[go: up one dir, main page]

CN102520376B - Cross current type three-axis vector magnetic sensor - Google Patents

Cross current type three-axis vector magnetic sensor Download PDF

Info

Publication number
CN102520376B
CN102520376B CN201110434180.0A CN201110434180A CN102520376B CN 102520376 B CN102520376 B CN 102520376B CN 201110434180 A CN201110434180 A CN 201110434180A CN 102520376 B CN102520376 B CN 102520376B
Authority
CN
China
Prior art keywords
layer
hemt
rtd
ohmic contact
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110434180.0A
Other languages
Chinese (zh)
Other versions
CN102520376A (en
Inventor
唐军
刘俊
石云波
张晓明
郭浩
毛宏庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN201110434180.0A priority Critical patent/CN102520376B/en
Publication of CN102520376A publication Critical patent/CN102520376A/en
Application granted granted Critical
Publication of CN102520376B publication Critical patent/CN102520376B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

本发明涉及MEMS磁传感器领域,具体是一种十字电流型三轴矢量磁传感器。本发明为了解决现有磁传感器精度低、灵敏度差的问题。十字电流型三轴矢量磁传感器,包括GaAs衬底、两个基于RTD的竖直型电流霍尔器件以及一个基于HEMT的水平型电流霍尔器件;其是由包括如下步骤的制备方法制得的:制作基片;形成两个梯形RTD台面和HEMT台面;制备两个基于RTD的竖直型电流霍尔器件;制备基于HEMT的水平型电流霍尔器件。本发明所述的磁传感器精度高、灵敏度好,可广泛适用于各种导航系统。

Figure 201110434180

The invention relates to the field of MEMS magnetic sensors, in particular to a cross current type three-axis vector magnetic sensor. The invention aims to solve the problems of low precision and poor sensitivity of the existing magnetic sensor. A cross-current type three-axis vector magnetic sensor, comprising a GaAs substrate, two RTD-based vertical current Hall devices, and a HEMT-based horizontal current Hall device; it is manufactured by a preparation method comprising the following steps : making substrate; forming two trapezoidal RTD mesa and HEMT mesa; preparing two vertical current Hall devices based on RTD; preparing horizontal current Hall device based on HEMT. The magnetic sensor of the invention has high precision and good sensitivity, and can be widely used in various navigation systems.

Figure 201110434180

Description

十字电流型三轴矢量磁传感器Cross current type three-axis vector magnetic sensor

技术领域 technical field

本发明涉及MEMS磁传感器领域,具体是一种十字电流型三轴矢量磁传感器。The invention relates to the field of MEMS magnetic sensors, in particular to a cross current type three-axis vector magnetic sensor.

背景技术 Background technique

地磁导航技术作为一种无源自主导航方法,具有隐蔽性好、抗干扰能力强、成本低的特点,尤其是基于霍尔效应的磁传感器的出现,使其得到迅速的发展,但因磁传感器的精度低、灵敏度差使得地磁导航技术一直只适用于普通导航系统中,对战术级、战略级导航系统的贡献很小。As a passive autonomous navigation method, geomagnetic navigation technology has the characteristics of good concealment, strong anti-interference ability and low cost, especially the emergence of magnetic sensors based on the Hall effect, which has made it develop rapidly. The low accuracy and poor sensitivity of geomagnetic navigation technology have always been only applicable to ordinary navigation systems, and have little contribution to tactical and strategic navigation systems.

传统的霍尔磁传感器是以Si材料为霍尔半导体,随后因GaAs材料的电子迁移率高,基于GaAs材料的霍尔传感器也相应而生,接着随着高电子迁移率HEMT器件的出现,使得目前基于高电子迁移率异质结的霍尔磁传感器成为研究热点,但其精度、灵敏度仍然无法满足战术级、战略级导航系统的要求。The traditional Hall magnetic sensor uses Si material as the Hall semiconductor, and then due to the high electron mobility of GaAs material, the Hall sensor based on GaAs material is also born accordingly, and then with the emergence of high electron mobility HEMT devices, making At present, Hall magnetic sensors based on high electron mobility heterojunctions have become a research hotspot, but their accuracy and sensitivity still cannot meet the requirements of tactical and strategic navigation systems.

发明内容 Contents of the invention

本发明为了解决现有磁传感器精度低、灵敏度差的问题,提供了一种十字电流型三轴矢量磁传感器。In order to solve the problems of low precision and poor sensitivity of the existing magnetic sensor, the present invention provides a cross current type three-axis vector magnetic sensor.

本发明是采用如下技术方案实现的:十字电流型三轴矢量磁传感器,包括GaAs衬底、两个基于RTD的竖直型电流霍尔器件以及一个基于HEMT的水平型电流霍尔器件;其是由包括如下步骤的制备方法制得的:The present invention is realized by adopting the following technical solutions: a cross current type three-axis vector magnetic sensor, comprising a GaAs substrate, two vertical current Hall devices based on RTD and a horizontal current Hall device based on HEMT; it is Prepared by a preparation method comprising the following steps:

(一)在超真空环境下,应用分子束外延技术在GaAs衬底上依次生长如下表1所示参数的HEMT(高电子迁移率三极管)薄膜材料、自停止腐蚀层、以及RTD(共振遂穿二极管)薄膜材料;得到基片;(1) In an ultra-vacuum environment, the HEMT (High Electron Mobility Transistor) thin film material, self-stop corrosion layer, and RTD (Resonance Tunneling Diode) film material; Obtain substrate;

表1Table 1

Figure BDA0000123484640000021
Figure BDA0000123484640000021

Figure BDA0000123484640000031
Figure BDA0000123484640000031

(二)、在基片上涂一层光刻胶,利用光刻、刻蚀技术形成三个梯形RTD台面;对其中两个梯形RTD台面进行保护,采用气体SiCl4/SF6为3∶1的干法刻蚀技术对第三个梯形RTD台面进行腐蚀至HEMT薄膜材料,形成HEMT台面;从而实现RTD和HEMT的单片集成,形成十字型电流的器件基础;(2), apply a layer of photoresist on the substrate, and use photolithography and etching techniques to form three trapezoidal RTD mesas; to protect two of the trapezoidal RTD mesas, use gas SiCl 4 /SF 6 as 3:1 Dry etching technology etches the third trapezoidal RTD mesa to the HEMT thin film material to form the HEMT mesa; thus realizing the monolithic integration of RTD and HEMT, forming the device basis of the cross current;

(三)两个基于RTD的竖直型电流霍尔器件的制备,对两个梯形RTD台面均进行如下操作:(3) The preparation of two RTD-based vertical current Hall devices, the following operations are performed on the two trapezoidal RTD mesa:

步骤1:将RTD薄膜材料的集电极通过引线引到自停止腐蚀层上,在梯形RTD台面上表面的发射极上和自停止腐蚀层上与引自RTD薄膜材料集电极的引线的连接处周围均溅射厚度为350nm的以任意比例混合的金属合金Ni/Au/Ge/Ni/Au,接着对梯形RTD台面上表面的发射极上和自停止腐蚀层上与引自RTD薄膜材料集电极的引线的连接处周围的Ni/Au/Ge/Ni/Au金属合金层均采用淀积和剥离法进行处理,形成RTD欧姆接触层,然后在460℃下且N2∶H2为80∶20的氮氢环境中退火30s;Step 1: lead the collector of the RTD thin film material to the self-stop corrosion layer through leads, around the junction of the emitter on the upper surface of the trapezoidal RTD table and the self-stop corrosion layer with the leads from the RTD thin film material collector The metal alloy Ni/Au/Ge/Ni/Au mixed in any ratio with an average sputtering thickness of 350nm, and then on the emitter on the upper surface of the trapezoidal RTD mesa and on the self-stop corrosion layer and from the collector of the RTD thin film material The Ni/Au/Ge/Ni/Au metal alloy layers around the connection of the leads are all processed by deposition and lift-off method to form an RTD ohmic contact layer, and then at 460°C and N 2 : H 2 ratio of 80:20 Anneal in nitrogen and hydrogen environment for 30s;

步骤2:在基片上涂一层光刻胶,利用光刻、刻蚀技术形成发射极和集电极总台面;Step 2: Coat a layer of photoresist on the substrate, and use photolithography and etching techniques to form the total mesa of the emitter and collector;

步骤3:将浓度为1013cm-3的B+注入发射极和集电极总台面使发射极和集电极总台面与自停止腐蚀层隔离;Step 3: Inject B + with a concentration of 10 13 cm -3 into the total mesa of the emitter and collector to isolate the total mesa of the emitter and collector from the self-stop corrosion layer;

步骤4:在发射极和集电极总台面的两侧利用等离子淀积台淀积一层Si3N4钝化层,形成隔离绝缘层;Step 4: Deposit a layer of Si 3 N 4 passivation layer on both sides of the total mesa of the emitter and collector using a plasma deposition platform to form an isolation insulating layer;

步骤5:霍尔检测电极的制备:在基片上涂一层光刻胶,利用光刻、刻蚀技术在梯形RTD台面结构的前后面上均开一个小窗口,利用溅射技术溅射一层以任意比例混合的Au/Ge/Ni合金覆盖小窗口,形成RTD欧姆接触区;使用引线连接技术将RTD欧姆接触区与自停止腐蚀层连接,使自停止腐蚀层上形成RTD外界引线焊盘区;Step 5: Preparation of the Hall detection electrode: coat a layer of photoresist on the substrate, use photolithography and etching technology to open a small window on the front and rear surfaces of the trapezoidal RTD mesa structure, and use sputtering technology to sputter a layer Cover the small window with Au/Ge/Ni alloy mixed in any proportion to form RTD ohmic contact area; use wire connection technology to connect RTD ohmic contact area with self-stop corrosion layer, so that RTD external lead pad area is formed on self-stop corrosion layer ;

步骤6:在基片上涂一层光刻胶,利用光刻、刻蚀技术在RTD欧姆接触层、隔离绝缘层上均形成RTD空气桥桥墩,利用磁控溅射台在RTD空气桥桥墩上溅射一层厚度为

Figure BDA0000123484640000041
的金属Au;Step 6: Coat a layer of photoresist on the substrate, use photolithography and etching technology to form RTD air bridge piers on the RTD ohmic contact layer and isolation insulating layer, and use a magnetron sputtering station to sputter on the RTD air bridge piers Shoot a layer with a thickness of
Figure BDA0000123484640000041
metal Au;

步骤7:在基片上涂一层光刻胶,利用光刻、刻蚀技术在梯形RTD台面、隔离绝缘层上的RTD空气桥桥墩之间形成RTD空气桥桥面;得到基于RTD的竖直型电流霍尔器件;Step 7: Coat a layer of photoresist on the substrate, and use photolithography and etching technology to form an RTD air bridge bridge deck between the trapezoidal RTD mesa and the RTD air bridge piers on the isolation insulating layer; obtain a vertical type based on RTD Current Hall device;

(四)基于HEMT的水平型电流霍尔器件的制备,对HEMT台面进行如下操作:(4) Preparation of a HEMT-based horizontal current Hall device, the following operations are performed on the HEMT table:

步骤1:在基片上涂一层光刻胶,利用光刻、刻蚀技术在HEMT台面上表面的两端形成两个HEMT欧姆接触层;对HEMT欧姆接触层进行等离子去底膜清洗和去氧化层;接着在HEMT欧姆接触层上蒸发一层厚度为

Figure BDA0000123484640000042
的以任意比例混合的金属合金Au/Ge/Ni,在380~420℃温度下合金化60秒;Step 1: Coat a layer of photoresist on the substrate, and use photolithography and etching technology to form two HEMT ohmic contact layers on the two ends of the HEMT table top surface; perform plasma cleaning and deoxidation on the HEMT ohmic contact layer layer; then evaporate a layer of thickness on the HEMT ohmic contact layer
Figure BDA0000123484640000042
The metal alloy Au/Ge/Ni mixed in any proportion is alloyed at a temperature of 380-420°C for 60 seconds;

步骤2:在HEMT台面上涂一层光刻胶,利用光刻、刻蚀技术形成位于两个HEMT欧姆接触层之间的N+槽,继续刻蚀形成栅槽,从而得到双凹槽结构;Step 2: Coat a layer of photoresist on the HEMT mesa, use photolithography and etching techniques to form an N + groove between the two HEMT ohmic contact layers, and continue etching to form a gate groove to obtain a double groove structure;

步骤3:在双凹槽结构上利用电子束蒸发一层厚度为

Figure BDA0000123484640000051
的以任意比例混合的金属合金Ti/Pt/Au,形成肖特基势垒栅;Step 3: Evaporate a layer with a thickness of
Figure BDA0000123484640000051
A metal alloy Ti/Pt/Au mixed in any ratio to form a Schottky barrier gate;

步骤4:利用光刻、刻蚀技术在HEMT台面一端的HEMT欧姆接触层上刻蚀深槽,用金属蒸发、引线互联技术把肖特基势垒栅通过引线经深槽与GaAs衬底连接,使GaAs衬底上形成栅极引线焊盘区;Step 4: use photolithography and etching technology to etch deep grooves on the HEMT ohmic contact layer at one end of the HEMT mesa, use metal evaporation and wire interconnection technology to connect the Schottky barrier gate to the GaAs substrate through the deep groove through the wire, forming a gate lead pad area on the GaAs substrate;

步骤5:在双凹槽结构上200~230℃温度下利用PECVD淀积一层厚度为

Figure BDA0000123484640000052
的Si3N4钝化层从而将肖特基势垒栅与欧姆接触层隔离;Step 5: Deposit a layer with a thickness of
Figure BDA0000123484640000052
Si 3 N 4 passivation layer to isolate the Schottky barrier gate from the ohmic contact layer;

步骤6:在深槽内填满光刻胶,利用光刻、腐蚀技术形成欧姆接触层桥面,在刻有深槽的HEMT欧姆接触层上蒸发一层厚度为2um的金属Au;Step 6: Fill the deep groove with photoresist, use photolithography and corrosion technology to form the bridge surface of the ohmic contact layer, and evaporate a layer of metal Au with a thickness of 2um on the HEMT ohmic contact layer with the deep groove;

步骤7:霍尔检测电极的制备:在基片上涂一层光刻胶,利用光刻、刻蚀技术在HEMT台面结构的前后面均开一个霍尔电极小窗口,利用溅射技术溅射一层以任意比例混合的金属合金Au/Ge/Ni覆盖小窗口,形成HEMT欧姆接触区;使用引线连接技术将HEMT欧姆接触区与GaAs衬底连接,使GaAs衬底上形成HEMT外界引线焊盘区;Step 7: Preparation of the Hall detection electrode: Coat a layer of photoresist on the substrate, use photolithography and etching technology to open a small Hall electrode window on the front and back of the HEMT mesa structure, and use sputtering technology to sputter a hole. The layer is covered with a metal alloy Au/Ge/Ni in any proportion to cover the small window to form a HEMT ohmic contact area; the HEMT ohmic contact area is connected to the GaAs substrate using wire connection technology, so that the HEMT external lead pad area is formed on the GaAs substrate ;

步骤8:在基片上涂一层光刻胶,利用光刻、刻蚀技术在HEMT欧姆接触层的一侧形成两个HEMT空气桥桥墩;在基片上涂一层光刻胶,利用光刻、刻蚀技术在两个HEMT空气桥桥墩与HEMT欧姆接触层之间形成两个HEMT空气桥桥面,在HEMT空气桥桥面上利用磁控溅射台溅射一层厚度为

Figure BDA0000123484640000053
的金属Au,再在HEMT空气桥桥面上电镀一层厚度为2~5μm的金属Au;Step 8: Apply a layer of photoresist on the substrate, and use photolithography and etching technology to form two HEMT air bridge piers on one side of the HEMT ohmic contact layer; apply a layer of photoresist on the substrate, use photolithography, The etching technology forms two HEMT air bridge decks between the two HEMT air bridge piers and the HEMT ohmic contact layer, and uses a magnetron sputtering table to sputter a layer with a thickness of
Figure BDA0000123484640000053
Metal Au, and then electroplate a layer of metal Au with a thickness of 2 to 5 μm on the HEMT air bridge surface;

步骤9:利用腐蚀液去除基片上的光刻胶,形成带具有空气桥结构的基于HEMT的水平型电流霍尔器件;得到十字电流型三轴矢量磁传感器。Step 9: removing the photoresist on the substrate with an etchant, forming a HEMT-based horizontal current Hall device with an air bridge structure; obtaining a cross current type three-axis vector magnetic sensor.

如图14所示,霍尔效应的原理是当半导体材料的一个方向上受到一定的电流信号激励时,同时在该材料的另一个方向上有磁场作用,则在该器件的第三个方向上就会产生电压信号。本发明就是以霍尔效应原理为基础,如图15所示,当有竖直方向上的磁场时,就会引起水平电流方向的基于HEMT的霍尔器件上霍尔检测电极上电压信号的输出,当磁场变化时电压信号也相应的变化,从而进行磁场信号的表征;如图16所示,当有水平X、Y方向上的磁场时,就会引起竖直电流方向的基于RTD的霍尔器件上霍尔检测电极上电压信号的输出,当磁场变化时电压信号也相应的变化,以此实现三维方向的磁场检测。As shown in Figure 14, the principle of the Hall effect is that when one direction of the semiconductor material is excited by a certain current signal, and at the same time there is a magnetic field in the other direction of the material, then in the third direction of the device A voltage signal will be generated. The present invention is based on the Hall effect principle, as shown in Figure 15, when there is a magnetic field in the vertical direction, it will cause the output of the voltage signal on the Hall detection electrode on the Hall device based on the HEMT in the horizontal current direction , when the magnetic field changes, the voltage signal also changes accordingly, so as to characterize the magnetic field signal; as shown in Figure 16, when there is a magnetic field in the horizontal X and Y directions, it will cause a vertical current direction based on RTD Hall The output of the voltage signal on the Hall detection electrode on the device, when the magnetic field changes, the voltage signal also changes accordingly, so as to realize the magnetic field detection in three dimensions.

本发明所述的磁传感器精度高、灵敏度好,解决了现有磁传感器精度低、灵敏度差的问题,可广泛适用于各种导航系统。The magnetic sensor of the invention has high precision and good sensitivity, solves the problems of low precision and poor sensitivity of the existing magnetic sensor, and can be widely used in various navigation systems.

附图说明 Description of drawings

图1是本发明的结构示意图。Fig. 1 is a structural schematic diagram of the present invention.

图2是本发明第一步中基片的结构示意图。Fig. 2 is a schematic structural view of the substrate in the first step of the present invention.

图3是本发明第三步中步骤1的结构示意图。Fig. 3 is a structural schematic diagram of step 1 in the third step of the present invention.

图4是本发明第三步中步骤2的结构示意图。Fig. 4 is a structural schematic diagram of step 2 in the third step of the present invention.

图5是本发明第三步中步骤4的结构示意图(图5是图4的侧视图)。Fig. 5 is a schematic structural view of step 4 in the third step of the present invention (Fig. 5 is a side view of Fig. 4).

图6是本发明第三步中步骤5的结构示意图。Fig. 6 is a structural schematic diagram of step 5 in the third step of the present invention.

图7是本发明第三步中步骤7的结构示意图。Fig. 7 is a structural schematic diagram of step 7 in the third step of the present invention.

图8是本发明第四步中步骤1的结构示意图。Fig. 8 is a schematic structural diagram of step 1 in the fourth step of the present invention.

图9是本发明第四步中步骤2的结构示意图。Fig. 9 is a schematic structural diagram of step 2 in the fourth step of the present invention.

图10是本发明第四步中步骤3的结构示意图。Fig. 10 is a structural schematic diagram of step 3 in the fourth step of the present invention.

图11是本发明第四步中步骤4和6的结构示意图。Fig. 11 is a structural schematic diagram of steps 4 and 6 in the fourth step of the present invention.

图12是本发明第四步中步骤5的结构示意图。Fig. 12 is a structural schematic diagram of step 5 in the fourth step of the present invention.

图13是本发明第四步中步骤7的结构示意图(图13是图12的侧视图)。Fig. 13 is a schematic structural view of step 7 in the fourth step of the present invention (Fig. 13 is a side view of Fig. 12).

图14是本发明第四步中步骤8的结构示意图。Fig. 14 is a schematic structural diagram of step 8 in the fourth step of the present invention.

图15是霍尔效应的原理示意图。Fig. 15 is a schematic diagram of the principle of the Hall effect.

图16是本发明基于RTD的竖直型电流霍尔器件的工作原理图。Fig. 16 is a working principle diagram of the RTD-based vertical current Hall device of the present invention.

图17是本发明基于HEMT的水平型电流霍尔器件的工作原理图。Fig. 17 is a working principle diagram of the HEMT-based horizontal current Hall device of the present invention.

图中:1-GaAs衬底;2-梯形RTD台面;3-RTD欧姆接触层;4-发射极和集电极总台面;5-隔离绝缘层;6-RTD欧姆接触区;7-RTD空气桥桥墩;8-RTD空气桥桥面;9-HEMT台面;10-HEMT欧姆接触层;11-双凹槽结构;12-肖特基势垒栅;13-HEMT欧姆接触区;14-HEMT外界引线焊盘区;15-RTD外界引线焊盘区;16-HEMT空气桥桥墩;17-HEMT空气桥桥面;18-Si3N4钝化层;19-基于HEMT的水平型电流霍尔器件;20-基于RTD的竖直型电流霍尔器件;21-深槽;22-栅极引线焊盘区;23-引线。In the figure: 1-GaAs substrate; 2-trapezoidal RTD mesa; 3-RTD ohmic contact layer; 4-total mesa of emitter and collector; 5-isolation insulating layer; 6-RTD ohmic contact area; 7-RTD air bridge Bridge pier; 8-RTD air bridge deck; 9-HEMT mesa; 10-HEMT ohmic contact layer; 11-double groove structure; 12-Schottky barrier grid; 13-HEMT ohmic contact area; 14-HEMT external leads Pad area; 15-RTD external lead pad area; 16-HEMT air bridge pier; 17-HEMT air bridge deck; 18-Si 3 N 4 passivation layer; 19-Horizontal current Hall device based on HEMT; 20-RTD-based vertical current Hall device; 21-deep groove; 22-gate lead pad area; 23-lead.

具体实施方式 Detailed ways

十字电流型三轴矢量磁传感器,包括GaAs衬底1、两个基于RTD的竖直型电流霍尔器件20以及一个基于HEMT的水平型电流霍尔器件19;其是由包括如下步骤的制备方法制得的:Cross current type three-axis vector magnetic sensor, comprising GaAs substrate 1, two vertical current Hall devices 20 based on RTD and a horizontal current Hall device 19 based on HEMT; it is a preparation method comprising the following steps Made:

(一)在超真空环境下,应用分子束外延技术在GaAs衬底1上依次生长如下表1所示参数的HEMT薄膜材料、自停止腐蚀层、以及RTD薄膜材料;得到基片;(1) In an ultra-vacuum environment, the HEMT film material, the self-stop corrosion layer, and the RTD film material of the parameters shown in Table 1 are sequentially grown on the GaAs substrate 1 by molecular beam epitaxy; the substrate is obtained;

表1Table 1

Figure BDA0000123484640000091
Figure BDA0000123484640000091

(二)、在基片上涂一层光刻胶,利用光刻、刻蚀技术形成三个梯形RTD台面2;对其中两个梯形RTD台面2进行保护,采用气体SiCl4/SF6为3∶1的干法刻蚀技术对第三个梯形RTD台面2进行腐蚀至HEMT薄膜材料,形成HEMT台面9;从而实现RTD和HEMT的单片集成,形成十字型电流的器件基础;(2), apply a layer of photoresist on the substrate, and use photolithography and etching technology to form three trapezoidal RTD mesa 2; wherein two trapezoidal RTD mesa 2 are protected, using gas SiCl 4 /SF 6 is 3: The dry etching technology of 1 etches the third trapezoidal RTD mesa 2 to the HEMT film material to form the HEMT mesa 9; thereby realizing the monolithic integration of RTD and HEMT, forming the device basis of the cross current;

(三)两个基于RTD的竖直型电流霍尔器件的制备,对两个梯形RTD台面2均进行如下操作:(3) Preparation of two RTD-based vertical current Hall devices, the following operations are performed on the two trapezoidal RTD mesa 2:

步骤1:将RTD薄膜材料的集电极通过引线引到自停止腐蚀层上,在梯形RTD台面上表面的发射极上和自停止腐蚀层上与引自RTD薄膜材料集电极的引线的连接处周围均溅射厚度为350nm的以任意比例混合的金属合金Ni/Au/Ge/Ni/Au,接着对梯形RTD台面上表面的发射极上和自停止腐蚀层上与引自RTD薄膜材料集电极的引线的连接处周围的Ni/Au/Ge/Ni/Au金属合金层均采用淀积和剥离法进行处理,形成RTD欧姆接触层3,然后在460℃下且N2∶H2为80∶20的氮氢环境中退火30s;Step 1: lead the collector of the RTD thin film material to the self-stop corrosion layer through leads, around the junction of the emitter on the upper surface of the trapezoidal RTD table and the self-stop corrosion layer with the leads from the RTD thin film material collector The metal alloy Ni/Au/Ge/Ni/Au mixed in any ratio with an average sputtering thickness of 350nm, and then on the emitter on the upper surface of the trapezoidal RTD mesa and on the self-stop corrosion layer and from the collector of the RTD thin film material The Ni/Au/Ge/Ni/Au metal alloy layers around the connection of the leads are all processed by deposition and lift-off method to form the RTD ohmic contact layer 3, and then at 460°C and N 2 : H 2 ratio of 80:20 Annealed in a nitrogen-hydrogen environment for 30s;

步骤2:在基片上涂一层光刻胶,利用光刻、刻蚀技术形成发射极和集电极总台面4;Step 2: Coating a layer of photoresist on the substrate, using photolithography and etching techniques to form the total mesa 4 of the emitter and collector;

步骤3:将浓度为1013cm-3的B+注入发射极和集电极总台面4使发射极和集电极总台面4与自停止腐蚀层隔离;Step 3: injecting B + with a concentration of 10 13 cm -3 into the total mesa 4 of the emitter and collector to isolate the total mesa 4 of the emitter and collector from the self-stop corrosion layer;

步骤4:在发射极和集电极总台面4的两侧利用等离子淀积台淀积一层Si3N4钝化层,形成隔离绝缘层5;Step 4: Deposit a layer of Si 3 N 4 passivation layer on both sides of the total mesa 4 of the emitter and collector using a plasma deposition platform to form an isolation insulating layer 5;

步骤5:霍尔检测电极的制备:在基片上涂一层光刻胶,利用光刻、刻蚀技术在梯形RTD台面结构的前后面上均开一个小窗口,利用溅射技术溅射一层以任意比例混合的Au/Ge/Ni合金覆盖小窗口,形成RTD欧姆接触区6;使用引线连接技术将RTD欧姆接触区6与自停止腐蚀层连接,使自停止腐蚀层上形成RTD外界引线焊盘区15;Step 5: Preparation of the Hall detection electrode: coat a layer of photoresist on the substrate, use photolithography and etching technology to open a small window on the front and rear surfaces of the trapezoidal RTD mesa structure, and use sputtering technology to sputter a layer Cover the small window with Au/Ge/Ni alloy mixed in any proportion to form RTD ohmic contact area 6; use wire connection technology to connect RTD ohmic contact area 6 to the self-stop corrosion layer, so that RTD external lead welding is formed on the self-stop corrosion layer panel 15;

步骤6:在基片上涂一层光刻胶,利用光刻、刻蚀技术在RTD欧姆接触层3上、隔离绝缘层5上均形成RTD空气桥桥墩7,利用磁控溅射台在RTD空气桥桥墩7上溅射一层厚度为

Figure BDA0000123484640000101
的金属Au;Step 6: Apply a layer of photoresist on the substrate, use photolithography and etching technology to form RTD air bridge piers 7 on the RTD ohmic contact layer 3 and isolation insulating layer 5, and use a magnetron sputtering station to form RTD air bridge piers 7 on the RTD air A layer of sputtering thickness on the bridge pier 7 is
Figure BDA0000123484640000101
metal Au;

步骤7:在基片上涂一层光刻胶,利用光刻、刻蚀技术在RTD欧姆接触层3、隔离绝缘层5上的RTD空气桥桥墩7之间形成RTD空气桥桥面8;得到基于RTD的竖直型电流霍尔器件;Step 7: apply a layer of photoresist on the substrate, and use photolithography and etching technology to form the RTD air bridge bridge deck 8 between the RTD air bridge piers 7 on the RTD ohmic contact layer 3 and the isolation insulating layer 5; RTD vertical current Hall device;

(四)基于HEMT的水平型电流霍尔器件的制备,对HEMT台面9进行如下操作:(4) Preparation of a HEMT-based horizontal current Hall device, the following operations are performed on the HEMT table 9:

步骤1:在基片上涂一层光刻胶,利用光刻、刻蚀技术在HEMT台面9上表面的两端形成两个HEMT欧姆接触层10;对HEMT欧姆接触层10进行等离子去底膜清洗和去氧化层;接着在HEMT欧姆接触层10上蒸发一层厚度为

Figure BDA0000123484640000102
的以任意比例混合的金属合金Au/Ge/Ni,在380~420℃温度下合金化60秒;Step 1: apply a layer of photoresist on the substrate, and use photolithography and etching techniques to form two HEMT ohmic contact layers 10 on the upper surface of the HEMT table 9; perform plasma cleaning on the HEMT ohmic contact layer 10 and remove the oxide layer; then evaporate a layer of thickness on the HEMT ohmic contact layer 10
Figure BDA0000123484640000102
The metal alloy Au/Ge/Ni mixed in any proportion is alloyed at a temperature of 380-420°C for 60 seconds;

步骤2:在HEMT台面9上涂一层光刻胶,利用光刻、刻蚀技术形成位于两个HEMT欧姆接触层10之间的N+槽,继续刻蚀形成栅槽,从而得到双凹槽结构11;Step 2: Coat a layer of photoresist on the HEMT mesa 9, use photolithography and etching techniques to form an N + groove located between the two HEMT ohmic contact layers 10, and continue etching to form a gate groove, thereby obtaining a double groove Structure 11;

步骤3:在双凹槽结构11上利用电子束蒸发一层厚度为

Figure BDA0000123484640000111
的以任意比例混合的金属合金Ti/Pt/Au,形成肖特基势垒栅12;Step 3: Evaporate a layer with a thickness of
Figure BDA0000123484640000111
A metal alloy Ti/Pt/Au mixed in any ratio to form a Schottky barrier gate 12;

步骤4:利用光刻、刻蚀技术在HEMT台面9一端的HEMT欧姆接触层10上刻蚀深槽21,用金属蒸发、引线互联技术把肖特基势垒栅12通过引线23经深槽21与GaAs衬底1连接,使GaAs衬底1上形成栅极引线焊盘区22;Step 4: Etch a deep groove 21 on the HEMT ohmic contact layer 10 at one end of the HEMT mesa 9 using photolithography and etching technology, and use metal evaporation and wire interconnection technology to pass the Schottky barrier gate 12 through the lead 23 through the deep groove 21 Connect to the GaAs substrate 1, so that the gate lead pad area 22 is formed on the GaAs substrate 1;

步骤5:在双凹槽结构11上200~230℃温度下利用PECVD淀积一层厚度为

Figure BDA0000123484640000112
的Si3N4钝化层18从而将肖特基势垒栅12与欧姆接触层10隔离;Step 5: Deposit a layer with a thickness of
Figure BDA0000123484640000112
Si 3 N 4 passivation layer 18 to isolate the Schottky barrier gate 12 from the ohmic contact layer 10;

步骤6:在深槽21内填满光刻胶,利用光刻、腐蚀技术形成欧姆接触层桥面,在刻有深槽21的HEMT欧姆接触层10上蒸发一层厚度为2um的金属Au;Step 6: fill the deep groove 21 with photoresist, use photolithography and corrosion technology to form the bridge surface of the ohmic contact layer, evaporate a layer of metal Au with a thickness of 2um on the HEMT ohmic contact layer 10 engraved with the deep groove 21;

步骤7:霍尔检测电极的制备:在基片上涂一层光刻胶,利用光刻、刻蚀技术在HEMT台面9结构的前后面均开一个霍尔电极小窗口,利用溅射技术溅射一层以任意比例混合的金属合金Au/Ge/Ni覆盖小窗口,形成HEMT欧姆接触区13;使用引线连接技术将HEMT欧姆接触区13与GaAs衬底1连接,使GaAs衬底1上形成HEMT外界引线焊盘区14;Step 7: Preparation of the Hall detection electrode: coat a layer of photoresist on the substrate, use photolithography and etching technology to open a small Hall electrode window on the front and back of the HEMT table 9 structure, and use sputtering technology to sputter A layer of metal alloy Au/Ge/Ni mixed in any ratio covers the small window to form a HEMT ohmic contact region 13; use wire connection technology to connect the HEMT ohmic contact region 13 to the GaAs substrate 1, so that the HEMT is formed on the GaAs substrate 1 External lead pad area 14;

步骤8:在基片上涂一层光刻胶,利用光刻、刻蚀技术在HEMT欧姆接触层10的一侧形成两个HEMT空气桥桥墩16;在基片上涂一层光刻胶,利用光刻、刻蚀技术在两个HEMT空气桥桥墩16与HEMT欧姆接触层10之间形成两个HEMT空气桥桥面17,在HEMT空气桥桥面17上利用磁控溅射台溅射一层厚度为

Figure BDA0000123484640000121
的金属Au,再在HEMT空气桥桥面17上电镀一层厚度为2~5μm的金属Au;Step 8: apply a layer of photoresist on the substrate, and form two HEMT air bridge piers 16 on one side of the HEMT ohmic contact layer 10 using photolithography and etching techniques; Engraving and etching technology forms two HEMT air bridge decks 17 between the two HEMT air bridge piers 16 and the HEMT ohmic contact layer 10, and uses a magnetron sputtering table to sputter a layer of thickness on the HEMT air bridge deck 17 for
Figure BDA0000123484640000121
metal Au, and then electroplate a layer of metal Au with a thickness of 2-5 μm on the HEMT air bridge deck 17;

步骤9:利用腐蚀液去除基片上的光刻胶,形成带具有空气桥结构的基于HEMT的水平型电流霍尔器件;得到十字电流型三轴矢量磁传感器。Step 9: removing the photoresist on the substrate with an etchant, forming a HEMT-based horizontal current Hall device with an air bridge structure; obtaining a cross current type three-axis vector magnetic sensor.

Claims (1)

1.一种十字电流型三轴矢量磁传感器制备方法,所述矢量磁传感器包括GaAs衬底(1)、两个基于RTD的竖直型电流霍尔器件(20)以及一个基于HEMT的水平型电流霍尔器件(19);其特征在于:该矢量磁传感器的制备方法包括如下步骤:1. A method for preparing a cross current type three-axis vector magnetic sensor, the vector magnetic sensor includes a GaAs substrate (1), two RTD-based vertical current Hall devices (20) and a HEMT-based horizontal type A current Hall device (19); it is characterized in that: the preparation method of the vector magnetic sensor comprises the following steps: (一)在超真空环境下,应用分子束外延技术在GaAs衬底(1)上依次生长如下表1所示参数的HEMT薄膜材料、自停止腐蚀层、以及RTD薄膜材料;得到基片;(1) In an ultra-vacuum environment, the HEMT thin film material, self-stop corrosion layer, and RTD thin film material with the parameters shown in Table 1 are sequentially grown on the GaAs substrate (1) by molecular beam epitaxy technology; the substrate is obtained; 表1Table 1
Figure FDA0000381491520000011
Figure FDA0000381491520000011
Figure FDA0000381491520000021
Figure FDA0000381491520000021
(二)、在基片上涂一层光刻胶,利用光刻、刻蚀技术形成三个梯形RTD台面(2);对其中两个梯形RTD台面(2)进行保护,采用气体SiCl4/SF6为3:1的干法刻蚀技术对第三个梯形RTD台面(2)进行腐蚀至HEMT薄膜材料,形成HEMT台面(9);从而实现RTD和HEMT的单片集成,形成十字型电流的器件基础;(2) Apply a layer of photoresist on the substrate, and use photolithography and etching technology to form three trapezoidal RTD mesas (2); protect two of the trapezoidal RTD mesas (2), using gas SiCl 4 /SF 6 is 3:1 dry etching technology to etch the third trapezoidal RTD mesa (2) to the HEMT film material to form the HEMT mesa (9); thus realizing the monolithic integration of RTD and HEMT to form a cross-shaped current Device basis; (三)两个基于RTD的竖直型电流霍尔器件的制备,对两个梯形RTD台面(2)均进行如下操作:(3) Preparation of two RTD-based vertical current Hall devices, the following operations are performed on the two trapezoidal RTD mesa (2): 步骤1:将RTD薄膜材料的集电极通过引线引到自停止腐蚀层上,在梯形RTD台面上表面的发射极上和自停止腐蚀层上均与引自RTD薄膜材料集电极的引线的连接处周围溅射厚度为350nm的以任意比例混合的金属合金Ni/Au/Ge/Ni/Au,接着对梯形RTD台面上表面的发射极上和自停止腐蚀层上与引自RTD薄膜材料集电极的引线的连接处周围的Ni/Au/Ge/Ni/Au金属合金层均采用淀积和剥离法进行处理,形成RTD欧姆接触层(3),然后在460℃下且N2:H2为80:20的氮氢环境中退火30s;Step 1: Lead the collector of the RTD thin film material to the self-stop corrosion layer through a lead wire, and connect the lead wires that are drawn from the RTD thin film material collector on the emitter on the upper surface of the trapezoidal RTD table and on the self-stop corrosion layer The metal alloy Ni/Au/Ge/Ni/Au mixed in any ratio with a thickness of 350nm is sputtered around, and then on the emitter on the upper surface of the trapezoidal RTD mesa and on the self-stopping corrosion layer and from the collector of the RTD thin film material The Ni/Au/Ge/Ni/Au metal alloy layer around the connection of the lead is treated by deposition and lift-off method to form the RTD ohmic contact layer (3), and then at 460°C and N 2 :H 2 is 80 : Annealing 30s in the nitrogen-hydrogen environment of 20; 步骤2:在基片上涂一层光刻胶,利用光刻、刻蚀技术形成发射极和集电极总台面(4);Step 2: Coating a layer of photoresist on the substrate, using photolithography and etching techniques to form the total mesa of the emitter and collector (4); 步骤3:将浓度为1013cm-3的B+注入发射极和集电极总台面(4)使发射极和集电极总台面(4)与自停止腐蚀层隔离;Step 3: Inject B + with a concentration of 10 13 cm -3 into the emitter and collector total mesa (4) to isolate the emitter and collector total mesa (4) from the self-stop corrosion layer; 步骤4:在发射极和集电极总台面(4)的两侧利用等离子淀积台淀积一层Si3N4钝化层,形成隔离绝缘层(5);Step 4: Deposit a Si 3 N 4 passivation layer on both sides of the total mesa (4) of the emitter and collector using a plasma deposition platform to form an isolation insulating layer (5); 步骤5:霍尔检测电极的制备:在基片上涂一层光刻胶,利用光刻、刻蚀技术在梯形RTD台面结构的前后面上均开一个小窗口,利用溅射技术溅射一层以任意比例混合的Au/Ge/Ni合金覆盖小窗口,形成RTD欧姆接触区(6);使用引线连接技术将RTD欧姆接触区(6)与自停止腐蚀层连接,使自停止腐蚀层上形成RTD外界引线焊盘区(15);Step 5: Preparation of the Hall detection electrode: coat a layer of photoresist on the substrate, use photolithography and etching technology to open a small window on the front and rear surfaces of the trapezoidal RTD mesa structure, and use sputtering technology to sputter a layer The small window is covered with Au/Ge/Ni alloy mixed in any proportion to form the RTD ohmic contact area (6); the RTD ohmic contact area (6) is connected to the self-stop corrosion layer by wire connection technology, so that the self-stop corrosion layer is formed RTD external lead pad area (15); 步骤6:在基片上涂一层光刻胶,利用光刻、刻蚀技术在RTD欧姆接触层(3)、隔离绝缘层(5)上均形成RTD空气桥桥墩(7),利用磁控溅射台在RTD空气桥桥墩(7)上溅射一层厚度为的金属Au;Step 6: Coat a layer of photoresist on the substrate, use photolithography and etching techniques to form RTD air bridge piers (7) on the RTD ohmic contact layer (3) and isolation insulating layer (5), and use magnetron sputtering The injection platform sputters a layer of thickness on the RTD air bridge pier (7) metal Au; 步骤7:在基片上涂一层光刻胶,利用光刻、刻蚀技术在RTD欧姆接触层(3)、隔离绝缘层(5)上的RTD空气桥桥墩(7)之间形成RTD空气桥桥面(8);得到基于RTD的竖直型电流霍尔器件;Step 7: Apply a layer of photoresist on the substrate, and use photolithography and etching techniques to form an RTD air bridge between the RTD ohmic contact layer (3) and the RTD air bridge pier (7) on the isolation insulating layer (5) Bridge deck (8); obtain the vertical current Hall device based on RTD; (四)基于HEMT的水平型电流霍尔器件的制备,对HEMT台面(9)进行如下操作:(4) Preparation of HEMT-based horizontal current Hall device, perform the following operations on the HEMT table (9): 步骤1:在基片上涂一层光刻胶,利用光刻、刻蚀技术在HEMT台面(9)上表面的两端形成两个HEMT欧姆接触层(10);对HEMT欧姆接触层(10)进行等离子去底膜清洗和去氧化层;接着在HEMT欧姆接触层(10)上蒸发一层厚度为
Figure FDA0000381491520000041
的以任意比例混合的金属合金Au/Ge/Ni,在380~420℃温度下合金化60秒;
Step 1: Coating a layer of photoresist on the substrate, using photolithography and etching techniques to form two HEMT ohmic contact layers (10) on the upper surface of the HEMT table (9); for the HEMT ohmic contact layer (10) Carry out plasma cleaning and de-oxidation layer; then evaporate a layer thickness on the HEMT ohmic contact layer (10)
Figure FDA0000381491520000041
The metal alloy Au/Ge/Ni mixed in any proportion is alloyed at a temperature of 380-420°C for 60 seconds;
步骤2:在HEMT台面(9)上涂一层光刻胶,利用光刻、刻蚀技术形成位于两个HEMT欧姆接触层(10)之间的N+槽,继续刻蚀形成栅槽,从而得到双凹槽结构(11);Step 2: Coat a layer of photoresist on the HEMT mesa (9), use photolithography and etching techniques to form an N + groove located between the two HEMT ohmic contact layers (10), and continue etching to form a gate groove, thereby Get the double-groove structure (11); 步骤3:在双凹槽结构(11)上利用电子束蒸发一层厚度为
Figure FDA0000381491520000043
的以任意比例混合的金属合金Ti/Pt/Au,形成肖特基势垒栅(12);
Step 3: Evaporate a layer with a thickness of
Figure FDA0000381491520000043
A metal alloy Ti/Pt/Au mixed in any ratio to form a Schottky barrier (12);
步骤4:利用光刻、刻蚀技术在HEMT台面(9)一端的HEMT欧姆接触层(10)上刻蚀深槽(21),用金属蒸发、引线互联技术把肖特基势垒栅(12)通过引线(23)经深槽(21)与GaAs衬底(1)连接,使GaAs衬底(1)上形成栅极引线焊盘区(22);Step 4: Etch a deep groove (21) on the HEMT ohmic contact layer (10) at one end of the HEMT mesa (9) using photolithography and etching technology, and use metal evaporation and wire interconnection technology to place the Schottky barrier gate (12 ) is connected to the GaAs substrate (1) through the lead (23) through the deep groove (21), so that the gate lead pad area (22) is formed on the GaAs substrate (1); 步骤5:在双凹槽结构(11)上200~230℃温度下利用PECVD淀积一层厚度为
Figure FDA0000381491520000042
的Si3N4钝化层(18)从而将肖特基势垒栅(12)与欧姆接触层(10)隔离;
Step 5: Deposit a layer with a thickness of
Figure FDA0000381491520000042
Si 3 N 4 passivation layer (18) to isolate the Schottky barrier (12) from the ohmic contact layer (10);
步骤6:在深槽(21)内填满光刻胶,利用光刻、腐蚀技术形成欧姆接触层桥面,在刻有深槽(21)的HEMT欧姆接触层(10)上蒸发一层厚度为2um的金属Au;Step 6: Fill the deep groove (21) with photoresist, use photolithography and etching technology to form the bridge surface of the ohmic contact layer, and evaporate a layer thickness on the HEMT ohmic contact layer (10) with the deep groove (21) 2um metal Au; 步骤7:霍尔检测电极的制备:在基片上涂一层光刻胶,利用光刻、刻蚀技术在HEMT台面(9)结构的前后面均开一个霍尔电极小窗口,利用溅射技术溅射一层以任意比例混合的金属合金Au/Ge/Ni覆盖小窗口,形成HEMT欧姆接触区(13);使用引线连接技术将HEMT欧姆接触区(13)与GaAs衬底(1)连接,使GaAs衬底(1)上形成HEMT外界引线焊盘区(14);Step 7: Preparation of the Hall detection electrode: Coat a layer of photoresist on the substrate, use photolithography and etching technology to open a small Hall electrode window on the front and back of the HEMT table (9) structure, use sputtering technology Sputter a layer of metal alloy Au/Ge/Ni mixed in any proportion to cover the small window to form a HEMT ohmic contact area (13); use wire connection technology to connect the HEMT ohmic contact area (13) to the GaAs substrate (1), forming a HEMT external lead pad area (14) on the GaAs substrate (1); 步骤8:在基片上涂一层光刻胶,利用光刻、刻蚀技术在HEMT欧姆接触层(10)的一侧形成两个HEMT空气桥桥墩(16);在基片上涂一层光刻胶,利用光刻、刻蚀技术在两个HEMT空气桥桥墩(16)与HEMT欧姆接触层(10)之间形成两个HEMT空气桥桥面(17),在HEMT空气桥桥面(17)上利用磁控溅射台溅射一层厚度为
Figure FDA0000381491520000051
的金属Au,再在HEMT空气桥桥面(17)上电镀一层厚度为2~5μm的金属Au;
Step 8: Apply a layer of photoresist on the substrate, and use photolithography and etching technology to form two HEMT air bridge piers (16) on one side of the HEMT ohmic contact layer (10); apply a layer of photoresist on the substrate Glue, using photolithography and etching technology to form two HEMT air bridge decks (17) between the two HEMT air bridge piers (16) and the HEMT ohmic contact layer (10), on the HEMT air bridge deck (17) Sputter a layer with a thickness of
Figure FDA0000381491520000051
metal Au, and then electroplate a layer of metal Au with a thickness of 2-5 μm on the HEMT air bridge deck (17);
步骤9:利用腐蚀液去除基片上的光刻胶,形成带具有空气桥结构的基于HEMT的水平型电流霍尔器件;得到十字电流型三轴矢量磁传感器。Step 9: removing the photoresist on the substrate with an etchant, forming a HEMT-based horizontal current Hall device with an air bridge structure; obtaining a cross current type three-axis vector magnetic sensor.
CN201110434180.0A 2011-12-22 2011-12-22 Cross current type three-axis vector magnetic sensor Active CN102520376B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110434180.0A CN102520376B (en) 2011-12-22 2011-12-22 Cross current type three-axis vector magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110434180.0A CN102520376B (en) 2011-12-22 2011-12-22 Cross current type three-axis vector magnetic sensor

Publications (2)

Publication Number Publication Date
CN102520376A CN102520376A (en) 2012-06-27
CN102520376B true CN102520376B (en) 2014-01-15

Family

ID=46291361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110434180.0A Active CN102520376B (en) 2011-12-22 2011-12-22 Cross current type three-axis vector magnetic sensor

Country Status (1)

Country Link
CN (1) CN102520376B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103341235A (en) * 2013-07-21 2013-10-09 马铁明 Hall electromagnetic pulse therapeutic device
CN111308399B (en) * 2020-02-03 2021-06-01 电子科技大学 A COMSOL Multiphysics-based Sensitivity Calculation Method for 3D Cross-Type Hall Device
CN114371431B (en) * 2021-12-31 2025-01-21 歌尔微电子股份有限公司 Magnetic field sensor, manufacturing process and magnetic field detection method thereof
DE102023002342A1 (en) 2023-06-09 2024-12-12 Tdk-Micronas Gmbh Vertical III-V Hall sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100492105B1 (en) * 2002-12-24 2005-06-01 삼성전자주식회사 Vertical MEMS gyroscope by horizontal driving and it's fabrication method
JP4265630B2 (en) * 2006-08-04 2009-05-20 セイコーエプソン株式会社 MEMS switch, voltage divider circuit, gain adjustment circuit, attenuator, and method of manufacturing MEMS switch
CN102141576B (en) * 2010-12-28 2012-06-06 中北大学 High-gravity (g) acceleration sensor in plane of micro-electromechanical system (MEMS) based on resonance tunnelling structure (RTS)
CN102259827B (en) * 2011-06-25 2014-06-25 中北大学 Method for encapsulating MEMS (micro electro mechanical system) high-range acceleration sensor

Also Published As

Publication number Publication date
CN102520376A (en) 2012-06-27

Similar Documents

Publication Publication Date Title
CN108321291B (en) Hall sensor with local groove structure of two-dimensional electron gas channel barrier layer and its manufacturing method
WO2017088560A1 (en) Sensor, preparation method and multi-sensor system
CN107946358A (en) An AlGaN/GaN heterojunction HEMT device compatible with Si-CMOS process and its manufacturing method
CN101777601B (en) Method for manufacturing InAs/GaSb superlattice infrared photoelectric detector
CN102520376B (en) Cross current type three-axis vector magnetic sensor
CN102280476B (en) Pseudomorphic high electron mobility transistor and manufacturing method thereof
CN110890457B (en) High-temperature Hall sensor integrating back vertical type and front horizontal type three-dimensional magnetic field detection functions and manufacturing method thereof
WO2018205692A1 (en) Thin-film transistor and manufacturing method therefor, array substrate, and display device
CN102201484B (en) AlGaN ultraviolet detector with secondary mesa wrapping electrode and manufacturing method thereof
CN103985747A (en) GaAs/AlGaAs semiconductor heterojunction structure and its manufacturing method
CN117080255B (en) GaN HEMT transistor with impact energy release capability and manufacturing method thereof
TWI470792B (en) Heterostructure field effect transistor improved structure and process method thereof
CN103928524B (en) Carborundum UMOSFET devices and preparation method with N-type drift layer table top
CN103839784A (en) Ion implantation mask method and silicon carbide Schottky diode manufacturing method
TWI488303B (en) Enhancement mode gallium nitride based transistor device
CN112768512A (en) AlGaN-based double-channel Schottky diode based on groove anode structure and preparation method
CN102401840A (en) Si based HEMT embedded micro accelerator and production method thereof
CN111048618A (en) Schottky barrier diode temperature sensor integrated by interdigital structure and manufacturing method thereof
US20220223429A1 (en) N-polar iii-n semiconductor device structures
JP2023554559A (en) Group III nitride transistor structure capable of reducing leakage current and method for manufacturing the same
CN104576832B (en) Blocking impurity band detector manufacturing method based on SOI
CN109659362A (en) A kind of structure and preparation method thereof based on the low ohm contact resistance of gallium nitride power HEMT structure
CN102263166B (en) Method for improving performances of AlGaN-based detector by using nano particles
CN202134542U (en) AlGaN UV detector with secondary mesa-wrapped electrodes
JPWO2013069729A1 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant