CN102509282B - Efficiency connection analysis method fused with structural connection for each brain area - Google Patents
Efficiency connection analysis method fused with structural connection for each brain area Download PDFInfo
- Publication number
- CN102509282B CN102509282B CN201110286580.1A CN201110286580A CN102509282B CN 102509282 B CN102509282 B CN 102509282B CN 201110286580 A CN201110286580 A CN 201110286580A CN 102509282 B CN102509282 B CN 102509282B
- Authority
- CN
- China
- Prior art keywords
- connection
- brain
- model
- mrow
- parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
一种融合结构连接的各脑区间的效能连接分析方法,步骤是提取并分析感兴趣区的大脑结构网络,并将得到的结构信息转换到效能连接参数的先验概率分布空间;然后建立基于变分贝叶斯框架的效能连接模型;最后通过集成学习和EM算法,求取各脑区间的效能连接。本发明相对于其他方法具有以下优点:1、通过转换模型将结构连接映射到效能连接参数的先验概率空间,并在后续的集成学习中优化模型参数,使得结构连接和效能连接的关系得到真实的反映;2、结合了结构连接信息,使得脑活动分析的结果更加可靠,而且便于对个体进行实际情况的探讨。
A method for analyzing the performance connectivity of each brain region that fuses structural connections. The steps are to extract and analyze the brain structure network in the region of interest, and convert the obtained structural information into the prior probability distribution space of the performance connection parameters; The performance connection model of the Bayesian framework; finally, the performance connection of each brain region is obtained through integrated learning and EM algorithm. Compared with other methods, the present invention has the following advantages: 1. Map the structural connection to the prior probability space of the performance connection parameters by converting the model, and optimize the model parameters in the subsequent integrated learning, so that the relationship between the structural connection and the performance connection is real 2. Combined with structural connection information, the results of brain activity analysis are more reliable, and it is convenient to discuss the actual situation of the individual.
Description
技术领域 technical field
本发明涉及一种融合结构连接的效能连接计算方法,属于医学影像方法学和医学影像信号处理等领域,适用于大脑活动的分析和研究。The invention relates to a calculation method of performance connection of fusion structure connection, which belongs to the fields of medical image methodology and medical image signal processing, and is applicable to the analysis and research of brain activity.
背景技术 Background technique
既往研究发现包括抑郁症、精神分裂症、癫痫等精神疾病都与大脑的结构的受损或者功能性障碍有关。大脑的结构信息(结构连接)与功能信息(功能连接、效能连接)反映了整个大脑的状况,并且对各种精神疾病的病理机制的探索和研究起着重要的作用。而且结构连接和功(效)能连接之间存在密切的联系,功(效)能连接在一定的程度上反映了结构连接,但不完全取决于结构连接。以往的研究很少将它们结合起来进行研究,若从多模态的角度融合结构连接和功能连接,将会给各种精神疾病的研究带来极大的帮助。Previous studies have found that mental illnesses including depression, schizophrenia, and epilepsy are all related to structural or functional impairments of the brain. The structural information (structural connectivity) and functional information (functional connectivity, functional connectivity) of the brain reflect the condition of the whole brain, and play an important role in the exploration and research of the pathological mechanisms of various mental diseases. Moreover, there is a close relationship between structural connectivity and functional (functional) functional connectivity. Functional (effective) functional connectivity reflects structural connectivity to a certain extent, but does not entirely depend on structural connectivity. Previous studies seldom combine them. If the structural connectivity and functional connectivity are integrated from a multimodal perspective, it will bring great help to the research of various mental diseases.
关于结合结构连接和效能连接进行大脑活动的研究,已有一些初步的方法和探索但存在一些问题。方法1:利用DTI(弥散张量磁共振成像diffusion tensorimaging)和MEG(脑磁图magnetoencephalography)各自的优点,从不同的角度单独进行研究分析,然后综合分析。但是没有探讨这两者的关系,更没涉及到它们之间的融合。方法2:运用对结构连接的分析对功能连接的结果进行约束和优化。该方法虽然运用并分析了两者之间的关系,但是仍然没有能够真正将两者融合起来。方法3:利用结构连接的实验数据来大规模模拟大脑的功能,或是研究什么类型的网络结构会产生特定功能的神经活动。该方法能够将两者融合起来,但是仍只是重在探讨两者之间的联系。There have been some preliminary methods and explorations in the study of brain activity combining structural connectivity and functional connectivity, but there are some problems. Method 1: Using the respective advantages of DTI (diffusion tensor imaging) and MEG (magnetoencephalography), conduct research and analysis separately from different angles, and then conduct comprehensive analysis. However, the relationship between the two is not explored, let alone the fusion between them. Method 2: Use the analysis of structural connectivity to constrain and optimize the results of functional connectivity. Although this method uses and analyzes the relationship between the two, it still fails to really integrate the two. Method 3: Use the experimental data of structural connectivity to simulate the function of the brain on a large scale, or study what type of network structure will produce neural activity of specific functions. This method can integrate the two, but still only focuses on exploring the connection between the two.
发明内容 Contents of the invention
为了解决现有方法中的不足之处,本发明提出了一种新的融合结构连接的各脑区间的效能连接分析方法,具体技术方案如下:In order to solve the deficiencies in the existing methods, the present invention proposes a new method for analyzing the performance connection of each brain region connected by the fusion structure, and the specific technical scheme is as follows:
融合结构连接的各脑区间的效能连接分析方法,基本思想是:提取并分析感兴趣区的大脑结构网络,并将得到的结构信息转换为效能连接参数的先验概率分布空间;然后建立基于变分贝叶斯框架的效能连接模型;最后通过集成学习(Ensemble Learning)和EM算法(Expectation-Maximization Algorithm),求取各脑区间的效能连接。The basic idea of the effective connection analysis method for each brain region that integrates structural connections is to extract and analyze the brain structural network in the region of interest, and convert the obtained structural information into the prior probability distribution space of the effective connection parameters; The performance connection model of the Bayesian framework; finally, the performance connection of each brain region is obtained through ensemble learning (Ensemble Learning) and EM algorithm (Expectation-Maximization Algorithm).
本方法的具体步骤包括:The specific steps of this method include:
1、一种融合结构连接和效能连接进行脑活动分析的方法,其特征在于步骤包括:1. A method for analyzing brain activity by combining structural connections and performance connections, characterized in that the steps include:
1)首先利用弥散张量磁共振成像DTI数据进行全脑的神经纤维追踪,并建立整个大脑的结构连接网络;另外,对采集得到的脑磁图MEG信号进行3D源重建;MEG的3D源重建运用了MSP(Multiple Sparse Priors)的方法,该步骤主要是要SPM8(http://www.fil.ion.ucl.ac.uk/spm/)软件进行处理。该方法是一种运用分层贝叶斯及经验贝叶斯进行分布式偶极子源重建的方法,其的优点是能够在简单的先验知识下进行多个稀疏皮层源自动选取。1) First use the DTI data of diffusion tensor magnetic resonance imaging to trace the nerve fibers of the whole brain, and establish the structural connection network of the whole brain; in addition, perform 3D source reconstruction on the acquired magnetoencephalogram MEG signals; the 3D source reconstruction of MEG The MSP (Multiple Sparse Priors) method is used, and this step is mainly processed by the SPM8 ( http://www.fil.ion.ucl.ac.uk/spm/ ) software. This method is a method of reconstructing distributed dipole sources using hierarchical Bayesian and empirical Bayesian. Its advantage is that it can automatically select multiple sparse cortical sources with simple prior knowledge.
2)根据需要分析的感兴趣区域提取出所述连接网络中的主干网络,并将主干网络转化为图;2) Extract the backbone network in the connection network according to the region of interest that needs to be analyzed, and convert the backbone network into a graph;
设主干网络中的任意感兴趣脑区为i,主干网络中的每个感兴趣区ROI(i)均视为一个节点i,节点i代表的感兴趣区域的皮层面积为S(i);Let any brain region of interest in the backbone network be i, and each region of interest ROI(i) in the backbone network is regarded as a node i, and the cortical area of the region of interest represented by node i is S(i);
主干网络中连接两个脑区i和j的神经纤维ROI(i)和ROI(j)对应于连接节点i和j的边E(i,j),边的长度和权重分别为和其中,Ef为连接节点i和j的所有纤维,lf为这些纤维的长度,Nf为神经纤维的数目;所以l为连接两区域的所有神经纤维的平均长度,w反映的是两区域的连接密度;The nerve fibers ROI(i) and ROI(j) connecting two brain regions i and j in the backbone network correspond to the edge E(i, j) connecting nodes i and j, and the length and weight of the edge are respectively and Among them, E f is all fibers connecting nodes i and j, l f is the length of these fibers, and N f is the number of nerve fibers; so l is the average length of all nerve fibers connecting two regions, and w reflects the two regions the connection density;
3)对所得的各个感兴趣区的结构信息(这里的结构信息指的是边的长度和权重,对应于连接感兴趣区的神经纤维的长度和密度)进行归一化,并转换到效能连接的先验概率分布空间,转换模型为:
任意脑区i和j之间的效能连接服从高斯分布N(0,∑ij),sij为归一化后的结构连接信息,∑0、a、b为模型的可调节参数;The performance connection between any brain region i and j obeys the Gaussian distribution N(0, ∑ ij ), s ij is the normalized structural connection information, and ∑ 0 , a, b are the adjustable parameters of the model;
4)基于变分贝叶斯框架的效能连接模型为Y=XW+E,模型Y中,W对应表示脑区间的效能连接参数矩阵,该矩阵W为自回归系数参数矩阵;4) The performance connection model based on the variational Bayesian framework is Y=XW+E. In the model Y, W corresponds to the performance connection parameter matrix representing the brain interval, and the matrix W is the autoregressive coefficient parameter matrix;
E是均值为零、精度矩阵为Λ的高斯噪声,且Λ~Γ(b,c);X,Y为经过3D源重建后的感兴趣区域信号,对于给定的数据集D={X,Y}有:
所述参数w、Λ和α服从高斯分布N(0,∑ij);The parameters w, Λ and α obey the Gaussian distribution N(0, ∑ ij );
5)通过集成学习方法和最大期望EM算法,求取各脑区间的效能连接Y。5) Through the ensemble learning method and the maximum expectation EM algorithm, the efficiency connection Y of each brain region is obtained.
有益效果Beneficial effect
本发明相对于其他方法具有以下优点:1、通过转换模型将结构连接映射到效能连接参数的先验概率空间,并在后续的集成学习中优化模型参数,使得结构连接和效能连接的关系得到真实的反映;2、结合了结构连接信息,使得脑活动分析的结果更加可靠,而且便于对个体进行实际情况的探讨。Compared with other methods, the present invention has the following advantages: 1. Map the structural connection to the prior probability space of the performance connection parameters by converting the model, and optimize the model parameters in the subsequent integrated learning, so that the relationship between the structural connection and the performance connection is real 2. Combined with structural connection information, the results of brain activity analysis are more reliable, and it is convenient to discuss the actual situation of the individual.
附图说明 Description of drawings
图1:本方法的基本流程示意图;Figure 1: Schematic diagram of the basic flow of the method;
图2:结构连接信息处理流程示意图;Figure 2: Schematic diagram of the processing flow of structural connection information;
图3:结构信息转换模型图示意图;Figure 3: Schematic diagram of the structural information conversion model diagram;
图4:效能连接结果示意图。Figure 4: Schematic diagram of performance connection results.
具体实施方式 Detailed ways
现结合附图对本发明作进一步的描述:Now in conjunction with accompanying drawing, the present invention will be further described:
本发明的整个流程可以参考附图1,具体的实施步骤如下:Whole flow process of the present invention can refer to accompanying drawing 1, and concrete implementation steps are as follows:
1、大脑结构连接网络的建立以及脑磁信号的预处理和源重建1. Establishment of brain structural connection network and preprocessing and source reconstruction of magnetic brain signals
从核磁共振弥散图像DTI到整个大脑的高精度结构连接网络的生成需要以下几个步骤:(1)弥散加权图像的处理,如涡流校正、头动校正,弥散张量模型的拟合、弥散张量和各向异性值的计算,以及标准空间的转换等;(2)灰白质的分割;(3)白质神经纤维束追踪成像;(4)大脑皮层结构的分割和感兴趣区域的选取;(5)根据需要分析的感兴趣区域提取出的主干网络,并将其转化为图。网络中的每个感兴趣区ROI(i)均可视为一个节点i,其代表的区域的皮层面积为S(i)。网络中连接ROI(i)和ROI(j)的神经纤维对应于连接节点i和j的边E(i,j),边的长度和权重分别为
脑磁信号的预处理(包括转化、分割、滤波、去除伪迹、平均化)后,进行3D源重建,该处理流程使用了MSP(Multiple Sparse Priors)的方法,该方法步骤主要是要SPM8(http://www.fil.ion.ucl.ac.uk/spm/)软件进行处理。该方法是一种运用分层贝叶斯及经验贝叶斯进行分布式偶极子源重建的方法,其的优点是能够在简单的先验知识下进行多个稀疏皮层源自动选取。After the preprocessing of the magnetic brain signal (including conversion, segmentation, filtering, removal of artifacts, and averaging), the 3D source reconstruction is performed. This processing flow uses the MSP (Multiple Sparse Priors) method. The steps of this method mainly require SPM8 ( http://www.fil.ion.ucl.ac.uk/spm/ ) software for processing. This method is a method of reconstructing distributed dipole sources using hierarchical Bayesian and empirical Bayesian. Its advantage is that it can automatically select multiple sparse cortical sources with simple prior knowledge.
2、结构连接信息的转化2. Transformation of structural connection information
将上述所得的各个感兴趣区的结构信息进行归一化,并将其转换到效能连接的先验概率分布空间,转换模型为:Normalize the structural information of each region of interest obtained above, and transform it into the prior probability distribution space of the performance connection. The transformation model is:
任意脑区i和j之间的效能连接服从高斯分布N(0,∑ij),sij为归一化后的结构连接信息,∑0、a、b为模型的可调节参数,在后续的集成学习中逐步地对它们进行优化,使得结构连接和效能连接的关系得到真实的反映。该转换模型的函数图如附图3所示。The performance connection between any brain region i and j obeys the Gaussian distribution N(0, ∑ ij ), s ij is the normalized structural connection information, ∑ 0 , a, b are the adjustable parameters of the model, and in the subsequent They are gradually optimized in ensemble learning, so that the relationship between structural connectivity and performance connectivity can be truly reflected. The function diagram of the conversion model is shown in Figure 3.
3、基于变分贝叶斯框架的效能连接模型的分析3. Analysis of performance connection model based on variational Bayesian framework
基于变分贝叶斯框架的效能连接模型为Y=XW+E。模型中W为自回归系数矩阵,对应于脑区间的效能连接参数矩阵,这些参数服从高斯分布N(0,∑ij);E是均值为零,精度矩阵为Λ的高斯噪声,且Λ~Γ(b,c)。X,Y为经过源重建后的感兴趣区域信号,对于给定的数据集D={X,Y}有:The efficiency connection model based on the variational Bayesian framework is Y=XW+E. In the model, W is the matrix of autoregressive coefficients, which corresponds to the performance connection parameter matrix of the brain interval, and these parameters obey the Gaussian distribution N(0, ∑ ij ); E is the Gaussian noise with zero mean and Λ precision matrix, and Λ~Γ (b, c). X, Y are the signal of the region of interest after source reconstruction. For a given data set D={X, Y}:
为了便于模型的分析,将系数参数矩阵W拉长为以向量w,其分布如下:In order to facilitate the analysis of the model, the coefficient parameter matrix W is elongated into a vector w, and its distribution is as follows:
其中d脑区信号的个数,N为信号序列的长度,w为效能连接参数矩阵W拉伸的向量,n为效能连接参数的个数, Among them, the number of brain area signals in d, N is the length of the signal sequence, w is the vector stretched by the performance connection parameter matrix W, and n is the number of performance connection parameters,
4、模型的求解,本例中给出一种改进的EM的算法:4. To solve the model, an improved EM algorithm is given in this example:
对于以上给定的数据集D和参数θ={w,α,Λ},模型m的对数论据为For the above given data set D and parameters θ={w, α, Λ}, the logarithmic argument of model m is
log p(D|m)=F(θ)+KL(q(θ|D)||p(θ|D,m))log p(D|m)=F(θ)+KL(q(θ|D)||p(θ|D, m))
F(θ)为模型的负自由能量,当q(θ|D)=p(θ|D,m),即模型参数的近似后验概率分布等同于真实后验概率分布时模型对数论据取得下限F(θ),此时的参数也正是模型要求参数。然而直接通过等式求解参数是十分困难的,将F(θ)进一步分解得到F(θ)=∫q(θ|D)log p(D |θ,m)dθ-KL(q(θ|D)||p(θ|m))。给定参数θ的初始值并固定其中的α和Λ,通过简化可得当q(w|D)=eI(w)时,F(θ)取得最大值,其中I(w)=∫∫q(Λ|D)q(α|D)log(p(D|w,Λ)p(w|α))dαdΛ。更新参数w并固定w和Λ,同理可求解出α,然后更新参数α并固定α和w求解出Λ。通过这种改进的EM(Expectation-Maximization)的算法,不断进行迭代直至收敛,求出模型的参数和各脑区之间的效能连接(结果见附图4)。F(θ) is the negative free energy of the model. When q(θ|D)=p(θ|D, m), that is, the approximate posterior probability distribution of the model parameters is equal to the real posterior probability distribution, the model is obtained from the data The lower limit F(θ), the parameters at this time are also the parameters required by the model. However, it is very difficult to solve the parameters directly through the equation. F(θ) is further decomposed to get F(θ)=∫q(θ|D)log p(D |θ, m)dθ-KL(q(θ|D )||p(θ|m)). Given the initial value of the parameter θ and fixing α and Λ, it can be obtained through simplification that when q(w|D)=e I(w) , F(θ) takes the maximum value, where I(w)=∫∫q (Λ|D)q(α|D)log(p(D|w,Λ)p(w|α))dαdΛ. Update parameter w and fix w and Λ, similarly, α can be solved, then update parameter α and fix α and w to solve Λ. Through this improved EM (Expectation-Maximization) algorithm, iteratively continues until convergence, and the parameters of the model and the performance connection between each brain area are obtained (results are shown in Figure 4).
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201110286580.1A CN102509282B (en) | 2011-09-26 | 2011-09-26 | Efficiency connection analysis method fused with structural connection for each brain area |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201110286580.1A CN102509282B (en) | 2011-09-26 | 2011-09-26 | Efficiency connection analysis method fused with structural connection for each brain area |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102509282A CN102509282A (en) | 2012-06-20 |
| CN102509282B true CN102509282B (en) | 2014-06-25 |
Family
ID=46221360
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201110286580.1A Expired - Fee Related CN102509282B (en) | 2011-09-26 | 2011-09-26 | Efficiency connection analysis method fused with structural connection for each brain area |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102509282B (en) |
Families Citing this family (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102743166B (en) * | 2012-08-09 | 2013-11-06 | 西南大学 | A method for locating event-related potential sources |
| CN103942781B (en) * | 2014-04-01 | 2017-02-08 | 北京师范大学 | Method for constructing brain network based on brain image |
| CN105249964B (en) * | 2015-11-10 | 2017-12-22 | 东南大学 | Appraisal procedure is rebuild based on magneticencephalogram and the multi-modal brain function of diffusion tensor |
| CN105361855A (en) * | 2016-01-11 | 2016-03-02 | 东南大学 | Method for effectively acquiring event-related magnetic field information in magnetoencephalogram signals |
| CN106251379B (en) * | 2016-07-25 | 2017-11-07 | 太原理工大学 | A kind of brain structural network connection optimization method based on random sectional pattern |
| CN108122221B (en) * | 2016-11-29 | 2020-11-17 | 中国科学院深圳先进技术研究院 | Segmentation method and device for cerebral ischemia area in diffusion weighted imaging image |
| CN107240098A (en) * | 2017-06-16 | 2017-10-10 | 大连理工大学 | A kind of sparse Bayesian network of brain function linking parsing and the double constrained procedures of Granger |
| CN108416761B (en) * | 2018-01-18 | 2019-06-14 | 北京师范大学 | An optimization method for human white matter connectivity features estimated for diffusion magnetic resonance imaging |
| CN108416822B (en) * | 2018-03-22 | 2021-12-03 | 武汉大学 | Bayesian estimation-based multi-level and multi-scale tomography method |
| CN108898135B (en) * | 2018-06-30 | 2021-07-06 | 天津大学 | A method for constructing a brain limbic system map |
| CN109589113B (en) * | 2018-10-26 | 2021-04-20 | 天津大学 | A spatiotemporal network construction method for multi-electrode array neuron firing sequences |
| CN110689536B (en) * | 2019-09-30 | 2023-07-18 | 深圳大学 | Brain gray matter and white matter tracking method and device based on multimodal magnetic resonance images |
| CN110811622A (en) * | 2019-11-12 | 2020-02-21 | 北京大学 | An individualized structural connection brain mapping method based on diffusion magnetic resonance imaging fiber tract tracing technology |
| CN110840411B (en) * | 2019-12-06 | 2022-03-11 | 深圳市德力凯医疗设备股份有限公司 | Measuring device, storage medium and electronic equipment of anesthesia degree of depth |
| CN111543994B (en) * | 2020-04-24 | 2023-04-07 | 天津大学 | Epilepsy auxiliary detection system based on white matter connection diagram and parallel convolution neural network |
| CN112798683B (en) * | 2020-12-09 | 2024-05-17 | 兰州理工大学 | Eddy current sensor performance detection method and device based on tangential angle spectrum relative entropy |
| CN112842342B (en) * | 2021-01-25 | 2022-03-29 | 北京航空航天大学 | A Classification Method of Cardiac Electromagnetic Signals Combining Hilbert Curve and Ensemble Learning |
| CN114052668B (en) * | 2022-01-17 | 2022-06-17 | 北京航空航天大学杭州创新研究院 | Brain function analysis method based on magnetoencephalogram data |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7355403B2 (en) * | 2005-01-27 | 2008-04-08 | Siemens Medical Solutions Usa, Inc. | Noise reduction in diffusion tensor imaging data using bayesian methods |
| CN101788656A (en) * | 2010-01-29 | 2010-07-28 | 东南大学 | Method for recognizing function response signal under function nuclear magnetic resonance scan |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7346382B2 (en) * | 2004-07-07 | 2008-03-18 | The Cleveland Clinic Foundation | Brain stimulation models, systems, devices, and methods |
| US9924888B2 (en) * | 2004-10-15 | 2018-03-27 | Brainlab Ag | Targeted infusion of agents against parkinson's disease |
| US9901413B2 (en) * | 2004-10-15 | 2018-02-27 | Brainlab Ag | Targeted infusion of agents for treatment of ALS |
-
2011
- 2011-09-26 CN CN201110286580.1A patent/CN102509282B/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7355403B2 (en) * | 2005-01-27 | 2008-04-08 | Siemens Medical Solutions Usa, Inc. | Noise reduction in diffusion tensor imaging data using bayesian methods |
| CN101788656A (en) * | 2010-01-29 | 2010-07-28 | 东南大学 | Method for recognizing function response signal under function nuclear magnetic resonance scan |
Non-Patent Citations (2)
| Title |
|---|
| 基于脑MR图像的三维组织自动分割;李伟;《中国博士学位论文全文数据库 信息科技辑》;20100115(第 01 期);I138-27 * |
| 李伟.基于脑MR图像的三维组织自动分割.《中国博士学位论文全文数据库 信息科技辑》.2010,(第 01 期),I138-27. |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102509282A (en) | 2012-06-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102509282B (en) | Efficiency connection analysis method fused with structural connection for each brain area | |
| US12223650B2 (en) | System for predicting disease with graph convolutional neural network based on multimodal magnetic resonance imaging | |
| CN109376751B (en) | Human brain function network classification method based on convolutional neural network | |
| JP7373042B2 (en) | Brain function registration method based on graph model | |
| Schirner et al. | An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data | |
| CN107658018B (en) | A method for constructing a fusion brain network based on structural connectivity and functional connectivity | |
| Behjat et al. | Signal-adapted tight frames on graphs | |
| CN105117731A (en) | Community partition method of brain functional network | |
| CN117725367B (en) | A speech imagery EEG decoding method based on source domain transferability and adaptive learning | |
| CN103345749A (en) | Method for detecting brain network function connectivity lateralization based on modality fusion | |
| CN113476032B (en) | A Coupling Method of Brain Structure and Function Based on Directed Graph Harmonic Analysis | |
| CN110090017A (en) | A kind of EEG signals source localization method based on LSTM | |
| CN113947157B (en) | Dynamic brain effect connection network generation method based on hierarchical clustering and structural equation model | |
| CN105147288A (en) | Brain magnetic source intensity positioning method | |
| CN119295473B (en) | A multimodal dynamic structure-function multi-layer brain network computing method and terminal | |
| CN103020653A (en) | Structure and function magnetic resonance image united classification method based on network analysis | |
| CN110718301A (en) | Alzheimer disease auxiliary diagnosis device and method based on dynamic brain function network | |
| CN112233199A (en) | fMRI visual reconstruction method based on discrete characterization and conditional autoregression | |
| CN111476726A (en) | Unsupervised two-photon calcium imaging denoising method and device based on antagonistic neural network | |
| CN114693693A (en) | Fetal corpus callosum ultrasonic image segmentation method based on convolutional neural network | |
| CN115844424B (en) | A method and system for classifying sleep spindles | |
| CN109241996A (en) | A kind of FMRI brain image analysis methods based on gradient characterization similitude and Searchlight | |
| CN106355189A (en) | Grey modeling based EEG (electroencephalogram)-fMRI (functional magnetic resonance imaging) fusion method | |
| CN119205731B (en) | Human brain cognitive text description generation method and system for natural image | |
| CN119251533B (en) | Brain-ridge DTI fiber bundle extraction system and method based on clustering and overlap ratio denoising |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140625 Termination date: 20170926 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |