CN102446761B - Method for manufacturing semiconductor structure - Google Patents
Method for manufacturing semiconductor structure Download PDFInfo
- Publication number
- CN102446761B CN102446761B CN201010501712.3A CN201010501712A CN102446761B CN 102446761 B CN102446761 B CN 102446761B CN 201010501712 A CN201010501712 A CN 201010501712A CN 102446761 B CN102446761 B CN 102446761B
- Authority
- CN
- China
- Prior art keywords
- stress layer
- tension stress
- layer
- semiconductor structure
- dummy grid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 239000004065 semiconductor Substances 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 230000005669 field effect Effects 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 238000000059 patterning Methods 0.000 claims abstract description 3
- 239000004020 conductor Substances 0.000 claims description 31
- 238000005530 etching Methods 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 23
- 229920002120 photoresistant polymer Polymers 0.000 claims description 12
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 6
- 229910020177 SiOF Inorganic materials 0.000 claims description 3
- 239000005380 borophosphosilicate glass Substances 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- 230000000717 retained effect Effects 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- 238000002955 isolation Methods 0.000 claims description 2
- 230000006835 compression Effects 0.000 claims 1
- 238000007906 compression Methods 0.000 claims 1
- 238000001259 photo etching Methods 0.000 claims 1
- 238000000137 annealing Methods 0.000 abstract description 11
- 238000005516 engineering process Methods 0.000 abstract description 8
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 125000006850 spacer group Chemical group 0.000 description 8
- 238000005137 deposition process Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 125000001475 halogen functional group Chemical group 0.000 description 6
- 238000002513 implantation Methods 0.000 description 6
- 238000001020 plasma etching Methods 0.000 description 6
- 239000002019 doping agent Substances 0.000 description 5
- 229910021332 silicide Inorganic materials 0.000 description 5
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 229910052454 barium strontium titanate Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000004151 rapid thermal annealing Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 206010010144 Completed suicide Diseases 0.000 description 1
- 229910004129 HfSiO Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004491 TaAlN Inorganic materials 0.000 description 1
- 229910004166 TaN Inorganic materials 0.000 description 1
- 229910010037 TiAlN Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- IWXBAFPAYLDYOJ-UHFFFAOYSA-N [Pb].[Zr].[Ti] Chemical compound [Pb].[Zr].[Ti] IWXBAFPAYLDYOJ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/791—Arrangements for exerting mechanical stress on the crystal lattice of the channel regions
- H10D30/796—Arrangements for exerting mechanical stress on the crystal lattice of the channel regions having memorised stress for introducing strain in the channel regions, e.g. recrystallised polysilicon gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0167—Manufacturing their channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
技术领域 technical field
本发明一般地涉及一种半导体结构的制造方法,更具体地,涉及一种利用应力记忆技术来制造高性能半导体结构的方法。The present invention generally relates to a method for manufacturing a semiconductor structure, and more specifically, relates to a method for manufacturing a high-performance semiconductor structure using stress memory technology.
背景技术 Background technique
已知将应力施加于场效应晶体管(FET:field effect transistor)可以改进它们的性能。当向场效应晶体管施加应力时,拉应力可以提高电子迁移率(或nFET驱动电流),而压应力可以提高空穴迁移率(或pFET驱动电流)。It is known that applying stress to field effect transistors (FET: field effect transistor) can improve their performance. When stress is applied to a FET, tensile stress can increase electron mobility (or nFET drive current), while compressive stress can increase hole mobility (or pFET drive current).
一种提供这种应力的方式被称为应力记忆技术(SMT:stressmemorization technique),其包括在半导体结构的各个部位,例如沟道区上方,形成固有应力材料(例如,氮化硅)并进行退火以使应力被记忆在相应的部位(例如栅极区或延伸区)中,然后去除应力材料。这样,应力得以保留并可以改进空穴的迁移率,从而提高半导体结构的整体性能。One way to provide this stress is called stress memory technique (SMT: stressmemorization technique), which includes forming an inherently stressed material (eg, silicon nitride) and annealing various parts of the semiconductor structure, such as above the channel region Stress is memorized in corresponding parts (such as gate region or extension region), and then the stress material is removed. In this way, stress is preserved and hole mobility can be improved, thereby improving the overall performance of the semiconductor structure.
SMT存在的一个问题是其只能用于n型场效应晶体管。具体而言,为了将应力记忆在半导体结构中,必须进行退火操作,而退火操作往往需要在高温下进行。但是,常用于向场效应晶体管施加应力的材料,例如氮化物材料,在高温下只能提供拉应力,这就将SMT技术的应用局限于n型场效应晶体管。One problem with SMT is that it can only be used with n-type field effect transistors. Specifically, in order to memorize the stress in the semiconductor structure, an annealing operation must be performed, and the annealing operation often needs to be performed at high temperature. However, materials commonly used to apply stress to field effect transistors, such as nitride materials, can only provide tensile stress at high temperatures, which limits the application of SMT technology to n-type field effect transistors.
鉴于上述问题,需要提供一种可以用于pFET的SMT技术。In view of the above problems, it is necessary to provide an SMT technology that can be used for pFETs.
发明内容 Contents of the invention
本发明的目的是提供一种可以用于pFET的SMT技术,该方法能够利用常用的应力材料在pFET的沟道中施加压应力,并且在经历高温退火操作之后,能够将来自p型晶体管上方的应力层的压应力记忆到沟道中,从而改进空穴的迁移率,提高半导体结构的整体性能。The purpose of the present invention is to provide a kind of SMT technology that can be used for pFET, this method can utilize commonly used stress material to apply compressive stress in the channel of pFET, and after undergoing high temperature annealing operation, can put the stress from above p-type transistor The compressive stress of the layer is memorized into the channel, thereby improving the mobility of holes and improving the overall performance of the semiconductor structure.
此外,本发明的方法操作简单,工业可应用性强。In addition, the method of the invention is simple to operate and has strong industrial applicability.
本发明提供一种半导体结构的制造方法,包括以下步骤:The invention provides a method for manufacturing a semiconductor structure, comprising the following steps:
a)提供p型场效应晶体管,a) providing a p-type field effect transistor,
b)在所述p型场效应晶体管上形成拉应力层,b) forming a tensile stress layer on the p-type field effect transistor,
c)去除一部分拉应力层,使得保留的拉应力层在沟道中产生压应力,以及c) removing a part of the tensile stress layer, so that the retained tensile stress layer generates compressive stress in the channel, and
d)进行退火。d) Perform annealing.
优选地,所述拉应力层包括选自Si3N4、SiO2、SiOF、SiCOH、SiCO、SiCON、SiON、PSG和BPSG中的至少一种材料。Preferably, the tensile stress layer includes at least one material selected from Si 3 N 4 , SiO 2 , SiOF, SiCOH, SiCO, SiCON, SiON, PSG and BPSG.
优选地,在步骤b)中,通过淀积工艺形成所述拉应力层。Preferably, in step b), the tensile stress layer is formed by a deposition process.
优选地,在步骤c)中,通过选择性刻蚀来去除一部分拉应力层。Preferably, in step c), a part of the tensile stress layer is removed by selective etching.
优选地,其中,在步骤a)之后和步骤b)之前,通过淀积工艺形成刻蚀停止层。进一步优选地,所述刻蚀停止层的材料不同于所述拉应力层的材料。更进一步优选地,所述刻蚀停止层包括SiO2。Preferably, wherein, after step a) and before step b), the etch stop layer is formed by a deposition process. Further preferably, the material of the etching stop layer is different from that of the tensile stress layer. Still further preferably, the etch stop layer includes SiO 2 .
优选地,步骤c)包括:光刻,以形成预定图案的光刻胶;以及以图案化的光刻胶为掩膜对所述拉应力层进行刻蚀。进一步优选地,在进行步骤c)之后,在栅极方向上,保留的拉应力层的边缘与栅极外侧之间的距离为0.02-0.2μm。Preferably, step c) includes: photolithography to form a predetermined pattern of photoresist; and etching the tensile stress layer using the patterned photoresist as a mask. Further preferably, after step c), in the direction of the gate, the distance between the edge of the remaining tensile stress layer and the outer side of the gate is 0.02-0.2 μm.
优选地,所述p型场效应晶体管包括伪栅极,所述伪栅极包括伪栅极导体和栅介质。进一步优选地,在步骤d)之后,还包括步骤e):去除所述伪栅极导体以形成开口,以及在所述开口中形成栅极。更进一步优选地,在步骤e)中,通过刻蚀工艺去除所述伪栅极导体,以暴露所述伪栅极导体下面的栅介质。可选地,在步骤e)中,通过刻蚀工艺去除所述伪栅极导体和栅介质,以暴露所述栅介质下面的衬底。Preferably, the p-type field effect transistor includes a dummy gate, and the dummy gate includes a dummy gate conductor and a gate dielectric. Further preferably, after step d), step e) is further included: removing the dummy gate conductor to form an opening, and forming a gate in the opening. Still further preferably, in step e), the dummy gate conductor is removed by an etching process, so as to expose the gate dielectric under the dummy gate conductor. Optionally, in step e), the dummy gate conductor and the gate dielectric are removed by an etching process, so as to expose the substrate under the gate dielectric.
在本发明的半导体结构的制造方法中,通过将光刻刻蚀工艺与应力记忆技术相结合,能够记忆晶体管沟道内的压应力,从而改进空穴的迁移率,提高半导体结构的整体性能;并且,本发明的方法操作简单,工业可应用性强。In the manufacturing method of the semiconductor structure of the present invention, by combining the photolithography and etching process with the stress memory technology, the compressive stress in the channel of the transistor can be memorized, thereby improving the mobility of holes and improving the overall performance of the semiconductor structure; and , the method of the present invention is simple to operate and has strong industrial applicability.
参照以下的说明书和权利要求书,将更容易理解本发明的这些和其他特征、方面和优点。These and other features, aspects and advantages of the present invention will be more readily understood with reference to the following specification and claims.
附图说明 Description of drawings
图1示出用于本发明方法的一个实施例的初步结构。Fig. 1 shows the preliminary structure for one embodiment of the method of the present invention.
图2-7示出根据本发明的一个实施例的制作方法流程的中间结构。2-7 show the intermediate structure of the manufacturing method flow according to an embodiment of the present invention.
图8示出根据本发明方法的一个实施例制作的半导体结构。Figure 8 shows a semiconductor structure fabricated according to one embodiment of the method of the present invention.
具体实施方式 Detailed ways
以下,通过附图中示出的具体实施例来描述本发明。但是应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。Hereinafter, the present invention is described by means of specific embodiments shown in the drawings. It should be understood, however, that these descriptions are exemplary only and are not intended to limit the scope of the present invention. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concept of the present invention.
在附图中示出了根据本发明实施例的半导体结构的各种结构的俯视图、截面图及透视图。这些图并非是按比例绘制的,其中为了清楚的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。Top, cross-sectional, and perspective views of various structures of semiconductor structures according to embodiments of the invention are shown in the accompanying drawings. The figures are not drawn to scale, with certain details exaggerated and possibly omitted for clarity. The shapes of the various regions and layers shown in the figure, as well as their relative sizes and positional relationships are only exemplary, and may deviate due to manufacturing tolerances or technical limitations in practice, and those skilled in the art will Regions/layers with different shapes, sizes, and relative positions can be additionally designed as needed.
根据本发明的实施例,提供了一种利用应力记忆技术来制造高性能半导体结构的方法,能够记忆晶体管沟道内的压应力,从而改进空穴的迁移率,提高半导体结构的整体性能。According to an embodiment of the present invention, a method for manufacturing a high-performance semiconductor structure using stress memory technology is provided, which can memorize the compressive stress in the transistor channel, thereby improving the mobility of holes and improving the overall performance of the semiconductor structure.
图1示出用于本发明方法的一个实施例的初步结构。Fig. 1 shows the preliminary structure for one embodiment of the method of the present invention.
该初步结构为p型场效应应晶体管(pFET)100。图1所示的pFET100已经对衬底10完成了初始处理,诸如常规浅沟槽隔离(STI)12的形成、阱注入、栅介质14的形成、栅极导体16的形成、以及第一侧墙18的形成。The preliminary structure is a p-type field effect transistor (pFET) 100 . The pFET 100 shown in FIG. 1 has completed initial processing of the substrate 10, such as conventional shallow trench isolation (STI) 12 formation, well implantation, gate dielectric 14 formation, gate conductor 16 formation, and first spacer Formation of 18.
图2-7示出根据本发明的一个实施例的制作方法流程的中间结构。2-7 show the intermediate structure of the manufacturing method flow according to an embodiment of the present invention.
参考图2,在根据本发明方法的一个实施例中,优选地,对初始结构pFET 100进行延伸注入(extension implantation)。可选地,还可以进行晕圈注入(halo implantation)。Referring to FIG. 2, in one embodiment of the method according to the invention, an extension implantation is preferably performed on the initial structure pFET 100. Optionally, halo implantation can also be performed.
采用栅极导体16和第一侧墙18为掩膜,沿着箭头202所示的方向进行延伸注入,在栅极导体16和第一侧墙18的两侧,于衬底10的暴露部分形成延伸区20。对于根据本发明实施例的pFET,可以采用p-型掺杂剂例如硼(B或BF2)、铟(In)或其组合进行延伸注入。延伸区20用于降低电场峰值,控制短沟道效应。Using the gate conductor 16 and the first spacer 18 as a mask, the implantation is extended along the direction indicated by the arrow 202, and is formed on the exposed part of the substrate 10 on both sides of the gate conductor 16 and the first sidewall 18. Extension 20. For pFETs according to embodiments of the present invention, extension implants may be performed with p-type dopants such as boron (B or BF2 ), indium (In), or combinations thereof. The extension region 20 is used to reduce the electric field peak value and control the short channel effect.
可选地,可以再次采用栅极导体16和第一侧墙18为掩膜,沿着箭头204所示的方向以一定的倾角进行晕圈注入,从而在衬底10中栅介质14下方的相应位置形成晕圈区21。对于根据本发明实施例的pFET,可以采用n-型掺杂剂例如砷(As)、磷(P)或其组合进行晕圈注入。这里,晕圈区21主要用于阻挡后面形成源/漏区24(如后面图3所示)向沟道区扩散,从而控制短沟道效应。Optionally, using the gate conductor 16 and the first spacer 18 as a mask again, the halo implantation can be performed at a certain inclination along the direction shown by the arrow 204, so that the corresponding The location forms a halo area 21 . For pFETs according to embodiments of the present invention, halo implants may be performed with n-type dopants such as arsenic (As), phosphorus (P), or combinations thereof. Here, the halo region 21 is mainly used to prevent the later formed source/drain region 24 (as shown in FIG. 3 ) from diffusing into the channel region, thereby controlling the short channel effect.
参考图3,在栅极导体16和第一侧墙18的两侧形成第二侧墙22,并且形成源/漏区24。Referring to FIG. 3 , second spacers 22 are formed on both sides of the gate conductor 16 and the first spacers 18 , and source/drain regions 24 are formed.
例如,通过常规的淀积工艺,如物理气相淀积(PVD)、化学气相淀积(CVD)、原子层淀积(ALD)或溅射等,在整个半导体结构上形成第二侧墙材料,然后进行各向异性刻蚀,优选反应离子刻蚀(RIE),来形成如图3所示的第二侧墙22。所述第二侧墙22的材料与第一侧墙18的材料可以相同,也可以不同。优选地,所述第二侧墙22可以包括Si3N4。在后续步骤中,第二侧墙22可以起到掩膜和/或刻蚀保护层的作用。For example, the second spacer material is formed on the entire semiconductor structure by a conventional deposition process, such as physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD) or sputtering, Then perform anisotropic etching, preferably reactive ion etching (RIE), to form the second sidewall 22 as shown in FIG. 3 . The material of the second side wall 22 and the material of the first side wall 18 may be the same or different. Preferably, the second sidewall 22 may include Si 3 N 4 . In subsequent steps, the second sidewall 22 may function as a mask and/or an etching protection layer.
采用栅极导体16和第二侧墙22为掩膜,沿着箭头206所示的方向进行离子注入,在栅极导体16和第二侧墙22组成的栅极区的两侧,衬底10的暴露部分形成源/漏区24。对于根据本发明实施例的pFET,可以采用p-型掺杂剂例如硼(B或BF2)、铟(In)或其组合进行源/漏区注入。典型地,源/漏区24与延伸区20所用掺杂剂的极性相同,但是所选用的具体掺杂剂的种类以及掺杂浓度可以相同也可以不同。Using the gate conductor 16 and the second spacer 22 as a mask, ion implantation is performed along the direction indicated by the arrow 206. On both sides of the gate region formed by the gate conductor 16 and the second spacer 22, the substrate 10 Source/drain regions 24 are formed in the exposed portions. For pFETs according to embodiments of the present invention, p-type dopants such as boron (B or BF 2 ), indium (In) or combinations thereof may be used for source/drain implantation. Typically, the polarity of the dopant used in the source/drain region 24 and the extension region 20 is the same, but the type and doping concentration of the selected specific dopant may be the same or different.
参照图4,在图3所示的半导体结构上依次形成刻蚀停止层26和拉应力层28。这里,例如,可以通过前面所述的淀积工艺形成所述各层。这里,刻蚀停止层26的材料不同于拉应力层28的材料。典型地,刻蚀停止层26可以包括SiO2,所述拉应力层28可以包括选自Si3N4、SiO2、SiOF、SiCOH、SiCO、SiCON、SiON、PSG和BPSG中的至少一种材料。可选地,也可以采用热氧化方法形成刻蚀停止层26。Referring to FIG. 4 , an etching stop layer 26 and a tensile stress layer 28 are sequentially formed on the semiconductor structure shown in FIG. 3 . Here, for example, the respective layers may be formed by the aforementioned deposition process. Here, the material of the etch stop layer 26 is different from the material of the tensile stress layer 28 . Typically, the etch stop layer 26 may include SiO 2 , and the tensile stress layer 28 may include at least one material selected from Si 3 N 4 , SiO 2 , SiOF, SiCOH, SiCO, SiCON, SiON, PSG, and BPSG . Optionally, the etch stop layer 26 may also be formed by thermal oxidation.
参照图5和图6,对拉应力层28进行选择性刻蚀。Referring to FIGS. 5 and 6 , the tensile stress layer 28 is selectively etched.
参照图5,进行光刻,以形成预定图案的光刻胶。例如,在图4所示的半导体结构上涂覆光刻胶30(例如通过旋转涂胶的方法),光刻胶30覆盖整个半导体结构的表面。对光刻胶30进行构图(patterning)。典型地,可以通过曝光、显影、坚膜烘焙等一系列步骤来实现对光刻胶30的构图,得到预定图案的光刻胶。Referring to FIG. 5, photolithography is performed to form a predetermined pattern of photoresist. For example, a photoresist 30 is coated on the semiconductor structure shown in FIG. 4 (for example, by a method of spin coating), and the photoresist 30 covers the entire surface of the semiconductor structure. The photoresist 30 is patterned. Typically, the patterning of the photoresist 30 can be achieved through a series of steps such as exposure, development, hard film baking, etc., to obtain a photoresist with a predetermined pattern.
参照图6,以图案化的光刻胶为掩膜,去除一部分拉应力层28,使得保留的拉应力层在沟道中产生压应力,例如进行选择性刻蚀(例如RIE),并停止在刻蚀停止层26上,去除光刻胶。这里,经过刻蚀操作之后,压应力集中在沟道区。具体地说,在图5所示的半导体结构中,拉应力层28对沟道产生沿着箭头方向的拉应力(T)。在图6所示的半导体结构中,经过刻蚀操作之后,拉应力层中又产生了沿着箭头方向的压应力(C)。这样,固有的拉应力(T)与新产生的压应力(C)的合力作用于沟道。本领域技术人员可以理解的是,在新产生的压应力(C)大于固有的压应力(T)的时候,对沟道产生压应力作用。如果刻蚀掉的应力层太少,在沟道位置产生的应力仍然为不希望的拉应力。但是,如果刻蚀掉的应力层太多,保留下来的应力材料难以产生足够大的压应力。With reference to Fig. 6, take patterned photoresist as a mask, remove a part of tensile stress layer 28, make the remaining tensile stress layer generate compressive stress in the trench, for example, carry out selective etching (such as RIE), and stop at etching. On the etch stop layer 26, the photoresist is removed. Here, compressive stress is concentrated in the channel region after the etching operation. Specifically, in the semiconductor structure shown in FIG. 5 , the tensile stress layer 28 generates tensile stress (T) along the arrow direction to the channel. In the semiconductor structure shown in FIG. 6 , after the etching operation, compressive stress (C) along the direction of the arrow is generated in the tensile stress layer. In this way, the resultant force of the inherent tensile stress (T) and the newly generated compressive stress (C) acts on the channel. Those skilled in the art can understand that when the newly generated compressive stress (C) is greater than the inherent compressive stress (T), compressive stress will be exerted on the channel. If too little stress layer is etched away, the stress generated at the channel position is still an undesirable tensile stress. However, if too many stress layers are etched away, it is difficult for the remaining stress material to generate a large enough compressive stress.
为了确保经刻蚀后的拉应力层28对沟道产生的应力效果为压应力作用,优选地,在栅极方向上,保留的拉应力层的边缘与栅极外侧之间的距离L为0.02-0.2μm。In order to ensure that the stress effect of the etched tensile stress layer 28 on the channel is a compressive stress effect, preferably, in the direction of the gate, the distance L between the edge of the retained tensile stress layer and the outside of the gate is 0.02 -0.2 μm.
参照图7,进行退火,使得半导体结构能够记忆来自拉应力层28的应力,并且激活延伸区20和源/漏区24(以及晕圈区21,如果有的话)中的杂质,同时修复半导体材料体内和表面的缺陷。在本发明的一个实施例中,可以在例如约1000℃进行快速热退火(RTA),热退火过程持续0-约1秒。7, annealing is performed so that the semiconductor structure can memorize the stress from the tensile stress layer 28, and activate the impurities in the extension region 20 and the source/drain region 24 (and the halo region 21, if any), while repairing the semiconductor Defects in the body and surface of a material. In one embodiment of the present invention, rapid thermal annealing (RTA) may be performed at, for example, about 1000° C., and the thermal annealing process lasts from 0 to about 1 second.
根据本发明的制造半导体的方法,通过淀积拉应力层,刻蚀,继而退火,可以记忆沟道中的压应力,实现良好的应力记忆效果。According to the semiconductor manufacturing method of the present invention, by depositing the tensile stress layer, etching, and then annealing, the compressive stress in the channel can be memorized, and a good stress memory effect can be realized.
从图7可以看出,经过退火之后,延伸区20向栅介质14下方的沟道区发生扩散。It can be seen from FIG. 7 that after annealing, the extension region 20 diffuses to the channel region below the gate dielectric 14 .
参考图8,去除拉应力层28和刻蚀停止层26(例如通过湿法刻蚀或反应离子刻蚀RIE);并且对半导体结构进行常规的硅化物形成工艺。Referring to FIG. 8 , the tensile stress layer 28 and the etch stop layer 26 are removed (eg, by wet etching or RIE); and a conventional silicide formation process is performed on the semiconductor structure.
可选地,在去除拉应力层28和刻蚀停止层26之后,可以进行替代栅工艺操作。具体地说,在去除拉应力层28和刻蚀停止层26之后,可以进一步刻蚀,从而去除伪栅极导体16,以暴露栅介质14。进而,可以采用替代栅工艺来形成新的栅极导体(图中未示出)。例如,可以通过沉积工艺在整个半导体结构的表面形成新的栅极导体层,进而刻蚀(例如RIE),以去除覆盖在衬底和侧墙表面的新的栅极导体材料。Optionally, after removing the tensile stress layer 28 and the etch stop layer 26 , a replacement gate process operation may be performed. Specifically, after removing the tensile stress layer 28 and the etch stop layer 26 , further etching may be performed to remove the dummy gate conductor 16 to expose the gate dielectric 14 . Furthermore, a replacement gate process may be used to form a new gate conductor (not shown). For example, a new gate conductor layer can be formed on the entire surface of the semiconductor structure through a deposition process, and then etched (eg, RIE) to remove the new gate conductor material covering the surface of the substrate and sidewalls.
可选地,在去除栅极导体16时,可以进一步刻蚀,去除栅介质14,以暴露栅介质14下面的衬底。进而,可以采用替代栅工艺来形成新的栅介质和新的栅极导体。例如,通过沉积工艺形成覆盖整个半导体结构表面的新的栅介质和新的栅极导体层,刻蚀(例如RIE),以去除覆盖在衬底和侧墙表面的新的栅介质和新的栅极导体层。Optionally, when removing the gate conductor 16 , further etching can be performed to remove the gate dielectric 14 to expose the substrate under the gate dielectric 14 . Furthermore, a replacement gate process can be used to form a new gate dielectric and a new gate conductor. For example, a new gate dielectric and a new gate conductor layer covering the entire surface of the semiconductor structure are formed by a deposition process, and etching (such as RIE) is performed to remove the new gate dielectric and a new gate conductor layer covering the surface of the substrate and sidewalls. polar conductor layer.
这里,新的栅介质材料可以包括高K材料。高K材料的非限制性的例子包括铪基材料(如HfO2、HfSiO、HfSiON、HfTaO、HfTiO或HfZrO)、氧化锆、氧化镧、氧化钛、BST(钛酸钡锶)或PZT(锆钛酸铅)。Here, the new gate dielectric material may include a high-K material. Non-limiting examples of high-K materials include hafnium-based materials (such as HfO 2 , HfSiO, HfSiON, HfTaO, HfTiO, or HfZrO), zirconia, lanthanum oxide, titanium oxide, BST (barium strontium titanate) or PZT (zirconium titanium lead acid).
新的栅极导体材料可以包括但不限于金属、金属合金、金属氮化物和金属硅化物,以及它们的层叠物和组合物。这里,栅极导体层36优选包括功函数金属层和栅极金属层的层叠物;所述功函数金属层的非限制的例子包括TiN、TiAlN、TaN或TaAlN中的一种或其组合。New gate conductor materials may include, but are not limited to, metals, metal alloys, metal nitrides and metal suicides, and stacks and combinations thereof. Here, the gate conductor layer 36 preferably includes a laminate of a work function metal layer and a gate metal layer; non-limiting examples of the work function metal layer include one or a combination of TiN, TiAlN, TaN, or TaAlN.
如图8所示,对半导体结构进行常规的硅化物形成工艺。通过淀积工艺在半导体结构上形成金属层(图中未示出),所述金属层覆盖整个半导体器件,所述金属优选包括NiPt。进行退火工艺,例如在约250℃-约500℃进行,以使所淀积的金属与其下方的硅反应,形成硅化物层32。这里,硅化物层32优选包括NiPtSi。As shown in FIG. 8, a conventional silicide formation process is performed on the semiconductor structure. A metal layer (not shown in the figure) is formed on the semiconductor structure by a deposition process, the metal layer covers the entire semiconductor device, and the metal preferably includes NiPt. An annealing process is performed, for example, at about 250° C. to about 500° C., so that the deposited metal reacts with the underlying silicon to form the silicide layer 32 . Here, the silicide layer 32 preferably includes NiPtSi.
在本发明的实施例中,在源/漏区24和栅极导体16表面都包括硅(先栅工艺,当然,如果采用替代栅工艺的话,在栅极导体的表面可能包括硅,也可能不包括硅),在后面形成的互连结构中,硅化物层32可以降低接触孔中的金属插头与源/漏区24和栅极导体16之间的欧姆接触。然后,例如通过湿法刻蚀(例如采用含有硫酸的溶液),选择性去除未反应的金属。In an embodiment of the present invention, silicon is included on the surface of the source/drain region 24 and the gate conductor 16 (gate-first process, of course, if a replacement gate process is used, silicon may or may not be included on the surface of the gate conductor. Including silicon), the silicide layer 32 can reduce the ohmic contact between the metal plug in the contact hole and the source/drain region 24 and the gate conductor 16 in the interconnect structure formed later. Unreacted metal is then selectively removed, for example by wet etching, for example with a solution containing sulfuric acid.
在本发明的半导体结构的制造方法中,通过将光刻刻蚀工艺与应力记忆技术相结合,能够记忆晶体管沟道内的压应力,从而改进空穴的迁移率,提高半导体结构的整体性能;并且,本发明的方法操作简单,工业可应用性强。In the manufacturing method of the semiconductor structure of the present invention, by combining the photolithography and etching process with the stress memory technology, the compressive stress in the channel of the transistor can be memorized, thereby improving the mobility of holes and improving the overall performance of the semiconductor structure; and , the method of the present invention is simple to operate and has strong industrial applicability.
尽管以上实施例中以图8所示的半导体结构为例来进行说明,但是本领域技术人员应当认识到,可以根据对本发明的半导体结构进行各种常规的操作,申请人意图包含任何现在已经存在的结构和将来可能开发的实现相同功能的结构。Although the semiconductor structure shown in FIG. 8 is taken as an example in the above embodiments, those skilled in the art should recognize that various conventional operations can be performed on the semiconductor structure of the present invention, and the applicant intends to include any existing structure and structures that may be developed to achieve the same functionality in the future.
在以上的描述中,对于一些常规操作的技术细节并没有作出详细的说明。但是本领域技术人员应当理解,可以通过现有技术中的各种手段,来形成所需形状的层、区域等。另外,为了形成同一结构,本领域技术人员还可以设计出与以上描述的方法并不完全相同的方法。In the above description, the technical details of some routine operations are not described in detail. However, those skilled in the art should understand that various means in the prior art can be used to form layers, regions, etc. of desired shapes. In addition, in order to form the same structure, those skilled in the art can also design a method that is not exactly the same as the method described above.
以上描述只是为了示例说明和描述本发明,而非意图穷举和限制本发明。因此,本发明不局限于所描述的实施例。本发明的范围由所附权利要求书及其等价物限定。在不脱离本发明范围的前提下,本领域技术人员可以做出多种替换和修改,这些替换和修改都应落在本发明的范围内。The above description is only for illustration and description of the present invention, not intended to be exhaustive and limitative of the present invention. Accordingly, the invention is not limited to the described embodiments. The scope of the invention is defined by the appended claims and their equivalents. Without departing from the scope of the present invention, those skilled in the art can make various substitutions and modifications, and these substitutions and modifications should all fall within the scope of the present invention.
Claims (13)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201010501712.3A CN102446761B (en) | 2010-09-30 | 2010-09-30 | Method for manufacturing semiconductor structure |
| PCT/CN2011/071309 WO2012041037A1 (en) | 2010-09-30 | 2011-02-25 | Method for manufacturing semiconductor struture |
| US13/133,120 US9202913B2 (en) | 2010-09-30 | 2011-02-25 | Method for manufacturing semiconductor structure |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201010501712.3A CN102446761B (en) | 2010-09-30 | 2010-09-30 | Method for manufacturing semiconductor structure |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102446761A CN102446761A (en) | 2012-05-09 |
| CN102446761B true CN102446761B (en) | 2015-07-15 |
Family
ID=45891868
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201010501712.3A Active CN102446761B (en) | 2010-09-30 | 2010-09-30 | Method for manufacturing semiconductor structure |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN102446761B (en) |
| WO (1) | WO2012041037A1 (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103545211A (en) * | 2012-07-13 | 2014-01-29 | 中国科学院微电子研究所 | Semiconductor device manufacturing method |
| CN105225937B (en) * | 2014-06-30 | 2018-03-30 | 中芯国际集成电路制造(上海)有限公司 | The forming method of semiconductor devices |
| CN106158630B (en) * | 2015-03-24 | 2019-07-02 | 中芯国际集成电路制造(上海)有限公司 | Method of forming a transistor |
| CN111653623A (en) * | 2020-06-19 | 2020-09-11 | 上海华力集成电路制造有限公司 | Fin transistor structure |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1971882A (en) * | 2005-11-10 | 2007-05-30 | 国际商业机器公司 | Method of providing a dual stress memory technique and related structure |
| CN101226900A (en) * | 2007-01-18 | 2008-07-23 | 国际商业机器公司 | Structure of electrical structure with improved charge mobility and method of making same |
| US20090242944A1 (en) * | 2008-03-31 | 2009-10-01 | Da Zhang | Method of forming a semiconductor device using stress memorization |
| CN101840862A (en) * | 2009-10-15 | 2010-09-22 | 中国科学院微电子研究所 | Method for forming high-performance semiconductor device |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7388267B1 (en) * | 2006-12-19 | 2008-06-17 | International Business Machines Corporation | Selective stress engineering for SRAM stability improvement |
| US7795644B2 (en) * | 2007-01-04 | 2010-09-14 | Taiwan Semiconductor Manufacturing Co., Ltd. | Integrated circuits with stress memory effect and fabrication methods thereof |
-
2010
- 2010-09-30 CN CN201010501712.3A patent/CN102446761B/en active Active
-
2011
- 2011-02-25 WO PCT/CN2011/071309 patent/WO2012041037A1/en active Application Filing
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1971882A (en) * | 2005-11-10 | 2007-05-30 | 国际商业机器公司 | Method of providing a dual stress memory technique and related structure |
| CN101226900A (en) * | 2007-01-18 | 2008-07-23 | 国际商业机器公司 | Structure of electrical structure with improved charge mobility and method of making same |
| US20090242944A1 (en) * | 2008-03-31 | 2009-10-01 | Da Zhang | Method of forming a semiconductor device using stress memorization |
| CN101840862A (en) * | 2009-10-15 | 2010-09-22 | 中国科学院微电子研究所 | Method for forming high-performance semiconductor device |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2012041037A1 (en) | 2012-04-05 |
| CN102446761A (en) | 2012-05-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12170282B2 (en) | Semiconductor device with fin transistors and manufacturing method of such semiconductor device | |
| CN103311247B (en) | Semiconductor device and method for manufacturing the same | |
| US10546922B2 (en) | Method for fabricating cap layer on an epitaxial layer | |
| US9614051B2 (en) | Semiconductor devices and fabrication method thereof | |
| CN102117750B (en) | Mosfet structure and manufacturing method thereof | |
| US8497197B2 (en) | Method for manufacturing a high-performance semiconductor structure with a replacement gate process and a stress memorization technique | |
| US8766371B2 (en) | Semiconductor structure and method for manufacturing the same | |
| US8946031B2 (en) | Method for fabricating MOS device | |
| CN103367151A (en) | MOS device with source/drain region closer to channel region and manufacturing method thereof | |
| CN102437118B (en) | Method for making a transistor with a metal gate | |
| JP4744576B2 (en) | Manufacturing method of semiconductor device | |
| TWI814888B (en) | Method for fabricating semiconductor device | |
| WO2014082337A1 (en) | Semiconductor device and manufacturing method thereof | |
| US8735268B2 (en) | Method for fabricating metal-oxide-semiconductor field-effect transistor | |
| CN102446761B (en) | Method for manufacturing semiconductor structure | |
| WO2014082335A1 (en) | N-type mosfet and manufacturing method thereof | |
| WO2014082342A1 (en) | P-type mosfet and manufacturing method thereof | |
| CN103811322B (en) | Semiconductor structure and forming method thereof | |
| CN107591367B (en) | Method for manufacturing semiconductor structure | |
| CN102737996B (en) | Method for manufacturing transistor and semiconductor device | |
| US9202913B2 (en) | Method for manufacturing semiconductor structure | |
| CN102683397B (en) | Metal gate structure and fabrication method thereof | |
| TWI464786B (en) | Method of forming metal gate structure and method of forming metal gate transistor | |
| TWI863785B (en) | Method of fabricating semiconductor device, multi-gate semiconductor device and method of fabricating the same | |
| JP2008192683A (en) | Semiconductor device and manufacturing method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |