CN102520171B - Method for detecting pattern code suspended array chip - Google Patents
Method for detecting pattern code suspended array chip Download PDFInfo
- Publication number
- CN102520171B CN102520171B CN2011104080139A CN201110408013A CN102520171B CN 102520171 B CN102520171 B CN 102520171B CN 2011104080139 A CN2011104080139 A CN 2011104080139A CN 201110408013 A CN201110408013 A CN 201110408013A CN 102520171 B CN102520171 B CN 102520171B
- Authority
- CN
- China
- Prior art keywords
- pattern
- array
- coded
- microcarrier
- micropit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明涉及一种图案编码悬浮阵列芯片的检测方法,其特征在于,该方法包括如下步骤:a、在检测基底上构筑能够固定图案编码微载体的微坑阵列;b、将需要检测的图案编码微载体以一个微坑固定一个图案编码微载体的方式固定在检测基底上的微坑阵列中;c、通过成像技术对在检测基底上微坑阵列中形成的图案编码微载体阵列成像以进行检测。该方法不仅解决了图案编码微载体在溶液中难以聚焦、易于互相干扰的问题,而且可以在片高通量、清晰且廉价地获取检测信息,因此为图案编码微载体悬浮阵列芯片的实际应用提供了可能。
The invention relates to a detection method for a pattern-coded suspension array chip, which is characterized in that the method comprises the following steps: a. constructing a micro-pit array capable of fixing a pattern-coded microcarrier on a detection substrate; b. coding the pattern to be detected The microcarriers are fixed in the micropit array on the detection substrate in such a way that one micropit fixes one pattern-coded microcarrier; c. Imaging the pattern-coded microcarrier array formed in the micropit array on the detection substrate by imaging technology for detection . This method not only solves the problem that the pattern-coded microcarriers are difficult to focus and easily interfere with each other in solution, but also can obtain detection information on-chip with high throughput, clear and cheap, so it provides a good foundation for the practical application of the pattern-coded microcarrier suspension array chip. possible.
Description
技术领域 technical field
本发明涉及图案编码悬浮阵列芯片的检测方法,尤其是在图案编码微载体与待测样品作用且检测信号可以获取的情况下,首先将图案编码微载体在微坑阵列基底上固定,然后在成像设备下解码及光学信号读取。该方法不仅可以解决常规的图案编码微载体通过流式细胞术检测时微载体不能在片检测及检测通量有限的问题,而且能够解决微载体在溶液中由于运动而难以聚焦并获取信号的问题。因此可望推进图案编码悬浮阵列芯片的发展及应用。 The invention relates to a detection method of a pattern-coded suspension array chip, especially when the pattern-coded microcarrier interacts with a sample to be tested and the detection signal can be obtained, the pattern-coded microcarrier is first fixed on the micropit array substrate, and then the Under-device decoding and optical signal reading. This method can not only solve the problem that the microcarriers cannot be detected on the film and the detection throughput is limited when the conventional pattern-coded microcarriers are detected by flow cytometry, but also can solve the problem that the microcarriers are difficult to focus and obtain signals due to movement in the solution. . Therefore, it is expected to promote the development and application of the pattern coded suspension array chip.
背景技术 Background technique
悬浮阵列芯片技术也称微载体技术,它是一种通过编码微颗粒上固定的传感敏感材料与待测样品间特异性相互作用而在流体中进行多目标检测分析的工具。它不仅具有通常多目标检测分析技术所具备的信息量大、检测时间短、所需检测样品体积小以及检测成本相对传统检测方法低的特点,而且无论是制备还是使用它均较另外一种多目标检测分析技术-平面微阵列芯片技术有着许多突出的优势:更大的产量、更灵活的检测目标安排、更快速的反应以及更高质量的实验结果。因此,悬浮阵列芯片的研发正越来越受到了人们的高度关注并逐渐在药物筛选、医疗卫生、食品安全、反恐等领域得到广泛应用。 Suspension array chip technology, also known as microcarrier technology, is a tool for multi-target detection and analysis in fluids by encoding specific interactions between sensing sensitive materials immobilized on microparticles and samples to be tested. It not only has the characteristics of large amount of information, short detection time, small volume of detection samples and low detection cost compared with traditional detection methods, which are usually possessed by multi-target detection and analysis technology, but also it is much more expensive than the other one in both preparation and use. Target detection and analysis technology-planar microarray chip technology has many outstanding advantages: greater output, more flexible detection target arrangement, faster response and higher quality experimental results. Therefore, the research and development of suspended array chips is attracting more and more attention and has been widely used in drug screening, medical and health, food safety, anti-terrorism and other fields.
在悬浮阵列芯片中图案编码微载体由于图案易于识别且编码量大而获得人们的广泛关注。但是目前的图案编码微载体悬浮阵列芯片均通过流式细胞术进行检测,这样不仅不能在片检测(即检测前及检测后微载体均在检测基底上),而且其检测通量也受到很大程度的限制。而人们之所以采用流式细胞术进行检测的原因就在于当微载体在溶液中运动状态下难以聚焦以获取信号,并且在检测过程中由于遮挡等问题而易于相互干扰。而通过流式细胞术对图案编码微载体进行检测也受到运动中图案识别存在困难的状况,因此虽然图案编码微载体有着包括编码量大等众多优点,但是目前实际应用的悬浮阵列芯片仍然是以编码数量少的光学编码为主。这既限制了悬浮阵列芯片的应用范围同时也影响了悬浮阵列芯片的推广应用。因此开发能够对图案编码微载体进行有效识别的检测技术就成为一件很有意义的工作。为此本申请首次提出在为图案编码微载体构筑固定用微坑阵列并进行固定的基础上通过成像技术对图案编码微载体进行检测的方法。该技术不仅能够在片清晰读取图案编码微载体的编码,而且成像技术所具备的廉价、高通量也使得图案编码微载体悬浮阵列芯片在与平面微阵列芯片及其它编码悬浮阵列芯片的对比中有了更多的优势。 Pattern-encoded microcarriers in suspension array chips have attracted widespread attention due to the easy identification of patterns and large amount of encoding. However, the current pattern-coded microcarrier suspension array chips are all detected by flow cytometry, which not only cannot be detected on the chip (that is, the microcarriers are all on the detection substrate before and after detection), but also its detection throughput is greatly limited. degree of limitation. The reason why people use flow cytometry for detection is that it is difficult to focus to obtain signals when the microcarriers are moving in the solution, and they are easy to interfere with each other due to problems such as occlusion during the detection process. The detection of pattern-coded microcarriers by flow cytometry is also subject to the difficulty of pattern recognition in motion. Therefore, although pattern-coded microcarriers have many advantages including a large amount of coding, the suspension array chips currently used in practice are still based on Optical codes with a small number of codes are the main ones. This not only limits the application range of the suspension array chip, but also affects the popularization and application of the suspension array chip. Therefore, it is very meaningful to develop a detection technology that can effectively identify pattern-coded microcarriers. For this reason, the present application proposes for the first time a method of detecting pattern-coded microcarriers by imaging technology on the basis of constructing and fixing micropit arrays for pattern-coded microcarriers. This technology can not only clearly read the codes of pattern-coded microcarriers on-chip, but also the low-cost and high-throughput imaging technology enables the pattern-coded microcarrier suspension array chip to be compared with planar microarray chips and other coded suspension array chips. has more advantages.
发明内容 Contents of the invention
技术问题:本发明的目的是提供一种适合图案编码微载体悬浮阵列芯片的检测方法,特别是在为图案编码微载体在检测基底上构筑固定用微坑阵列的情况下将需要检测的图案编码微载体在微坑阵列上固定,然后通过成像技术对需要检测的图案编码微载体阵列成像以进行检测。 Technical problem: the object of the present invention is to provide a kind of detection method suitable for pattern coded microcarrier suspension array chip, especially in the case of pattern coded microcarriers being constructed on the detection substrate to fix the micropit array that needs to be detected. The microcarriers are fixed on the micropit array, and then the pattern-coded microcarrier array to be detected is imaged for detection by imaging technology.
技术方案:为解决上述技术问题,本发明提供了一种图案编码悬浮阵列芯片的检测方法,该方法包括如下步骤: Technical solution: In order to solve the above technical problems, the present invention provides a detection method for a pattern-coded suspension array chip, which includes the following steps:
a、在检测基底上构筑能够固定图案编码微载体的微坑阵列; a. Construct a micropit array capable of fixing pattern-coded microcarriers on the detection substrate;
b、将需要检测的图案编码微载体以一个微坑固定一个图案编码微载体的方式固定在检测基底上的微坑阵列中; b. Fix the pattern-coded microcarriers to be detected in the micropit array on the detection substrate in such a way that one micropit fixes one pattern-coded microcarrier;
c、通过成像技术对在检测基底上微坑阵列中形成的图案编码微载体阵列成像以进行检测。 c. Imaging the pattern-coded microcarrier array formed in the micropit array on the detection substrate by imaging technology for detection. the
优选的,检测基底上的微坑阵列是根据微载体形状通过刻蚀技术或者模板复制技术制作的微坑阵列。 Preferably, the micropit array on the detection substrate is a micropit array fabricated by etching technology or template replication technology according to the shape of the microcarrier. the
优选的,所述将需要检测的图案编码微载体以一个微坑固定一个图案编码微载体方式固定在微坑阵列中是指通过作用力将图案编码微载体固定至微坑阵列中。 Preferably, fixing the pattern-coded microcarriers to be detected in the microwell array in such a way that one microwell fixes one pattern-coded microcarrier refers to fixing the pattern-coded microcarriers into the microwell array by force. the
优选的,所述成像技术是指采用包括光学显微镜、荧光显微镜、红外显微镜、拉曼显微镜、扫描仪、照相机在内的成像设备对图案编码微载体阵列进行成像。 Preferably, the imaging technique refers to imaging the array of pattern-coded microcarriers using imaging equipment including optical microscopes, fluorescence microscopes, infrared microscopes, Raman microscopes, scanners, and cameras.
