[go: up one dir, main page]

CN102594295A - Frequency band matching structure of ultrasonic frequency search biological processing system - Google Patents

Frequency band matching structure of ultrasonic frequency search biological processing system Download PDF

Info

Publication number
CN102594295A
CN102594295A CN2012100517292A CN201210051729A CN102594295A CN 102594295 A CN102594295 A CN 102594295A CN 2012100517292 A CN2012100517292 A CN 2012100517292A CN 201210051729 A CN201210051729 A CN 201210051729A CN 102594295 A CN102594295 A CN 102594295A
Authority
CN
China
Prior art keywords
terminal
frequency band
switching
matching
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012100517292A
Other languages
Chinese (zh)
Inventor
屈百达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN2012100517292A priority Critical patent/CN102594295A/en
Publication of CN102594295A publication Critical patent/CN102594295A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Percussion Or Vibration Massage (AREA)

Abstract

一种超声波频率搜索生物处理系统的频带匹配结构,它采用多抽头电感线圈,通过不同抽头、振板和继电器接点的连接,来实现驱动电源各频率输出端与对应频带振板的匹配结构。系统的功率匹配输出单元功率输出端口始端连接到频带匹配、换能网络的匹配电感线圈始端;功率匹配输出单元功率输出端口的各级输出端分别通过功率匹配输出各路接线端子连接到频带切换电路的进线对应接线端子;频带切换电路的出线对应接线端子分别连接到频带匹配、换能网络的各路振板的线端子。

Figure 201210051729

A frequency band matching structure of an ultrasonic frequency search bioprocessing system, which uses a multi-tap inductance coil to realize the matching structure of each frequency output end of a driving power supply and the corresponding frequency band vibration plate through the connection of different taps, vibration plates and relay contacts. The starting end of the power output port of the power matching output unit of the system is connected to the beginning end of the matching inductance coil of the frequency band matching and transduction network; the output ends of each level of the power output port of the power matching output unit are respectively connected to the frequency band switching circuit through the power matching output terminals. The incoming wires of the frequency band switching circuit correspond to the connecting terminals; the outgoing wires of the frequency band switching circuit are respectively connected to the wire terminals of the vibrating plates of the frequency band matching and transducing networks.

Figure 201210051729

Description

超声波频率搜索生物处理系统的频带匹配结构Frequency Band Matching Structure of Ultrasonic Frequency Search Bioprocessing System

技术领域 technical field

本发明涉及一种超声波频率搜索生物处理系统的宽频带换能匹配网络结构。The invention relates to a broadband transduction matching network structure of an ultrasonic frequency search biological treatment system.

背景技术 Background technique

超声波对对象的处理速率与超声波频率高度相关,超声波频率不同,处理效率大不相同;而且,处理对象的生物细胞种类更与超声波频率高度相关,不同的生物细胞,对不同频率超声波的敏感性大不相同。这就造成了现有超声波生物处理方法的初次超声波频率确定的盲目性,进而,对额外进行超声波频率分析、确定形成依赖性。实际工作过程是:利用某生物细胞在不同频率下的处理情况,进行分频带对照、分析确定,得到有关数据;在以后的工作中,沿用该特定对象的数据,经验地确定适合的超声波频率。这已是习惯做法。本质上,这样的方法并不能保证所工作的超声波频率就是对对象高效的最佳频率,也不能对不同的对象进行精确的精细频率调整,积累的经验也就不是最佳工艺的;加之,该方法不仅在初期大量耗费人力、财力、物力,而且在沿用期也经常地要求观察、调整和维护。鉴于此,有必要研发一种新的高效策略,使超声波生物处理工作不再沿用先经分频带对照、分析确定超声波频率,再经验地确定所需频率的低效做法,而是将确定所需频率的过程最大限度地高效、自动化进行。解决该类问题的高效方案是超声波生物处理频率搜索控制的一体化结构,而一体化结构的最困难问题是宽频带换能匹配技术,即随着搜索频率变化,在若干不同中心频率的宽频带振板与驱动电源之间,如何实现谐振匹配、同步切换的网路结构。The processing rate of ultrasonic waves on objects is highly correlated with ultrasonic frequency, and the processing efficiency varies greatly with different ultrasonic frequencies; moreover, the type of biological cells to be processed is highly correlated with ultrasonic frequency, and different biological cells are highly sensitive to ultrasonic waves of different frequencies. Are not the same. This has caused the blindness of the initial ultrasonic frequency determination in the existing ultrasonic biological treatment method, and further, the additional ultrasonic frequency analysis and determination form dependence. The actual working process is: use the treatment of a certain biological cell at different frequencies, compare and analyze the sub-bands, and obtain relevant data; in the future work, continue to use the data of the specific object to empirically determine the appropriate ultrasonic frequency. This is a customary practice. In essence, such a method cannot guarantee that the working ultrasonic frequency is the optimal frequency for the object, nor can it perform precise and fine frequency adjustments for different objects, and the accumulated experience is not the best process; in addition, the The method not only consumes a lot of manpower, financial resources and material resources in the initial stage, but also often requires observation, adjustment and maintenance during the use period. In view of this, it is necessary to develop a new high-efficiency strategy, so that the work of ultrasonic biological treatment will no longer follow the inefficient method of first comparing the frequency bands, analyzing and determining the ultrasonic frequency, and then empirically determining the required frequency. Instead, it will determine the required frequency. The process of frequency is carried out efficiently and automatically to the greatest extent. An efficient solution to this kind of problem is the integrated structure of frequency search and control of ultrasonic bioprocessing, and the most difficult problem of the integrated structure is the wide-band transduction matching technology, that is, as the search frequency changes, in several broadband frequency bands with different center frequencies Between the vibrating plate and the driving power supply, how to realize the network structure of resonance matching and synchronous switching.

发明内容 Contents of the invention

为使超声波生物处理过程的可测、可控,实现生物-机-电一体化处理系统中的宽频带换能谐振匹配,本发明提出一种超声波频率搜索生物处理系统的频带匹配结构,它采用多抽头电感线圈,通过不同抽头、振板和继电器接点的连接,来实现驱动电源各频率输出端与对应频带振板的匹配结构。系统的功率匹配输出单元功率输出端口始端连接到频带匹配、换能网络的匹配电感线圈始端;功率匹配输出单元功率输出端口的各级输出端分别通过功率匹配输出各路接线端子连接到频带切换电路的进线对应接线端子;频带切换电路的出线对应接线端子分别连接到频带匹配、换能网络的各路振板的线端子。In order to make the ultrasonic biological treatment process measurable and controllable, and realize the broadband transduction resonance matching in the biological-mechanical-electrical integration treatment system, the present invention proposes a frequency band matching structure of the ultrasonic frequency search biological treatment system, which adopts The multi-tap inductance coil realizes the matching structure of each frequency output end of the drive power supply and the vibration plate of the corresponding frequency band through the connection of different taps, vibration plates and relay contacts. The starting end of the power output port of the power matching output unit of the system is connected to the beginning end of the matching inductance coil of the frequency band matching and transduction network; the output ends of each level of the power output port of the power matching output unit are respectively connected to the frequency band switching circuit through the power matching output terminals. The incoming wires of the frequency band switching circuit correspond to the connecting terminals; the outgoing wires of the frequency band switching circuit are respectively connected to the wire terminals of the vibrating plates of the frequency band matching and transducing networks.

本发明解决其技术问题所采用的技术方案是:整个超声波频率搜索生物处理系统由工作电源电路组、斩波调功电路、正弦波信号产生单元、PWM驱动单元、PWM电路、功率匹配输出单元、频带切换电路、频带匹配、换能网络、超声波生物处理终端、信号处理、反馈控制电路和人-机交互终端构成。系统采用多抽头电感线圈,通过匹配电感线圈各路接线端子、振板接线端子和切换执行继电器常开接点的连接,来实现功率匹配输出单元功率输出端口各级输出端与对应中心频率频带振板的匹配结构。与系统不同频带输出电能的切换同步,在处理模式的所选脉冲间歇内,通过控制器选择切换,使相应继电器的常开接点闭合,将与电感线圈相应抽头连接的振板与驱动电源相应输出端接通,而其它继电器的常开接点断开,实现对应电感线圈-振板匹配网络的选择切换,构成驱动电源-谐振电感线圈-振板的所选频带谐振匹配网络。The technical solution adopted by the present invention to solve its technical problems is: the whole ultrasonic frequency search bioprocessing system consists of a working power supply circuit group, a chopping power adjustment circuit, a sine wave signal generating unit, a PWM driving unit, a PWM circuit, a power matching output unit, It consists of frequency band switching circuit, frequency band matching, transducer network, ultrasonic bioprocessing terminal, signal processing, feedback control circuit and human-computer interaction terminal. The system adopts multi-tap inductance coils, and realizes the power matching between the output terminals of the power output ports of the output unit at all levels and the corresponding center frequency frequency band vibration plates by matching the connections of the various wiring terminals of the inductance coil, the vibration plate wiring terminals and the normally open contacts of the switching execution relay. matching structure. Synchronized with the switching of the output power of different frequency bands of the system, in the selected pulse interval of the processing mode, the controller selects the switch to make the normally open contact of the corresponding relay close, and the vibrating plate connected to the corresponding tap of the inductance coil and the corresponding output of the driving power supply The terminal is connected, and the normally open contacts of other relays are disconnected to realize the selective switching of the corresponding inductance coil-diaphragm matching network, and constitute the selected frequency band resonant matching network of the driving power supply-resonant inductance coil-vibration plate.

功率匹配输出单元的功率输出端口始端连接到频带匹配、换能网络的匹配电感线圈始端;功率匹配输出单元功率输出端口的第一级输出端、第二级输出端、...、第十级输出端分别通过功率匹配输出第一路接线端子、功率匹配输出第二路接线端子、...、功率匹配输出第十路接线端子连接到频带切换电路的进线对应接线端子;频带切换电路的出线对应接线端子分别连接到频带匹配、换能网络的第一路振板第一接线端子、第二路振板第一接线端子、...、第十路振板第一接线端子。The beginning end of the power output port of the power matching output unit is connected to the beginning end of the matching inductance coil of the frequency band matching and transducer network; the first stage output end, the second stage output end, ..., the tenth stage of the power output port of the power matching output unit The output terminals are respectively connected to the corresponding connecting terminals of the incoming line of the frequency band switching circuit through the first power matching output terminal, the second power matching output terminal, ..., the tenth power matching output terminal; The connecting terminals corresponding to the outgoing lines are respectively connected to the first connecting terminal of the first vibration plate, the first connecting terminal of the second vibration plate, ..., the first connecting terminal of the tenth vibration plate of the frequency band matching and the transducer network.

第一路切换执行继电器常开接点进线端连接到功率匹配输出第一路接线端子,第一路切换执行继电器常开接点出线端连接到第一路振板的第一路振板第一接线端子;第一路振板的第一路振板第二接线端子连接到匹配电感线圈第一路接线端子。第二路切换执行继电器常开接点进线端连接到功率匹配输出第二路接线端子,第二路切换执行继电器常开接点出线端连接到第二路振板的第二路振板第一接线端子;第二路振板的第二路振板第二接线端子连接到匹配电感线圈第二路接线端子。......第十路切换执行继电器常开接点进线端连接到功率匹配输出第十路接线端子,第十路切换执行继电器常开接点出线端连接到第十路振板的第十路振板第十接线端子;第十路振板的第十路振板第二接线端子连接到匹配电感线圈第十路接线端子。The normally open contact input end of the first switching execution relay is connected to the first wiring terminal of the power matching output, and the first switching execution relay normally open contact outlet terminal is connected to the first wiring of the first vibration plate of the first vibration plate Terminal; the second connection terminal of the first vibration plate of the first vibration plate is connected to the first connection terminal of the matching inductance coil. The normally open contact input end of the second switching execution relay is connected to the power matching output second wiring terminal, and the second switching execution relay normally open contact outlet terminal is connected to the first wiring of the second vibration plate of the second vibration plate Terminal; the second connection terminal of the second vibration plate of the second vibration plate is connected to the second connection terminal of the matching inductance coil. ......The tenth-way switching execution relay normally open contact input terminal is connected to the tenth power matching output terminal, and the tenth switching execution relay normally-open contact outlet terminal is connected to the tenth vibration plate. The tenth connection terminal of the vibration plate; the second connection terminal of the tenth vibration plate of the tenth vibration plate is connected to the tenth connection terminal of the matching inductance coil.

本发明的有益效果是:采用多抽头电感线圈,提高了电感线圈的效用/体积比;利用模式的处理脉冲间歇控制频带切换,实现了切换开关过程的零电压、零电流,从而产生系统工作无冲击、继电器接点无损耗的效果。使一体化超声波生物处理系统结构和运行操作大大简化,使得超声波生物处理过程的可测、可控,实现生物-机-电一体化,有助于实现超声波生物处理的智能化;可连续监控、调节换能器-振板结构的频率以提供最佳的超声输出;通过其操控终端的人机对话方式,可对处理程序进行调整。The beneficial effects of the present invention are: adopting the multi-tap inductance coil improves the utility/volume ratio of the inductance coil; utilizes the processing pulse interval of the mode to control the frequency band switching, and realizes zero voltage and zero current in the process of switching, thereby generating no system work. Shock and relay contacts have no loss effect. It greatly simplifies the structure and operation of the integrated ultrasonic biological treatment system, makes the ultrasonic biological treatment process measurable and controllable, realizes the integration of biology, machinery and electronics, and helps to realize the intelligentization of ultrasonic biological treatment; it can continuously monitor, The frequency of the transducer-diaphragm structure is adjusted to provide the best ultrasonic output; the processing program can be adjusted through the man-machine dialogue mode of the terminal.

附图说明 Description of drawings

下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.

图1是本发明实施例的系统控制功能结构框图。FIG. 1 is a structural block diagram of system control functions in an embodiment of the present invention.

图2是本实施例的切换执行单元电路结构图。FIG. 2 is a circuit structure diagram of the switching execution unit in this embodiment.

图3是本实施例的受控多路转换单元电路结构图。FIG. 3 is a circuit structure diagram of the controlled multiplexing conversion unit of this embodiment.

图4是本实施例的系统运行工作流程图。Fig. 4 is a flow chart of system operation in this embodiment.

图5是本实施例的频带切换运行工作流程图。FIG. 5 is a flow chart of the operation of frequency band switching in this embodiment.

在图1~2中:1.工作电源电路组,2.斩波调功电路,3.正弦波信号产生单元,4.PWM驱动单元,5.PWM电路,6.功率匹配输出单元,7.频带切换电路,8.频带匹配、换能网络,9.超声波生物处理终端,10.信号处理、反馈控制电路,11.人-机交互终端;Dr为PWM驱动信号,T0为匹配电感线圈始端,TO1为功率匹配输出第一路接线端子,TO2为功率匹配输出第二路接线端子,...,TO10为功率匹配输出第十路接线端子;TZ1为第一路振板第一接线端子,TZ2为第二路振板第一接线端子,...,TZ10为第十路振板第一接线端子;PC为功率控制信号,MC为间歇控制信号,FC为频率控制信号,FT为频带切换控制数据,其中F1为第一频带切换信号,F2为第二频带切换信号,...,F10为第十频带切换信号;v为电压反馈信号,i为电流反馈信号,De为浓度反馈信号,K为系统启动信号,M为模式给定参数,F为频率给定参数,P为功率给定参数,FS为频率状态数据,PS为功率状态数据,Ef为效率状态数据。In Figures 1-2: 1. Working power supply circuit group, 2. Chopper power adjustment circuit, 3. Sine wave signal generation unit, 4. PWM drive unit, 5. PWM circuit, 6. Power matching output unit, 7. Frequency band switching circuit, 8. Frequency band matching, transducer network, 9. Ultrasonic biological processing terminal, 10. Signal processing, feedback control circuit, 11. Human-computer interaction terminal; Dr is the PWM driving signal, T 0 is the beginning of the matching inductance coil , T O1 is the first connecting terminal of power matching output, T O2 is the second connecting terminal of power matching output, ..., T O10 is the tenth connecting terminal of power matching output; T Z1 is the first connecting terminal of vibration plate One connection terminal, T Z2 is the first connection terminal of the second vibration plate, ..., T Z10 is the first connection terminal of the tenth vibration plate; P C is the power control signal, M C is the intermittent control signal, F C is the frequency control signal, FT is the frequency band switching control data, wherein F 1 is the first frequency band switching signal, F 2 is the second frequency band switching signal, ..., F 10 is the tenth frequency band switching signal; v is the voltage feedback signal , i is the current feedback signal, De is the concentration feedback signal, K is the system start signal, M is the mode given parameter, F is the frequency given parameter, P is the power given parameter, F S is the frequency state data, PS is Power status data, Ef is efficiency status data.

在图2、3中:TF1为第一频带切换信号接线端,TF2为第二频带切换信号接线端,TF3为第三频带切换信号接线端,TF3为第四频带切换信号接线端,TF5为第五频带切换信号接线端,TF6为第六频带切换信号接线端,TF7为第七频带切换信号接线端,TF8为第八频带切换信号接线端,TF9为第九频带切换信号接线端,TF10为第十频带切换信号接线端。E为DC15V工作电源正极接线端;R1为第一路切换信号耦合电阻,T1为第一路开关晶体管,J1为第一路切换执行继电器电磁线圈,J1-1为第一路切换执行继电器常开接点,Z1为第一路振板,TL1为匹配电感线圈第一路接线端子;R2为第二路切换信号耦合电阻,T2为第二路开关晶体管,J2为第二路切换执行继电器电磁线圈,J2-1为第二路切换执行继电器常开接点,Z2为第二路振板,TL2为匹配电感线圈第二路接线端子;...;R10为第十路切换信号耦合电阻,T10为第十路开关晶体管,J10为第十路切换执行继电器电磁线圈,J10-1为第十路切换执行继电器常开接点,Z10为第十路振板,TL10为匹配电感线圈第十路接线端子。In Figures 2 and 3: TF1 is the first frequency band switching signal terminal, TF2 is the second frequency band switching signal terminal, TF3 is the third frequency band switching signal terminal, and TF3 is the fourth frequency band switching signal terminal , TF5 is the fifth frequency band switching signal terminal, TF6 is the sixth frequency band switching signal terminal, TF7 is the seventh frequency band switching signal terminal, TF8 is the eighth frequency band switching signal terminal, TF9 is the ninth Frequency band switching signal terminal, T F10 is the tenth frequency band switching signal terminal. E is the positive terminal of the DC15V working power supply; R 1 is the first switching signal coupling resistor, T 1 is the first switching transistor, J 1 is the electromagnetic coil of the first switching executive relay, J 1 -1 is the first switching The normally open contact of the executive relay, Z 1 is the first vibration plate, T L1 is the first wiring terminal of the matching inductance coil; R 2 is the second switching signal coupling resistor, T 2 is the second switching transistor, J 2 is The electromagnetic coil of the second switching execution relay, J 2 -1 is the normally open contact of the second switching execution relay, Z 2 is the second vibration plate, T L2 is the second wiring terminal of the matching inductance coil; ...; R 10 is the tenth switching signal coupling resistor, T 10 is the tenth switching transistor, J 10 is the electromagnetic coil of the tenth switching execution relay, J 10 -1 is the normally open contact of the tenth switching execution relay, and Z 10 is the tenth switching execution relay. Ten-way vibrating plate, T L10 is the tenth-way connecting terminal of the matching inductance coil.

在图3中:U为多路转换器,E0为DC5V工作电源正极接线端;C0为频带切换控制码一位接线端,C1为频带切换控制码二位接线端,C2为频带切换控制码四位接线端,C3为频带切换控制码八位接线端;为间歇时点到达信号接线端。In Figure 3: U is a multiplexer, E 0 is the positive terminal of the DC5V working power supply; C 0 is the one-digit terminal of the frequency band switching control code, C 1 is the two-digit terminal of the frequency band switching control code, and C 2 is the frequency band Switch control code four-digit terminal, C3 is the eight-digit terminal of frequency band switching control code; Arrives at the signal terminal for the intermittent time point.

具体实施方式 Detailed ways

在图1所示的系统控制功能结构框图中:In the block diagram of the system control function structure shown in Figure 1:

整个超声波频率搜索生物处理系统由工作电源电路组1、斩波调功电路2、正弦波信号产生单元3、PWM驱动单元4、PWM电路5、功率匹配输出单元6、频带切换电路7、频带匹配、换能网络8、超声波生物处理终端9、信号处理、反馈控制电路10和人-机交互终端11构成。The entire ultrasonic frequency search biological processing system consists of a working power supply circuit group 1, a chopping power adjustment circuit 2, a sine wave signal generating unit 3, a PWM driving unit 4, a PWM circuit 5, a power matching output unit 6, a frequency band switching circuit 7, and a frequency band matching , a transducer network 8, an ultrasonic bioprocessing terminal 9, a signal processing and feedback control circuit 10, and a human-computer interaction terminal 11.

工作电源电路组1的交流输入端口连接到~220V市电接入工作网络;工作电源电路组1的DC250V输出端口与斩波调功电路2的电源输入端口对应连接;工作电源电路组1的DC15V输出端口同时与正弦波信号产生单元3、PWM驱动单元4、频带切换电路和人-机交互终端11的DC15V工作电源端口对应连接;工作电源电路组1的DC5V输出端口同时与超声波生物处理终端9、信号处理、反馈控制电路10和人-机交互终端11的DC5V工作电源端口对应连接。The AC input port of the working power circuit group 1 is connected to ~220V mains and connected to the working network; the DC250V output port of the working power circuit group 1 is connected to the power input port of the chopper power regulating circuit 2; the DC15V of the working power circuit group 1 The output port is simultaneously connected with the sine wave signal generating unit 3, the PWM drive unit 4, the frequency band switching circuit and the DC15V working power port of the human-computer interaction terminal 11; the DC5V output port of the working power circuit group 1 is simultaneously connected with the ultrasonic bioprocessing terminal 9 , signal processing, feedback control circuit 10 and the DC5V working power port of the human-computer interaction terminal 11 are correspondingly connected.

