[go: up one dir, main page]

CN102540237A - Lanthanum bromide crystal detector for detecting outer space gamma rays - Google Patents

Lanthanum bromide crystal detector for detecting outer space gamma rays Download PDF

Info

Publication number
CN102540237A
CN102540237A CN2011104273339A CN201110427333A CN102540237A CN 102540237 A CN102540237 A CN 102540237A CN 2011104273339 A CN2011104273339 A CN 2011104273339A CN 201110427333 A CN201110427333 A CN 201110427333A CN 102540237 A CN102540237 A CN 102540237A
Authority
CN
China
Prior art keywords
lanthanum bromide
crystal
bromide crystal
filling material
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011104273339A
Other languages
Chinese (zh)
Inventor
胡一鸣
常进
王楠森
宫一忠
蔡明生
马涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Purple Mountain Observatory of CAS
Original Assignee
Purple Mountain Observatory of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Purple Mountain Observatory of CAS filed Critical Purple Mountain Observatory of CAS
Priority to CN2011104273339A priority Critical patent/CN102540237A/en
Publication of CN102540237A publication Critical patent/CN102540237A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

用于外太空伽玛射线探测的溴化镧晶体探测器,设有闪烁晶体及其信号读出设备;闪烁晶体外部设有封装外壳,封装外壳的出光面装有玻璃,特征是闪烁晶体采用溴化镧晶体;在溴化镧晶体与其封装外壳之间填充有填充材料,填充材料组成:弹性硅光耦合剂:氧化镁:氧化钛的重量比为4~6:4~6:1。填充材料厚度为3mm~4mm。本发明能够克服现有技术溴化镧晶体探测器只能在地面观测仪器中使用的不足,其采用的封装方式、内部填充方式能够很好的解决溴化镧晶体易碎、易潮解的特性。通过本发明研制的伽玛射线探测器,其探测效率能够达到137Cs4%662KeV,并且能够在空间环境下正常工作,工作性能稳定。

Figure 201110427333

The lanthanum bromide crystal detector used for gamma ray detection in outer space is provided with a scintillation crystal and its signal readout equipment; the scintillation crystal is provided with a packaging shell, and the light-emitting surface of the packaging shell is equipped with glass, and the scintillation crystal is made of bromine Lanthanum oxide crystal; a filling material is filled between the lanthanum bromide crystal and its encapsulation shell, and the filling material is composed of elastic silicon optical coupling agent: magnesium oxide: titanium oxide with a weight ratio of 4~6:4~6:1. The thickness of the filling material is 3mm~4mm. The invention can overcome the disadvantage that the lanthanum bromide crystal detector in the prior art can only be used in ground observation instruments, and the encapsulation method and internal filling method can well solve the fragility and deliquescent characteristics of the lanthanum bromide crystal detector. The detection efficiency of the gamma ray detector developed by the invention can reach 137 Cs4%662KeV, and it can work normally in space environment with stable working performance.

Figure 201110427333

Description

用于外太空伽玛射线探测的溴化镧晶体探测器Lanthanum bromide crystal detectors for gamma-ray detection in outer space

技术领域 technical field

  本发明涉及一种空间天文探测仪器,具体涉及一种用于外太空伽玛射线探测的溴化镧晶体探测器,该仪器能够应用于空间环境下进行伽玛射线的探测。 The present invention relates to a space astronomical detection instrument, in particular to a lanthanum bromide crystal detector for gamma ray detection in outer space. The instrument can be used for gamma ray detection in a space environment.

背景技术 Background technique

  在许多空间天文探测仪器、高能粒子探测仪器中,主要适用闪烁晶体探测器,其主要组成部分是闪烁晶体及其信号读出设备。高能入射粒子进入闪烁体时,入射粒子损失部分能量或全部能量,使闪烁体发出一定波长的光,最后被读出记录下来。 In many space astronomical detection instruments and high-energy particle detection instruments, scintillation crystal detectors are mainly used, and their main components are scintillation crystals and their signal readout equipment. When high-energy incident particles enter the scintillator, the incident particles lose part or all of their energy, causing the scintillator to emit light of a certain wavelength, which is finally read out and recorded.

作为闪烁晶体探测器,最主要的性能指标为探测效率。探测效率是粒子在闪烁体内产生可测量的脉冲信号数与入射粒子数之比。目前的空间环境下应用的闪烁晶体主要为NaI、CsI、BGO等,采用这些晶体的探测器其探测性能基本处于137Cs 8%~13%662KeV。 As a scintillation crystal detector, the most important performance index is the detection efficiency. The detection efficiency is the ratio of the number of measurable pulse signals produced by particles in the scintillator to the number of incident particles. The scintillation crystals used in the current space environment are mainly NaI, CsI, BGO, etc. The detection performance of detectors using these crystals is basically at 137 Cs 8%~13%662KeV.

采用溴化镧晶体作为闪烁材料,由于其本身的性质,可以提高相应的探测器探测效率。但是现有技术的溴化镧晶体探测器只能在地面观测仪器中使用。原因是溴化镧晶体警惕比重大,尤其易碎、易潮解,这些特性一直制约着其作为闪烁晶体使用到空间探测器中去,限制了空间探测仪器效率的提高。 Using lanthanum bromide crystal as the scintillation material can improve the detection efficiency of the corresponding detector due to its own properties. But the lanthanum bromide crystal detectors of the prior art can only be used in ground-based observation instruments. The reason is that the lanthanum bromide crystal has a large specific gravity, is especially fragile, and is easy to deliquescence. These characteristics have always restricted its use as a scintillation crystal in space detectors, and limited the improvement of the efficiency of space detection instruments.

发明内容 Contents of the invention

本发明的目的是提供一种用于外太空伽玛射线探测的溴化镧晶体探测器,该技术方案能够克服现有技术溴化镧晶体探测器只能在地面观测仪器中使用的不足,其采用的封装方式、内部填充方式能够很好的解决溴化镧晶体易碎、易潮解的特性。通过本发明研制的伽玛射线探测器,其探测效率能够达到137Cs 4%662KeV,并且能够在空间环境下正常工作,工作性能稳定。 The object of the present invention is to provide a kind of lanthanum bromide crystal detector that is used for outer space gamma ray detection, this technical scheme can overcome the deficiency that prior art lanthanum bromide crystal detector can only be used in ground observation instrument, its The adopted encapsulation method and internal filling method can well solve the fragility and deliquescent characteristics of lanthanum bromide crystals. The detection efficiency of the gamma ray detector developed by the invention can reach 137 Cs 4%662KeV, and it can work normally in space environment with stable working performance.

完成上述发明任务的方案是:一种用于外太空伽玛射线探测的溴化镧晶体探测器,设有闪烁晶体及其信号读出设备;该闪烁晶体外部设有封装外壳,封装外壳的出光面装有玻璃,其特征在于,所述的闪烁晶体采用溴化镧晶体;在该溴化镧晶体与其封装外壳之间填充有填充材料,该填充材料的组分为:弹性硅光耦合剂、氧化镁、氧化钛,弹性硅光耦合剂:氧化镁:氧化钛的重量比为4~6:4~6:1。本申请推荐的优化组分比例为5:5:1。 The scheme for accomplishing the above invention task is: a lanthanum bromide crystal detector for gamma ray detection in outer space, provided with a scintillation crystal and its signal readout device; The surface is equipped with glass, and it is characterized in that the scintillation crystal adopts lanthanum bromide crystal; a filling material is filled between the lanthanum bromide crystal and its packaging shell, and the components of the filling material are: elastic silicon optical coupling agent, Magnesium oxide, titanium oxide, elastic silicon optical coupling agent: magnesium oxide: titanium oxide weight ratio is 4~6:4~6:1. The optimum component ratio recommended by this application is 5:5:1.

所述填充材料的厚度为3mm~5mm,最佳值为4mm。 The thickness of the filling material is 3mm-5mm, and the optimum value is 4mm.

采用本发明的上述结构,能够很好的解决溴化镧晶体易碎、易潮解的特性,并且在结构上的特殊设计,能够使探测器在发射、转轨以及空间观测过程中能够避免发生损坏。在上图中,出光面处用于耦合信号读出设备PMT光电倍增管;出光面与晶体之间采用无钾玻璃进行封装。 The above-mentioned structure of the present invention can well solve the fragility and deliquescent characteristics of lanthanum bromide crystals, and the special design of the structure can prevent the detector from being damaged during launch, orbit transition and space observation. In the figure above, the light-emitting surface is used to couple the signal readout device PMT photomultiplier tube; the light-emitting surface and the crystal are packaged with potassium-free glass.

填充材料的配比可以适当调整,从而改善其性能。填充材料可以起到四个作用: The ratio of filling materials can be adjusted appropriately to improve its performance. The filling material can serve four functions:

    1、起到增强光发射作用,提高探测器效率; 1. Play the role of enhancing light emission and improving detector efficiency;

    2、防震,保护光电倍增管的玻壳不会被震裂; 2. Shockproof, protecting the glass bulb of the photomultiplier tube from being cracked;

3、起绝缘的作用; 3. Play the role of insulation;

4、保证外壳与晶体的耦合间隙。 4. Ensure the coupling gap between the shell and the crystal.

晶体外壳采用壳形结构圆柱状硬铝合金设计,结合中间的填充材料,能够有效减少力学冲击等队内部探测晶体的影响。 The crystal shell is designed with a shell-shaped cylindrical duralumin alloy, combined with the filling material in the middle, which can effectively reduce the influence of mechanical shock and other internal detection crystals.

本发明的溴化镧晶体探测器,能够克服现有技术溴化镧晶体探测器只能在地面观测仪器中使用的不足,其采用的封装方式、内部填充方式能够很好的解决溴化镧晶体易碎、易潮解的特性。通过本发明研制的伽玛射线探测器,其探测效率能够达到137Cs 4%662KeV,并且能够在空间环境下正常工作,工作性能稳定。该溴化镧晶体探测器搭载相应的卫星或其他空间飞行器,进入空间环境下,应用于空间伽玛射线探测以及其他粒子探测。 The lanthanum bromide crystal detector of the present invention can overcome the deficiency that the prior art lanthanum bromide crystal detector can only be used in ground observation instruments, and its packaging method and internal filling method can well solve the problem of lanthanum bromide crystal detectors. Fragile and deliquescent properties. The detection efficiency of the gamma ray detector developed by the invention can reach 137 Cs 4%662KeV, and it can work normally in space environment with stable working performance. The lanthanum bromide crystal detector carries corresponding satellites or other space vehicles, enters the space environment, and is applied to space gamma ray detection and other particle detection.

附图说明 Description of drawings

    图1为本发明结构示意图。 Figure 1 is a schematic diagram of the structure of the present invention.

具体实施方式 Detailed ways

实施例1,用于外太空伽玛射线探测的溴化镧晶体探测器,参照图1设有闪烁晶体1及其信号读出设备;闪烁晶体采用溴化镧晶体。闪烁晶体1外部设有封装外壳2,封装外壳2的出光面4装有无钾玻璃5。在溴化镧晶体1与其封装外壳2之间填充有填充材料3,该填充材料的组分为:弹性硅光耦合剂、氧化镁、氧化钛,弹性硅光耦合剂:氧化镁:氧化钛的重量比为5:5:1。所述填充材料的厚度为4mm。 Embodiment 1, a lanthanum bromide crystal detector for gamma ray detection in outer space, is provided with a scintillation crystal 1 and a signal readout device thereof with reference to FIG. 1 ; the scintillation crystal is a lanthanum bromide crystal. The scintillation crystal 1 is provided with an encapsulation shell 2, and the light-emitting surface 4 of the encapsulation shell 2 is equipped with potassium-free glass 5. A filling material 3 is filled between the lanthanum bromide crystal 1 and its encapsulation shell 2, the components of the filling material are: elastic silicon optical coupling agent, magnesium oxide, titanium oxide, elastic silicon optical coupling agent: magnesium oxide: titanium oxide The weight ratio is 5:5:1. The thickness of the filling material is 4mm.

实施例2,与实施例1基本相同,但弹性硅光耦合剂、氧化镁、氧化钛,弹性硅光耦合剂:氧化镁:氧化钛的重量比为4:6:1。所述填充材料的厚度为3mm。 Example 2 is basically the same as Example 1, but the elastic silicon optical coupling agent, magnesium oxide, titanium oxide, the weight ratio of elastic silicon optical coupling agent: magnesium oxide: titanium oxide is 4:6:1. The thickness of the filling material is 3mm.

实施例3,与实施例1基本相同,但弹性硅光耦合剂、氧化镁、氧化钛,弹性硅光耦合剂:氧化镁:氧化钛的重量比为6:4:1。所述填充材料的厚度为5mm。 Example 3 is basically the same as Example 1, but the elastic silicon optical coupling agent, magnesium oxide, and titanium oxide, and the weight ratio of elastic silicon optical coupling agent: magnesium oxide: titanium oxide is 6:4:1. The thickness of the filling material is 5mm.

实施例4,与实施例1基本相同,但弹性硅光耦合剂、氧化镁、氧化钛,弹性硅光耦合剂:氧化镁:氧化钛的重量比为4:4:1。 Embodiment 4 is basically the same as Embodiment 1, but the elastic silicon optical coupling agent, magnesium oxide, titanium oxide, and the weight ratio of elastic silicon optical coupling agent: magnesium oxide: titanium oxide is 4:4:1.

实施例5,与实施例1基本相同,但弹性硅光耦合剂、氧化镁、氧化钛,弹性硅光耦合剂:氧化镁:氧化钛的重量比为6:6:1。 Embodiment 5 is basically the same as Embodiment 1, but the elastic silicon optical coupling agent, magnesium oxide, titanium oxide, and the weight ratio of elastic silicon optical coupling agent: magnesium oxide: titanium oxide is 6:6:1.

Claims (6)

1.一种用于外太空伽玛射线探测的溴化镧晶体探测器,设有闪烁晶体及其信号读出设备;该闪烁晶体外部设有封装外壳,封装外壳的出光面装有玻璃,其特征在于,所述的闪烁晶体采用溴化镧晶体;在该溴化镧晶体与其封装外壳之间填充有填充材料,该填充材料的组分为:弹性硅光耦合剂、氧化镁、氧化钛,弹性硅光耦合剂:氧化镁:氧化钛的重量比为4~6:4~6:1。 1. A lanthanum bromide crystal detector for gamma ray detection in outer space is provided with a scintillation crystal and a signal readout device thereof; the scintillation crystal is externally provided with a packaging shell, and the light-emitting surface of the packaging shell is equipped with glass, and its It is characterized in that the scintillation crystal adopts lanthanum bromide crystal; a filling material is filled between the lanthanum bromide crystal and its packaging shell, and the components of the filling material are: elastic silicon optical coupling agent, magnesium oxide, titanium oxide, The weight ratio of elastic silicon photocoupler: magnesium oxide: titanium oxide is 4~6:4~6:1. 2.根据权利要求1所述的用于外太空伽玛射线探测的溴化镧晶体探测器,其特征在于,所述填充材料中弹性硅光耦合剂:氧化镁:氧化钛的重量比为5:5:1。 2. The lanthanum bromide crystal detector for outer space gamma ray detection according to claim 1, characterized in that, elastic silicon optical coupling agent in the filling material: magnesium oxide: the weight ratio of titanium oxide is 5 :5:1. 3.根据权利要求1所述的用于外太空伽玛射线探测的溴化镧晶体探测器,其特征在于,所述填充材料的厚度为3mm~5mm。 3. The lanthanum bromide crystal detector for gamma ray detection in outer space according to claim 1, wherein the thickness of the filling material is 3 mm to 5 mm. 4.根据权利要求1所述的用于外太空伽玛射线探测的溴化镧晶体探测器,其特征在于,所述填充材料的厚度为4mm。 4. The lanthanum bromide crystal detector for detecting gamma rays in outer space according to claim 1, wherein the thickness of the filling material is 4 mm. 5.根据权利要求1所述的用于外太空伽玛射线探测的溴化镧晶体探测器,其特征在于,所述出光面装有的玻璃采用无钾玻璃。 5 . The lanthanum bromide crystal detector for detecting gamma rays in outer space according to claim 1 , wherein the glass on the light-emitting surface is potassium-free glass. 6.根据权利要求1~5之一所述的用于外太空伽玛射线探测的溴化镧晶体探测器,其特征在于,所述封装外壳采用壳形结构圆柱状硬铝合金设计。 6. The lanthanum bromide crystal detector for gamma ray detection in outer space according to any one of claims 1 to 5, wherein the packaging shell is designed with a shell-shaped cylindrical hard aluminum alloy.
CN2011104273339A 2011-12-19 2011-12-19 Lanthanum bromide crystal detector for detecting outer space gamma rays Pending CN102540237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011104273339A CN102540237A (en) 2011-12-19 2011-12-19 Lanthanum bromide crystal detector for detecting outer space gamma rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011104273339A CN102540237A (en) 2011-12-19 2011-12-19 Lanthanum bromide crystal detector for detecting outer space gamma rays

Publications (1)

Publication Number Publication Date
CN102540237A true CN102540237A (en) 2012-07-04

Family

ID=46347547

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011104273339A Pending CN102540237A (en) 2011-12-19 2011-12-19 Lanthanum bromide crystal detector for detecting outer space gamma rays

Country Status (1)

Country Link
CN (1) CN102540237A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107390251A (en) * 2017-07-13 2017-11-24 中国科学院福建物质结构研究所 Scintillation crystal assembly, method for packing and the detector of anhydrous encapsulation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1632614A (en) * 2004-12-29 2005-06-29 中国科学院紫金山天文台 Scintillation detector filled with functional light-reflecting material and manufacturing method thereof
CN101071705A (en) * 2007-06-07 2007-11-14 中国科学院紫金山天文台 Composite packaging method for photomultiplier tube
WO2010135489A2 (en) * 2009-05-20 2010-11-25 Schlumberger Canada Limited Scintillator crystal materials, scintillators, and subterranean detectors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1632614A (en) * 2004-12-29 2005-06-29 中国科学院紫金山天文台 Scintillation detector filled with functional light-reflecting material and manufacturing method thereof
CN101071705A (en) * 2007-06-07 2007-11-14 中国科学院紫金山天文台 Composite packaging method for photomultiplier tube
WO2010135489A2 (en) * 2009-05-20 2010-11-25 Schlumberger Canada Limited Scintillator crystal materials, scintillators, and subterranean detectors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙智民: "空间硬X 射线调制望远镜(HXMT) 结构设计与研究", 《机械科学与技术》, vol. 23, no. 5, 31 May 2004 (2004-05-31), pages 505 - 508 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107390251A (en) * 2017-07-13 2017-11-24 中国科学院福建物质结构研究所 Scintillation crystal assembly, method for packing and the detector of anhydrous encapsulation

Similar Documents

Publication Publication Date Title
ES2629092B1 (en) GAMMA RAY COMPTON CAMERA SYSTEM WITH FLIGHT TIME MEASUREMENT
US10436918B2 (en) Integrated coupling of scintillation crystal with photomultiplier in a detector apparatus
CN101504463B (en) Integrated neutron-gamma radiation detector with optical waveguide and neutron scintillating material
ES2804265T3 (en) Gamma camera type gamma radiation detection system and procedure
CN110974267B (en) A kind of PET detector of composite crystal array and its construction method
US9995841B2 (en) Compact scintillation detector
CN211043685U (en) Array nuclear radiation detector based on GAGG scintillator
US11384285B2 (en) Composite scintillators
CN107688193A (en) A kind of scintillation detector of new high photon efficiency of transmission
JP6397027B2 (en) Array crystal module and processing method thereof
CN102565840A (en) Scintillation detector
CN102540237A (en) Lanthanum bromide crystal detector for detecting outer space gamma rays
CN102426381A (en) A CsI: Tl and LaBr3: Ce3+ stacked scintillator
CN206114913U (en) Scintillation body and scintillation detector
CN204496009U (en) A kind of X-ray detector
JP2012127703A (en) Directivity radiation detector and transparent shield member
US10422888B1 (en) Scintillation detectors
Brubaker et al. Thermal neutron detection using alkali halide scintillators with 6 Li and pulse shape discrimination
Ulyanov et al. Study of silicon photomultipliers for the readout of scintillator crystals in the proposed GRIPS\gamma-ray astronomy mission
CN107238851A (en) Sodium iodide or caesium iodide scintillator encapsulating structure
Shibuya et al. Outstanding timing resolution of pure CsBr scintillators for coincidence measurements of positron annihilation radiation
Koroleva et al. New scintillation materials and scintiblocs for neutron and γ-rays registration
Bloser et al. Balloon-flight test of a lanthanum bromide gamma-ray detector with silicon photomultiplier readout
CN203037858U (en) Nuclear detection device
CN108663705A (en) The method for coating and complex scintillator detector of composite crystal

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120704