CN102520376B - Cross current type three-axis vector magnetic sensor - Google Patents
Cross current type three-axis vector magnetic sensor Download PDFInfo
- Publication number
- CN102520376B CN102520376B CN201110434180.0A CN201110434180A CN102520376B CN 102520376 B CN102520376 B CN 102520376B CN 201110434180 A CN201110434180 A CN 201110434180A CN 102520376 B CN102520376 B CN 102520376B
- Authority
- CN
- China
- Prior art keywords
- layer
- hemt
- rtd
- ohmic contact
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 claims abstract description 53
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 21
- 238000002360 preparation method Methods 0.000 claims abstract description 16
- 238000005516 engineering process Methods 0.000 claims description 45
- 238000005530 etching Methods 0.000 claims description 37
- 238000000206 photolithography Methods 0.000 claims description 35
- 229920002120 photoresistant polymer Polymers 0.000 claims description 35
- 238000005260 corrosion Methods 0.000 claims description 23
- 230000007797 corrosion Effects 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 18
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 15
- 239000010409 thin film Substances 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 11
- 230000004888 barrier function Effects 0.000 claims description 10
- 238000002955 isolation Methods 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 9
- 238000004544 sputter deposition Methods 0.000 claims description 9
- 238000002161 passivation Methods 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 6
- 230000008021 deposition Effects 0.000 claims description 6
- 239000010408 film Substances 0.000 claims description 5
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910000927 Ge alloy Inorganic materials 0.000 claims description 3
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 3
- 229910003902 SiCl 4 Inorganic materials 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000001312 dry etching Methods 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 230000010354 integration Effects 0.000 claims description 3
- 238000001883 metal evaporation Methods 0.000 claims description 3
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 2
- 238000000137 annealing Methods 0.000 claims 1
- 239000003292 glue Substances 0.000 claims 1
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 14
- 230000005355 Hall effect Effects 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Hall/Mr Elements (AREA)
Abstract
本发明涉及MEMS磁传感器领域,具体是一种十字电流型三轴矢量磁传感器。本发明为了解决现有磁传感器精度低、灵敏度差的问题。十字电流型三轴矢量磁传感器,包括GaAs衬底、两个基于RTD的竖直型电流霍尔器件以及一个基于HEMT的水平型电流霍尔器件;其是由包括如下步骤的制备方法制得的:制作基片;形成两个梯形RTD台面和HEMT台面;制备两个基于RTD的竖直型电流霍尔器件;制备基于HEMT的水平型电流霍尔器件。本发明所述的磁传感器精度高、灵敏度好,可广泛适用于各种导航系统。
The invention relates to the field of MEMS magnetic sensors, in particular to a cross current type three-axis vector magnetic sensor. The invention aims to solve the problems of low precision and poor sensitivity of the existing magnetic sensor. A cross-current type three-axis vector magnetic sensor, comprising a GaAs substrate, two RTD-based vertical current Hall devices, and a HEMT-based horizontal current Hall device; it is manufactured by a preparation method comprising the following steps : making substrate; forming two trapezoidal RTD mesa and HEMT mesa; preparing two vertical current Hall devices based on RTD; preparing horizontal current Hall device based on HEMT. The magnetic sensor of the invention has high precision and good sensitivity, and can be widely used in various navigation systems.
Description
技术领域 technical field
本发明涉及MEMS磁传感器领域,具体是一种十字电流型三轴矢量磁传感器。The invention relates to the field of MEMS magnetic sensors, in particular to a cross current type three-axis vector magnetic sensor.
背景技术 Background technique
地磁导航技术作为一种无源自主导航方法,具有隐蔽性好、抗干扰能力强、成本低的特点,尤其是基于霍尔效应的磁传感器的出现,使其得到迅速的发展,但因磁传感器的精度低、灵敏度差使得地磁导航技术一直只适用于普通导航系统中,对战术级、战略级导航系统的贡献很小。As a passive autonomous navigation method, geomagnetic navigation technology has the characteristics of good concealment, strong anti-interference ability and low cost, especially the emergence of magnetic sensors based on the Hall effect, which has made it develop rapidly. The low accuracy and poor sensitivity of geomagnetic navigation technology have always been only applicable to ordinary navigation systems, and have little contribution to tactical and strategic navigation systems.
传统的霍尔磁传感器是以Si材料为霍尔半导体,随后因GaAs材料的电子迁移率高,基于GaAs材料的霍尔传感器也相应而生,接着随着高电子迁移率HEMT器件的出现,使得目前基于高电子迁移率异质结的霍尔磁传感器成为研究热点,但其精度、灵敏度仍然无法满足战术级、战略级导航系统的要求。The traditional Hall magnetic sensor uses Si material as the Hall semiconductor, and then due to the high electron mobility of GaAs material, the Hall sensor based on GaAs material is also born accordingly, and then with the emergence of high electron mobility HEMT devices, making At present, Hall magnetic sensors based on high electron mobility heterojunctions have become a research hotspot, but their accuracy and sensitivity still cannot meet the requirements of tactical and strategic navigation systems.
发明内容 Contents of the invention
本发明为了解决现有磁传感器精度低、灵敏度差的问题,提供了一种十字电流型三轴矢量磁传感器。In order to solve the problems of low precision and poor sensitivity of the existing magnetic sensor, the present invention provides a cross current type three-axis vector magnetic sensor.
本发明是采用如下技术方案实现的:十字电流型三轴矢量磁传感器,包括GaAs衬底、两个基于RTD的竖直型电流霍尔器件以及一个基于HEMT的水平型电流霍尔器件;其是由包括如下步骤的制备方法制得的:The present invention is realized by adopting the following technical solutions: a cross current type three-axis vector magnetic sensor, comprising a GaAs substrate, two vertical current Hall devices based on RTD and a horizontal current Hall device based on HEMT; it is Prepared by a preparation method comprising the following steps:
(一)在超真空环境下,应用分子束外延技术在GaAs衬底上依次生长如下表1所示参数的HEMT(高电子迁移率三极管)薄膜材料、自停止腐蚀层、以及RTD(共振遂穿二极管)薄膜材料;得到基片;(1) In an ultra-vacuum environment, the HEMT (High Electron Mobility Transistor) thin film material, self-stop corrosion layer, and RTD (Resonance Tunneling Diode) film material; Obtain substrate;
表1Table 1
(二)、在基片上涂一层光刻胶,利用光刻、刻蚀技术形成三个梯形RTD台面;对其中两个梯形RTD台面进行保护,采用气体SiCl4/SF6为3∶1的干法刻蚀技术对第三个梯形RTD台面进行腐蚀至HEMT薄膜材料,形成HEMT台面;从而实现RTD和HEMT的单片集成,形成十字型电流的器件基础;(2), apply a layer of photoresist on the substrate, and use photolithography and etching techniques to form three trapezoidal RTD mesas; to protect two of the trapezoidal RTD mesas, use gas SiCl 4 /SF 6 as 3:1 Dry etching technology etches the third trapezoidal RTD mesa to the HEMT thin film material to form the HEMT mesa; thus realizing the monolithic integration of RTD and HEMT, forming the device basis of the cross current;
(三)两个基于RTD的竖直型电流霍尔器件的制备,对两个梯形RTD台面均进行如下操作:(3) The preparation of two RTD-based vertical current Hall devices, the following operations are performed on the two trapezoidal RTD mesa:
步骤1:将RTD薄膜材料的集电极通过引线引到自停止腐蚀层上,在梯形RTD台面上表面的发射极上和自停止腐蚀层上与引自RTD薄膜材料集电极的引线的连接处周围均溅射厚度为350nm的以任意比例混合的金属合金Ni/Au/Ge/Ni/Au,接着对梯形RTD台面上表面的发射极上和自停止腐蚀层上与引自RTD薄膜材料集电极的引线的连接处周围的Ni/Au/Ge/Ni/Au金属合金层均采用淀积和剥离法进行处理,形成RTD欧姆接触层,然后在460℃下且N2∶H2为80∶20的氮氢环境中退火30s;Step 1: lead the collector of the RTD thin film material to the self-stop corrosion layer through leads, around the junction of the emitter on the upper surface of the trapezoidal RTD table and the self-stop corrosion layer with the leads from the RTD thin film material collector The metal alloy Ni/Au/Ge/Ni/Au mixed in any ratio with an average sputtering thickness of 350nm, and then on the emitter on the upper surface of the trapezoidal RTD mesa and on the self-stop corrosion layer and from the collector of the RTD thin film material The Ni/Au/Ge/Ni/Au metal alloy layers around the connection of the leads are all processed by deposition and lift-off method to form an RTD ohmic contact layer, and then at 460°C and N 2 : H 2 ratio of 80:20 Anneal in nitrogen and hydrogen environment for 30s;
步骤2:在基片上涂一层光刻胶,利用光刻、刻蚀技术形成发射极和集电极总台面;Step 2: Coat a layer of photoresist on the substrate, and use photolithography and etching techniques to form the total mesa of the emitter and collector;
步骤3:将浓度为1013cm-3的B+注入发射极和集电极总台面使发射极和集电极总台面与自停止腐蚀层隔离;Step 3: Inject B + with a concentration of 10 13 cm -3 into the total mesa of the emitter and collector to isolate the total mesa of the emitter and collector from the self-stop corrosion layer;
步骤4:在发射极和集电极总台面的两侧利用等离子淀积台淀积一层Si3N4钝化层,形成隔离绝缘层;Step 4: Deposit a layer of Si 3 N 4 passivation layer on both sides of the total mesa of the emitter and collector using a plasma deposition platform to form an isolation insulating layer;
步骤5:霍尔检测电极的制备:在基片上涂一层光刻胶,利用光刻、刻蚀技术在梯形RTD台面结构的前后面上均开一个小窗口,利用溅射技术溅射一层以任意比例混合的Au/Ge/Ni合金覆盖小窗口,形成RTD欧姆接触区;使用引线连接技术将RTD欧姆接触区与自停止腐蚀层连接,使自停止腐蚀层上形成RTD外界引线焊盘区;Step 5: Preparation of the Hall detection electrode: coat a layer of photoresist on the substrate, use photolithography and etching technology to open a small window on the front and rear surfaces of the trapezoidal RTD mesa structure, and use sputtering technology to sputter a layer Cover the small window with Au/Ge/Ni alloy mixed in any proportion to form RTD ohmic contact area; use wire connection technology to connect RTD ohmic contact area with self-stop corrosion layer, so that RTD external lead pad area is formed on self-stop corrosion layer ;
步骤6:在基片上涂一层光刻胶,利用光刻、刻蚀技术在RTD欧姆接触层、隔离绝缘层上均形成RTD空气桥桥墩,利用磁控溅射台在RTD空气桥桥墩上溅射一层厚度为的金属Au;Step 6: Coat a layer of photoresist on the substrate, use photolithography and etching technology to form RTD air bridge piers on the RTD ohmic contact layer and isolation insulating layer, and use a magnetron sputtering station to sputter on the RTD air bridge piers Shoot a layer with a thickness of metal Au;
步骤7:在基片上涂一层光刻胶,利用光刻、刻蚀技术在梯形RTD台面、隔离绝缘层上的RTD空气桥桥墩之间形成RTD空气桥桥面;得到基于RTD的竖直型电流霍尔器件;Step 7: Coat a layer of photoresist on the substrate, and use photolithography and etching technology to form an RTD air bridge bridge deck between the trapezoidal RTD mesa and the RTD air bridge piers on the isolation insulating layer; obtain a vertical type based on RTD Current Hall device;
(四)基于HEMT的水平型电流霍尔器件的制备,对HEMT台面进行如下操作:(4) Preparation of a HEMT-based horizontal current Hall device, the following operations are performed on the HEMT table:
步骤1:在基片上涂一层光刻胶,利用光刻、刻蚀技术在HEMT台面上表面的两端形成两个HEMT欧姆接触层;对HEMT欧姆接触层进行等离子去底膜清洗和去氧化层;接着在HEMT欧姆接触层上蒸发一层厚度为的以任意比例混合的金属合金Au/Ge/Ni,在380~420℃温度下合金化60秒;Step 1: Coat a layer of photoresist on the substrate, and use photolithography and etching technology to form two HEMT ohmic contact layers on the two ends of the HEMT table top surface; perform plasma cleaning and deoxidation on the HEMT ohmic contact layer layer; then evaporate a layer of thickness on the HEMT ohmic contact layer The metal alloy Au/Ge/Ni mixed in any proportion is alloyed at a temperature of 380-420°C for 60 seconds;
步骤2:在HEMT台面上涂一层光刻胶,利用光刻、刻蚀技术形成位于两个HEMT欧姆接触层之间的N+槽,继续刻蚀形成栅槽,从而得到双凹槽结构;Step 2: Coat a layer of photoresist on the HEMT mesa, use photolithography and etching techniques to form an N + groove between the two HEMT ohmic contact layers, and continue etching to form a gate groove to obtain a double groove structure;
步骤3:在双凹槽结构上利用电子束蒸发一层厚度为的以任意比例混合的金属合金Ti/Pt/Au,形成肖特基势垒栅;Step 3: Evaporate a layer with a thickness of A metal alloy Ti/Pt/Au mixed in any ratio to form a Schottky barrier gate;
步骤4:利用光刻、刻蚀技术在HEMT台面一端的HEMT欧姆接触层上刻蚀深槽,用金属蒸发、引线互联技术把肖特基势垒栅通过引线经深槽与GaAs衬底连接,使GaAs衬底上形成栅极引线焊盘区;Step 4: use photolithography and etching technology to etch deep grooves on the HEMT ohmic contact layer at one end of the HEMT mesa, use metal evaporation and wire interconnection technology to connect the Schottky barrier gate to the GaAs substrate through the deep groove through the wire, forming a gate lead pad area on the GaAs substrate;
步骤5:在双凹槽结构上200~230℃温度下利用PECVD淀积一层厚度为的Si3N4钝化层从而将肖特基势垒栅与欧姆接触层隔离;Step 5: Deposit a layer with a thickness of Si 3 N 4 passivation layer to isolate the Schottky barrier gate from the ohmic contact layer;
步骤6:在深槽内填满光刻胶,利用光刻、腐蚀技术形成欧姆接触层桥面,在刻有深槽的HEMT欧姆接触层上蒸发一层厚度为2um的金属Au;Step 6: Fill the deep groove with photoresist, use photolithography and corrosion technology to form the bridge surface of the ohmic contact layer, and evaporate a layer of metal Au with a thickness of 2um on the HEMT ohmic contact layer with the deep groove;
步骤7:霍尔检测电极的制备:在基片上涂一层光刻胶,利用光刻、刻蚀技术在HEMT台面结构的前后面均开一个霍尔电极小窗口,利用溅射技术溅射一层以任意比例混合的金属合金Au/Ge/Ni覆盖小窗口,形成HEMT欧姆接触区;使用引线连接技术将HEMT欧姆接触区与GaAs衬底连接,使GaAs衬底上形成HEMT外界引线焊盘区;Step 7: Preparation of the Hall detection electrode: Coat a layer of photoresist on the substrate, use photolithography and etching technology to open a small Hall electrode window on the front and back of the HEMT mesa structure, and use sputtering technology to sputter a hole. The layer is covered with a metal alloy Au/Ge/Ni in any proportion to cover the small window to form a HEMT ohmic contact area; the HEMT ohmic contact area is connected to the GaAs substrate using wire connection technology, so that the HEMT external lead pad area is formed on the GaAs substrate ;
步骤8:在基片上涂一层光刻胶,利用光刻、刻蚀技术在HEMT欧姆接触层的一侧形成两个HEMT空气桥桥墩;在基片上涂一层光刻胶,利用光刻、刻蚀技术在两个HEMT空气桥桥墩与HEMT欧姆接触层之间形成两个HEMT空气桥桥面,在HEMT空气桥桥面上利用磁控溅射台溅射一层厚度为的金属Au,再在HEMT空气桥桥面上电镀一层厚度为2~5μm的金属Au;Step 8: Apply a layer of photoresist on the substrate, and use photolithography and etching technology to form two HEMT air bridge piers on one side of the HEMT ohmic contact layer; apply a layer of photoresist on the substrate, use photolithography, The etching technology forms two HEMT air bridge decks between the two HEMT air bridge piers and the HEMT ohmic contact layer, and uses a magnetron sputtering table to sputter a layer with a thickness of Metal Au, and then electroplate a layer of metal Au with a thickness of 2 to 5 μm on the HEMT air bridge surface;
步骤9:利用腐蚀液去除基片上的光刻胶,形成带具有空气桥结构的基于HEMT的水平型电流霍尔器件;得到十字电流型三轴矢量磁传感器。Step 9: removing the photoresist on the substrate with an etchant, forming a HEMT-based horizontal current Hall device with an air bridge structure; obtaining a cross current type three-axis vector magnetic sensor.
如图14所示,霍尔效应的原理是当半导体材料的一个方向上受到一定的电流信号激励时,同时在该材料的另一个方向上有磁场作用,则在该器件的第三个方向上就会产生电压信号。本发明就是以霍尔效应原理为基础,如图15所示,当有竖直方向上的磁场时,就会引起水平电流方向的基于HEMT的霍尔器件上霍尔检测电极上电压信号的输出,当磁场变化时电压信号也相应的变化,从而进行磁场信号的表征;如图16所示,当有水平X、Y方向上的磁场时,就会引起竖直电流方向的基于RTD的霍尔器件上霍尔检测电极上电压信号的输出,当磁场变化时电压信号也相应的变化,以此实现三维方向的磁场检测。As shown in Figure 14, the principle of the Hall effect is that when one direction of the semiconductor material is excited by a certain current signal, and at the same time there is a magnetic field in the other direction of the material, then in the third direction of the device A voltage signal will be generated. The present invention is based on the Hall effect principle, as shown in Figure 15, when there is a magnetic field in the vertical direction, it will cause the output of the voltage signal on the Hall detection electrode on the Hall device based on the HEMT in the horizontal current direction , when the magnetic field changes, the voltage signal also changes accordingly, so as to characterize the magnetic field signal; as shown in Figure 16, when there is a magnetic field in the horizontal X and Y directions, it will cause a vertical current direction based on RTD Hall The output of the voltage signal on the Hall detection electrode on the device, when the magnetic field changes, the voltage signal also changes accordingly, so as to realize the magnetic field detection in three dimensions.
本发明所述的磁传感器精度高、灵敏度好,解决了现有磁传感器精度低、灵敏度差的问题,可广泛适用于各种导航系统。The magnetic sensor of the invention has high precision and good sensitivity, solves the problems of low precision and poor sensitivity of the existing magnetic sensor, and can be widely used in various navigation systems.
附图说明 Description of drawings
图1是本发明的结构示意图。Fig. 1 is a structural schematic diagram of the present invention.
图2是本发明第一步中基片的结构示意图。Fig. 2 is a schematic structural view of the substrate in the first step of the present invention.
图3是本发明第三步中步骤1的结构示意图。Fig. 3 is a structural schematic diagram of
图4是本发明第三步中步骤2的结构示意图。Fig. 4 is a structural schematic diagram of
图5是本发明第三步中步骤4的结构示意图(图5是图4的侧视图)。Fig. 5 is a schematic structural view of
图6是本发明第三步中步骤5的结构示意图。Fig. 6 is a structural schematic diagram of
图7是本发明第三步中步骤7的结构示意图。Fig. 7 is a structural schematic diagram of
图8是本发明第四步中步骤1的结构示意图。Fig. 8 is a schematic structural diagram of
图9是本发明第四步中步骤2的结构示意图。Fig. 9 is a schematic structural diagram of
图10是本发明第四步中步骤3的结构示意图。Fig. 10 is a structural schematic diagram of
图11是本发明第四步中步骤4和6的结构示意图。Fig. 11 is a structural schematic diagram of
图12是本发明第四步中步骤5的结构示意图。Fig. 12 is a structural schematic diagram of
图13是本发明第四步中步骤7的结构示意图(图13是图12的侧视图)。Fig. 13 is a schematic structural view of
图14是本发明第四步中步骤8的结构示意图。Fig. 14 is a schematic structural diagram of
图15是霍尔效应的原理示意图。Fig. 15 is a schematic diagram of the principle of the Hall effect.
图16是本发明基于RTD的竖直型电流霍尔器件的工作原理图。Fig. 16 is a working principle diagram of the RTD-based vertical current Hall device of the present invention.
图17是本发明基于HEMT的水平型电流霍尔器件的工作原理图。Fig. 17 is a working principle diagram of the HEMT-based horizontal current Hall device of the present invention.
图中:1-GaAs衬底;2-梯形RTD台面;3-RTD欧姆接触层;4-发射极和集电极总台面;5-隔离绝缘层;6-RTD欧姆接触区;7-RTD空气桥桥墩;8-RTD空气桥桥面;9-HEMT台面;10-HEMT欧姆接触层;11-双凹槽结构;12-肖特基势垒栅;13-HEMT欧姆接触区;14-HEMT外界引线焊盘区;15-RTD外界引线焊盘区;16-HEMT空气桥桥墩;17-HEMT空气桥桥面;18-Si3N4钝化层;19-基于HEMT的水平型电流霍尔器件;20-基于RTD的竖直型电流霍尔器件;21-深槽;22-栅极引线焊盘区;23-引线。In the figure: 1-GaAs substrate; 2-trapezoidal RTD mesa; 3-RTD ohmic contact layer; 4-total mesa of emitter and collector; 5-isolation insulating layer; 6-RTD ohmic contact area; 7-RTD air bridge Bridge pier; 8-RTD air bridge deck; 9-HEMT mesa; 10-HEMT ohmic contact layer; 11-double groove structure; 12-Schottky barrier grid; 13-HEMT ohmic contact area; 14-HEMT external leads Pad area; 15-RTD external lead pad area; 16-HEMT air bridge pier; 17-HEMT air bridge deck; 18-Si 3 N 4 passivation layer; 19-Horizontal current Hall device based on HEMT; 20-RTD-based vertical current Hall device; 21-deep groove; 22-gate lead pad area; 23-lead.
具体实施方式 Detailed ways
十字电流型三轴矢量磁传感器,包括GaAs衬底1、两个基于RTD的竖直型电流霍尔器件20以及一个基于HEMT的水平型电流霍尔器件19;其是由包括如下步骤的制备方法制得的:Cross current type three-axis vector magnetic sensor, comprising
(一)在超真空环境下,应用分子束外延技术在GaAs衬底1上依次生长如下表1所示参数的HEMT薄膜材料、自停止腐蚀层、以及RTD薄膜材料;得到基片;(1) In an ultra-vacuum environment, the HEMT film material, the self-stop corrosion layer, and the RTD film material of the parameters shown in Table 1 are sequentially grown on the
表1Table 1
(二)、在基片上涂一层光刻胶,利用光刻、刻蚀技术形成三个梯形RTD台面2;对其中两个梯形RTD台面2进行保护,采用气体SiCl4/SF6为3∶1的干法刻蚀技术对第三个梯形RTD台面2进行腐蚀至HEMT薄膜材料,形成HEMT台面9;从而实现RTD和HEMT的单片集成,形成十字型电流的器件基础;(2), apply a layer of photoresist on the substrate, and use photolithography and etching technology to form three
(三)两个基于RTD的竖直型电流霍尔器件的制备,对两个梯形RTD台面2均进行如下操作:(3) Preparation of two RTD-based vertical current Hall devices, the following operations are performed on the two trapezoidal RTD mesa 2:
步骤1:将RTD薄膜材料的集电极通过引线引到自停止腐蚀层上,在梯形RTD台面上表面的发射极上和自停止腐蚀层上与引自RTD薄膜材料集电极的引线的连接处周围均溅射厚度为350nm的以任意比例混合的金属合金Ni/Au/Ge/Ni/Au,接着对梯形RTD台面上表面的发射极上和自停止腐蚀层上与引自RTD薄膜材料集电极的引线的连接处周围的Ni/Au/Ge/Ni/Au金属合金层均采用淀积和剥离法进行处理,形成RTD欧姆接触层3,然后在460℃下且N2∶H2为80∶20的氮氢环境中退火30s;Step 1: lead the collector of the RTD thin film material to the self-stop corrosion layer through leads, around the junction of the emitter on the upper surface of the trapezoidal RTD table and the self-stop corrosion layer with the leads from the RTD thin film material collector The metal alloy Ni/Au/Ge/Ni/Au mixed in any ratio with an average sputtering thickness of 350nm, and then on the emitter on the upper surface of the trapezoidal RTD mesa and on the self-stop corrosion layer and from the collector of the RTD thin film material The Ni/Au/Ge/Ni/Au metal alloy layers around the connection of the leads are all processed by deposition and lift-off method to form the RTD
步骤2:在基片上涂一层光刻胶,利用光刻、刻蚀技术形成发射极和集电极总台面4;Step 2: Coating a layer of photoresist on the substrate, using photolithography and etching techniques to form the
步骤3:将浓度为1013cm-3的B+注入发射极和集电极总台面4使发射极和集电极总台面4与自停止腐蚀层隔离;Step 3: injecting B + with a concentration of 10 13 cm -3 into the
步骤4:在发射极和集电极总台面4的两侧利用等离子淀积台淀积一层Si3N4钝化层,形成隔离绝缘层5;Step 4: Deposit a layer of Si 3 N 4 passivation layer on both sides of the
步骤5:霍尔检测电极的制备:在基片上涂一层光刻胶,利用光刻、刻蚀技术在梯形RTD台面结构的前后面上均开一个小窗口,利用溅射技术溅射一层以任意比例混合的Au/Ge/Ni合金覆盖小窗口,形成RTD欧姆接触区6;使用引线连接技术将RTD欧姆接触区6与自停止腐蚀层连接,使自停止腐蚀层上形成RTD外界引线焊盘区15;Step 5: Preparation of the Hall detection electrode: coat a layer of photoresist on the substrate, use photolithography and etching technology to open a small window on the front and rear surfaces of the trapezoidal RTD mesa structure, and use sputtering technology to sputter a layer Cover the small window with Au/Ge/Ni alloy mixed in any proportion to form RTD
步骤6:在基片上涂一层光刻胶,利用光刻、刻蚀技术在RTD欧姆接触层3上、隔离绝缘层5上均形成RTD空气桥桥墩7,利用磁控溅射台在RTD空气桥桥墩7上溅射一层厚度为的金属Au;Step 6: Apply a layer of photoresist on the substrate, use photolithography and etching technology to form RTD
步骤7:在基片上涂一层光刻胶,利用光刻、刻蚀技术在RTD欧姆接触层3、隔离绝缘层5上的RTD空气桥桥墩7之间形成RTD空气桥桥面8;得到基于RTD的竖直型电流霍尔器件;Step 7: apply a layer of photoresist on the substrate, and use photolithography and etching technology to form the RTD air
(四)基于HEMT的水平型电流霍尔器件的制备,对HEMT台面9进行如下操作:(4) Preparation of a HEMT-based horizontal current Hall device, the following operations are performed on the HEMT table 9:
步骤1:在基片上涂一层光刻胶,利用光刻、刻蚀技术在HEMT台面9上表面的两端形成两个HEMT欧姆接触层10;对HEMT欧姆接触层10进行等离子去底膜清洗和去氧化层;接着在HEMT欧姆接触层10上蒸发一层厚度为的以任意比例混合的金属合金Au/Ge/Ni,在380~420℃温度下合金化60秒;Step 1: apply a layer of photoresist on the substrate, and use photolithography and etching techniques to form two HEMT ohmic contact layers 10 on the upper surface of the HEMT table 9; perform plasma cleaning on the HEMT
步骤2:在HEMT台面9上涂一层光刻胶,利用光刻、刻蚀技术形成位于两个HEMT欧姆接触层10之间的N+槽,继续刻蚀形成栅槽,从而得到双凹槽结构11;Step 2: Coat a layer of photoresist on the
步骤3:在双凹槽结构11上利用电子束蒸发一层厚度为的以任意比例混合的金属合金Ti/Pt/Au,形成肖特基势垒栅12;Step 3: Evaporate a layer with a thickness of A metal alloy Ti/Pt/Au mixed in any ratio to form a
步骤4:利用光刻、刻蚀技术在HEMT台面9一端的HEMT欧姆接触层10上刻蚀深槽21,用金属蒸发、引线互联技术把肖特基势垒栅12通过引线23经深槽21与GaAs衬底1连接,使GaAs衬底1上形成栅极引线焊盘区22;Step 4: Etch a
步骤5:在双凹槽结构11上200~230℃温度下利用PECVD淀积一层厚度为的Si3N4钝化层18从而将肖特基势垒栅12与欧姆接触层10隔离;Step 5: Deposit a layer with a thickness of Si 3 N 4 passivation layer 18 to isolate the
步骤6:在深槽21内填满光刻胶,利用光刻、腐蚀技术形成欧姆接触层桥面,在刻有深槽21的HEMT欧姆接触层10上蒸发一层厚度为2um的金属Au;Step 6: fill the
步骤7:霍尔检测电极的制备:在基片上涂一层光刻胶,利用光刻、刻蚀技术在HEMT台面9结构的前后面均开一个霍尔电极小窗口,利用溅射技术溅射一层以任意比例混合的金属合金Au/Ge/Ni覆盖小窗口,形成HEMT欧姆接触区13;使用引线连接技术将HEMT欧姆接触区13与GaAs衬底1连接,使GaAs衬底1上形成HEMT外界引线焊盘区14;Step 7: Preparation of the Hall detection electrode: coat a layer of photoresist on the substrate, use photolithography and etching technology to open a small Hall electrode window on the front and back of the HEMT table 9 structure, and use sputtering technology to sputter A layer of metal alloy Au/Ge/Ni mixed in any ratio covers the small window to form a HEMT
步骤8:在基片上涂一层光刻胶,利用光刻、刻蚀技术在HEMT欧姆接触层10的一侧形成两个HEMT空气桥桥墩16;在基片上涂一层光刻胶,利用光刻、刻蚀技术在两个HEMT空气桥桥墩16与HEMT欧姆接触层10之间形成两个HEMT空气桥桥面17,在HEMT空气桥桥面17上利用磁控溅射台溅射一层厚度为的金属Au,再在HEMT空气桥桥面17上电镀一层厚度为2~5μm的金属Au;Step 8: apply a layer of photoresist on the substrate, and form two HEMT
步骤9:利用腐蚀液去除基片上的光刻胶,形成带具有空气桥结构的基于HEMT的水平型电流霍尔器件;得到十字电流型三轴矢量磁传感器。Step 9: removing the photoresist on the substrate with an etchant, forming a HEMT-based horizontal current Hall device with an air bridge structure; obtaining a cross current type three-axis vector magnetic sensor.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201110434180.0A CN102520376B (en) | 2011-12-22 | 2011-12-22 | Cross current type three-axis vector magnetic sensor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201110434180.0A CN102520376B (en) | 2011-12-22 | 2011-12-22 | Cross current type three-axis vector magnetic sensor |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102520376A CN102520376A (en) | 2012-06-27 |
| CN102520376B true CN102520376B (en) | 2014-01-15 |
Family
ID=46291361
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201110434180.0A Active CN102520376B (en) | 2011-12-22 | 2011-12-22 | Cross current type three-axis vector magnetic sensor |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102520376B (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103341235A (en) * | 2013-07-21 | 2013-10-09 | 马铁明 | Hall electromagnetic pulse therapeutic device |
| CN111308399B (en) * | 2020-02-03 | 2021-06-01 | 电子科技大学 | A COMSOL Multiphysics-based Sensitivity Calculation Method for 3D Cross-Type Hall Device |
| CN114371431B (en) * | 2021-12-31 | 2025-01-21 | 歌尔微电子股份有限公司 | Magnetic field sensor, manufacturing process and magnetic field detection method thereof |
| DE102023002342A1 (en) | 2023-06-09 | 2024-12-12 | Tdk-Micronas Gmbh | Vertical III-V Hall sensor |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100492105B1 (en) * | 2002-12-24 | 2005-06-01 | 삼성전자주식회사 | Vertical MEMS gyroscope by horizontal driving and it's fabrication method |
| JP4265630B2 (en) * | 2006-08-04 | 2009-05-20 | セイコーエプソン株式会社 | MEMS switch, voltage divider circuit, gain adjustment circuit, attenuator, and method of manufacturing MEMS switch |
| CN102141576B (en) * | 2010-12-28 | 2012-06-06 | 中北大学 | High-gravity (g) acceleration sensor in plane of micro-electromechanical system (MEMS) based on resonance tunnelling structure (RTS) |
| CN102259827B (en) * | 2011-06-25 | 2014-06-25 | 中北大学 | Method for encapsulating MEMS (micro electro mechanical system) high-range acceleration sensor |
-
2011
- 2011-12-22 CN CN201110434180.0A patent/CN102520376B/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| CN102520376A (en) | 2012-06-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108321291B (en) | Hall sensor with local groove structure of two-dimensional electron gas channel barrier layer and its manufacturing method | |
| WO2017088560A1 (en) | Sensor, preparation method and multi-sensor system | |
| CN107946358A (en) | An AlGaN/GaN heterojunction HEMT device compatible with Si-CMOS process and its manufacturing method | |
| CN101777601B (en) | Method for manufacturing InAs/GaSb superlattice infrared photoelectric detector | |
| CN102520376B (en) | Cross current type three-axis vector magnetic sensor | |
| CN102280476B (en) | Pseudomorphic high electron mobility transistor and manufacturing method thereof | |
| CN110890457B (en) | High-temperature Hall sensor integrating back vertical type and front horizontal type three-dimensional magnetic field detection functions and manufacturing method thereof | |
| WO2018205692A1 (en) | Thin-film transistor and manufacturing method therefor, array substrate, and display device | |
| CN102201484B (en) | AlGaN ultraviolet detector with secondary mesa wrapping electrode and manufacturing method thereof | |
| CN103985747A (en) | GaAs/AlGaAs semiconductor heterojunction structure and its manufacturing method | |
| CN117080255B (en) | GaN HEMT transistor with impact energy release capability and manufacturing method thereof | |
| TWI470792B (en) | Heterostructure field effect transistor improved structure and process method thereof | |
| CN103928524B (en) | Carborundum UMOSFET devices and preparation method with N-type drift layer table top | |
| CN103839784A (en) | Ion implantation mask method and silicon carbide Schottky diode manufacturing method | |
| TWI488303B (en) | Enhancement mode gallium nitride based transistor device | |
| CN112768512A (en) | AlGaN-based double-channel Schottky diode based on groove anode structure and preparation method | |
| CN102401840A (en) | Si based HEMT embedded micro accelerator and production method thereof | |
| CN111048618A (en) | Schottky barrier diode temperature sensor integrated by interdigital structure and manufacturing method thereof | |
| US20220223429A1 (en) | N-polar iii-n semiconductor device structures | |
| JP2023554559A (en) | Group III nitride transistor structure capable of reducing leakage current and method for manufacturing the same | |
| CN104576832B (en) | Blocking impurity band detector manufacturing method based on SOI | |
| CN109659362A (en) | A kind of structure and preparation method thereof based on the low ohm contact resistance of gallium nitride power HEMT structure | |
| CN102263166B (en) | Method for improving performances of AlGaN-based detector by using nano particles | |
| CN202134542U (en) | AlGaN UV detector with secondary mesa-wrapped electrodes | |
| JPWO2013069729A1 (en) | Semiconductor device and manufacturing method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |