CN102445769A - Optical modulator - Google Patents
Optical modulator Download PDFInfo
- Publication number
- CN102445769A CN102445769A CN2011102150137A CN201110215013A CN102445769A CN 102445769 A CN102445769 A CN 102445769A CN 2011102150137 A CN2011102150137 A CN 2011102150137A CN 201110215013 A CN201110215013 A CN 201110215013A CN 102445769 A CN102445769 A CN 102445769A
- Authority
- CN
- China
- Prior art keywords
- optical modulator
- output
- impedance
- capacitance
- waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
- G02F1/025—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/21—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference
- G02F1/225—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference in an optical waveguide structure
- G02F1/2255—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明的目的在于得到一种能够充分地扩大调制频带的光调制器。在半导体芯片(10)内设置有波导(12)。经由第一导线(18)将供电线(20)连接到行波型电极(14)的输入部(14a)。经由第二导线(22)以及终端线(24)将终端电阻(26)连接到行波型电极(14)的输出部(14b)。输出部(14b)和接地点之间的电容比输入部(14a)和接地点之间的电容大。
An object of the present invention is to obtain an optical modulator capable of sufficiently expanding a modulation frequency band. A waveguide (12) is arranged within the semiconductor chip (10). The power supply line (20) is connected to the input part (14a) of the traveling wave electrode (14) via the first wire (18). The terminal resistance (26) is connected to the output part (14b) of the traveling wave electrode (14) via the second wire (22) and the terminal line (24). The capacitance between the output part (14b) and the ground point is larger than the capacitance between the input part (14a) and the ground point.
Description
技术领域 technical field
本发明涉及以高速进行动作的行波型光调制器,特别涉及能够将调制频带充分地扩大的光调制器。 The present invention relates to a traveling-wave optical modulator that operates at high speed, and in particular, to an optical modulator that can sufficiently expand a modulation frequency band.
背景技术 Background technique
在行波型光调制器中,在光通过干涉臂(arm)时,叠加有调制信号的微波也以大致相同的速度通过干涉臂。此时,微波的电场被施加到干涉臂上,光被调制。在行波型光调制器中,与集总常数型的光调制器相比,不受波导的电容限制,能够扩大调制频带。 In the traveling wave optical modulator, when the light passes through the interference arm (arm), the microwave on which the modulation signal is superimposed also passes through the interference arm at approximately the same speed. At this time, the electric field of the microwave is applied to the interference arm, and the light is modulated. In the traveling wave optical modulator, compared with the lumped constant optical modulator, the modulation frequency band can be expanded without being limited by the capacitance of the waveguide.
这样,在行波型光调制器中,将波导用作微波传输线。为了使基模传播,优选使芯层的厚度为约0.2μm、使波导的宽度为约2μm。但是,在该情况下,波导的阻抗变低为35Ω,与芯片外的供电线的阻抗(通常50Ω)产生不匹配。其结果是,进入光调制器的光进行反射或者衰减,调制频带变窄。 Thus, in the traveling wave optical modulator, the waveguide is used as a microwave transmission line. In order to propagate the fundamental mode, the thickness of the core layer is preferably about 0.2 μm, and the width of the waveguide is about 2 μm. However, in this case, the impedance of the waveguide becomes as low as 35Ω, which causes a mismatch with the impedance (usually 50Ω) of the power supply line outside the chip. As a result, the light entering the optical modulator is reflected or attenuated, and the modulation frequency band is narrowed.
为了提高针对微波的阻抗,需要使耗尽化的芯层较厚、使波导的宽度较窄。但是,当芯层较厚时,光的传播模式不是基模而成为高次模,消光比恶化,动作电压上升,不作为光调制器进行工作。此外,当高台面(high-mesa)波导的宽度较窄时,光不进行传播,损失增大。这样,将一个波导兼用于光和微波,但是,对于两者来说的波导的最优尺寸不同。 In order to increase the impedance against microwaves, it is necessary to thicken the depleted core layer and narrow the width of the waveguide. However, when the core layer is thick, the propagation mode of light becomes a higher-order mode instead of the fundamental mode, the extinction ratio deteriorates, the operating voltage increases, and the optical modulator does not operate. In addition, when the width of the high-mesa waveguide is narrow, the light does not propagate and the loss increases. In this way, one waveguide is used for both light and microwaves, but the optimum dimensions of the waveguides differ for both.
此外,在将一般所使用的铌酸锂(LiNbO3)作为材料的行波型马赫-曾德尔光调制器中,由于材料的介电常数较低,所以,能够使波导的阻抗为50Ω。此外,在铌酸锂调制器中,为了扩大调制频带,提出了例如减小终端电阻而减小输出阻抗、或者在终端电阻上连接短截线(stub)的方案(例如,参照专利文献1~6)。 In addition, in a traveling wave Mach-Zehnder optical modulator using generally used lithium niobate (LiNbO 3 ) as a material, since the dielectric constant of the material is low, the impedance of the waveguide can be set to 50Ω. In addition, in the lithium niobate modulator, in order to expand the modulation frequency band, for example, the scheme of reducing the output impedance by reducing the terminal resistance, or connecting a stub (stub) to the terminal resistance has been proposed (for example, refer to Patent Documents 1 to 2). 6).
[专利文献1]:日本特开2004-170931号公报 [Patent Document 1]: Japanese Unexamined Patent Publication No. 2004-170931
[专利文献2]:日本特开2007-010942号公报 [Patent Document 2]: Japanese Unexamined Patent Publication No. 2007-010942
[专利文献3]:WO2005/096077号公报 [Patent Document 3]: Publication No. WO2005/096077
[专利文献4]:日本特开平11-183858号公报 [Patent Document 4]: Japanese Patent Laying-Open No. 11-183858
[专利文献5]:日本特开平07-221509号公报 [Patent Document 5]: Japanese Patent Application Laid-Open No. 07-221509
[专利文献6]:WO2010/001986号公报。 [Patent Document 6]: WO2010/001986 publication.
在将半导体作为材料的行波型马赫-曾德尔光调制器中,由于材料的介电常数较高,所以,波导的阻抗为50Ω以下。此外,波导的每单位长度的电容较大。因此,即使减小终端电阻,也不能够充分地将调制频带扩大。此外,即使在终端电阻上连接短截线,也不能够充分地将调制频带扩大。 In a traveling-wave Mach-Zehnder optical modulator using a semiconductor as a material, since the material has a high dielectric constant, the impedance of the waveguide is 50Ω or less. Furthermore, the capacitance per unit length of the waveguide is large. Therefore, even if the termination resistance is reduced, the modulation frequency band cannot be sufficiently expanded. In addition, even if a stub is connected to the terminating resistor, the modulation frequency band cannot be sufficiently expanded.
发明内容 Contents of the invention
本发明为了解决如上所述的问题而提出的,其目的在于得到一种能够将调制频带充分地扩大的光调制器。 The present invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain an optical modulator capable of sufficiently expanding a modulation frequency band.
本发明的光调制器的特征在于,具有:半导体芯片;波导,设置在所述半导体芯片内;行波型电极,具有输入部和输出部,对通过所述波导内的光进行调制;供电线,经由第一导线连接到所述输入部;终端电阻,经由第二导线连接到所述输出部,其中所述输出部和接地点之间的电容比所述输入部和接地点之间的电容大。 The optical modulator of the present invention is characterized by comprising: a semiconductor chip; a waveguide provided in the semiconductor chip; a traveling wave electrode having an input part and an output part for modulating light passing through the waveguide; a power supply line , connected to the input part via a first wire; a terminal resistance, connected to the output part via a second wire, wherein the capacitance between the output part and the ground point is larger than the capacitance between the input part and the ground point big.
根据本发明,能够将调制频带充分地扩大。 According to the present invention, the modulation frequency band can be sufficiently expanded.
附图说明 Description of drawings
图1是表示实施方式1的光调制器的俯视图。 FIG. 1 is a plan view showing an optical modulator according to Embodiment 1. As shown in FIG.
图2是沿着图1的A-A’的剖面图。 Fig. 2 is a sectional view taken along line A-A' of Fig. 1 .
图3是表示比较例1的光调制器的俯视图。 FIG. 3 is a plan view showing an optical modulator of Comparative Example 1. FIG.
图4是表示比较例1的光调制器的透过特性S21以及反射特性S11的实测值的图。 FIG. 4 is a graph showing actual measurement values of transmission characteristics S21 and reflection characteristics S11 of the optical modulator of Comparative Example 1. FIG.
图5是表示比较例1的光调制器的透过特性S21以及反射特性S11的实测值的图。 5 is a graph showing actual measurement values of transmission characteristics S21 and reflection characteristics S11 of the optical modulator of Comparative Example 1. FIG.
图6是表示比较例2的光调制器的俯视图。 FIG. 6 is a plan view showing an optical modulator of Comparative Example 2. FIG.
图7是表示比较例2的有效的输出阻抗的电路图。 FIG. 7 is a circuit diagram showing effective output impedance of Comparative Example 2. FIG.
图8是表示实施方式1的有效的输出阻抗的电路图。 FIG. 8 is a circuit diagram showing effective output impedance in Embodiment 1. FIG.
图9是表示比较例2的光调制器的透过特性S21以及反射特性S11的实测值的图。 FIG. 9 is a graph showing actual measurement values of transmission characteristics S21 and reflection characteristics S11 of the optical modulator of Comparative Example 2. FIG.
图10是表示实施方式1的光调制器的透过特性S21以及反射特性S11的实测值的图。 10 is a graph showing actual measurement values of the transmission characteristic S21 and the reflection characteristic S11 of the optical modulator according to the first embodiment.
图11是表示实施方式2的光调制器的俯视图。 FIG. 11 is a plan view showing an optical modulator according to Embodiment 2. FIG.
图12是表示实施方式3的光调制器的俯视图。
FIG. 12 is a plan view showing an optical modulator according to
图13是表示实施方式4的光调制器的俯视图。 FIG. 13 is a plan view showing an optical modulator according to Embodiment 4. FIG.
图14是表示实施方式5的光调制器的俯视图。 FIG. 14 is a plan view showing an optical modulator according to Embodiment 5. FIG.
图15是表示实施方式5的光调制器的变形例的俯视图。
FIG. 15 is a plan view showing a modified example of the optical modulator of
图16是表示实施方式6的光调制器的俯视图。 FIG. 16 is a plan view showing an optical modulator according to Embodiment 6. FIG.
图17是表示实施方式7的光调制器的俯视图。 FIG. 17 is a plan view showing an optical modulator according to Embodiment 7. FIG.
图18是表示实施方式8的光调制器的俯视图。 FIG. 18 is a plan view showing an optical modulator according to Embodiment 8. FIG.
附图标记说明: Explanation of reference signs:
10 半导体芯片 10 semiconductor chip
12 波导 12 waveguides
14 行波型电极 14 Traveling wave electrodes
14a 输入部 14a Input section
14b 输出部 14b output section
16 接地线 16 ground wire
18 第一导线 18 first wire
20 供电线 20 power supply line
22 第二导线 22 Second wire
26 终端电阻 26 Terminal resistance
50 第一短截线(stub) 50 The first short stub (stub)
52 第一绝缘膜 52 first insulating film
54 第二绝缘膜 54 Second insulating film
56 第二短截线。 56 Second stub.
具体实施方式 Detailed ways
参照附图对本发明的实施方式的光调制器进行说明。对相同或者对应的结构要素标注相同的附图标记,有时省略重复的说明。 An optical modulator according to an embodiment of the present invention will be described with reference to the drawings. The same reference signs are attached to the same or corresponding structural elements, and overlapping descriptions may be omitted.
实施方式1 Embodiment 1
图1是表示实施方式1的光调制器的俯视图。该光调制器是将半导体作为材料的行波型马赫-曾德尔光调制器。 FIG. 1 is a plan view showing an optical modulator according to Embodiment 1. As shown in FIG. This optical modulator is a traveling wave Mach-Zehnder optical modulator using a semiconductor as a material.
在半导体芯片10内,设置有具有干涉臂12a、12b的波导12。在半导体芯片10上的干涉臂12a侧设置有行波型电极14。在行波型电极14的附近离开地设置有接地的接地线16。行波型电极14以及接地线16由金镀层等的金属构成。
Inside the
经由第一导线18将供电线20连接到行波型电极14的输入部14a。经由第二导线22以及终端线24将终端电阻26连接到行波型电极14的输出部14b。供电线20的阻抗为50Ω,终端电阻26的电阻值为25Ω。行波型电极14根据从供电线20输入的电信号产生行波电场,利用该电场对通过波导12的干涉臂12a内的光进行调制。
The
在供电线20的两侧设置有接地线28,在终端线24的两侧设置有接地线30。经由导线32将接地线28连接到接地线16的输入侧,经由导线34将接地线30连接到接地线16的输出侧。
Grounding
输出部14b的焊盘(bonding pad)的面积比输入部14a的焊盘的面积大。因此,输出部14b与接地点之间的电容比输入部14a与接地点之间的电容大。并且,在干涉臂12b侧也同样地设置有行波型电极、接地线、供电线以及终端电阻等。
The area of the bonding pad of the
图2是沿着图1的A-A’的剖面图。在n型InP衬底36上,依次层叠有芯层38、p型InP层40、InGaAs、InP等的接触层42。从接触层42到n型InP衬底36的中途被蚀刻,形成高台面波导。
Fig. 2 is a sectional view taken along line A-A' of Fig. 1 . On the n-type InP substrate 36 , a core layer 38 , a p-
行波型电极14连接到脊上的接触层42。在行波型电极14的两侧的n型InP衬底36上设置有接地线16。背面电极44与n型InP衬底36的背面进行欧姆连接(ohmically connect)。
The traveling
芯层38是非掺杂的多量子阱,由折射率比InGaAsP或AlGaInAs等的p型InP层40的折射率高的材料构成。芯层38的厚度为0.1μm~0.6μm,高台面波导的宽度为1μm~3μm。
The core layer 38 is an undoped multiple quantum well, and is made of a material having a higher refractive index than the p-
接着,对本实施方式的光调制器的动作进行说明。激光等的入射光46入射到波导12,被分路为两束光,分别在波导12的两个干涉臂12a、12b中传播。然后,两束光合波为一束光,作为输出光48而出射。
Next, the operation of the optical modulator of this embodiment will be described.
当对两个干涉臂12a、12b施加不同大小的电压时,两者的折射率成为彼此不同的值。使该折射率的差为△n、使在两个干涉臂12a、12b中施加电压的部分的长度为L、使在干涉臂中传播的光的波长为λ时,分别通过两个干涉臂12a、12b的光的相位产生差△φ。
When voltages of different magnitudes are applied to the two
在该光的相位差△φ为nπ(n为0或者偶数)的情况下,在两个干涉臂12a、12b中传播的光被合波而加强。另一方面,在相位差△φ为kπ(k为奇数)的情况下,在两个干涉臂12a、12b中传播的光被合波而相抵消。因此,能够利用施加在两个干涉臂12a、12b上的电压对光的强度进行调制。此外,当施加调制电压使得相位差△φ在nπ的状态和(n+2)π的状态之间往复时,能够对光的相位进行调制。
When the phase difference Δφ of the light is nπ (n is 0 or an even number), the light propagating through the two
接着,对于本实施方式的效果,与比较例进行比较说明。图3是表示比较例1的光调制器的俯视图。在比较例1中,与实施方式1不同,输入部14a和输出部14b的面积相同。因此,输出部14b与接地点之间的电容和输入部14a与接地点之间的电容相同。
Next, the effect of this embodiment will be described in comparison with a comparative example. FIG. 3 is a plan view showing an optical modulator of Comparative Example 1. FIG. In Comparative Example 1, unlike Embodiment 1, the
图4以及图5是表示比较例1的光调制器的透过特性S21以及反射特性S11的实测值的图。在图4中,使终端电阻为50Ω,使输入输出阻抗对称,在图5中,使终端电阻为25Ω。高台面波导的宽度为1.8μm,芯层的厚度为0.35μm,波导12的阻抗(行波型电极14的阻抗)为约35Ω。 4 and 5 are diagrams showing actual measurement values of the transmission characteristic S21 and the reflection characteristic S11 of the optical modulator of Comparative Example 1. FIG. In FIG. 4, the terminal resistance is 50Ω, and the input and output impedances are symmetrical. In FIG. 5, the terminal resistance is 25Ω. The width of the high-mesa waveguide was 1.8 μm, the thickness of the core layer was 0.35 μm, and the impedance of the waveguide 12 (the impedance of the traveling-wave electrode 14 ) was about 35Ω.
此处,电的透过频带越宽,利用电进行调制的光的调制频带也变得越宽。通常,当在波导中传输的微波的群速度和光的传播速度一致时,调制频带最大。特别是,在马赫-曾德尔光调制器的干涉臂的宽度为2mm以下的情况下,不太依赖于微波的群速度和光的传播速度,电的透过频带和光的调制频带大致一致。 Here, the wider the transmission band of electricity is, the wider the modulation band of light modulated by electricity becomes. In general, the modulation band is maximized when the group velocity of microwaves propagating in the waveguide coincides with the propagation velocity of light. In particular, when the width of the interference arm of the Mach-Zehnder optical modulator is 2 mm or less, the group velocity of microwaves and the propagation velocity of light do not depend much, and the transmission frequency band of electricity and the modulation frequency band of light substantially coincide.
由图4以及图5可知,在终端电阻为50Ω的情况下,频带fc是13GHz,在终端电阻为25Ω的情况下,频带fc是21GHz。此处,在输入输出阻抗为50Ω的情况下,具有较低的阻抗35Ω的波导12成为电容,频带被限制。另一方面,在输入阻抗为50Ω、输出阻抗为25Ω的情况下,波导12的阻抗35Ω成为两者的大致中间值。因此,以阻抗匹配的方式进行动作,能够扩大调制频带。
As can be seen from FIGS. 4 and 5 , when the terminal resistance is 50Ω, the frequency band fc is 13 GHz, and when the terminal resistance is 25Ω, the frequency band fc is 21 GHz. Here, when the input/output impedance is 50Ω, the
并且,若使输入输出阻抗为35Ω,则与波导12的阻抗完全匹配。但是,以调制驱动器或供电电路的关系难以使输入阻抗为35Ω。此外,当使供电线20的阻抗(输入阻抗)为35Ω时,电信号非常强地感到第一导线18的电感,供电线20中的电反射增加。因此,需要使供电线20的阻抗为接近50Ω的值。
In addition, if the input and output impedance is set to 35Ω, it will completely match the impedance of the
如上所述,为了扩大调制频带,以满足公式(2)的方式设定阻抗。 As described above, in order to expand the modulation frequency band, the impedance is set so as to satisfy the formula (2).
此处,Zin为供电线20的阻抗(输入阻抗)、Zwg为波导12的阻抗、Ro为终端电阻26的电阻值。
Here, Zin is the impedance (input impedance) of the
并且,进一步优选以满足公式(3)的方式设定阻抗。 And, it is further preferable to set the impedance so as to satisfy the formula (3).
但是,由于第二导线22的电感L,针对高频(例如,20GHz)的第二导线22的阻抗jLω上升,变得比终端电阻26的电阻值高。因此,在比较例1中,即使减小终端电阻26的电阻值Ro,由于该第二导线22的阻抗jLω加到输出阻抗上,所以,输出部的电的反射增加,透过特性恶化,调制频带变小。
However, due to the inductance L of the
图6是表示比较例2的光调制器的俯视图。在比较例2中,增大终端线24,使其起到短截线的作用。图7是表示比较例2的有效的输出阻抗的电路图。在比较例2中,短截线的电容C与第二导线22串联连接。因此,当第二导线22的阻抗jLω变大时(例如,25Ω以上),无论怎么增大短截线的电容C,也不能够使有效的输出阻抗Zout变小(例如25Ω以下)。
FIG. 6 is a plan view showing an optical modulator of Comparative Example 2. FIG. In Comparative Example 2, the
图8是表示实施方式1的有效的输出阻抗的电路图。在本实施方式中,电容C与第二导线22并联连接。因此,当增大电容C时,其阻抗(1/jCω)下降,抵消第二导线22的阻抗jLω(例如,25Ω以上)的上升,能够使有效的输出阻抗Zout变小(例如,25Ω以下)。由此,由于能够改善输出部14b的电的反射和透过,所以,能够充分地扩大调制频带。
FIG. 8 is a circuit diagram showing effective output impedance in Embodiment 1. FIG. In this embodiment, the capacitor C is connected in parallel with the
图9是表示比较例2的光调制器的透过特性S21以及反射特性S11的实测值的图。图10是表示实施方式1的光调制器的透过特性S21以及反射特性S11的实测值的图。明显地,实施方式1与比较例2相比调制频带扩大。 FIG. 9 is a graph showing actual measurement values of transmission characteristics S21 and reflection characteristics S11 of the optical modulator of Comparative Example 2. FIG. 10 is a graph showing actual measurement values of the transmission characteristic S21 and the reflection characteristic S11 of the optical modulator according to the first embodiment. Obviously, the modulation frequency band of Embodiment 1 is wider than that of Comparative Example 2.
并且,行波型电极14的输出部14b的阻抗越小,与第二导线22的阻抗jLω的差越大,容易受其影响。因此,当满足公式(4)时,上述的效果强烈显现,
In addition, the smaller the impedance of the
Z1>Z2以及Zwg>Z2 (4) Z1>Z2 and Zwg>Z2 (4)
此处,Z1是行波型电极14的输入部14a的阻抗,Z2是行波型电极14的输出部14b的阻抗。
Here, Z1 is the impedance of the
实施方式2 Embodiment 2
图11是表示实施方式2的光调制器的俯视图。行波型电极14的输出部14b的宽度朝向输出端大幅度地扩大,输出部14b的面积变得比输入部14a的面积大。因此,输出部14b和接地点之间的电容比输入部14a和接地点之间的电容大。因此,与实施方式1同样地能够充分地扩大调制频带。
FIG. 11 is a plan view showing an optical modulator according to Embodiment 2. FIG. The width of the
实施方式3
图12是表示实施方式3的光调制器的俯视图。在输出部14b上连接有第一短截线50。因此,输出部14b和接地点之间的电容比输入部14a和接地点之间的电容大。因此,与实施方式1同样地能够充分地扩大调制频带。
FIG. 12 is a plan view showing an optical modulator according to
实施方式4 Embodiment 4
图13是表示实施方式4的光调制器的俯视图。行波型电极14不是实施方式1那样的GSG型电极。输出部14b的焊盘的面积是输入部14a的焊盘的面积的3倍。由此,输出部14b和接地点之间的电容比输入部14a和接地点之间的电容大约大0.2pF。因此,与实施方式1同样地能够充分地扩大调制频带。并且,也可以使输出部14b与半导体芯片10的pn结连接,使电容增加。
FIG. 13 is a plan view showing an optical modulator according to Embodiment 4. FIG. The traveling
实施方式5
图14是表示实施方式5的光调制器的俯视图。行波型电极14的宽度从输入侧开始越向着输出侧变得越宽。由此,传输路径电容越靠近输出侧变得越大。由此,与实施方式1同样地能够充分地扩大调制频带。
FIG. 14 is a plan view showing an optical modulator according to
图15是表示实施方式5的光调制器的变形例的俯视图。也可以像这样与行波型电极14的宽度的变化匹配地使波导12的宽度从输入侧开始越向着输出侧变得越宽。
FIG. 15 is a plan view showing a modified example of the optical modulator of
实施方式6 Embodiment 6
图16是表示实施方式6的光调制器的俯视图。在半导体芯片10上设置有第一以及第二的绝缘膜52、54。行波型电极14的输入部14a设置在第一绝缘膜52上,输出部14b设置在第二绝缘膜54上。并且,第二绝缘膜54比第一绝缘膜52薄,为三分之一左右。由此,输出部14b和接地点之间的电容比输入部14a和接地点之间的电容大约大0.2pF。由此,与实施方式1同样地能够充分地扩大调制频带。
FIG. 16 is a plan view showing an optical modulator according to Embodiment 6. FIG. First and second insulating
实施方式7 Embodiment 7
图17是表示实施方式7的光调制器的俯视图。输出部14b和接地线16的间隔比输入部14a和接地线16的间隔小。由此,输出部14b和接地点之间的电容比输入部14a和接地点之间的电容大。因此,与实施方式1同样地能够充分地扩大调制频带。
FIG. 17 is a plan view showing an optical modulator according to Embodiment 7. FIG. The distance between the
实施方式8 Embodiment 8
图18是表示实施方式8的光调制器的俯视图。由于波导12的阻抗较小,所以,在连结行波型电极14和供电线20的第一导线18产生电反射。因此,在本实施方式中,设置有与供电线20的端部连接的第二短截线56。第二短截线56起到电容的作用,抵消第一导线18的电感成分。由此,减轻在第一导线18的电反射。
FIG. 18 is a plan view showing an optical modulator according to Embodiment 8. FIG. Since the impedance of the
并且,在上述的实施方式1~8中,对将本发明应用到行波型马赫-曾德尔光调制器的情况进行说明。不限于此,本发明也能够应用于行波型电场吸收调制器,能够得到同样的效果。 Furthermore, in Embodiments 1 to 8 described above, a case where the present invention is applied to a traveling-wave Mach-Zehnder optical modulator will be described. Not limited thereto, the present invention can also be applied to a traveling wave type electric field absorption modulator, and the same effect can be obtained.
Claims (7)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010-226707 | 2010-10-06 | ||
| JP2010226707A JP2012078759A (en) | 2010-10-06 | 2010-10-06 | Optical modulator |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102445769A true CN102445769A (en) | 2012-05-09 |
| CN102445769B CN102445769B (en) | 2015-06-24 |
Family
ID=45925201
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201110215013.7A Active CN102445769B (en) | 2010-10-06 | 2011-07-29 | Optical modulator |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US8655116B2 (en) |
| JP (1) | JP2012078759A (en) |
| CN (1) | CN102445769B (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015024254A1 (en) * | 2013-08-23 | 2015-02-26 | 华为技术有限公司 | Optical modulator and optical signal transmission apparatus |
| JP2017142487A (en) * | 2016-02-08 | 2017-08-17 | 三菱電機株式会社 | Light modulator |
| CN108681111A (en) * | 2018-03-29 | 2018-10-19 | 北京航天时代光电科技有限公司 | A kind of lithium niobate electrooptic modulator |
| CN108700758A (en) * | 2016-04-01 | 2018-10-23 | 住友大阪水泥股份有限公司 | light modulator |
| CN114730105A (en) * | 2019-12-12 | 2022-07-08 | Tdk株式会社 | Optical modulator |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9008469B2 (en) * | 2012-11-09 | 2015-04-14 | Teraxion Inc. | Mach-zehnder optical modulator having an asymmetrically-loaded traveling wave electrode |
| EP2876494B1 (en) * | 2013-11-25 | 2016-10-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Electro-optical modulator |
| JP6610044B2 (en) * | 2014-07-14 | 2019-11-27 | 住友電気工業株式会社 | Semiconductor optical modulator and manufacturing method of semiconductor optical modulator |
| JP6330549B2 (en) * | 2014-07-25 | 2018-05-30 | 住友電気工業株式会社 | Optical semiconductor device and manufacturing method thereof |
| JP6420585B2 (en) * | 2014-07-31 | 2018-11-07 | 技術研究組合光電子融合基盤技術研究所 | Silicon photonics modulator electrode structure |
| WO2017026049A1 (en) | 2015-08-11 | 2017-02-16 | 技術研究組合光電子融合基盤技術研究所 | Electrode structure for silicon photonics modulator |
| DE112017002791B4 (en) * | 2016-06-03 | 2024-07-25 | Mitsubishi Electric Corporation | Optical modulator |
| JP6237839B1 (en) * | 2016-08-01 | 2017-11-29 | 富士通オプティカルコンポーネンツ株式会社 | Optical modulator and optical module |
| JP2018036399A (en) | 2016-08-30 | 2018-03-08 | 株式会社フジクラ | Substrate-type optical waveguide and substrate-type optical modulator |
| JP2018036398A (en) * | 2016-08-30 | 2018-03-08 | 株式会社フジクラ | Substrate type optical waveguide and substrate type optical modulator |
| JP6770549B2 (en) * | 2018-05-16 | 2020-10-14 | 日本電信電話株式会社 | Light modulator |
| JP7091969B2 (en) * | 2018-09-25 | 2022-06-28 | 日本電信電話株式会社 | Light modulator module |
| CN109975999B (en) * | 2019-05-20 | 2020-06-16 | 南京大学 | A process deviation analysis method of a silicon-based Mach-Zehnder type electro-optic modulator |
| JP7404696B2 (en) * | 2019-07-30 | 2023-12-26 | 富士通オプティカルコンポーネンツ株式会社 | optical device |
| WO2021161745A1 (en) * | 2020-02-10 | 2021-08-19 | Tdk株式会社 | Light modulation element |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030007228A1 (en) * | 2001-07-04 | 2003-01-09 | Masataka Shirai | Optical modulator |
| US20050013522A1 (en) * | 2003-07-17 | 2005-01-20 | Masaharu Doi | Optical modulator with an impedance matching region |
| US20050058385A1 (en) * | 2003-08-18 | 2005-03-17 | Hassan Tanbakuchi | Low-pass filter transmission line with integral electroabsorption modulator |
| CN1764862A (en) * | 2004-03-18 | 2006-04-26 | 日本电信电话株式会社 | Optical modulator and optical modulating method |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH07221509A (en) * | 1994-02-01 | 1995-08-18 | Hitachi Ltd | Microwave band terminator |
| JP2996287B2 (en) * | 1995-12-18 | 1999-12-27 | 日本電信電話株式会社 | Absorption type semiconductor optical modulator |
| JP3088988B2 (en) | 1997-12-24 | 2000-09-18 | 住友大阪セメント株式会社 | Traveling wave optical modulator and optical modulation method |
| JP3422279B2 (en) * | 1999-03-10 | 2003-06-30 | 日本電気株式会社 | Optical modulator, optical communication light source, optical module using the same, and optical communication system |
| JP3847668B2 (en) * | 2002-06-13 | 2006-11-22 | 日本オプネクスト株式会社 | Traveling wave type light modulator |
| JP2004170931A (en) | 2002-11-05 | 2004-06-17 | Ngk Insulators Ltd | Optical modulator |
| WO2005096077A1 (en) | 2004-03-30 | 2005-10-13 | Sumitomo Osaka Cement Co., Ltd. | Traveling wave optical modulator and its regulating method |
| JP4899356B2 (en) | 2005-06-30 | 2012-03-21 | 富士通オプティカルコンポーネンツ株式会社 | Light modulator |
| JP2008152206A (en) * | 2006-12-20 | 2008-07-03 | Anritsu Corp | Optical modulator |
| JP5056040B2 (en) * | 2007-02-08 | 2012-10-24 | 富士通株式会社 | Light modulator |
| JP4599434B2 (en) | 2008-07-04 | 2010-12-15 | 住友大阪セメント株式会社 | Optical waveguide device module |
| JP5381074B2 (en) * | 2008-12-16 | 2014-01-08 | 三菱電機株式会社 | Light modulation device and method of manufacturing light modulation device |
-
2010
- 2010-10-06 JP JP2010226707A patent/JP2012078759A/en active Pending
-
2011
- 2011-06-09 US US13/156,376 patent/US8655116B2/en active Active
- 2011-07-29 CN CN201110215013.7A patent/CN102445769B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030007228A1 (en) * | 2001-07-04 | 2003-01-09 | Masataka Shirai | Optical modulator |
| US20050013522A1 (en) * | 2003-07-17 | 2005-01-20 | Masaharu Doi | Optical modulator with an impedance matching region |
| US20050058385A1 (en) * | 2003-08-18 | 2005-03-17 | Hassan Tanbakuchi | Low-pass filter transmission line with integral electroabsorption modulator |
| CN1764862A (en) * | 2004-03-18 | 2006-04-26 | 日本电信电话株式会社 | Optical modulator and optical modulating method |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015024254A1 (en) * | 2013-08-23 | 2015-02-26 | 华为技术有限公司 | Optical modulator and optical signal transmission apparatus |
| JP2017142487A (en) * | 2016-02-08 | 2017-08-17 | 三菱電機株式会社 | Light modulator |
| CN108700758A (en) * | 2016-04-01 | 2018-10-23 | 住友大阪水泥股份有限公司 | light modulator |
| CN108700758B (en) * | 2016-04-01 | 2019-08-09 | 住友大阪水泥股份有限公司 | Optical modulator |
| CN108681111A (en) * | 2018-03-29 | 2018-10-19 | 北京航天时代光电科技有限公司 | A kind of lithium niobate electrooptic modulator |
| CN108681111B (en) * | 2018-03-29 | 2021-07-13 | 北京航天时代光电科技有限公司 | Lithium niobate electro-optical modulator |
| CN114730105A (en) * | 2019-12-12 | 2022-07-08 | Tdk株式会社 | Optical modulator |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102445769B (en) | 2015-06-24 |
| US20120087614A1 (en) | 2012-04-12 |
| JP2012078759A (en) | 2012-04-19 |
| US8655116B2 (en) | 2014-02-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102445769B (en) | Optical modulator | |
| JP5056040B2 (en) | Light modulator | |
| US11287720B2 (en) | Semiconductor optical modulator | |
| US7031558B2 (en) | Low-pass filter transmission line with integral electroabsorption modulator | |
| CN116097157B (en) | Semiconductor light modulator | |
| US20100158428A1 (en) | Optical modulator | |
| JP4184405B2 (en) | Optical modulator and optical modulation method | |
| JP6088349B2 (en) | Traveling-wave electrode light modulator | |
| JP6926499B2 (en) | Light modulator | |
| JP6348880B2 (en) | Semiconductor Mach-Zehnder optical modulator | |
| JP2015212768A (en) | Electroabsorption modulator and integrated TW-EA-DFB laser | |
| JP4382585B2 (en) | Optical modulator and characteristic control method | |
| JP2013054134A (en) | Optical modulator module | |
| JP2010237593A (en) | Light control device | |
| WO2019176665A1 (en) | Optical modulator | |
| JP5421963B2 (en) | Optical modulator module | |
| US6735010B2 (en) | Resonator-type semiconductor optical modulator with asymmetrical electrode structure | |
| WO2023095261A1 (en) | Mach-zehnder modulator | |
| JP5303072B2 (en) | Light modulator | |
| CN215986791U (en) | High-speed modulator | |
| JP5010408B2 (en) | Light modulator | |
| JP2008152206A (en) | Optical modulator | |
| JP2013088575A (en) | Optical modulator module | |
| JP2013068917A (en) | Optical modulator module | |
| JP2013130833A (en) | Light modulator |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |