CN102430904A - Laser heating assisted milling method and device - Google Patents
Laser heating assisted milling method and device Download PDFInfo
- Publication number
- CN102430904A CN102430904A CN2011103173140A CN201110317314A CN102430904A CN 102430904 A CN102430904 A CN 102430904A CN 2011103173140 A CN2011103173140 A CN 2011103173140A CN 201110317314 A CN201110317314 A CN 201110317314A CN 102430904 A CN102430904 A CN 102430904A
- Authority
- CN
- China
- Prior art keywords
- laser
- milling
- workpiece
- processing
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003801 milling Methods 0.000 title claims abstract description 83
- 238000004093 laser heating Methods 0.000 title claims abstract description 31
- 238000012545 processing Methods 0.000 claims abstract description 66
- 238000000034 method Methods 0.000 claims abstract description 48
- 239000013307 optical fiber Substances 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 17
- 238000005520 cutting process Methods 0.000 claims description 21
- 230000008569 process Effects 0.000 claims description 20
- 238000003754 machining Methods 0.000 claims description 11
- 238000004088 simulation Methods 0.000 claims description 8
- 238000009413 insulation Methods 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims 2
- 238000010438 heat treatment Methods 0.000 abstract description 6
- 230000007547 defect Effects 0.000 abstract 1
- 238000003672 processing method Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229910001347 Stellite Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- AHICWQREWHDHHF-UHFFFAOYSA-N chromium;cobalt;iron;manganese;methane;molybdenum;nickel;silicon;tungsten Chemical compound C.[Si].[Cr].[Mn].[Fe].[Co].[Ni].[Mo].[W] AHICWQREWHDHHF-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Landscapes
- Laser Beam Processing (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种机械加工方法,尤其是一种激光加热辅助铣削加工方法,主要应用于机械加工领域,适用于高硬度金属、工程陶瓷、复合材料等难加工材料的加工,可以增加刀具寿命,提高加工效率,提升加工质量。本发明还涉及实现该加工方法的激光加热辅助铣削加工装置。The invention relates to a mechanical processing method, especially a laser heating-assisted milling processing method, which is mainly used in the field of mechanical processing, and is suitable for processing difficult-to-machine materials such as high-hardness metals, engineering ceramics, and composite materials, and can increase tool life. Improve processing efficiency and improve processing quality. The invention also relates to a laser heating assisted milling device for realizing the processing method.
背景技术 Background technique
激光加热辅助切削技术是将高功率激光束聚焦在切削刃前的工件表面,在材料被切除前的短时间内,将局部加热到很高的温度使材料的切削性在高温下发生改变,然后采用刀具进行加工。通过对材料进行加热,可以提高材料的塑性,可以将材料脆性转化为延展性,使材料的屈服强度降低到断裂强度以下,降低切削力,减小刀具磨损,抑制锯齿形切屑产生,防止切削振颤,从而达到提高加工效率、降低成本、增加表面质量的目的。Laser heating assisted cutting technology is to focus a high-power laser beam on the surface of the workpiece in front of the cutting edge. In a short time before the material is cut, the local heating is heated to a very high temperature to change the machinability of the material at high temperature, and then Processing with cutting tools. By heating the material, the plasticity of the material can be improved, the brittleness of the material can be converted into ductility, the yield strength of the material can be reduced below the fracture strength, the cutting force can be reduced, the tool wear can be reduced, the generation of sawtooth chips can be suppressed, and cutting vibration can be prevented. chatter, so as to achieve the purpose of improving processing efficiency, reducing costs and increasing surface quality.
激光加热辅助铣削是激光加热辅助切削的一种方式。由于铣削是一个间歇切削过程,工件对刀具的冲击作用更容易引起刀具损坏,因此,激光加热辅助铣削技术可以降低切削力,减小刀具对工件的冲击,提高刀具寿命并且可以提高加工表面质量。国外学者对钨铬钴合金材料进行了激光加热辅助铣削试验研究,证明了加热辅助铣削的优点,可以在提高加工效率的同时降低刀具磨损。在脆性大、加工难度高的陶瓷材料方面,采用激光加热辅助铣削技术可以使材料由脆性转变为塑性,加工过程中显著的降低切削力,切屑变得连续,并且得到良好的加工表面。然而,铣削的加工特点与铣床的结构给激光与铣削的结合带来了困难,激光与铣刀的相对位置无法调整,导致了加工位置相对于铣刀只能为一个方向。对于具有复杂沟槽、型腔等结构的复杂工件,只有重新装夹才能达到激光加热软化的目的,这就极大地限制了技术的应用范围。因此,需要从加工方法与装置方面综合考虑,解决激光与铣床的结合问题,才能实现复杂形状工件的加工。Laser heating assisted milling is a way of laser heating assisted cutting. Since milling is an intermittent cutting process, the impact of the workpiece on the tool is more likely to cause tool damage. Therefore, laser heating-assisted milling technology can reduce the cutting force, reduce the impact of the tool on the workpiece, improve tool life and improve the quality of the processed surface. Foreign scholars have conducted experimental research on laser heating-assisted milling of stellite materials, which proves the advantages of heating-assisted milling, which can reduce tool wear while improving processing efficiency. For ceramic materials that are brittle and difficult to process, the laser heating-assisted milling technology can transform the material from brittle to plastic, significantly reduce the cutting force during processing, make chips continuous, and obtain a good processed surface. However, the processing characteristics of milling and the structure of the milling machine bring difficulties to the combination of laser and milling. The relative position of the laser and the milling cutter cannot be adjusted, resulting in that the processing position can only be in one direction relative to the milling cutter. For complex workpieces with complex grooves, cavities and other structures, laser heating and softening can only be achieved by re-clamping, which greatly limits the application range of the technology. Therefore, it is necessary to comprehensively consider the processing method and device to solve the problem of combining laser and milling machine in order to realize the processing of workpieces with complex shapes.
发明内容 Contents of the invention
本发明的目的是使激光加热辅助铣削技术可应用于复杂工件的加工,提出了一种激光聚焦头与铣刀相对固定的激光加热辅助铣削复杂轨迹加工方法及加工装置。运用该方法可以铣削复杂直线、曲线轨迹,实现复杂形状工件的加工。本发明提出的激光加热辅助铣削加工装置,其特征在于,包括:数控铣床工作台、数控旋转工作台、主轴、固定在主轴上的铣刀、聚焦头固定调整装置、激光聚焦头、光纤、YAG光纤输出激光器、工控机,工件通过隔热夹具固定在旋转工作台上,YAG光纤输出激光器通过调节电流可以输出指定能量的激光,激光通过光纤传导进入激光聚焦头,激光聚焦头固定在聚焦头固定调整装置之上,聚焦头固定调整装置固定在机床铣头上,工控机通过电缆与各个工作台及激光器联接。The purpose of the present invention is to make the laser heating-assisted milling technology applicable to the processing of complex workpieces, and proposes a laser heating-assisted milling complex trajectory processing method and a processing device in which the laser focusing head and the milling cutter are relatively fixed. This method can be used to mill complex straight lines and curved paths, and realize the processing of complex-shaped workpieces. The laser heating assisted milling processing device proposed by the present invention is characterized in that it includes: CNC milling machine table, CNC rotary table, spindle, milling cutter fixed on the spindle, focusing head fixing adjustment device, laser focusing head, optical fiber, YAG Optical fiber output laser, industrial computer, the workpiece is fixed on the rotary table through heat-insulating fixtures, YAG optical fiber output laser can output laser with specified energy by adjusting the current, the laser enters the laser focusing head through optical fiber transmission, and the laser focusing head is fixed on the focusing head. On the adjustment device, the focusing head fixing adjustment device is fixed on the milling head of the machine tool, and the industrial computer is connected with each workbench and laser through cables.
本发明还涉及一种激光加热辅助铣削加工装置,其特征在于,包括数控铣床工作台、数控旋转工作台、二维移动工作台、主轴、固定在主轴上的铣刀、聚焦头固定调整装置、激光聚焦头、光纤、YAG光纤输出激光器、工控机,旋转工作台旋转中心与主轴中心重合,二维移动工作台固定在旋转工作台上,工件通过隔热夹具固定在二维移动工作台上,YAG光纤输出激光器通过调节电流可以输出指定能量的激光,激光通过光纤传导进入激光聚焦头,激光聚焦头固定在聚焦头固定调整装置之上,聚焦头固定调整装置固定在机床铣头上,工控机通过电缆与各个工作台及激光器联接。The present invention also relates to a laser heating assisted milling processing device, which is characterized in that it includes a CNC milling machine table, a CNC rotary table, a two-dimensional mobile table, a main shaft, a milling cutter fixed on the main shaft, a focusing head fixing adjustment device, Laser focusing head, optical fiber, YAG optical fiber output laser, industrial computer, the rotation center of the rotary table coincides with the center of the spindle, the two-dimensional mobile table is fixed on the rotary table, and the workpiece is fixed on the two-dimensional mobile table by a heat-insulating fixture. The YAG fiber output laser can output laser with specified energy by adjusting the current. The laser is transmitted into the laser focusing head through the optical fiber. The laser focusing head is fixed on the focusing head fixing adjustment device. Connect with each workbench and laser through cables.
本发明提出的数控代码编写方法是利用坐标变换的方法,将传统三维数控代码转换为复杂工件使用的特殊数控代码。方法的核心是通过平移及旋转的坐标变换方法,将刀具即将要加工的轨迹方向变换为与激光入射的方向平行,且在一条直线上,变换后即可不移动激光的位置继续加工。当加工轨迹为曲线时,将曲线离散为多条小线段逼近曲线,是小线段轨迹的方向与激光入射方向平行,加工的同时进行旋转,即可得到曲线的加工轨迹。The numerical control code writing method proposed by the present invention utilizes the method of coordinate transformation to convert traditional three-dimensional numerical control codes into special numerical control codes used by complex workpieces. The core of the method is to transform the track direction of the tool to be processed to be parallel to the incident direction of the laser through the coordinate transformation method of translation and rotation, and to be on a straight line. After the transformation, the laser position can be continued without moving the position. When the processing trajectory is a curve, the curve is discretized into multiple small line segments to approximate the curve, so that the direction of the small line segment trajectory is parallel to the incident direction of the laser, and the processing trajectory is obtained by rotating while processing.
本发明提出的选用合适的工艺参数的方法是基于有限元模型的结果进行选择优化的。切削区域温度是激光加热辅助铣削最重要的参数,反映了局部工件的软化程度,选定的参数需要保证切削区域温度在一定范围内,直接通过试验的方法得到合适的工艺参数成本较高,而采用仿真的方法节约时间、降低成本,并且可以得到合适的工艺参数。按照实际工件的大小建立模型划分网格,将激光看做为表面热流密度,加载热辐射与对流边界条件,并通过温度测量试验修正边界条件后,即可得到准确的温度分布预测模型。根据试验系统采用可选定工艺参数进行仿真,以切削区域温度为优化目标,结合铣削的工艺参数选择特点,即可得到最终的加工工艺参数。The method for selecting suitable process parameters proposed by the present invention is based on the results of the finite element model for selection and optimization. The temperature of the cutting area is the most important parameter of laser heating-assisted milling, which reflects the softening degree of the local workpiece. The selected parameters need to ensure that the temperature of the cutting area is within a certain range. The cost of obtaining suitable process parameters directly through experiments is relatively high, while Using the simulation method saves time, reduces costs, and can obtain suitable process parameters. According to the size of the actual workpiece, the model is divided into grids, the laser is regarded as the surface heat flux density, the thermal radiation and convection boundary conditions are loaded, and the boundary conditions are corrected through the temperature measurement test, an accurate temperature distribution prediction model can be obtained. According to the test system, the process parameters can be selected for simulation, and the temperature of the cutting area is the optimization target, combined with the selection characteristics of the milling process parameters, the final processing process parameters can be obtained.
本发明还涉及一种利用所述加工装置实现的激光加热辅助铣削加工方法,其特征在于,包括以下步骤:The present invention also relates to a laser heating-assisted milling processing method realized by the processing device, which is characterized in that it includes the following steps:
-将工件放置在数控旋转工作台上或者二维移动工作台上并固定,通过移动数控铣床工作台改变数控旋转工作台与铣刀的相对位置;- Place the workpiece on the CNC rotary table or the two-dimensional mobile table and fix it, and change the relative position of the CNC rotary table and the milling cutter by moving the CNC milling machine table;
-调整激光聚焦头的相对位置控制激光光斑的入射位置与光斑直径,使之照射在将要去除材料的位置;-Adjust the relative position of the laser focusing head to control the incident position and diameter of the laser spot, so that it is irradiated at the position where the material will be removed;
-规划加工轨迹,计算特殊旋转轴的移动坐标值,输出数控代码;- Plan the machining trajectory, calculate the moving coordinate value of the special rotation axis, and output the NC code;
-通过温度场有限元仿真选择优化加工工艺参数,得到激光功率、切削速度、进给量、进给速度、预热时间、激光光斑中心距离铣刀中心距离等工艺参数;-Through the finite element simulation of the temperature field, the processing parameters are selected and optimized, and the processing parameters such as laser power, cutting speed, feed rate, feed rate, warm-up time, distance between the center of the laser spot and the center of the milling cutter are obtained;
-打开光闸,通过预热使切削区域温度达到加工要求,按照给定的数控代码进行加工;- Open the shutter, make the temperature of the cutting area meet the processing requirements through preheating, and process according to the given NC code;
-加工轨迹完成后,光闸关闭,铣刀移动至下一个加工位置。- After the machining track is completed, the shutter is closed and the milling cutter moves to the next machining position.
根据本发明的另一实施方式,将复杂工件放置在二维移动工作台上进行加工,所述复杂工件为具有三维形状特征的工件。According to another embodiment of the present invention, a complex workpiece is placed on a two-dimensional mobile worktable for processing, and the complex workpiece is a workpiece with three-dimensional shape features.
根据本发明的另一实施方式,还包括改变工件相对方向的步骤,采用在传统三维坐标移动基础上增加旋转轴的坐标移动方法编写新的数控代码。According to another embodiment of the present invention, it also includes the step of changing the relative direction of the workpiece, and writing new numerical control codes by adopting the coordinate movement method of adding a rotation axis on the basis of the traditional three-dimensional coordinate movement.
根据本发明的另一实施方式,所述的增加旋转轴的坐标移动方法包括直线轨迹与曲线轨迹两种类型。According to another embodiment of the present invention, the coordinate movement method of adding a rotation axis includes two types of linear trajectory and curved trajectory.
根据本发明的另一实施方式,通过温度场有限元仿真选择优化加工工艺参数的步骤包括利用有限元方法建立工件的温度场模型,以合适的切削区域温度为加热目标,选择优化激光加热辅助铣削工艺参数。According to another embodiment of the present invention, the step of selecting and optimizing the processing parameters through the temperature field finite element simulation includes using the finite element method to establish the temperature field model of the workpiece, and taking the appropriate cutting area temperature as the heating target, and selecting and optimizing the laser heating assisted milling process. Process parameters.
本发明具有以下优点:The present invention has the following advantages:
1.采用此方法加工需要建立的激光加热辅助铣削系统不需要复杂的光路系统或者激光聚焦头移动系统,系统建立简单方便,易于操作,通过改造目前的数控铣床即可满足要求。1. The laser heating assisted milling system that needs to be established by this method does not need a complicated optical path system or a laser focusing head moving system. The system is simple, convenient, and easy to operate. It can meet the requirements by modifying the current CNC milling machine.
2.可以实现连续直线与曲线轨迹的激光加热辅助铣削加工,满足难加工材料复杂形状工件加工要求。2. Laser heating-assisted milling of continuous straight and curved paths can be realized, meeting the processing requirements of difficult-to-machine materials with complex shapes.
3.工艺参数选择不需要大量的试验,节约时间、降低成本。3. The selection of process parameters does not require a large number of experiments, saving time and reducing costs.
附图说明 Description of drawings
图1为本发明实施方式之一的激光加热辅助铣削复杂形状工件装置的示意图。Fig. 1 is a schematic diagram of an apparatus for laser heating-assisted milling of a complex-shaped workpiece according to one embodiment of the present invention.
图2为本发明实施方式之二的激光加热辅助铣削复杂形状工件装置的示意图。Fig. 2 is a schematic diagram of a device for laser heating-assisted milling of a complex-shaped workpiece according to
图片说明如下:The picture description is as follows:
1-数控铣床工作台,2-旋转工作台,3-移动工作台,4-工件,5-立铣刀,6-铣床主轴,7-激光聚焦头调整装置,8-激光聚焦头,9-光纤,10-激光器,11-工控机1-CNC milling machine table, 2-Rotary table, 3-Mobile table, 4-Workpiece, 5-End mill, 6-Milling machine spindle, 7-Laser focusing head adjustment device, 8-Laser focusing head, 9- Optical fiber, 10-laser, 11-industrial computer
具体实施方式 Detailed ways
以下结合实施方法和附图对本发明作进一步说明:Below in conjunction with implementation method and accompanying drawing, the present invention will be further described:
参照图1和2,本发明提出的激光加热辅助铣削加工装置包括:数控铣床工作台1、数控旋转工作台2、二维移动工作台3、主轴6、固定在主轴6上的铣刀5、聚焦头固定调整装置7、激光聚焦头8、光纤9、YAG光纤输出激光器10、工控机11。当加工直线,加工精度要求不高或现有铣床不能满足加工曲线或脆性材料的要求时,旋转工作台2固定在数控铣床工作台1上,工件4通过隔热夹具固定在旋转工作台2之上。当针对复杂工件需要加工曲线、加工脆性材料或加工精度要求较高时,旋转工作台2旋转中心与主轴中心重合,并且增加二维移动工作台3,其固定在旋转工作台2之上,工件4通过隔热夹具固定在二维移动工作台3之上。YAG光纤输出激光器10通过调节电流可以输出指定能量的激光,激光通过光纤9传导进入激光聚焦头8,激光聚焦头8固定在聚焦头固定调整装置7之上,聚焦头固定调整装置7固定在机床铣头上。加工前通过调整聚焦头固定调整装置7改变激光入射方向、入射在工件表面的光斑直径大小,加工过程中激光与铣床相对静止,工作台以预定轨迹移动实现工件的加工。工控机11通过电缆与各个工作台及激光器10联接,控制工作台的移动、激光能量与光闸的开关。Referring to Figures 1 and 2, the laser heating assisted milling processing device proposed by the present invention includes: a CNC milling machine table 1, a CNC rotary table 2, a two-dimensional mobile table 3, a main shaft 6, a milling cutter 5 fixed on the main shaft 6, Focus head fixing adjustment device 7, laser focus head 8,
本发明针对不同的加工工件及原有的数控铣床可以采用以下两种实施方式:实施方式一为在普通数控铣床工作台上放置一数控旋转工作台,达到改变工件相对方向的作用,铣床自身工作台改变工件相对位置;实施方式二为在普通铣床工作台之上放置一数控旋转工作台,数控旋转工作台的中心与主轴的中心重合,达到改变工件相对方向的作用,同时将二维平面工作台放置于数控旋转工作台之上,达到改变工件相对位置的作用。The present invention can adopt the following two implementations for different processing workpieces and the original CNC milling machine: Embodiment one is to place a CNC rotary table on the ordinary CNC milling machine workbench to achieve the effect of changing the relative direction of the workpiece, and the milling machine itself works The table changes the relative position of the workpiece; the second embodiment is to place a CNC rotary table on the ordinary milling machine table, and the center of the CNC rotary table coincides with the center of the spindle to achieve the effect of changing the relative direction of the workpiece. The table is placed on the CNC rotary table to achieve the effect of changing the relative position of the workpiece.
实施方式一:针对加工直线,加工精度要求不高或现有铣床不能满足要求的场合。该方法装置示意图如图1所示,采用此方案系统建立简单,在普通数控铣床上增加旋转工作台2即可,首先调整好位置沿一个方向加工,当加工方向需要改变时,铣刀5提升,光闸关闭,旋转工作台2旋转到下一个位置,以使加工方向与激光入射方向相同,同时工作台1移动至旋转后的加工位置,铣刀5降下后进行下一个位置的加工。但是由于激光入射相对位置无法在加工过程中随时调整,仅能加工直线轨迹。Embodiment 1: For processing straight lines, the requirements for processing accuracy are not high or the existing milling machines cannot meet the requirements. The device schematic diagram of this method is shown in Figure 1. Using this scheme, the system is easy to establish. Just add a rotary table 2 to the ordinary CNC milling machine. First, adjust the position and process along one direction. When the processing direction needs to be changed, the milling cutter 5 is lifted. , the shutter is closed, the rotary table 2 is rotated to the next position, so that the processing direction is the same as the laser incident direction, and the table 1 is moved to the rotated processing position at the same time, and the milling cutter 5 is lowered for processing at the next position. However, since the relative position of the laser incident cannot be adjusted at any time during the processing, only a straight line can be processed.
实施方式二:针对需要加工曲线、加工脆性材料或加工精度要求较高的场合。该方法装置示意图如图2所示,将二维移动工作台3放置于旋转工作台2之上,机床主轴6与旋转工作台2中心同轴,旋转工作台2在旋转的过程中仅改变加工的方向,不改变铣刀5相对移动工作台3的位置,二维移动工作台3与铣床的z轴组成了铣削加工过程中的三个轴。此时可以保证激光入射相对位置能够在加工过程中随时调整,因此可以满足曲线轨迹的加工要求。加工过程中工件随着移动工作台3移动,随旋转工作台2转动改变激光入射位置与工件的相对角度,激光光斑位置不需要改变。在加工的过程中,加工完一段直线轨迹之后首先需要关闭光闸,防止在工作台旋转的过程中激光照射在其它位置,工作台旋转之后光闸打开,开始加工下一段轨迹,光闸控制整合在数控系统中以保证系统的同步。Embodiment 2: For occasions that require processing curves, processing brittle materials, or requiring high processing accuracy. The schematic diagram of the method device is shown in Figure 2. The two-dimensional mobile worktable 3 is placed on the rotary table 2, the machine tool spindle 6 is coaxial with the center of the rotary table 2, and the rotary table 2 only changes the machining process during the rotation process. direction, without changing the position of the milling cutter 5 relative to the mobile table 3, the two-dimensional mobile table 3 and the z-axis of the milling machine form three axes in the milling process. At this time, it can be ensured that the relative position of the laser incident can be adjusted at any time during the processing, so the processing requirements of the curved track can be met. During processing, the workpiece moves with the movable table 3, and the relative angle between the laser incident position and the workpiece is changed with the rotation of the rotary table 2, and the position of the laser spot does not need to be changed. In the process of processing, after processing a straight track, the shutter first needs to be closed to prevent the laser from being irradiated at other positions during the rotation of the worktable. After the rotation of the worktable, the shutter is opened to start processing the next section of the track. The integration of shutter control In the CNC system to ensure the synchronization of the system.
利用本发明的激光加热辅助铣削加工装置进行工件加工时,将工件4装夹在二维移动工作台3上,或者固定在数控旋转工作台2上,通过移动数控铣床工作台1改变数控旋转工作台2与铣刀的相对位置。加工时之前通过温度场有限元仿真选择优化加工工艺参数,得到激光功率、切削速度、进给量、进给速度、预热时间、激光光斑中心距离铣刀中心距离等工艺参数。按照传统的加工轨迹制定方法确定加工轨迹,根据数控代码编写方法计算特殊旋转轴的移动坐标值,输出数控代码。开启光闸,通过预热使切削区域温度达到加工要求,按照给定的数控代码进行加工。加工一段轨迹之后,光闸关闭,旋转工作台旋转至下一个工位,光闸开启后加工继续进行。按照此顺序加工所有离散的轨迹后,关闭光闸,加工完成,刀具移动至下一个工步。When using the laser heating assisted milling processing device of the present invention to process workpieces, the
加工复杂工件时,将工件装夹在二维移动工作台上,复杂工件为具有三维形状特征的工件,可以是具有一定轨迹的沟槽、型腔等。When processing complex workpieces, the workpieces are clamped on the two-dimensional mobile worktable. The complex workpieces are workpieces with three-dimensional shape characteristics, which can be grooves and cavities with certain trajectories.
在执行改变工件相对方向的操作时,需要编写新的数控代码,在传统三维坐标移动基础上增加旋转轴的坐标移动方法。增加旋转轴的坐标移动方法包括直线轨迹与曲线轨迹两种类型。直线轨迹时求得将要加工直线与已加工直线的角度,得到旋转角度;曲线轨迹时需要将曲线进行离散,小线段逼近曲线,得到每个小线段之间的夹角,从而得到旋转角度。When performing the operation of changing the relative direction of the workpiece, it is necessary to write a new CNC code, and add the coordinate movement method of the rotation axis on the basis of the traditional three-dimensional coordinate movement. There are two types of coordinate movement methods that add rotation axes: straight line track and curved track. For straight line trajectory, the angle between the straight line to be processed and the processed straight line is obtained to obtain the rotation angle; for curved trajectory, the curve needs to be discretized, and the small line segments approach the curve to obtain the angle between each small line segment, thereby obtaining the rotation angle.
通过温度场有限元仿真选择优化加工工艺参数的步骤包括利用有限元方法建立工件的温度场模型,以合适的切削区域温度为加热目标,选择优化激光加热辅助铣削工艺参数。The steps of selecting and optimizing the processing parameters through the finite element simulation of the temperature field include establishing the temperature field model of the workpiece by using the finite element method, and selecting and optimizing the laser heating assisted milling process parameters with the appropriate cutting area temperature as the heating target.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2011103173140A CN102430904A (en) | 2011-10-19 | 2011-10-19 | Laser heating assisted milling method and device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2011103173140A CN102430904A (en) | 2011-10-19 | 2011-10-19 | Laser heating assisted milling method and device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN102430904A true CN102430904A (en) | 2012-05-02 |
Family
ID=45979443
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2011103173140A Pending CN102430904A (en) | 2011-10-19 | 2011-10-19 | Laser heating assisted milling method and device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102430904A (en) |
Cited By (44)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102861944A (en) * | 2012-10-12 | 2013-01-09 | 厦门大学 | Electrified heating auxiliary device used for milling |
| CN103302751A (en) * | 2013-05-27 | 2013-09-18 | 湖南大学 | Device for cutting ceramic with laser-assisted heating |
| CN103567464A (en) * | 2013-07-23 | 2014-02-12 | 长春理工大学 | Laser heating auxiliary micro-turning device and laser heating auxiliary micro-turning method |
| CN103753223A (en) * | 2013-12-11 | 2014-04-30 | 广州中国科学院先进技术研究所 | Laser-assisted drilling method and device |
| CN103886166A (en) * | 2014-04-22 | 2014-06-25 | 哈尔滨工业大学 | Efficient machining method blending additive manufacturing and removal machining based on geometrical characteristic decomposition of part structures |
| CN103921356A (en) * | 2014-04-18 | 2014-07-16 | 河南理工大学 | Method for conducting precise machining on end face of hard and brittle material |
| CN104708201A (en) * | 2015-03-13 | 2015-06-17 | 程涛 | Low-energy-consumption welding method for foamed aluminum with super-lager cross section |
| CN104786065A (en) * | 2015-05-06 | 2015-07-22 | 吴江市江南不锈钢器材有限责任公司 | Edge-heating type cutting device |
| TWI508810B (en) * | 2013-12-13 | 2015-11-21 | Metal Ind Res & Dev Ct | Laser-assisted machining device |
| CN106001613A (en) * | 2016-07-28 | 2016-10-12 | 哈尔滨工业大学 | Laser heating assisted turning device and method |
| CN106216745A (en) * | 2016-07-28 | 2016-12-14 | 哈尔滨工业大学 | A kind of LASER HEATING auxiliary milling attachment that can monitor tool wear in real time |
| TWI564104B (en) * | 2014-06-23 | 2017-01-01 | Soco Machinery Co Ltd | Auxiliary equipment for laser processing |
| CN106484961A (en) * | 2016-09-20 | 2017-03-08 | 天津大学 | A kind of method determining slotting cutter milling process heat in metal cutting allocation proportion |
| CN106737070A (en) * | 2017-03-14 | 2017-05-31 | 东北大学 | A kind of LASER HEAT aids in hard brittle material high efficient grinding experimental bench |
| CN106844815A (en) * | 2016-10-26 | 2017-06-13 | 江苏理工学院 | A kind of LASER HEATING program composition and optimization method |
| CN107097072A (en) * | 2017-04-18 | 2017-08-29 | 南京航空航天大学 | A kind of induced with laser oxidation assist milling method and its device |
| CN107234444A (en) * | 2017-07-12 | 2017-10-10 | 华中科技大学 | Laser preheating auxiliary turning adjusting apparatus and the laser preheating auxiliary turning system comprising it |
| CN107414284A (en) * | 2017-09-04 | 2017-12-01 | 北京工业大学 | A kind of PRK aids in micro- milling method and device |
| CN107552951A (en) * | 2017-09-01 | 2018-01-09 | 中国科学院长春光学精密机械与物理研究所 | Laser heating device |
| TWI610750B (en) * | 2016-12-08 | 2018-01-11 | 東台精機股份有限公司 | Processing vehicle with composite processes and laser spectroscopic means thereof |
| CN107631699A (en) * | 2017-08-18 | 2018-01-26 | 中北大学 | Weld seam three-dimensional appearance construction method based on network laser |
| TWI616260B (en) * | 2016-12-09 | 2018-03-01 | 財團法人金屬工業研究發展中心 | Laser machining device and laser machining method |
| CN107877097A (en) * | 2017-11-03 | 2018-04-06 | 瑞声光电科技(常州)有限公司 | The processing method and process equipment of lens mould |
| CN108311790A (en) * | 2018-04-12 | 2018-07-24 | 桂林电子科技大学 | A kind of method and system of processing of the processing of laser assisted diamond cutting-up |
| CN108817489A (en) * | 2018-06-20 | 2018-11-16 | 华中科技大学 | Collimator pose regulating device and method for free form surface laser assisted milling |
| CN109454326A (en) * | 2018-11-26 | 2019-03-12 | 南京航空航天大学 | A kind of transparent material laser-assisted machining processing method |
| CN109482953A (en) * | 2018-12-06 | 2019-03-19 | 沈阳航空航天大学 | A kind of electric heating auxiliary milling attachment and method |
| CN109604832A (en) * | 2018-11-26 | 2019-04-12 | 南京航空航天大学 | A laser-assisted spot grinding method suitable for difficult-to-machine materials |
| CN109676380A (en) * | 2019-01-24 | 2019-04-26 | 长春理工大学 | A kind of laser assisted drill unit and its operating method for machining center |
| CN109702497A (en) * | 2019-02-20 | 2019-05-03 | 沈阳航空航天大学 | A multi-field coupling heating-assisted drilling device and method |
| CN110977172A (en) * | 2019-11-21 | 2020-04-10 | 南京航空航天大学 | A kind of arc additive and laser-assisted thermoplastic forming composite manufacturing device and method |
| CN111230153A (en) * | 2018-11-29 | 2020-06-05 | 财团法人金属工业研究发展中心 | Combined type processing main shaft device |
| CN112139574A (en) * | 2020-09-23 | 2020-12-29 | 长春理工大学 | Inductively coupled laser-assisted milling device and method |
| CN112519016A (en) * | 2020-11-25 | 2021-03-19 | 厦门理工学院 | Cutting device and using method thereof |
| CN112643099A (en) * | 2020-12-10 | 2021-04-13 | 华侨大学 | Dual auxiliary milling device and method for machining hard and brittle materials |
| CN113333840A (en) * | 2021-05-31 | 2021-09-03 | 西北工业大学 | Heat-assisted milling device |
| CN113798699A (en) * | 2021-10-06 | 2021-12-17 | 吉林大学 | Laser auxiliary cutting machine tool for micro-nano functional surface processing of hard and brittle material |
| CN113829078A (en) * | 2021-10-22 | 2021-12-24 | 沈阳航空航天大学 | Laser drilling auxiliary drilling device and method |
| CN114346300A (en) * | 2022-03-17 | 2022-04-15 | 广东海洋大学 | A laser-assisted milling device and method for machining center |
| CN114850876A (en) * | 2022-04-08 | 2022-08-05 | 大连理工大学 | Laser-assisted milling and grinding device and method |
| CN115415666A (en) * | 2022-09-07 | 2022-12-02 | 哈尔滨理工大学 | Laser-assisted scribing and powder recovery device special for beryllium material |
| CN116921747A (en) * | 2023-06-13 | 2023-10-24 | 苏州鑫荣健身器材有限公司 | Sheet metal milling device for massager |
| CN117583655A (en) * | 2024-01-18 | 2024-02-23 | 常州市福尔特工具有限公司 | Efficient milling disc milling cutter for large-plane machining |
| CN120502874A (en) * | 2025-07-22 | 2025-08-19 | 成都飞机工业(集团)有限责任公司 | Laser ablation and milling cooperative processing system and method for hard and brittle material |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020074494A1 (en) * | 2000-12-15 | 2002-06-20 | Lundquist Theodore R. | Precise, in-situ endpoint detection for charged particle beam processing |
| US20030059268A1 (en) * | 2001-06-13 | 2003-03-27 | Michael Zimmermann | Milling machine and milling process |
| CN201132233Y (en) * | 2007-12-29 | 2008-10-15 | 深圳市捷甬达实业有限公司 | Numerically controlled fraise machine with vertical lifting table |
| KR20110000465A (en) * | 2009-06-26 | 2011-01-03 | 한국기계연구원 | Milling Machine with Preheat Turning Process |
| CN102059377A (en) * | 2010-11-25 | 2011-05-18 | 天津市津宝乐器有限公司 | Five-axle numeric control milling machine |
| CN102149510A (en) * | 2008-07-09 | 2011-08-10 | Fei公司 | Method and apparatus for laser machining |
-
2011
- 2011-10-19 CN CN2011103173140A patent/CN102430904A/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020074494A1 (en) * | 2000-12-15 | 2002-06-20 | Lundquist Theodore R. | Precise, in-situ endpoint detection for charged particle beam processing |
| US20030059268A1 (en) * | 2001-06-13 | 2003-03-27 | Michael Zimmermann | Milling machine and milling process |
| CN201132233Y (en) * | 2007-12-29 | 2008-10-15 | 深圳市捷甬达实业有限公司 | Numerically controlled fraise machine with vertical lifting table |
| CN102149510A (en) * | 2008-07-09 | 2011-08-10 | Fei公司 | Method and apparatus for laser machining |
| KR20110000465A (en) * | 2009-06-26 | 2011-01-03 | 한국기계연구원 | Milling Machine with Preheat Turning Process |
| CN102059377A (en) * | 2010-11-25 | 2011-05-18 | 天津市津宝乐器有限公司 | Five-axle numeric control milling machine |
Non-Patent Citations (2)
| Title |
|---|
| 吴雪峰等: "激光加热辅助切削氮化硅陶瓷实验研究", 《宇航学报》 * |
| 王扬等: "激光加热辅助切削技术", 《航空制造技术》 * |
Cited By (59)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102861944B (en) * | 2012-10-12 | 2016-03-02 | 厦门大学 | For the electrified regulation servicing unit of Milling Process |
| CN102861944A (en) * | 2012-10-12 | 2013-01-09 | 厦门大学 | Electrified heating auxiliary device used for milling |
| CN103302751B (en) * | 2013-05-27 | 2015-06-17 | 湖南大学 | Device for cutting ceramic with laser-assisted heating |
| CN103302751A (en) * | 2013-05-27 | 2013-09-18 | 湖南大学 | Device for cutting ceramic with laser-assisted heating |
| CN103567464A (en) * | 2013-07-23 | 2014-02-12 | 长春理工大学 | Laser heating auxiliary micro-turning device and laser heating auxiliary micro-turning method |
| CN103567464B (en) * | 2013-07-23 | 2016-12-07 | 长春理工大学 | LASER HEATING assists micro-truning fixture |
| CN103753223A (en) * | 2013-12-11 | 2014-04-30 | 广州中国科学院先进技术研究所 | Laser-assisted drilling method and device |
| TWI508810B (en) * | 2013-12-13 | 2015-11-21 | Metal Ind Res & Dev Ct | Laser-assisted machining device |
| CN103921356A (en) * | 2014-04-18 | 2014-07-16 | 河南理工大学 | Method for conducting precise machining on end face of hard and brittle material |
| CN103921356B (en) * | 2014-04-18 | 2016-02-03 | 河南理工大学 | A kind of precision machined method of hard brittle material end face |
| CN103886166A (en) * | 2014-04-22 | 2014-06-25 | 哈尔滨工业大学 | Efficient machining method blending additive manufacturing and removal machining based on geometrical characteristic decomposition of part structures |
| CN103886166B (en) * | 2014-04-22 | 2016-08-17 | 哈尔滨工业大学 | The high-efficiency machining method that a kind of increasing material manufacture decomposed based on design of part geometric properties and removal processing mix |
| TWI564104B (en) * | 2014-06-23 | 2017-01-01 | Soco Machinery Co Ltd | Auxiliary equipment for laser processing |
| CN104708201A (en) * | 2015-03-13 | 2015-06-17 | 程涛 | Low-energy-consumption welding method for foamed aluminum with super-lager cross section |
| CN104786065A (en) * | 2015-05-06 | 2015-07-22 | 吴江市江南不锈钢器材有限责任公司 | Edge-heating type cutting device |
| CN106216745A (en) * | 2016-07-28 | 2016-12-14 | 哈尔滨工业大学 | A kind of LASER HEATING auxiliary milling attachment that can monitor tool wear in real time |
| CN106001613A (en) * | 2016-07-28 | 2016-10-12 | 哈尔滨工业大学 | Laser heating assisted turning device and method |
| CN106484961A (en) * | 2016-09-20 | 2017-03-08 | 天津大学 | A kind of method determining slotting cutter milling process heat in metal cutting allocation proportion |
| CN106484961B (en) * | 2016-09-20 | 2019-10-15 | 天津大学 | A Method of Determining Cutting Heat Distribution Ratio in Milling Process of End Mill |
| CN106844815B (en) * | 2016-10-26 | 2023-04-07 | 江苏理工学院 | Laser heating programming and optimizing method |
| CN106844815A (en) * | 2016-10-26 | 2017-06-13 | 江苏理工学院 | A kind of LASER HEATING program composition and optimization method |
| TWI610750B (en) * | 2016-12-08 | 2018-01-11 | 東台精機股份有限公司 | Processing vehicle with composite processes and laser spectroscopic means thereof |
| TWI616260B (en) * | 2016-12-09 | 2018-03-01 | 財團法人金屬工業研究發展中心 | Laser machining device and laser machining method |
| CN106737070A (en) * | 2017-03-14 | 2017-05-31 | 东北大学 | A kind of LASER HEAT aids in hard brittle material high efficient grinding experimental bench |
| CN106737070B (en) * | 2017-03-14 | 2018-12-18 | 东北大学 | A kind of laser heat auxiliary hard brittle material high efficient grinding experimental bench |
| CN107097072A (en) * | 2017-04-18 | 2017-08-29 | 南京航空航天大学 | A kind of induced with laser oxidation assist milling method and its device |
| CN107234444A (en) * | 2017-07-12 | 2017-10-10 | 华中科技大学 | Laser preheating auxiliary turning adjusting apparatus and the laser preheating auxiliary turning system comprising it |
| CN107631699A (en) * | 2017-08-18 | 2018-01-26 | 中北大学 | Weld seam three-dimensional appearance construction method based on network laser |
| CN107631699B (en) * | 2017-08-18 | 2019-07-05 | 中北大学 | Construction method of three-dimensional topography of welded seam based on grid structure laser |
| CN107552951A (en) * | 2017-09-01 | 2018-01-09 | 中国科学院长春光学精密机械与物理研究所 | Laser heating device |
| CN107414284A (en) * | 2017-09-04 | 2017-12-01 | 北京工业大学 | A kind of PRK aids in micro- milling method and device |
| CN107877097A (en) * | 2017-11-03 | 2018-04-06 | 瑞声光电科技(常州)有限公司 | The processing method and process equipment of lens mould |
| CN108311790A (en) * | 2018-04-12 | 2018-07-24 | 桂林电子科技大学 | A kind of method and system of processing of the processing of laser assisted diamond cutting-up |
| CN108817489B (en) * | 2018-06-20 | 2019-08-13 | 华中科技大学 | Collimator pose regulating device and method for free form surface laser assisted milling |
| CN108817489A (en) * | 2018-06-20 | 2018-11-16 | 华中科技大学 | Collimator pose regulating device and method for free form surface laser assisted milling |
| CN109604832A (en) * | 2018-11-26 | 2019-04-12 | 南京航空航天大学 | A laser-assisted spot grinding method suitable for difficult-to-machine materials |
| CN109454326A (en) * | 2018-11-26 | 2019-03-12 | 南京航空航天大学 | A kind of transparent material laser-assisted machining processing method |
| US11370062B2 (en) | 2018-11-29 | 2022-06-28 | Metal Industries Research & Development Centre | Multifunctional shaft apparatus |
| CN111230153A (en) * | 2018-11-29 | 2020-06-05 | 财团法人金属工业研究发展中心 | Combined type processing main shaft device |
| CN109482953A (en) * | 2018-12-06 | 2019-03-19 | 沈阳航空航天大学 | A kind of electric heating auxiliary milling attachment and method |
| CN109676380A (en) * | 2019-01-24 | 2019-04-26 | 长春理工大学 | A kind of laser assisted drill unit and its operating method for machining center |
| CN109676380B (en) * | 2019-01-24 | 2020-08-21 | 长春理工大学 | A laser-assisted drilling device for a machining center and its operation method |
| CN109702497A (en) * | 2019-02-20 | 2019-05-03 | 沈阳航空航天大学 | A multi-field coupling heating-assisted drilling device and method |
| CN109702497B (en) * | 2019-02-20 | 2024-02-23 | 沈阳航空航天大学 | Multi-field coupling heating auxiliary drilling device and method |
| CN110977172A (en) * | 2019-11-21 | 2020-04-10 | 南京航空航天大学 | A kind of arc additive and laser-assisted thermoplastic forming composite manufacturing device and method |
| CN112139574A (en) * | 2020-09-23 | 2020-12-29 | 长春理工大学 | Inductively coupled laser-assisted milling device and method |
| CN112519016A (en) * | 2020-11-25 | 2021-03-19 | 厦门理工学院 | Cutting device and using method thereof |
| CN112643099A (en) * | 2020-12-10 | 2021-04-13 | 华侨大学 | Dual auxiliary milling device and method for machining hard and brittle materials |
| CN113333840A (en) * | 2021-05-31 | 2021-09-03 | 西北工业大学 | Heat-assisted milling device |
| CN113798699A (en) * | 2021-10-06 | 2021-12-17 | 吉林大学 | Laser auxiliary cutting machine tool for micro-nano functional surface processing of hard and brittle material |
| CN113829078A (en) * | 2021-10-22 | 2021-12-24 | 沈阳航空航天大学 | Laser drilling auxiliary drilling device and method |
| CN114346300B (en) * | 2022-03-17 | 2022-06-07 | 广东海洋大学 | Laser-assisted milling device and method for machining center |
| CN114346300A (en) * | 2022-03-17 | 2022-04-15 | 广东海洋大学 | A laser-assisted milling device and method for machining center |
| CN114850876A (en) * | 2022-04-08 | 2022-08-05 | 大连理工大学 | Laser-assisted milling and grinding device and method |
| CN115415666A (en) * | 2022-09-07 | 2022-12-02 | 哈尔滨理工大学 | Laser-assisted scribing and powder recovery device special for beryllium material |
| CN116921747A (en) * | 2023-06-13 | 2023-10-24 | 苏州鑫荣健身器材有限公司 | Sheet metal milling device for massager |
| CN117583655A (en) * | 2024-01-18 | 2024-02-23 | 常州市福尔特工具有限公司 | Efficient milling disc milling cutter for large-plane machining |
| CN117583655B (en) * | 2024-01-18 | 2024-03-29 | 常州市福尔特工具有限公司 | Efficient milling disc milling cutter for large-plane machining |
| CN120502874A (en) * | 2025-07-22 | 2025-08-19 | 成都飞机工业(集团)有限责任公司 | Laser ablation and milling cooperative processing system and method for hard and brittle material |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102430904A (en) | Laser heating assisted milling method and device | |
| CN203227820U (en) | Laser direct forming device of unequal-width component | |
| CN107097036B (en) | Metal parts restorative procedure based on increase and decrease material manufacture | |
| CN111469284B (en) | Double-beam laser heating assisted drilling integrated device and method | |
| CN208195762U (en) | A kind of processing unit (plant) of laser heating auxiliary milling curved surface | |
| CN103302751B (en) | Device for cutting ceramic with laser-assisted heating | |
| CN109571020B (en) | A method of using a composite energy field heating-assisted turning and milling integrated device | |
| CN103008967B (en) | Reproducing and processing system based on laser fusion covering | |
| CN106623574B (en) | A spin forming equipment based on laser heating | |
| CN114571064B (en) | Laser-induced oxidation auxiliary milling composite processing device and method | |
| CN104325220B (en) | A kind of multifunction laser combined-machining equipment and method | |
| CN209998554U (en) | Additive manufacturing and laser preheating auxiliary material reducing cutting composite manufacturing system | |
| CN113829078A (en) | Laser drilling auxiliary drilling device and method | |
| CN112643100A (en) | Shimming laser auxiliary milling device and method suitable for difficult-to-machine materials | |
| CN103567464A (en) | Laser heating auxiliary micro-turning device and laser heating auxiliary micro-turning method | |
| CN102451953A (en) | Multi-functional laser processing manufacturing system | |
| CN112139574A (en) | Inductively coupled laser-assisted milling device and method | |
| CN107443075B (en) | A Five-axis Ultrasonic CNC Machine Tool for Composite Laser Processing | |
| CN119910295B (en) | Laser ultrasonic cooperative texture cutter dynamic gap heat dissipation composite processing device and method | |
| CN117250907A (en) | Device and method for adjusting important parameters in synchronous laser auxiliary processing in real time | |
| CN102179635B (en) | Processing method and device for carrying out microwave cutting on brittle material | |
| CN109175367A (en) | Increase material, etc. materials composition metal 3D laser forming device and its method | |
| CN114850653A (en) | Composite machine tool integrating ultrasonic-assisted grinding and laser processing and processing method | |
| CN212288196U (en) | A dual-beam laser heating-assisted drilling integrated device | |
| CN102513694A (en) | Laser processing mechanism with cutter handle |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C05 | Deemed withdrawal (patent law before 1993) | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120502 |