优选的,所述需要检测的图案编码微载体是指固定有传感敏感材料的图案编码微载体完成包括与待测样品的作用在内的信号提取前的所有步骤进行信号提取的图案编码微载体。 Preferably, the pattern-coded microcarrier that needs to be detected refers to the pattern-coded microcarrier immobilized with the sensing sensitive material to complete all steps before signal extraction including the interaction with the sample to be tested for signal extraction. .
有益效果:本发明首次将图案编码微载体先固定至检测基底上微坑阵列中然后通过成像技术进行图案编码微载体的检测不仅解决了图案编码微载体在溶液中难以聚焦、易于互相干扰的问题,而且可以在片高通量、清晰且廉价地获取检测信息,因此为图案编码微载体悬浮阵列芯片的实际应用提供了可能。 Beneficial effects: the invention fixes the pattern-coded microcarriers in the micropit array on the detection substrate for the first time, and then detects the pattern-coded microcarriers by imaging technology, which not only solves the problem that the pattern-coded microcarriers are difficult to focus and easy to interfere with each other in the solution , and the detection information can be obtained in a high-throughput, clear and cheap manner, so it provides the possibility for the practical application of the pattern-coded microcarrier suspension array chip.
附图说明 Description of drawings
图1是图案编码悬浮阵列芯片检测方法示意图; Fig. 1 is a schematic diagram of a method for detecting a pattern-coded suspended array chip;
其中 a 含微坑阵列的检测基底;b 图案编码微载体;c 荧光标记复合物; where a detection substrate containing micropit array; b pattern-coded microcarrier; c fluorescent labeling complex;
图2是微坑阵列俯视图; Figure 2 is a top view of the micropit array;
图3a是一种点编码模板; Fig. 3a is a kind of dot coding template;
图3b是另外一种点编码模板; Figure 3b is another point coding template;
图3c是第三种点编码模板;其中 Fig. 3c is the third kind of point coding template; Wherein
3-1第一编码;3-2第二编码;3-3第三编码; 3-1 first code; 3-2 second code; 3-3 third code;
a’方向识别区的方向识别符;b’编码区编码为1;c’编码区编码为0。 The direction identifier of the a' direction identification area; the code of b' coding area is 1; the code of c' coding area is 0.
具体实施方式 Detailed ways
下面将参照附图对本发明进行说明。 The present invention will be described below with reference to the accompanying drawings.
本发明的图案编码悬浮阵列芯片的检测方法采用下述步骤进行: The detection method of the pattern-coded suspension array chip of the present invention adopts the following steps:
a、在检测基底上构筑能够固定图案编码微载体的微坑阵列; a. Construct a micropit array capable of fixing pattern-coded microcarriers on the detection substrate;
b、将需要检测的图案编码微载体以一个微坑固定一个图案编码微载体的方式固定在检测基底上的微坑阵列中; b. Fix the pattern-coded microcarriers to be detected in the micropit array on the detection substrate in such a way that one micropit fixes one pattern-coded microcarrier;
c、通过成像技术对在检测基底上微坑阵列中形成的图案编码微载体阵列成像以进行检测。 c. Imaging the pattern-coded microcarrier array formed in the micropit array on the detection substrate by imaging technology for detection. the
检测基底上的微坑阵列是根据微载体形状通过刻蚀技术或者模板复制技术制作的微坑阵列。 The micropit array on the detection substrate is a micropit array manufactured by etching technology or template replication technology according to the shape of the microcarrier. the
所述将需要检测的图案编码微载体以一个微坑固定一个图案编码微载体方式固定在微坑阵列中是指通过作用力将图案编码微载体固定至微坑阵列中。 The fixing of the pattern-coded microcarriers to be detected in the microwell array in the manner that one microwell fixes one pattern-coded microcarrier refers to fixing the pattern-coded microcarriers into the microwell array by force. the
所述成像技术是指采用包括光学显微镜、荧光显微镜、红外显微镜、拉曼显微镜、扫描仪、照相机在内的成像设备对图案编码微载体阵列进行成像。 The imaging technique refers to imaging the pattern-coded microcarrier array by using imaging equipment including optical microscope, fluorescence microscope, infrared microscope, Raman microscope, scanner and camera.
所述需要检测的图案编码微载体是指固定有传感敏感材料的图案编码微载体完成包括与待测样品的作用在内的信号提取前的所有步骤进行信号提取的图案编码微载体。 The pattern-coded microcarriers to be detected refer to the pattern-coded microcarriers immobilized with sensing sensitive materials to complete all steps before signal extraction including the interaction with the sample to be tested for signal extraction.
实施例一: Embodiment one:
首先通过微电子光刻蚀工艺在硅片上分别制备尺寸为350微米间距为500微米深度为10微米的字符A、B、及C的凸型模板。然后将道康宁SYLGARD 184硅橡胶的基本组分与固化剂按10:1重量比完全混合,将其倒入含凸型字符硅片模板的容器中,抽真空至无气泡,并于100℃条件下固化1.5h,冷却、脱模即得到含凹型反写字符A、B及C阵列的PDMS模板。然后配制含2%二氧化硅、1%聚乙烯醇1750,10%丙烯酰胺和5% N,N-亚甲基双丙烯酰胺的水溶液,混合均匀后在用前加入1%过硫酸铵(APS)的溶液,备用。用点样仪取0.1微升上述溶液将其分别在有反写字符A、B及C阵列的PDMS模板上点样。然后在氮气保护及湿度大于80%RH的情况下室温聚合8小时得到含凸型字符图案A、B、C编码的不倒翁状微颗粒。将凸型字符A、B及C图案编码的不倒翁微颗粒通过戊二醛分别连接甲型肝炎抗体、乙型肝炎抗体、丙型肝炎抗体(这些抗体为传感敏感材料)即获得凸型字符图案编码的聚丙烯酰胺不倒翁微载体。分别取7-8个连接了甲肝抗体、乙肝抗体及丙肝抗体的凸型字符图案编码聚丙烯酰胺不倒翁微载体与人的血清样在37摄氏度混合反应2h后,用PBS缓冲液清洗,再与CY3荧光标记的甲肝抗体、乙肝抗体、丙肝抗体溶液反应1h并清洗得到待测凸型字符编码不倒翁微载体。 Firstly, convex templates of characters A, B, and C with a size of 350 microns, a pitch of 500 microns, and a depth of 10 microns are respectively prepared on a silicon wafer through a microelectronic photolithography process. Then mix the basic components of Dow Corning SYLGARD 184 silicone rubber with the curing agent at a weight ratio of 10:1, pour it into a container containing a silicon wafer template with convex characters, evacuate until there are no bubbles, and store it at 100°C After curing for 1.5 hours, cooling and demolding, the PDMS template containing the array of concave reverse characters A, B and C can be obtained. Then prepare an aqueous solution containing 2% silicon dioxide, 1% polyvinyl alcohol 1750, 10% acrylamide and 5% N,N-methylenebisacrylamide, mix well and add 1% ammonium persulfate (APS) before use ) solution, set aside. Take 0.1 microliter of the above solution with a spotting instrument and spot it on the PDMS templates with arrays of characters A, B and C in reverse. Then polymerize at room temperature for 8 hours under nitrogen protection and a humidity greater than 80%RH to obtain tumbler-shaped microparticles containing convex character patterns A, B, and C codes. The tumbler microparticles encoded with convex characters A, B and C patterns are respectively connected to hepatitis A antibody, hepatitis B antibody, and hepatitis C antibody (these antibodies are sensitive materials) through glutaraldehyde to obtain convex character patterns Encoded polyacrylamide tumbler microcarriers. Take 7-8 polyacrylamide tumbler microcarriers with convex character pattern codes connected with hepatitis A antibody, hepatitis B antibody and hepatitis C antibody respectively, mix and react with human serum samples at 37 degrees Celsius for 2 hours, wash with PBS buffer, and then mix with CY3 The fluorescently labeled hepatitis A antibody, hepatitis B antibody, and hepatitis C antibody solution were reacted for 1 hour and washed to obtain the convex character-coded tumbler microcarrier to be tested.
另外通过微电子工艺在硅片表面刻蚀出尺寸为400微米,深度为200微米间距为500微米的微坑阵列的。将上述待检测的微载体溶液滴加在硅片的微坑阵列上并借助微载体自身的重力作用使得大部分上述待测不倒翁微载体沉积至微坑中,然后用海绵轻轻拭去多余的溶液及微坑外的不倒翁微载体。然后在金相荧光显微镜下观察,根据不同字符编码不倒翁微载体上荧光的有无即可判断所测血清样品中是否含有甲肝病毒、乙肝病毒或者丙肝病毒。 In addition, micro-pit arrays with a size of 400 microns, a depth of 200 microns and a pitch of 500 microns are etched on the surface of the silicon wafer through a microelectronic process. Add the above-mentioned microcarrier solution to be tested dropwise on the micropit array of the silicon wafer, and rely on the gravity of the microcarrier itself to deposit most of the above-mentioned tumbler microcarriers to be tested into the micropit, and then gently wipe off the excess with a sponge. Tumbler microcarriers outside the solution and micropit. Then observe under a metallographic fluorescence microscope, and judge whether the tested serum sample contains hepatitis A virus, hepatitis B virus or hepatitis C virus according to the presence or absence of fluorescence on the tumbler microcarrier with different character codes.
实施例二: Embodiment two:
先通过爱普生R230喷墨打印机将浓度为20wt%的尺寸范围介于100纳米至250纳米的含5%超顺磁性的尺寸为10纳米的四氧化三铁的交联聚甲基丙烯酸甲酯微球含40%的乙二醇的水溶液分别在投影片基(溶液的接触角为80度)上打印出间距为500微米尺寸为400微米的圆形、方形及三角形阵列。室温干燥后在150摄氏度下处理1小时,然后通过去离子水将交联聚甲基丙烯酸甲酯构建的圆形、方形及三角形片状微颗粒从投影片基上冲洗下来并清洗干燥。将所获得的圆形、方形及三角形片状交联聚甲基丙烯酸甲酯微颗粒先通过氨等离子处理1分钟后,将其置于1%的戊二醛PB缓冲液室温反应4小时,随后用PBS缓冲液10分钟清洗三次。然后分别用0.2mg/ml的甲肝抗体的PBS缓冲溶液4摄氏度处理圆形微颗粒12小时,用0.2mg/ml的乙肝抗体的PBS缓冲溶液4摄氏度处理方形微颗粒12小时,用0.2mg/ml的丙肝抗体的PBS缓冲溶液4摄氏度处理三角形微颗粒12小时。未反应的戊二醛用1%的BSA的PBS缓冲溶液反应2小时进行阻塞。PBS缓冲液清洗后,以3-4个/10微升的浓度储存于4摄氏度的PBS缓冲液中,得到能够检测甲肝的圆形图案编码片状微载体,检测乙肝的方形图案编码片状微载体及检测丙肝的三角形图案编码片状微载体。检测前各取20微升的圆形编码微载体储存液、方形编码微载体的储存液及三角形编码微载体的储存液混合并在37摄氏度与待测血清样品在振荡器中以180rpm速度孵育2小时,然后用PBST溶液清洗三次。加入4微克/毫升的CY3标记甲肝抗体、乙肝抗体及丙肝抗体PBS缓冲溶液,在37摄氏度以60RPM的速度孵育1小时,随后用PBS清洗三次得到待测的不同图案编码微载体。 First, the cross-linked polymethyl methacrylate microspheres containing 5% superparamagnetic iron oxide with a size of 10 nanometers and a size ranging from 100 nanometers to 250 nanometers with a concentration of 20 wt% by an Epson R230 inkjet printer The aqueous solution containing 40% ethylene glycol prints circular, square and triangular arrays with a pitch of 500 microns and a size of 400 microns on the projection film base (the contact angle of the solution is 80 degrees). After drying at room temperature, it was treated at 150 degrees Celsius for 1 hour, and then the circular, square and triangular sheet-shaped micro-particles constructed of cross-linked polymethyl methacrylate were rinsed off the transparency base with deionized water and washed and dried. The obtained circular, square and triangular sheet-shaped cross-linked polymethyl methacrylate microparticles were first treated with ammonia plasma for 1 minute, and then placed in 1% glutaraldehyde PB buffer at room temperature for 4 hours, and then Wash three times with PBS buffer for 10 min. Then use 0.2 mg/ml of hepatitis A antibody in PBS buffer solution at 4 degrees Celsius to treat round microparticles for 12 hours, use 0.2 mg/ml of hepatitis B antibody in PBS buffer solution at 4 degrees Celsius to treat square microparticles for 12 hours, and use 0.2 mg/ml of hepatitis B antibody in PBS buffer solution for 12 hours. Treat the triangular microparticles with the hepatitis C antibody in PBS buffer solution at 4 degrees Celsius for 12 hours. Unreacted glutaraldehyde was blocked with 1% BSA in PBS buffer for 2 hours. After washing with PBS buffer, store 3-4 pieces/10 microliters in PBS buffer at 4 degrees Celsius to obtain circular pattern-coded sheet-shaped microcarriers capable of detecting hepatitis A, and square-pattern-coded sheet-shaped microcarriers for detecting hepatitis B. Carrier and triangular-pattern-coded sheet microcarrier for detection of hepatitis C. Before testing, take 20 microliters of circular coded microcarrier stock solution, square coded microcarrier stock solution and triangular code microcarrier stock solution, mix and incubate with the serum sample to be tested at 37 degrees Celsius in a shaker at 180 rpm for 2 hours, and then washed three times with PBST solution. Add 4 μg/ml of CY3-labeled hepatitis A antibody, hepatitis B antibody and hepatitis C antibody in PBS buffer solution, incubate at 37 degrees Celsius at a speed of 60 RPM for 1 hour, and then wash three times with PBS to obtain different pattern-coded microcarriers to be tested.
另外通过微电子工艺在硅片表面刻蚀出尺寸为450微米,深度为150微米间距为500微米的圆形微坑阵列的。将上述待检测的微载体溶液滴加在硅片的微坑阵列上并借助微载体自身的重力作用及微坑阵列背面的磁铁的磁力作用使得大部分上述待测圆形、方形及三角形片状微载体沉积至微坑中,然后用海绵轻轻拭去多余的溶液及微坑外的微载体。然后在倒置荧光显微镜下观察,根据不同形状编码微载体上荧光的有无即可判断所测血清样品中是否含有甲肝病毒、乙肝病毒或者丙肝病毒。 In addition, a circular micropit array with a size of 450 microns, a depth of 150 microns and a pitch of 500 microns is etched on the surface of the silicon wafer through a microelectronic process. Drop the above-mentioned microcarrier solution to be tested on the micropit array of the silicon wafer, and use the gravity of the microcarrier itself and the magnetic force of the magnet on the back of the micropit array to make most of the above-mentioned circular, square and triangular flakes to be tested The microcarriers are deposited into the microwells, and then the excess solution and the microcarriers outside the microwells are gently wiped off with a sponge. Then observe under an inverted fluorescence microscope, and judge whether the measured serum sample contains hepatitis A virus, hepatitis B virus or hepatitis C virus according to the presence or absence of fluorescence on the microcarriers with different shape codes.
实施例三: Embodiment three:
首先在避光条件下配制含5wt%超顺磁的尺寸约为10纳米的氧化铁胶体的2M丙烯酰胺及2mM甲叉双丙烯酰胺及1.5%v/v的2-羟基-2-甲基苯丙酮水溶液。将该溶液置于一厚度约为50微米边长为500微米的方形透紫外光的流动池中保持不动。然后取出如图3-1具有长方形边长尺寸约为300微米*150微米的点编码阵列的掩模板。其中a’为点编码方位识别标志以提供微载体图案编码识别的起始位置及方向。b’为编码区不透光时其编码为1,而c’则为编码区透光时其编码为0。这样每个点可以有两个编码,则这种点编码微载体的编码数量就为25=32个。将该掩模板放置在流动池的上方并在其上面将100W的高压汞灯照射50秒,随即关闭汞灯并将流动池中的液体冲入烧杯中。用磁铁将由点编码的掩模板所制备的微孔编码方形片状微载体从溶液中分离并用去离子水清洗三次,重复制备数十个微载体。然后再采用相似方法制备如图3-2及图3-3不同微孔编码的微载体。取三种微孔编码的微载体分别连接传感敏感材料a:5’-丙烯酰氧基-TTT TGA TGT AGA TGT TTT ATT AGG GTT GT-3’; b:5’-丙烯酰氧基-TAT TGA TGT AGA TGT TTT ATT AGG GTT GT-3’;C:5’-丙烯酰氧基-TCT TGA TGT AGA TGT TTT ATT AGG GTT GT-3’; d:5’-丙烯酰氧基-TGT TGA TGT AGA TGT TTT ATT AGG GTT GT-3’并用去离子水清洗,获得能够检测核酸序列a、b、c及d的微载体。从四种微载体中各取三个微载体与0.2M的氯化钠及含0.05%的Tween-20的Tris-EDTA缓冲液中的生物素连接待测样品杂交后用PBS缓冲液清洗。随后将微载体进一步与连接有藻红蛋白的抗生蛋白链菌素的PBST缓冲液在37摄氏度混合孵育30分钟。随后用PBS清洗并保存得到待测微孔编码微载体。 First, 2M acrylamide containing 5wt% superparamagnetic iron oxide colloid with a size of about 10 nanometers, 2mM methylenebisacrylamide and 1.5% v/v 2-hydroxy-2-methylbenzene were prepared under dark conditions Acetone in water. The solution was kept stationary in a square UV-transparent flow cell approximately 50 microns thick and 500 microns on a side. Then take out the mask plate with a rectangular dot code array with a side length of about 300 microns*150 microns as shown in Figure 3-1. Wherein, a' is a dot-coded orientation identification mark to provide the starting position and direction of micro-carrier pattern-coded identification. b' is coded as 1 when the coding area is opaque, and c' is coded as 0 when the coding area is transparent. In this way, each point can have two codes, and the number of codes of the point-coded micro-carriers is 2 5 =32. The mask is placed above the flow cell and a 100W high-pressure mercury lamp is irradiated thereon for 50 seconds, then the mercury lamp is turned off and the liquid in the flow cell is poured into a beaker. The microporous-encoded square sheet-shaped microcarriers prepared from the dot-encoded mask template were separated from the solution with a magnet and washed three times with deionized water, and dozens of microcarriers were prepared repeatedly. Then use a similar method to prepare microcarriers with different micropore codes as shown in Figure 3-2 and Figure 3-3. Three types of micropore-coded microcarriers are connected to the sensing material a: 5'-acryloyloxy-TTT TGA TGT AGA TGT TTT ATT AGG GTT GT-3'; b: 5'-acryloyloxy-TAT TGA TGT AGA TGT TTT ATT AGG GTT GT-3'; C: 5'-acryloxy-TCT TGA TGT AGA TGT TTT ATT AGG GTT GT-3'; d: 5'-acryloxy-TGT TGA TGT AGA TGT TTT ATT AGG GTT GT-3' and washed with deionized water to obtain microcarriers capable of detecting nucleic acid sequences a, b, c and d. Three microcarriers from each of the four microcarriers were hybridized with 0.2M sodium chloride and 0.05% Tween-20 containing biotin in Tris-EDTA buffer, and then washed with PBS buffer. The microcarriers were then further mixed with phycoerythrin-linked streptavidin in PBST buffer and incubated at 37°C for 30 minutes. Then wash with PBS and save to obtain the coded microcarrier of the micropore to be tested.
另外通过微电子工艺在硅片表面刻蚀出尺寸为350微米,深度为60微米间距为400微米的圆形微坑阵列。然后将道康宁SYLGARD 184硅橡胶的基本组分与固化剂按10:1重量比完全混合,将其倒入放置了含圆形微坑阵列的硅片的容器中,抽真空至无气泡,并于100℃条件下固化1.5h,冷却、脱模即得到含微突起的PDMS模板。再在PDMS模板上铺展20%的聚苯乙烯N,N’-二甲基甲酰胺溶液,干燥后在200摄氏度处理2小时,冷却后将含有圆形微坑阵列的聚苯乙烯片材与PDMS分离。 In addition, a circular micropit array with a size of 350 microns, a depth of 60 microns and a pitch of 400 microns is etched on the surface of the silicon wafer by microelectronic technology. Then the basic components of Dow Corning SYLGARD 184 silicone rubber and the curing agent are completely mixed at a weight ratio of 10:1, poured into a container containing a silicon wafer containing a circular micropit array, vacuumed until there are no bubbles, and Curing at 100°C for 1.5h, cooling and demoulding to obtain a PDMS template containing microprotrusions. Then spread 20% polystyrene N,N'-dimethylformamide solution on the PDMS template, dry it and treat it at 200 degrees Celsius for 2 hours, and after cooling, the polystyrene sheet containing the circular micropit array and PDMS separate.
将上述待检测的微载体溶液滴加在聚苯乙烯片材的微坑阵列上并借助微载体自身的重力作用及微坑阵列背面的磁铁的磁力作用使得大部分上述待测不同微孔编码片状微载体以一个微坑一个微载体的形式沉积至微坑中,然后用海绵轻轻拭去多余的溶液及微坑外的微载体。然后在倒置荧光显微镜下观察,根据不同微孔图案编码微载体上荧光的有无即可判断所测血清样品中是否含有甲肝病毒、乙肝病毒或者丙肝病毒。 Drop the above-mentioned microcarrier solution to be tested on the micropit array of the polystyrene sheet, and with the help of the gravity of the microcarrier itself and the magnetic force of the magnet on the back of the micropit array, most of the above-mentioned different microporous coded sheets to be tested The micro-carriers are deposited into the micro-pit in the form of one micro-pit and one micro-carrier, and then the excess solution and the micro-carriers outside the micro-pit are gently wiped off with a sponge. Then observe under an inverted fluorescent microscope, and judge whether the measured serum sample contains hepatitis A virus, hepatitis B virus or hepatitis C virus according to the presence or absence of fluorescence on the microcarriers encoded with different microhole patterns.
以上所述仅为本发明的较佳实施方式,本发明的保护范围并不以上述实施方式为限,但凡本领域普通技术人员根据本发明所揭示内容所作的等效修饰或变化,皆应纳入权利要求书中记载的保护范围内。 The above descriptions are only preferred embodiments of the present invention, and the scope of protection of the present invention is not limited to the above embodiments, but all equivalent modifications or changes made by those of ordinary skill in the art according to the disclosure of the present invention should be included within the scope of protection described in the claims.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2011104080139A CN102520171B (en) | 2011-12-09 | 2011-12-09 | Method for detecting pattern code suspended array chip |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2011104080139A CN102520171B (en) | 2011-12-09 | 2011-12-09 | Method for detecting pattern code suspended array chip |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102520171A CN102520171A (en) | 2012-06-27 |
| CN102520171B true CN102520171B (en) | 2013-12-04 |
Family
ID=46291159
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2011104080139A Expired - Fee Related CN102520171B (en) | 2011-12-09 | 2011-12-09 | Method for detecting pattern code suspended array chip |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102520171B (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102788779B (en) * | 2012-09-07 | 2015-04-01 | 中国科学院苏州纳米技术与纳米仿生研究所 | Coding suspension microchip and preparation method and application thereof |
| CN109745934B (en) * | 2019-03-18 | 2023-11-21 | 中国人民解放军军事科学院军事医学研究院 | An array synthesis device and inkjet synthesizer |
| CN110068528A (en) * | 2019-04-23 | 2019-07-30 | 中国石油大学(华东) | Particle detection technique in detection device and suspension |
| CN114414546B (en) * | 2022-01-28 | 2023-07-28 | 福州大学 | A high-throughput liquid-phase biomolecular detection method and device |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6350620B2 (en) * | 2000-05-12 | 2002-02-26 | Genemaster Lifescience Co., Ltd | Method for producing micro-carrier and test method by using said micro-carrier |
| CN1904951A (en) * | 2006-08-03 | 2007-01-31 | 中国印钞造币总公司 | Anti-fake element containing carved gravure anti-fake machine reading pattern |
| CN102147872A (en) * | 2011-01-05 | 2011-08-10 | 东南大学 | Method for encoding microcarrier |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SE0004928D0 (en) * | 2000-12-29 | 2000-12-29 | Apbiotech Ab | A method for the manufacture of porous material |
| US20040203085A1 (en) * | 2001-04-26 | 2004-10-14 | Andre Bernard | Method for parallel synthesis and transfer of molecules to a substrates |
| US20070266871A1 (en) * | 2006-05-17 | 2007-11-22 | Greta Wegner | Diagnostic test media and methods for the manufacture thereof |
-
2011
- 2011-12-09 CN CN2011104080139A patent/CN102520171B/en not_active Expired - Fee Related
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6350620B2 (en) * | 2000-05-12 | 2002-02-26 | Genemaster Lifescience Co., Ltd | Method for producing micro-carrier and test method by using said micro-carrier |
| CN1904951A (en) * | 2006-08-03 | 2007-01-31 | 中国印钞造币总公司 | Anti-fake element containing carved gravure anti-fake machine reading pattern |
| CN102147872A (en) * | 2011-01-05 | 2011-08-10 | 东南大学 | Method for encoding microcarrier |
Non-Patent Citations (6)
| Title |
|---|
| 夏骏等.新型PDMS弹性印章的制备方法及其在纳米生物芯片中的应用.《中国现代医学杂志》.2010,第20卷(第5期), |
| 姚树寅等.构筑生物分子微图案的研究进展.《材料科学与工程学报》.2010,第28卷(第1期), |
| 新型PDMS弹性印章的制备方法及其在纳米生物芯片中的应用;夏骏等;《中国现代医学杂志》;20100331;第20卷(第5期);第659-662页 * |
| 杜朝锋等.模板技术在纳米材料制备中的应用与发展.《材料导报》.2006,第20卷(第6期), |
| 构筑生物分子微图案的研究进展;姚树寅等;《材料科学与工程学报》;20100228;第28卷(第1期);第156-160页 * |
| 模板技术在纳米材料制备中的应用与发展;杜朝锋等;《材料导报》;20060531;第20卷(第6期);第38-42页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102520171A (en) | 2012-06-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100966683B1 (en) | Biochip Production Method | |
| KR101556798B1 (en) | Multifunctional Encoded Particles for High-Throughput Analysis | |
| CN102854304B (en) | A kind of pathogen detection method based on micro-fluidic chip | |
| CN102520171B (en) | Method for detecting pattern code suspended array chip | |
| US10191045B2 (en) | Sol composition for sol-gel biochip to immobilize probe on substrate without surface treatment and method and screening thereof | |
| JP6920206B2 (en) | Polypeptide Arrays and How to Attach Polypeptides to Arrays | |
| JP2009516822A (en) | Coded microparticles | |
| CN109847818A (en) | A high-throughput microarray detection chip, preparation method and application method thereof | |
| CN103645308B (en) | Two-dimensional coding method of micro-carrier | |
| CN111229348A (en) | A detection chip, its modification method and reaction system | |
| US20210339247A1 (en) | Methods, tools, and tool assemblies for biomolecular analysis using microarrays | |
| JP2011085578A (en) | Method and apparatus for microbead analysis | |
| CN101672847A (en) | Preparation method of protein chip glass carrier | |
| CN102350889B (en) | A batch preparation method for pattern-coded microcarriers | |
| CN102520148B (en) | Preparation method of planar biological/chemical sensor device with convex pattern microarray | |
| CN102279261B (en) | Inkjet printing preparation method of pattern code microcarrier | |
| CN106645715A (en) | Protein chip used for antibody joint detection of viral capsid antigen and nuclear antigen 1 protein of EB virus and preparation method and application of protein chip | |
| CN106596961A (en) | Construction method of micron-structure biochip high in sensitivity | |
| CN102514415B (en) | Method for batch preparation of optically coded microcarrier | |
| CN114994322A (en) | Magnetic quantum dot coding microsphere, preparation method and device for high-flux detection | |
| KR101092859B1 (en) | Space-separated nano-array biochips and manufacturing method thereof | |
| CN102147872A (en) | Method for encoding microcarrier | |
| WO2004102196A1 (en) | Apparatus including nanostructures used for separation or analysis, and the preparation and application thereof | |
| CN103675258A (en) | Microcarrier preparation system | |
| HK1074881B (en) | Arrays of microparticles and methods of preparation thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131204 Termination date: 20161209 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |