CN102540115A - Magnetic resonance imaging method and system - Google Patents
Magnetic resonance imaging method and system Download PDFInfo
- Publication number
- CN102540115A CN102540115A CN2011104565515A CN201110456551A CN102540115A CN 102540115 A CN102540115 A CN 102540115A CN 2011104565515 A CN2011104565515 A CN 2011104565515A CN 201110456551 A CN201110456551 A CN 201110456551A CN 102540115 A CN102540115 A CN 102540115A
- Authority
- CN
- China
- Prior art keywords
- data
- navigation data
- magnetic resonance
- dynamic image
- image data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 238000002595 magnetic resonance imaging Methods 0.000 title claims abstract description 45
- 238000005070 sampling Methods 0.000 claims abstract description 67
- 238000003384 imaging method Methods 0.000 claims abstract description 40
- 230000001131 transforming effect Effects 0.000 claims 1
- 238000013480 data collection Methods 0.000 description 24
- 230000002123 temporal effect Effects 0.000 description 15
- 230000008569 process Effects 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000012307 MRI technique Methods 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
【技术领域】 【Technical field】
本发明涉及成像技术,特别是涉及一种磁共振成像方法及系统。The invention relates to imaging technology, in particular to a magnetic resonance imaging method and system.
【背景技术】 【Background technique】
磁共振成像技术具备良好的软组织分辨力、可多方位多参数地进行成像且无射线辐射等众多优势而在临床诊断中发挥着重要的作用。但是由于磁共振成像技术的限制,在实际的成像过程中通常需要耗费较长的扫描时间,例如,获取一幅自旋回波图像大约需要花费15~30秒的时间。较慢的成像速度使得磁共振成像技术在动态成像中图像的时间分辨率受到限制,还将导致图像中产生严重的运动伪影,严重降低图像质量,进而限制了磁共振成像技术在心脏、冠状动脉等运动器官和神经功能影像等领域的应用。Magnetic resonance imaging technology plays an important role in clinical diagnosis because of its good soft tissue resolution, multi-directional and multi-parameter imaging and no radiation radiation. However, due to the limitation of the magnetic resonance imaging technique, a long scanning time is usually required in the actual imaging process, for example, it takes about 15-30 seconds to acquire a spin echo image. The slow imaging speed limits the time resolution of images in the dynamic imaging of magnetic resonance imaging, and will also cause serious motion artifacts in the images, seriously reducing the image quality, which in turn limits the application of magnetic resonance imaging in the heart, coronary Applications in areas such as arteries and other moving organs and neurological imaging.
基于部分可分离函数理论(Partially Separable Functions,简称PSF)的磁共振成像方法是针对运动物体进行稀疏采样成像,因此可用于实现磁共振成像技术中的动态成像,应用于心脏动态成像和灌注成像中。The magnetic resonance imaging method based on Partially Separable Functions (PSF for short) is to perform sparse sampling imaging on moving objects, so it can be used to realize dynamic imaging in magnetic resonance imaging technology, and is applied to cardiac dynamic imaging and perfusion imaging. .
然而,在基于部分可分离函数理论的磁共振成像方法中由于只能采集到K空间的少量几条低频线,使得采集得到的导航数据所能够覆盖的空间-时间频率联合域中的空间频率成分较少,严重地限制了捕捉时空信号变化的能力,导致图像不能够准确地反映成像对象运动的真实情况。However, in the magnetic resonance imaging method based on partially separable function theory, only a few low-frequency lines in K space can be collected, so that the spatial frequency components in the space-time frequency joint domain that the acquired navigation data can cover Less, severely restricts the ability to capture changes in spatio-temporal signals, resulting in images that cannot accurately reflect the real situation of the imaging object's motion.
【发明内容】 【Content of invention】
基于此,有必要提供一种能准确地反映成像对象运动的真实情况的磁共振成像方法。Based on this, it is necessary to provide a magnetic resonance imaging method that can accurately reflect the real situation of the motion of the imaging object.
此外,还有必要提供一种能准确地反映成像对象运动的真实情况的磁共振成像系统。In addition, it is also necessary to provide a magnetic resonance imaging system that can accurately reflect the real situation of the motion of the imaging object.
一种磁共振成像方法,包括如下步骤:A magnetic resonance imaging method, comprising the steps of:
对动态成像对象进行稀疏采样得到动态图像数据和导航数据,所述导航数据是通过径向采集得到的;Sparsely sampling the dynamic imaging object to obtain dynamic image data and navigation data, the navigation data is obtained through radial acquisition;
通过所述动态图像数据和导航数据进行插值恢复得到信号数据;performing interpolation recovery through the dynamic image data and navigation data to obtain signal data;
对所述信号数据进行傅里叶变换生成磁共振图像。performing Fourier transform on the signal data to generate a magnetic resonance image.
优选地,所述对动态成像对象进行稀疏采样得到动态图像数据和导航数据的步骤为:Preferably, the step of performing sparse sampling on the dynamic imaging object to obtain dynamic image data and navigation data is:
分别按照笛卡尔采样轨迹采集动态图像数据,按照径向采样轨迹采集导航数据。The dynamic image data is collected according to the Cartesian sampling trajectory, and the navigation data is collected according to the radial sampling trajectory.
优选地,所述动态图像数据的采集和所述导航数据的采集是交织进行的。Preferably, the acquisition of the dynamic image data and the acquisition of the navigation data are interleaved.
优选地,所述对动态成像对象进行稀疏采样得到动态图像数据和导航数据的步骤为:Preferably, the step of performing sparse sampling on the dynamic imaging object to obtain dynamic image data and navigation data is:
按照预设的时间间隔交织进行动态图像数据和导航数据的采集。The collection of dynamic image data and navigation data is interleaved according to preset time intervals.
优选地,所述对动态成像对象进行稀疏采样得到动态图像数据和导航数据的步骤包括:Preferably, the step of performing sparse sampling on dynamic imaging objects to obtain dynamic image data and navigation data includes:
在奇数时刻采集动态图像回波信号得到动态图像数据;Collect dynamic image echo signals at odd times to obtain dynamic image data;
在偶数时刻按照径向采样轨迹采集导航数据回波信号得到导航数据。The navigation data is obtained by collecting the echo signals of the navigation data according to the radial sampling trajectory at even times.
一种磁共振成像系统,其特征在于,包括:A magnetic resonance imaging system, characterized in that it comprises:
数据采集模块,用于对动态成像对象进行稀疏采样得到动态图像数据和导航数据,所述导航数据是通过径向采集得到的;The data collection module is used to perform sparse sampling on the dynamic imaging object to obtain dynamic image data and navigation data, and the navigation data is obtained through radial collection;
重建模块,用于通过所述动态图像数据和导航数据进行基于部分可分离函数模型重建得到信号数据;A reconstruction module, used to obtain signal data by reconstructing the dynamic image data and navigation data based on a partially separable function model;
图像生成模块,用于对所述信号数据进行傅里叶变换生成磁共振图像。An image generating module, configured to perform Fourier transform on the signal data to generate a magnetic resonance image.
优选地,所述数据采集模块还用于分别按照笛卡尔采样轨迹采集动态图像数据,按照径向采样轨迹采集导航数据。Preferably, the data collection module is further configured to collect dynamic image data according to Cartesian sampling trajectories, and collect navigation data according to radial sampling trajectories.
优选地,所述数据采集模块中动态图像数据的采集和所述导航数据的采集是交织进行的。Preferably, the collection of dynamic image data and the collection of navigation data in the data collection module are interleaved.
优选地,所述数据采集模块还用于按照预设的时间间隔交织进行动态图像数据和导航数据的采集。Preferably, the data collection module is also used to interleave the collection of dynamic image data and navigation data at preset time intervals.
优选地,所述数据采集模块包括:Preferably, the data collection module includes:
图像数据采集单元,用于在奇数时刻采集动态图像回波信号得到动态图像数据;The image data acquisition unit is used to collect dynamic image echo signals at odd times to obtain dynamic image data;
导航数据采集单元,用于在偶数时刻按照径向采样轨迹采集导航数据回波信号得到导航数据。The navigation data collection unit is used to collect navigation data echo signals according to radial sampling trajectories at even times to obtain navigation data.
上述磁共振成像方法及系统,通过在动态成像对象中进行径向采集得到导航数据,使得采集的每一导航数据均能够从低频覆盖到高频,进而提高采集得到的导航数据所能覆盖的空间-时间频率联合域中空间频率成分,大大提高了时空信号变化的捕捉能力,准确地反映成像对象运动的真实情况。The above-mentioned magnetic resonance imaging method and system obtain navigation data through radial acquisition in the dynamic imaging object, so that each navigation data collected can cover from low frequency to high frequency, thereby increasing the space covered by the collected navigation data. - Spatial frequency components in the time-frequency joint domain greatly improve the ability to capture changes in spatio-temporal signals and accurately reflect the real movement of the imaging object.
【附图说明】 【Description of drawings】
图1为一个实施例中磁共振成像方法的流程图;Fig. 1 is the flowchart of the magnetic resonance imaging method in an embodiment;
图2为一个实施例中稀疏采样的示意图;Fig. 2 is a schematic diagram of sparse sampling in an embodiment;
图3为图1中对动态成像对象进行稀疏采样得到动态图像数据和导航数据的方法流程图;Fig. 3 is the flow chart of the method for obtaining dynamic image data and navigation data by sparsely sampling the dynamic imaging object in Fig. 1;
图4为一个实施例中稀疏采样的序列图;Fig. 4 is a sequence diagram of sparse sampling in an embodiment;
图5为一个实施例中磁共振成像系统的结构示意图;Fig. 5 is a schematic structural diagram of a magnetic resonance imaging system in an embodiment;
图6为图5中数据采集模块的结构示意图;Fig. 6 is a schematic structural diagram of the data acquisition module in Fig. 5;
图7为一个实施例中水模的理想图像;Fig. 7 is the ideal image of water mold in an embodiment;
图8为另一个实施例中水模的理想图像;Fig. 8 is the ideal image of water mold in another embodiment;
图9为另一个实施例中水模的理想图像;Fig. 9 is the ideal image of water mold in another embodiment;
图10为另一个实施例中水模的理想图像;Fig. 10 is the ideal image of water mold in another embodiment;
图11为一个实施例中的理想待重建图像;Figure 11 is an ideal image to be reconstructed in one embodiment;
图12为本发明的磁共振成像方法重建得到的磁共振图像;Fig. 12 is the magnetic resonance image reconstructed by the magnetic resonance imaging method of the present invention;
图13为传统的磁共振成像方法重建得到的磁共振图像;Fig. 13 is the magnetic resonance image reconstructed by the traditional magnetic resonance imaging method;
图14为一个实施例中在体实验中本发明的磁共振成像方法重建得到的磁共振图像;Fig. 14 is a magnetic resonance image reconstructed by the magnetic resonance imaging method of the present invention in an in vivo experiment in an embodiment;
图15为另一个实施例中在体实验中本发明的磁共振成像方法重建得到的磁共振图像;Fig. 15 is a magnetic resonance image reconstructed by the magnetic resonance imaging method of the present invention in an in vivo experiment in another embodiment;
图16为传统的磁共振成像方法重建得到的磁共振图像;Fig. 16 is the magnetic resonance image reconstructed by the traditional magnetic resonance imaging method;
图17为传统的磁共振成像方法重建得到的磁共振图像;FIG. 17 is a magnetic resonance image reconstructed by a traditional magnetic resonance imaging method;
图18为重建图像的信噪比对比示意图。Fig. 18 is a schematic diagram of the SNR comparison of the reconstructed image.
【具体实施方式】 【Detailed ways】
在一个实施例中,如图1所示,一种磁共振成像方法,包括如下步骤:In one embodiment, as shown in Figure 1, a kind of magnetic resonance imaging method, comprises the steps:
步骤S110,对动态成像对象进行稀疏采样得到动态图像数据和导航数据,该导航数据是通过径向采集得到的。In step S110, the dynamic imaging object is sparsely sampled to obtain dynamic image data and navigation data, and the navigation data is obtained through radial acquisition.
本实施例中,为实现磁共振中的动态成像,对动态成像对象进行稀疏采样得到少量的图像数据,进而根据采集得到的少量图像数据进重建即可,这将使得采集时间大幅减少。通过稀疏采样所得到的图像数据包括了动态图像数据和导航数据,具体的,高空间分辨率低时间分辨率的动态图像数据和低空间分辨率高时间分辨率的导航数据是两个互补的数据集,在采样过程中,需要采集的数据量是随着物理维数的增加而指数增长的,这将会造成空间分辨率和时间分辨率之间的矛盾,在传统的稀疏采样过程中若获取得高空间分辨率的磁共振图像,则需要牺牲磁共振图像的时间分辨率;若提高时间分辨率,则磁共振图像的空间分辨率将会降低,时间分辨率和空间分辨率之间不可能同时达到高分辨率,为了解决这一矛盾,通过在动态成像对象进行径向采集得到导航数据。In this embodiment, in order to realize dynamic imaging in magnetic resonance, a small amount of image data is obtained by sparsely sampling the dynamic imaging object, and then reconstruction is performed based on the small amount of collected image data, which will greatly reduce the acquisition time. The image data obtained by sparse sampling includes dynamic image data and navigation data. Specifically, dynamic image data with high spatial resolution and low temporal resolution and navigation data with low spatial resolution and high temporal resolution are two complementary data. In the sampling process, the amount of data to be collected increases exponentially with the increase of the physical dimension, which will cause a contradiction between the spatial resolution and the temporal resolution. In the traditional sparse sampling process, if the To obtain an MRI image with high spatial resolution, the time resolution of the MRI image needs to be sacrificed; if the time resolution is increased, the spatial resolution of the MRI image will be reduced, and it is impossible to achieve a balance between the time resolution and the spatial resolution. At the same time, high resolution is achieved. In order to solve this contradiction, the navigation data is obtained by radially collecting dynamic imaging objects.
径向采集是通过辐射状遍历K空间的采样方式,通过这一采样方式能够使采样得到的导航数据线从低频覆盖到高频,以提高导航数据所能覆盖的空间-时间频率联合域中的空间频率成分,进而提高磁共振图像的分辨率。Radial acquisition is a sampling method that traverses the K space radially. Through this sampling method, the sampled navigation data lines can be covered from low frequency to high frequency, so as to improve the spatial-time frequency joint domain that navigation data can cover. Spatial frequency components, thereby improving the resolution of magnetic resonance images.
在一个实施例中,上述步骤S110的具体过程为:分别按照笛卡尔采样轨迹采集动态图像数据,按照径向采样轨迹采集导航数据。In one embodiment, the specific process of the above step S110 is: collecting dynamic image data according to a Cartesian sampling trajectory, and collecting navigation data according to a radial sampling trajectory.
本实施例中,在笛卡尔采样轨迹中将K空间视为图像的傅里叶变换域空间,沿列方向,即竖直方向等间隔地划分多个水平线,其中每一条水平线就是K空间的相位编码线。按照笛卡尔采样轨迹采集动态图像数据,按照径向采样轨迹采样导航数据,可以保证从运动的采样对象采集得到更为准确的时空信息,进而保证重建图像的准确性。In this embodiment, in the Cartesian sampling trajectory, the K space is regarded as the Fourier transform domain space of the image, and a plurality of horizontal lines are equally spaced along the column direction, that is, the vertical direction, wherein each horizontal line is the phase of the K space coded line. Collecting dynamic image data according to the Cartesian sampling trajectory and sampling navigation data according to the radial sampling trajectory can ensure more accurate spatio-temporal information collected from moving sampling objects, thereby ensuring the accuracy of reconstructed images.
在一个实施例中,动态图像数据的采集和导航数据的采集是交织进行的。具体的,按照预设的时间间隔交织进行动态图像数据和导航数据的采集。In one embodiment, the acquisition of dynamic image data and the acquisition of navigation data are interleaved. Specifically, the collection of dynamic image data and navigation data is interleaved according to preset time intervals.
本实施例中,在实际的数据采集过程中同时进行动态图像数据和导航数据的采集是较为困难的,为使上述数据采集过程能易于实施,可在交织采集的模式下进行动态图像数据和导航数据的采集。在时间维度上,可按照预设的时间间隔轮流进行动态图像数据和导航数据的采集。一实施例中,如图2所示,可在一射频重复时间通过笛卡尔采样轨迹采集动态图像数据,在下一射频重复时间通过径向采样轨迹采集导航数据,实现动态图像数据和导航数据的交互采集。In this embodiment, it is relatively difficult to simultaneously collect dynamic image data and navigation data during the actual data collection process. data collection. In the time dimension, dynamic image data and navigation data can be collected in turn according to preset time intervals. In one embodiment, as shown in Figure 2, the dynamic image data can be collected through the Cartesian sampling trajectory at one radio frequency repetition time, and the navigation data can be collected through the radial sampling trajectory at the next radio frequency repetition time, so as to realize the interaction between the dynamic image data and the navigation data collection.
通过动态图像数据和导航数据之间进行的交织采集,可同时获取到运动的采样对象的时空信息,保证动态图像数据和导航数据有相同且较小的射频重复时间和回波时间,减少梯度快速切换伴随的涡流对图像重建的影响。Through the interleaving acquisition between dynamic image data and navigation data, the temporal and spatial information of moving sampling objects can be obtained at the same time, ensuring that the dynamic image data and navigation data have the same and smaller RF repetition time and echo time, reducing the rapid gradient Toggle the effect of accompanying eddy currents on image reconstruction.
在一个实施例中,如图3所示,为实现动态图像数据和导航数据的交织采集,上述步骤S110的具体过程包括:In one embodiment, as shown in FIG. 3, in order to realize the interlaced collection of dynamic image data and navigation data, the specific process of the above step S110 includes:
步骤S111,在奇数时刻采集动态图像回波信号得到动态图像数据。Step S111 , collecting dynamic image echo signals at odd-numbered moments to obtain dynamic image data.
本实施例中,如图4所示,向采样对象发射序列之后在奇数时刻采集反射的动态图像回波信号以得到动态图像数据,在偶数时刻采集反射的导航回波信号。In this embodiment, as shown in FIG. 4 , after transmitting the sequence to the sampling object, the reflected dynamic image echo signals are collected at odd times to obtain dynamic image data, and the reflected navigation echo signals are collected at even times.
步骤S113,在偶数时刻按照径向采样轨迹采集导航数据回波信号得到导航数据。Step S113, collecting navigation data echo signals according to the radial sampling trajectory at even times to obtain navigation data.
步骤S130,通过动态图像数据和导航数据进行基于部分可分离函数模型重建得到信号数据。In step S130, signal data is obtained by reconstructing the dynamic image data and the navigation data based on a partially separable function model.
本实施例中,在部分可分离函数模型中,认为图像函数的空间变化和时间变化是L阶可分离的,利用部分可分离函数的性质和傅里叶变换的线性特性,可将信号数据S(k,t)表示为空间基函数和时间基函数这两个独立变量函数之和,即如以下公式所示:In this embodiment, in the partially separable function model, it is considered that the spatial variation and temporal variation of the image function are L-order separable. Using the properties of the partially separable function and the linear characteristics of Fourier transform, the signal data S (k, t) is expressed as a spatial basis function and time basis functions The sum of the functions of these two independent variables, that is, as shown in the following formula:
通过上述公式可将信号在时间空间联合维度中的复杂运动转化为空间中每一点的信号随时间变化的较为简单的数学问题,只需要准确预知频率成分参数L、空间基函数和时间基函数即可实现高时间高空间覆盖密度的基于部分可分离函数模型重建,得到完全的信号数据。Through the above formula, the complex motion of the signal in the joint dimension of time and space can be transformed into a relatively simple mathematical problem in which the signal at each point in the space changes with time. It only needs to accurately predict the frequency component parameter L and the spatial basis function and time basis functions The partial separable function model reconstruction based on high temporal and high spatial coverage density can be realized, and complete signal data can be obtained.
具体的,动态图像数据和导航数据在采集过程中满足如下三个条件:(1)脉冲重复时间TR必须满足导航数据的时间奈奎斯特速率;(2)相位编码方向的采样间隔Δky必须满足动态图像数据的空间奈奎斯特速率;(3)从动态图像数据获取的采样帧数N必须大于或者等于阶数L。将信号数据从最优化问题求解方面可描述为:Specifically, the dynamic image data and navigation data meet the following three conditions during the acquisition process: (1) The pulse repetition time T R must meet the time Nyquist rate of the navigation data; (2) The sampling interval Δky in the phase encoding direction The spatial Nyquist rate of the dynamic image data must be met; (3) The sampling frame number N obtained from the dynamic image data must be greater than or equal to the order L. The signal data can be described in terms of solving the optimization problem as:
为求解上述问题,将采集得到的导航数据抽取成导航数据矩阵:In order to solve the above problems, the collected navigation data is extracted into a navigation data matrix:
然后对导航矩阵C进行奇异值分解得到其中,{λl}为C的按降序排列的奇异值,{μl}和{vl}分别是C的左特征向量和右特征向量,L为模型的频率成分函数。取前L个左特征向量为部分可分离函数模型的时间基函数,即:Then perform singular value decomposition on the navigation matrix C to get Among them, {λ l } is the singular value of C in descending order, {μ l } and {v l } are the left eigenvector and right eigenvector of C, respectively, and L is the frequency component function of the model. Take the first L left eigenvectors as the time basis function of the partially separable function model, namely:
频率成分函数L可根据如下公式以及测量图像数据的噪声水平确定:The frequency component function L can be determined according to the following formula and the noise level of the measured image data:
或or
在得到了时间基函数和频率成分参数之后,利用时间基函数和动态图像数据预测空间基函数,详细求解过程如以下公式所示:After obtaining the time basis function and frequency component parameters, use the time basis function and dynamic image data to predict the space basis function. The detailed solution process is shown in the following formula:
其中,为已经获得的时间基函数(l=1,2,...,L,n=1,2,...,N),是待预测的空间基函数为已采集的动态图像数据(p=1,2,...,P,n=1,2,...,N)。为了叙述方便,上式可简写为:in, For the obtained time basis functions (l=1, 2,..., L, n=1, 2,..., N), is the spatial basis function to be predicted is the collected dynamic image data (p=1, 2, . . . , P, n=1, 2, . . . , N). For the convenience of description, the above formula can be abbreviated as:
步骤S150,对信号数据进行傅里叶变换生成磁共振图像。Step S150, performing Fourier transform on the signal data to generate a magnetic resonance image.
本实施例中,对信号数据进行傅里叶逆变换变可以得到高时间分辨率高空间分辨率的磁共振图像。In this embodiment, the inverse Fourier transform is performed on the signal data to obtain a magnetic resonance image with high temporal resolution and high spatial resolution.
在一个实施例中,如图5所示,一种磁共振成像系统,包括数据采集模块10、重建模块30以及图像生成模块50。In one embodiment, as shown in FIG. 5 , a magnetic resonance imaging system includes a
数据采集模块10,用于对动态成像对象进行稀疏采样得到动态图像数据和导航数据,导航数据是通过径向采集得到的。The
本实施例中,为实现磁共振中的动态成像,数据采集模块10对动态成像对象进行稀疏采样得到少量的图像数据,进而根据采集得到的少量图像数据进重建即可,这将使得采集时间大幅减少。数据采集模块10通过稀疏采样所得到的图像数据包括了动态图像数据和导航数据,具体的,高空间分辨率低时间分辨率的动态图像数据和低空间分辨率高时间分辨率的导航数据是两个互补的数据集,在传统的采样过程中,需要采集的数据量是随着物理维数的增加而指数增长的,这将会造成空间分辨率和时间分辨率之间的矛盾,在传统的采样过程中若获取得高空间分辨率的磁共振图像,则需要牺牲磁共振图像的时间分辨率;若提高时间分辨率,则磁共振图像的空间分辨率将会降低,时间分辨率和空间分辨率之间不可能同时达到高分辨率,为了解决这一矛盾,数据采集模块10通过在动态成像对象进行径向采集得到导航数据。In this embodiment, in order to realize the dynamic imaging in magnetic resonance, the
径向采集是通过辐射状遍历K空间的采样方式,通过这一采样方式能够使采样得到的导航数据线从低频覆盖到高频,以提高导航数据所能覆盖的空间-时间频率联合域中的空间频率成分,进而提高磁共振图像的分辨率。Radial acquisition is a sampling method that traverses the K space radially. Through this sampling method, the sampled navigation data lines can be covered from low frequency to high frequency, so as to improve the spatial-time frequency joint domain that navigation data can cover. Spatial frequency components, thereby improving the resolution of magnetic resonance images.
在一个实施例中,数据采集模块10还用于分别按照笛卡尔采样轨迹采集动态图像数据,按照径向采样轨迹采集导航数据。In one embodiment, the
本实施例中,在笛卡尔采样轨迹中将K空间视为图像的傅里叶变换域空间,沿列方向,即竖直方向等间隔地划分多个水平线,其中每一条水平线就是K空间的相位编码线。数据采集模块10按照笛卡尔采样轨迹采集动态图像数据,按照径向采样轨迹采样导航数据,可以保证从运动的采样对象采集得到更为准确的时空信息,进而保证重建图像的准确性。In this embodiment, in the Cartesian sampling trajectory, the K space is regarded as the Fourier transform domain space of the image, and a plurality of horizontal lines are equally spaced along the column direction, that is, the vertical direction, wherein each horizontal line is the phase of the K space coded line. The
在一个实施例中,数据采集模块10中动态图像数据的采集和导航数据的采集是交织进行的。具体的,数据采集模块还用于按照预设的时间间隔交织进行动态图像数据和导航数据的采集。In one embodiment, the collection of dynamic image data and the collection of navigation data in the
本实施例中,在实际的数据采集过程中同时进行动态图像数据和导航数据的采集是较为困难的,为使上述数据采集过程能易于实施,数据采集模块10可在交织采集的模式下进行动态图像数据和导航数据的采集。在时间维度上,可按照预设的时间间隔轮流进行动态图像数据和导航数据的采集。一实施例中,数据采集模块10可在一射频重复时间通过笛卡尔采样轨迹采集动态图像数据,在下一射频重复时间通过径向采样轨迹采集导航数据,实现动态图像数据和导航数据的交互采集。In this embodiment, it is relatively difficult to simultaneously collect dynamic image data and navigation data during the actual data collection process. In order to make the above-mentioned data collection process easy to implement, the
数据采集模块10通过动态图像数据和导航数据之间进行的交织采集,可同时获取到运动的采样对象的时空信息,保证动态图像数据和导航数据有相同且较小的射频重复时间和回波时间,减少梯度快速切换伴随的涡流对图像重建的影响。The
在一个实施例中,如图6所示,上述数据采集模块10包括图像数据采集单元110以及导航数据采集单元130。In one embodiment, as shown in FIG. 6 , the
图像数据采集单元110,用于在奇数时刻采集动态图像回波信号得到动态图像数据。The image
本实施例中,图像数据采集单元110向采样对象发射序列之后在奇数时刻采集反射的动态图像回波信号以得到动态图像数据,导航数据采集单元130在偶数时刻采集反射的导航回波信号。In this embodiment, the image
导航数据采集单元130,用于在偶数时刻按照径向采样轨迹采集导航数据回波信号得到导航数据。The navigation
重建模块30,用于通过动态图像数据和导航数据进行基于部分可分离函数模型重建得到信号数据。The
本实施例中,在部分可分离函数模型中,认为图像函数的空间变化和时间变化是L阶可分离的,利用部分可分离函数的性质和傅里叶变换的线性特性,可将信号数据S(k,t)表示为空间基函数和时间基函数这两个独立变量函数之和,即如以下公式所示:In this embodiment, in the partially separable function model, it is considered that the spatial variation and temporal variation of the image function are L-order separable. Using the properties of the partially separable function and the linear characteristics of Fourier transform, the signal data S (k, t) is expressed as a spatial basis function and time basis functions The sum of the functions of these two independent variables, that is, as shown in the following formula:
通过上述公式可将信号在时间空间联合维度中的复杂运动转化为空间中每一点的信号随时间变化的较为简单的数学问题,重建模块30只需要准确预知频率成分参数L、空间基函数和时间基函数即可实现高时间高空间覆盖密度的基于部分可分离函数模型重建,得到完全的信号数据。Through the above formula, the complex movement of the signal in the joint dimension of time and space can be transformed into a relatively simple mathematical problem that the signal at each point in the space changes with time. The
具体的,动态图像数据和导航数据在采集过程中满足如下三个条件:(1)脉冲重复时间TR必须满足导航数据的时间奈奎斯特速率;(2)相位编码方向的采样间隔Δky必须满足动态图像数据的空间奈奎斯特速率;(3)从动态图像数据获取的采样帧数N必须大于或者等于阶数L。将信号数据从最优化问题求解方面可描述为:Specifically, the dynamic image data and navigation data meet the following three conditions during the acquisition process: (1) The pulse repetition time T R must meet the time Nyquist rate of the navigation data; (2) The sampling interval Δky in the phase encoding direction The spatial Nyquist rate of the dynamic image data must be met; (3) The sampling frame number N obtained from the dynamic image data must be greater than or equal to the order L. The signal data can be described in terms of solving the optimization problem as:
为求解上述问题,将采集得到的导航数据抽取成导航数据矩阵:In order to solve the above problems, the collected navigation data is extracted into a navigation data matrix:
然后对导航矩阵C进行奇异值分解得到其中,{λl}为C的按降序排列的奇异值,{μl}和{vl}分别是C的左特征向量和右特征向量,L为模型的频率成分函数。取前L个左特征向量为部分可分离函数模型的时间基函数,即:Then perform singular value decomposition on the navigation matrix C to get Among them, {λ l } is the singular value of C in descending order, {μ l } and {v l } are the left eigenvector and right eigenvector of C, respectively, and L is the frequency component function of the model. Take the first L left eigenvectors as the time basis function of the partially separable function model, namely:
频率成分函数L可根据如下公式以及测量图像数据的噪声水平确定:The frequency component function L can be determined according to the following formula and the noise level of the measured image data:
或or
在得到了时间基函数和频率成分参数之后,利用时间基函数和动态图像数据预测空间基函数,详细求解过程如以下公式所示:After obtaining the time basis function and frequency component parameters, use the time basis function and dynamic image data to predict the space basis function. The detailed solution process is shown in the following formula:
其中,为已经获得的时间基函数(l=1,2,...,L,n=1,2,...,N),是待预测的空间基函数为已采集的动态图像数据(p=1,2,...,P,n=1,2,...,N)。为了叙述方便,上式可简写为:in, For the obtained time basis functions (l=1, 2,..., L, n=1, 2,..., N), is the spatial basis function to be predicted is the collected dynamic image data (p=1, 2, . . . , P, n=1, 2, . . . , N). For the convenience of description, the above formula can be abbreviated as:
图像生成模块50,用于对信号数据进行傅里叶变换生成磁共振图像。The
本实施例中,图像生成模块50对信号数据进行傅里叶逆变换变可以得到高时间分辨率高空间分辨率的磁共振图像。In this embodiment, the
下面通过数值仿真和在体实验来验证上述磁共振成像方法。如图7至10为数值仿真所构建的水模在不同运动状态下的理想图像,其中,水模有三个不同的运动物体组成,即左上角的正方形由大变小然后再变大,运动周期为13,中间的较大椭圆运动周期为15,最里面的小圆运动周期为11。In the following, numerical simulation and in vivo experiments are used to verify the above magnetic resonance imaging method. Figures 7 to 10 are the ideal images of the water model constructed by numerical simulation under different motion states. Among them, the water model is composed of three different moving objects, that is, the square in the upper left corner changes from large to small and then becomes larger, and the motion cycle is 13, the larger elliptical motion cycle in the middle is 15, and the innermost small circle motion cycle is 11.
通过比较图12和13可以看出上述磁共振成像方法所重建的磁共振图像伪影较少,图像质量得到显著提高。By comparing Figures 12 and 13, it can be seen that the magnetic resonance image reconstructed by the above magnetic resonance imaging method has fewer artifacts, and the image quality is significantly improved.
在体实验的验证中,通过定量分析上述磁共振成像方法所得到的磁共振图像(图14和图15)和传统磁共振成像方法得到的磁共振图像(图16和图17)的信噪比可以得出上述磁共振成像方法所得到的磁共振图像中信噪比高于传统磁共振成像方法得到的磁共振图像的信噪比,如图18所示。In the verification of the in vivo experiment, the signal-to-noise ratio of the magnetic resonance images obtained by the above-mentioned magnetic resonance imaging method (Fig. 14 and Fig. 15) and the magnetic resonance image obtained by the traditional magnetic resonance imaging method (Fig. It can be concluded that the signal-to-noise ratio of the magnetic resonance image obtained by the above magnetic resonance imaging method is higher than that of the magnetic resonance image obtained by the traditional magnetic resonance imaging method, as shown in FIG. 18 .
上述磁共振成像方法及系统,通过在动态成像对象中进行径向采集得到导航数据,使得采集的每一导航数据均能够从低频覆盖到高频,进而提高采集得到的导航数据所能覆盖的空间-时间频率联合域中空间频率成分,大大提高了时空信号变化的捕捉能力,准确地反映成像对象运动的真实情况。The above-mentioned magnetic resonance imaging method and system obtain navigation data through radial acquisition in the dynamic imaging object, so that each navigation data collected can cover from low frequency to high frequency, thereby increasing the space covered by the collected navigation data. - Spatial frequency components in the time-frequency joint domain greatly improve the ability to capture changes in spatio-temporal signals and accurately reflect the real movement of the imaging object.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2011104565515A CN102540115A (en) | 2011-12-12 | 2011-12-30 | Magnetic resonance imaging method and system |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201110412194 | 2011-12-12 | ||
| CN201110412194.2 | 2011-12-12 | ||
| CN2011104565515A CN102540115A (en) | 2011-12-12 | 2011-12-30 | Magnetic resonance imaging method and system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN102540115A true CN102540115A (en) | 2012-07-04 |
Family
ID=46347459
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2011104565515A Pending CN102540115A (en) | 2011-12-12 | 2011-12-30 | Magnetic resonance imaging method and system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102540115A (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103519816A (en) * | 2013-10-25 | 2014-01-22 | 深圳先进技术研究院 | Brain functional magnetic resonance imaging method and brain functional magnetic resonance imaging system |
| CN104597419A (en) * | 2015-01-04 | 2015-05-06 | 华东师范大学 | Method for correcting motion artifacts in combination of navigation echoes and compressed sensing |
| WO2018082028A1 (en) * | 2016-11-04 | 2018-05-11 | 深圳先进技术研究院 | Cartesian k-space collection method and system for three-dimensional dynamic magnetic resonance imaging |
| WO2018082026A1 (en) * | 2016-11-04 | 2018-05-11 | 深圳先进技术研究院 | Spherical k-space collection method and apparatus for three-dimensional dynamic magnetic resonance imaging |
| CN109239630A (en) * | 2018-07-19 | 2019-01-18 | 广东技术师范学院 | A kind of magnetic resonance fast imaging method based on fractional fourier transform |
| CN109633503A (en) * | 2018-12-28 | 2019-04-16 | 上海联影医疗科技有限公司 | MR image reconstruction method, apparatus, computer equipment and storage medium |
| US12000919B2 (en) | 2022-08-26 | 2024-06-04 | Shanghai United Imaging Healthcare Co., Ltd. | Systems and methods for magnetic resonance imaging |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1557253A (en) * | 2003-02-06 | 2004-12-29 | ������ҽ�ƽ�������˾ | Method for synchronizing magnetic resonance imaging data to body motion |
| CN101359040A (en) * | 2007-08-03 | 2009-02-04 | 西门子公司 | Method for Optimizing Imaging Parameters |
-
2011
- 2011-12-30 CN CN2011104565515A patent/CN102540115A/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1557253A (en) * | 2003-02-06 | 2004-12-29 | ������ҽ�ƽ�������˾ | Method for synchronizing magnetic resonance imaging data to body motion |
| CN101359040A (en) * | 2007-08-03 | 2009-02-04 | 西门子公司 | Method for Optimizing Imaging Parameters |
Non-Patent Citations (5)
| Title |
|---|
| JUSTIN P. HALDAR,ET AL.: "SHAPING SPATIAL RESPONSE FUNCTIONS FOR OPTIMAL ESTIMATION OF COMPARTMENTAL SIGNALS FROM LIMITED FOURIER DATA", 《PROCEEDINGS OF THE 4TH IEEE ISBI》 * |
| LIANG ZHIPEI,ET AL: "Real-Time Cardiac MRI Without Triggering,Gating, or Breath Holding", 《PROCEEDINGS OF THE 30TH IEEE EMBS》 * |
| LIANG ZHIPEI: "Spatiotemporal Imaging with Partially Separable Functions", 《PROCEEDINGS OF THE 4TH IEEE ISBI》 * |
| ZHUO WENG,ET AL.: "A New Method for Removing Motion Artifacts in Parallel MRI Reconstruction", 《2010 3RD INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS》 * |
| 翁卓 等: "基于k空间加速采集的磁共振成像技术", 《中国生物医学工程学报》 * |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103519816A (en) * | 2013-10-25 | 2014-01-22 | 深圳先进技术研究院 | Brain functional magnetic resonance imaging method and brain functional magnetic resonance imaging system |
| CN103519816B (en) * | 2013-10-25 | 2015-08-26 | 深圳先进技术研究院 | Functional MRI method and system |
| CN104597419A (en) * | 2015-01-04 | 2015-05-06 | 华东师范大学 | Method for correcting motion artifacts in combination of navigation echoes and compressed sensing |
| WO2018082028A1 (en) * | 2016-11-04 | 2018-05-11 | 深圳先进技术研究院 | Cartesian k-space collection method and system for three-dimensional dynamic magnetic resonance imaging |
| WO2018082026A1 (en) * | 2016-11-04 | 2018-05-11 | 深圳先进技术研究院 | Spherical k-space collection method and apparatus for three-dimensional dynamic magnetic resonance imaging |
| CN109239630A (en) * | 2018-07-19 | 2019-01-18 | 广东技术师范学院 | A kind of magnetic resonance fast imaging method based on fractional fourier transform |
| CN109633503A (en) * | 2018-12-28 | 2019-04-16 | 上海联影医疗科技有限公司 | MR image reconstruction method, apparatus, computer equipment and storage medium |
| US12000919B2 (en) | 2022-08-26 | 2024-06-04 | Shanghai United Imaging Healthcare Co., Ltd. | Systems and methods for magnetic resonance imaging |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN113077527B (en) | A Fast MRI Image Reconstruction Method Based on Undersampling | |
| CN102018514B (en) | Magnetic resonance diffusion tensor imaging method and system | |
| CN102540116A (en) | Magnetic resonance imaging method and system | |
| CN102540115A (en) | Magnetic resonance imaging method and system | |
| Menchón-Lara et al. | Reconstruction techniques for cardiac cine MRI | |
| US9953439B2 (en) | Systems and methods for three-dimensional spiral perfusion imaging | |
| CN102590773B (en) | Methods and systems for magnetic resonance imaging | |
| CN102217934A (en) | Magnetic resonance imaging method and system | |
| CN110889897B (en) | Method and system for reconstructing incoherent motion magnetic resonance imaging parameters in voxel | |
| CN105232045A (en) | Single-scanning quantitative magnetic resonance diffusion imaging method based on dual echoes | |
| CN103705239B (en) | Magnetic resonance parameters formation method and system | |
| CN101975936A (en) | Rapid magnetic resonance imaging (MRI) method based on CS ( compressed sensing ) technique | |
| CN105074491A (en) | Dynamic MRI with image reconstruction using compressed sensing | |
| CN110940943B (en) | The training method of the beat artifact correction model and the beat artifact correction method | |
| CN103597370A (en) | Spatially encoded phase-contrast MRI | |
| CN114119791B (en) | A cross-domain iterative network-based MRI undersampling image reconstruction method | |
| CN103502831A (en) | Magnetic resonance imaging of object in motion | |
| CN110346743B (en) | Magnetic resonance diffusion weighted imaging method and device | |
| WO2019148610A1 (en) | Multi-excitation diffusion-weighted magnetic resonance imaging method based on data consistency | |
| CN103278784A (en) | Magnetic resonance parallel imaging method of multi-constraint sliding window | |
| Gözcü et al. | Rethinking sampling in parallel MRI: A data-driven approach | |
| CN102973272B (en) | Magnetic resonance dynamic imaging method and system | |
| US7592809B1 (en) | Hybrid k-t method of dynamic imaging with improved spatiotemporal resolution | |
| Jaubert et al. | Deep artifact suppression for spiral real-time phase contrast cardiac magnetic resonance imaging in congenital heart disease | |
| Wang et al. | Fast magnetic resonance elastography with multiphase radial encoding and harmonic motion sparsity based reconstruction |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C12 | Rejection of a patent application after its publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20120704 |