-01 百度在线网络技术(北京)有限公司 Ball game analogy method, device, storage medium and electronic equipment
CN109391856A (en) * 2018-10-22 2019-02-26 百度在线网络技术(北京)有限公司 Video broadcasting method, device, computer equipment and storage medium
CN109710806A (en) * 2018-12-06 2019-05-03 苏宁体育文化传媒(北京)有限公司 The method for visualizing and system of football match data
US12008810B2 (en) 2019-03-05 2024-06-11 Tencent Technology (Shenzhen) Company Limited Video sequence selection method, computer device, and storage medium
WO2020177673A1 (en) * 2019-03-05 2020-09-10 腾讯科技(深圳)有限公司 Video sequence selection method, computer device and storage medium
CN111950332B (en) * 2019-05-17 2023-09-05 杭州海康威视数字技术股份有限公司 Video time sequence positioning method, device, computing equipment and storage medium
CN111950332A (en) * 2019-05-17 2020-11-17 杭州海康威视数字技术股份有限公司 Video time sequence positioning method and device, computing equipment and storage medium
US11978485B2 (en) 2019-07-15 2024-05-07 Beijing Bytedance Network Technology Co., Ltd. Video processing method and apparatus, and electronic device and storage medium
CN112235631A (en) * 2019-07-15 2021-01-15 北京字节跳动网络技术有限公司 Video processing method and device, electronic equipment and storage medium
CN110851621B (en) * 2019-10-31 2023-10-13 中国科学院自动化研究所 Method, device and storage medium for predicting video highlight level based on knowledge graph
CN110851621A (en) * 2019-10-31 2020-02-28 中国科学院自动化研究所 Method, device and storage medium for predicting video wonderful level based on knowledge graph
CN110933459B (en) * 2019-11-18 2022-04-26 咪咕视讯科技有限公司 Event video clipping method, device, server and readable storage medium
CN110933459A (en) * 2019-11-18 2020-03-27 咪咕视讯科技有限公司 Method, device, server, and readable storage medium for editing game video
WO2021129252A1 (en) * 2019-12-25 2021-07-01 北京影谱科技股份有限公司 Method, apparatus and device for automatically generating shooting highlights of soccer match, and computer readable storage medium
CN115104137A (en) * 2020-02-15 2022-09-23 利蒂夫株式会社 Method of operating server for providing platform service based on sports video
CN111757147A (en) * 2020-06-03 2020-10-09 苏宁云计算有限公司 Method, device and system for event video structuring
CN111757147B (en) * 2020-06-03 2022-06-24 苏宁云计算有限公司 Method, device and system for event video structuring
WO2022007545A1 (en) * 2020-07-06 2022-01-13 聚好看科技股份有限公司 Video collection generation method and display device
CN111935155B (en) * 2020-08-12 2021-07-30 北京字节跳动网络技术有限公司 Method, apparatus, server and medium for generating target video
US11750898B2 (en) 2020-08-12 2023-09-05 Beijing Bytedance Network Technology Co., Ltd. Method for generating target video, apparatus, server, and medium
CN111935155A (en) * 2020-08-12 2020-11-13 北京字节跳动网络技术有限公司 Method, apparatus, server and medium for generating target video
CN112182297A (en) * 2020-09-30 2021-01-05 北京百度网讯科技有限公司 Method and device for training information fusion model and generating highlight video
CN113537052A (en) * 2021-07-14 2021-10-22 北京百度网讯科技有限公司 A method, device, device and storage medium for extracting video clips
CN113792654A (en) * 2021-09-14 2021-12-14 湖南快乐阳光互动娱乐传媒有限公司 Video clip integration method and device, electronic equipment and storage medium
CN113989725A (en) * 2021-11-09 2022-01-28 新华智云科技有限公司 Goal segment classification method based on neural network
CN113989725B (en) * 2021-11-09 2024-11-08 新华智云科技有限公司 A goal segment classification method based on neural network
CN115119050B (en) * 2022-06-30 2023-12-15 北京奇艺世纪科技有限公司 Video editing method and device, electronic equipment and storage medium
CN115119050A (en) * 2022-06-30 2022-09-27 北京奇艺世纪科技有限公司 Video clipping method and device, electronic equipment and storage medium
CN115412765A (en) * 2022-08-31 2022-11-29 北京奇艺世纪科技有限公司 Video highlight determining method and device, electronic equipment and storage medium
CN115412765B (en) * 2022-08-31 2024-03-26 北京奇艺世纪科技有限公司 Video highlight determination method and device, electronic equipment and storage medium
CN117478824B (en) * 2023-12-27 2024-03-22 苏州元脑智能科技有限公司 Conference video generation method and device, electronic equipment and storage medium
CN117478824A (en) * 2023-12-27 2024-01-30 苏州元脑智能科技有限公司 Conference video generation method and device, electronic equipment and storage medium

Also Published As

Publication number Publication date
CN102427507B (en) 2014-03-05

Similar Documents

Publication Publication Date Title
CN102427507A (en) Football video highlight automatic synthesis method based on event model
Merler et al. Automatic curation of sports highlights using multimodal excitement features
Xu et al. Using webcast text for semantic event detection in broadcast sports video
Tang et al. Detecting highlights in sports videos: Cricket as a test case
Del Fabro et al. State-of-the-art and future challenges in video scene detection: a survey
CN104199933B (en) The football video event detection and semanteme marking method of a kind of multimodal information fusion
Rehman et al. Features extraction for soccer video semantic analysis: current achievements and remaining issues
Sang et al. Character-based movie summarization
US20100005485A1 (en) Annotation of video footage and personalised video generation
Habibian et al. Recommendations for video event recognition using concept vocabularies
CN103200463A (en) Method and device for generating video summary
JP2011188342A (en) Information processing apparatus, information processing method, and program
Wang et al. Affection arousal based highlight extraction for soccer video
Merler et al. Automatic curation of golf highlights using multimodal excitement features
Wang et al. Quasi-periodic event analysis for social game retrieval
Chiu et al. Tagging webcast text in baseball videos by video segmentation and text alignment
Liu et al. Multimodal semantic analysis and annotation for basketball video
Sattar et al. Multi-Modal Architecture for Cricket Highlights Generation: Using Computer Vision and Large Language Model
Shim et al. Teaching machines to understand baseball games: large-scale baseball video database for multiple video understanding tasks
Choroś Video structure analysis for content-based indexing and categorisation of TV sports news
Ren et al. Football video segmentation based on video production strategy
Kapela et al. Real-time event detection in field sport videos
Bertini et al. Highlights modeling and detection in sports videos
Naik et al. An algorithm for retrieval of significant events near goal post from soccer videos using fuzzy systems
Abduraman et al. TV Program Structuring Techniques

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140305