斩波调功电路2的电源输出端口与PWM电路5的工作电源端口对应连接;正弦波信号产生单元3的信号输出端口与PWM驱动单元4的信号输入端口对应连接;PWM驱动单元4的信号输出端口与PWM电路5的控制信号输入端口对应连接,将PWM驱动信号Dr送入PWM电路5;PWM电路5的功率输出端口与功率匹配输出单元6的功率输入端口对应连接。The power output port of the chopper power regulating circuit 2 is connected correspondingly with the working power port of the PWM circuit 5; the signal output port of the sine wave signal generating unit 3 is connected correspondingly with the signal input port of the PWM drive unit 4; the signal output port of the PWM drive unit 4 The port is correspondingly connected to the control signal input port of the PWM circuit 5, and the PWM driving signal Dr is sent to the PWM circuit 5; the power output port of the PWM circuit 5 is correspondingly connected to the power input port of the power matching output unit 6.

功率匹配输出单元6的功率输出端口通过电压检测网络连接到信号处理、反馈控制电路10的电压反馈信号输入端口对应端,将电压反馈信号v送入信号处理、反馈控制电路10;功率匹配输出单元6的功率输出端口始端连接到频带匹配、换能网络8的匹配电感线圈始端T0;功率匹配输出单元6功率输出端口的第一级输出端、第二级输出端、...、第十级输出端分别通过功率匹配输出第一路接线端子TO1、功率匹配输出第二路接线端子TO2、...、功率匹配输出第十路接线端子TO10连接到频带切换电路7的进线对应接线端子;频带切换电路7的出线对应接线端子分别连接到频带匹配、换能网络8的第一路振板第一接线端子TZ1、第二路振板第一接线端子TZ2、...、第十路振板第一接线端子TZ10;频带匹配、换能网络8的匹配电感线圈始端T0引线通过电流信号检测器件连接到信号处理、反馈控制电路10的电流反馈信号输入端口对应端,将电流相量反馈信号i送入信号处理、反馈控制电路10。The power output port of the power matching output unit 6 is connected to the corresponding end of the voltage feedback signal input port of the signal processing and feedback control circuit 10 through the voltage detection network, and the voltage feedback signal v is sent into the signal processing and feedback control circuit 10; the power matching output unit The beginning end of the power output port of 6 is connected to the frequency band matching and the beginning end T0 of the matching inductance coil of the transducer network 8; the first stage output end, the second stage output end, ..., the tenth The output terminals of the stage are respectively connected to the incoming line of the frequency band switching circuit 7 through the first power matching output terminal T O1 , the second power matching output terminal T O2 , ..., the tenth power matching output terminal T O10 Corresponding wiring terminals; the corresponding wiring terminals of the outgoing line of the frequency band switching circuit 7 are respectively connected to the frequency band matching, the first wiring terminal T Z1 of the first vibration plate of the transduction network 8, the first wiring terminal T Z2 of the second vibration plate, .. ., the first connection terminal T Z10 of the tenth road vibrating plate; the matching inductance coil starting end T0 lead wire of frequency band matching and transduction network 8 is connected to the signal processing and feedback control circuit 10 corresponding to the current feedback signal input port through the current signal detection device The terminal sends the current phasor feedback signal i to the signal processing and feedback control circuit 10 .

频带匹配、换能网络8的内浸式振板结构与处理液浓度检测装置装配于超声波生物处理槽内,构成超声波生物处理终端9。超声波生物处理终端9通过处理液浓度检测装置连接到信号处理、反馈控制电路10,将浓度反馈信号De送入信号处理、反馈控制电路10。The frequency band matching, the submerged vibrating plate structure of the transducer network 8 and the treatment solution concentration detection device are assembled in the ultrasonic biological treatment tank to form the ultrasonic biological treatment terminal 9 . The ultrasonic biological treatment terminal 9 is connected to the signal processing and feedback control circuit 10 through the treatment liquid concentration detection device, and sends the concentration feedback signal De to the signal processing and feedback control circuit 10 .

信号处理、反馈控制电路10通过切换数据接口的对应频带接线端连接到频带切换电路7,将频带切换控制数据FT,即其中的第一频带切换信号F1、第二频带切换信号F2、...、第十频带切换信号F10同时送入频带切换电路7;信号处理、反馈控制电路10的频率控制信号输出接线端连接到正弦波信号产生单元3的频率控制信号输入接线端,将频率控制信号FC送入正弦波信号产生单元3;信号处理、反馈控制电路10的功率控制信号输出接线端和间歇控制信号输出接线端分别连接到斩波调功电路2的功率控制信号输入接线端和间歇控制信号输入接线端,将功率控制信号FC和间歇控制信号MC为送入斩波调功电路2。信号处理、反馈控制电路10通过相应数据接口与人-机交互终端11构成数据连接,将频率状态数据FS、功率状态数据FC和效率状态数据Ef送入人-机交互终端11。The signal processing and feedback control circuit 10 is connected to the frequency band switching circuit 7 through the corresponding frequency band terminal of the switching data interface, and the frequency band switching control data FT , that is, the first frequency band switching signal F 1 , the second frequency band switching signal F 2 , ..., the tenth frequency band switching signal F 10 is sent into the frequency band switching circuit 7 simultaneously; the frequency control signal output terminal of the signal processing and feedback control circuit 10 is connected to the frequency control signal input terminal of the sine wave signal generating unit 3, and the The frequency control signal F C is sent into the sine wave signal generating unit 3; the power control signal output terminal and the intermittent control signal output terminal of the signal processing and feedback control circuit 10 are respectively connected to the power control signal input connection of the chopper power regulating circuit 2 terminal and the intermittent control signal input terminal, the power control signal F C and the intermittent control signal M C are sent to the chopper power regulation circuit 2. The signal processing and feedback control circuit 10 forms a data connection with the human-computer interaction terminal 11 through the corresponding data interface, and sends the frequency state data FS , power state data F C and efficiency state data Ef to the human-computer interaction terminal 11.

人-机交互终端11通过相应数据接口与信号处理、反馈控制电路10构成数据连接,将功率给定参数P、模式给定参数M和频率给定参数F的设置值送入信号处理、反馈控制电路10;人-机交互终端11通过相应信号接口与信号处理、反馈控制电路10构成信号连接,将系统启动信号K送入信号处理、反馈控制电路10。The human-computer interaction terminal 11 forms a data connection with the signal processing and feedback control circuit 10 through the corresponding data interface, and sends the setting values of the power given parameter P, the mode given parameter M and the frequency given parameter F to the signal processing and feedback control circuit 10. The circuit 10 ; the human-computer interaction terminal 11 forms a signal connection with the signal processing and feedback control circuit 10 through the corresponding signal interface, and sends the system start signal K into the signal processing and feedback control circuit 10 .

在图2所示的切换执行单元电路结构图中:In the circuit structure diagram of the switching execution unit shown in Figure 2:

第一路切换信号耦合电阻R1的一端连接到第一频带切换信号接线端TF1,另一端与第一路开关晶体管T1的基极连接;第一路开关晶体管T1的集电极连接到DC15V工作电源正极接线端E,第一路开关晶体管T1的发射极连接到第一路切换执行继电器电磁线圈J1的一端;第一路切换执行继电器电磁线圈J1的另一端接地;第一路切换执行继电器常开接点J1-1进线端连接到功率匹配输出第一路接线端子TO1,第一路切换执行继电器常开接点J1-1出线端连接到第一路振板Z1的第一路振板第一接线端子TZ1;第一路振板Z1的第一路振板第二接线端子连接到匹配电感线圈第一路接线端子TL1One end of the first switching signal coupling resistor R 1 is connected to the first frequency band switching signal terminal T F1 , and the other end is connected to the base of the first switching transistor T 1 ; the collector of the first switching transistor T 1 is connected to The positive terminal E of the DC15V working power supply, the emitter of the first switching transistor T1 is connected to one end of the electromagnetic coil J1 of the first switching execution relay; the other end of the electromagnetic coil J1 of the first switching execution relay is grounded; the first The normally open contact J 1 -1 of the switching execution relay is connected to the first power matching output terminal T O1 , and the normally open contact J 1 -1 of the first switching execution relay is connected to the first vibration plate Z The first connection terminal T Z1 of the first vibration plate of 1 ; the second connection terminal of the first vibration plate of the first vibration plate Z 1 is connected to the first connection terminal T L1 of the matching inductance coil.

第二路切换信号耦合电阻R2的一端连接到第二频带切换信号接线端TF2,另一端与第二路开关晶体管T2的基极连接;第二路开关晶体管T2的集电极连接到DC15V工作电源正极接线端E,第二路开关晶体管T2的发射极连接到第二路切换执行继电器电磁线圈J2的一端;第二路切换执行继电器电磁线圈J2的另一端接地;第二路切换执行继电器常开接点J2-1进线端连接到功率匹配输出第二路接线端子TO2,第二路切换执行继电器常开接点J2-1出线端连接到第二路振板Z2的第二路振板第一接线端子TZ2;第二路振板Z2的第二路振板第二接线端子连接到匹配电感线圈第二路接线端子TL2One end of the second switching signal coupling resistor R 2 is connected to the second frequency band switching signal terminal T F2 , and the other end is connected to the base of the second switching transistor T 2 ; the collector of the second switching transistor T 2 is connected to DC15V working power positive terminal E, the emitter of the second switching transistor T2 is connected to one end of the electromagnetic coil J2 of the second switching execution relay; the other end of the electromagnetic coil J2 of the second switching execution relay is grounded; the second The normally open contact J 2 -1 of the switching execution relay is connected to the power matching output second wiring terminal T O2 , and the second switching execution relay normally open contact J 2 -1 is connected to the second vibration plate Z The first connection terminal T Z2 of the second vibration plate of 2 ; the second connection terminal of the second vibration plate of the second vibration plate Z 2 is connected to the second connection terminal T L2 of the matching inductance coil.

第十路切换信号耦合电阻R10的一端连接到第十频带切换信号接线端TF10,另一端与第十路开关晶体管T10的基极连接;第十路开关晶体管T10的集电极连接到DC15V工作电源正极接线端E,第十路开关晶体管T10的发射极连接到第十路切换执行继电器电磁线圈J10的一端;第十路切换执行继电器电磁线圈J10的另一端接地;第十路切换执行继电器常开接点J10-1进线端连接到功率匹配输出第十路接线端子TO10,第十路切换执行继电器常开接点J10-1出线端连接到第十路振板Z10的第十路振板第十接线端子TZ10;第十路振板Z10的第十路振板第二接线端子连接到匹配电感线圈第十路接线端子TL10One end of the tenth switching signal coupling resistor R 10 is connected to the tenth frequency band switching signal terminal T F10 , and the other end is connected to the base of the tenth switching transistor T 10 ; the collector of the tenth switching transistor T 10 is connected to DC15V working power positive pole terminal E, the emitter of the tenth switching transistor T10 is connected to one end of the electromagnetic coil J10 of the tenth switching execution relay; the other end of the tenth switching execution relay electromagnetic coil J10 is grounded; The normally open contact J 10 -1 of the switching execution relay is connected to the tenth power matching output terminal T O10 , and the normally open contact J 10 -1 of the tenth switching execution relay is connected to the tenth vibration plate Z The tenth connection terminal T Z10 of the tenth vibration plate of 10 ; the second connection terminal of the tenth vibration plate of the tenth vibration plate Z 10 is connected to the tenth connection terminal T L10 of the matching inductance coil.

频带匹配、换能网络8的匹配电感线圈始端T0连接到功率匹配输出单元6的功率输出端口始端。The starting end T 0 of the matching inductance coil of the band matching and transducing network 8 is connected to the starting end of the power output port of the power matching output unit 6 .

在图3所示的受控多路转换单元电路结构图中:受控多路转换单元为以DG406型多路转换器U芯片为核心的电路结构,作为信号处理、反馈控制电路10内部的频带切换数据变换环节,将反馈控制电路产生的频带切换控制码(C0、C1、C2和C3)转换为频带切换控制数据FT(F1、F2、...、F10)。多路转换器U的1脚和28脚均连接到DC5V工作电源正极接线端E0;多路转换器U的4脚、5脚、6脚、26脚、25脚、24脚、23脚、22脚、21脚和20脚分别连接到第一频带切换信号接线端TF1、第二频带切换信号接线端TF2、第三频带切换信号接线端TF3、T第四频带切换信号接线端F3、第五频带切换信号接线端TF5、第六频带切换信号接线端TF6、第七频带切换信号接线端TF7、第八频带切换信号接线端TF8、第九频带切换信号接线端TF9和第十频带切换信号接线端TF10;多路转换器U的12脚接地;多路转换器U的14脚、15脚、16脚和17脚分别与频带切换控制码一位接线端C0、频带切换控制码二位接线端C1、频带切换控制码四位接线端C2和频带切换控制码八位接线端C3连接;多路转换器U的18脚与间歇时点到达信号接线端

Figure BDA0000139972680000041
连接。In the circuit structure diagram of the controlled multiplexing unit shown in Figure 3: the controlled multiplexing unit is a circuit structure with the DG406 multiplexer U chip as the core, as a signal processing, feedback control circuit 10 internal frequency band The switching data conversion link converts the frequency band switching control codes (C 0 , C 1 , C 2 and C 3 ) generated by the feedback control circuit into frequency band switching control data F T (F 1 , F 2 ,..., F 10 ) . Pins 1 and 28 of the multiplexer U are connected to the positive terminal E0 of the DC5V working power supply; pins 4, 5, 6, 26, 25, 24, and 23 of the multiplexer U Pins 22, 21 and 20 are respectively connected to the first frequency band switching signal terminal T F1 , the second frequency band switching signal terminal T F2 , the third frequency band switching signal terminal T F3 , and the fourth frequency band switching signal terminal F3 , The fifth frequency band switching signal terminal T F5 , the sixth frequency band switching signal terminal T F6 , the seventh frequency band switching signal terminal T F7 , the eighth frequency band switching signal terminal T F8 , the ninth frequency band switching signal terminal T F9 and the tenth frequency band switching signal terminal T F10 ; the 12 pins of the multiplexer U are grounded; the 14 pins, 15 pins, 16 pins and 17 pins of the multiplexer U are respectively connected to the frequency band switching control code one terminal C 0 , the two-digit terminal C 1 of the frequency band switching control code, the four-digit terminal C 2 of the frequency band switching control code and the eight-digit terminal C 3 of the frequency band switching control code are connected; the 18-pin of the multiplexer U is connected to the intermittent time point arrival signal end
Figure BDA0000139972680000041
connect.

在图4所示的系统运行工作流程图中:In the system operation workflow diagram shown in Figure 4:

St1.启动,控制系统和各参数初始化与设置:超声波处理脉冲间歇比给定,脉冲宽度给定,频率搜索速率给定,搜索起点频率给定,终点频率给定;开始;St1. Startup, initialization and setting of the control system and various parameters: ultrasonic processing pulse intermittent ratio is given, pulse width is given, frequency search rate is given, search start frequency is given, end frequency is given; start;

St2.进行超声波生物处理的大步频带搜索运行;St2. Perform a large-step frequency band search operation for ultrasonic bioprocessing;

St3.当得到频带锁定信号,即浓度装置检测到高效处理频带,并以浓度反馈信号反馈到信号处理、反馈控制电路时,进行小步频率搜索运行;否则,转入频带切换运行工作流程;St3. When the frequency band locking signal is obtained, that is, the concentration device detects the high-efficiency processing frequency band, and the concentration feedback signal is fed back to the signal processing and feedback control circuit, a small-step frequency search operation is performed; otherwise, it is transferred to the frequency band switching operation workflow;

St4.在前步运行中,当得到频率锁定信号,即浓度装置检测到高效处理频率,并以浓度反馈信号反馈到信号处理、反馈控制电路时,进行超声波处理的频率锁定运行;否则,判断是否到达所在频带上(下)限?如果是,则继续进行超声波处理的频率锁定运行;否则,转St2.;St4. In the previous operation, when the frequency locking signal is obtained, that is, the concentration device detects the high-efficiency processing frequency, and the concentration feedback signal is fed back to the signal processing and feedback control circuit, the frequency locking operation of the ultrasonic treatment is performed; otherwise, it is judged whether Reach the upper (lower) limit of the frequency band? If yes, proceed to frequency-locked operation of ultrasonic treatment; otherwise, go to St2.;

St5.在前步锁定运行中,当得到停止处理信号时,停止;否则,继续进行超声波处理的频率锁定运行。St5. During the locking operation of the previous step, stop when the processing stop signal is received; otherwise, continue the frequency locking operation of ultrasonic processing.

在图5所示的频带切换运行工作流程图中:In the working flow diagram of frequency band switching operation shown in Figure 5:

St1.启动,控制系统和各参数初始化与设置:超声波处理脉冲间歇比给定,脉冲宽度给定,频率搜索速率给定,搜索起点频率给定,终点频率给定;开始;St1. Startup, initialization and setting of the control system and various parameters: ultrasonic processing pulse intermittent ratio is given, pulse width is given, frequency search rate is given, search start frequency is given, end frequency is given; start;

St2.进行超声波生物处理的大步频带搜索运行;St2. Perform a large-step frequency band search operation for ultrasonic bioprocessing;

St3.当得到频带锁定信号,即浓度装置检测到高效处理频带,并以浓度反馈信号反馈到信号处理、反馈控制电路时,跳出本流程,即进行系统运行工作流程的小步频率搜索运行;否则,判断是否到达所在频带上(下)限?St3. When the frequency band locking signal is obtained, that is, the concentration device detects the high-efficiency processing frequency band, and feeds back the signal processing and feedback control circuit with the concentration feedback signal, jump out of this process, that is, carry out the small-step frequency search operation of the system operation workflow; otherwise , to judge whether it has reached the upper (lower) limit of the frequency band?

St4.如果超声波生物处理的频率搜索运行到达所在频带上(下)限,则判断是否到达所设置运行模式的脉冲间歇起始时点?St4. If the frequency search operation of the ultrasonic biological treatment reaches the upper (lower) limit of the frequency band, then it is judged whether it has reached the starting point of the pulse interval of the set operation mode?

St5.如果上步运行过程到达间歇时点,判断是否得到跳出本流程的信号?St5. If the running process of the previous step reaches the intermittent time point, judge whether to get a signal to jump out of this process?

St6.如果得到跳出本流程的信号,转到St2.;否则,发出切换信号,继而执行切换到下一频带谐振匹配网路;St6. If you get a signal to jump out of this process, go to St2.; otherwise, send a switching signal, and then switch to the next frequency band resonance matching network;

St7.判断切换是否完成?St7. Determine whether the switching is completed?

St8.如果切换完成,则间歇时段结束,下一脉冲开始,继续频带搜索处理运行,即转到St2.;否则,延长间歇时段,即下一脉冲延时开始,转到St7.。St8. If the switching is completed, the intermittent period ends, the next pulse starts, and the frequency band search process continues, that is, go to St2.; otherwise, extend the intermittent period, that is, the next pulse delay starts, and go to St7.

Claims (7)

1.一种超声波频率搜索生物处理系统的频带匹配结构,其特征是:1. A frequency band matching structure of an ultrasonic frequency search biological treatment system, characterized in that: 整个超声波频率搜索生物处理系统由工作电源电路组、斩波调功电路、正弦波信号产生单元、PWM驱动单元、PWM电路、功率匹配输出单元、频带切换电路、频带匹配、换能网络、超声波生物处理终端、信号处理、反馈控制电路和人-机交互终端构成;系统采用多抽头电感线圈,通过匹配电感线圈各路接线端子、振板接线端子和切换执行继电器常开接点的连接,来实现功率匹配输出单元功率输出端口各级输出端与对应中心频率频带振板的匹配结构;与驱动电源不同频带输出电能的切换同步,在处理模式的所选脉冲间歇内,通过控制器选择切换,使相应继电器的常开接点闭合,将与电感线圈相应抽头连接的振板与驱动电源相应输出端接通,而其它继电器的常开接点断开,实现对应电感线圈-振板匹配网络的选择切换,构成驱动电源-谐振电感线圈-振板的所选频带谐振匹配网络;The entire ultrasonic frequency search biological processing system consists of a working power supply circuit group, a chopper power adjustment circuit, a sine wave signal generating unit, a PWM drive unit, a PWM circuit, a power matching output unit, a frequency band switching circuit, a frequency band matching, a transducer network, and an ultrasonic biological system. The processing terminal, signal processing, feedback control circuit and human-computer interaction terminal are composed; the system uses a multi-tap inductance coil, and realizes the power by matching the connection terminals of the inductance coil, the vibration plate terminal and the normally open contact of the switching execution relay. Match the matching structure of the output ports of the power output port of the output unit at all levels and the vibration plate of the corresponding center frequency band; it is synchronized with the switching of the output electric energy of different frequency bands of the driving power supply, and in the selected pulse interval of the processing mode, the switching is selected by the controller to make the corresponding The normally open contact of the relay is closed, and the vibrating plate connected to the corresponding tap of the inductance coil is connected to the corresponding output end of the driving power supply, while the normally open contacts of other relays are disconnected, so as to realize the selective switching of the corresponding inductive coil-vibrating plate matching network, forming Drive power supply-resonant inductor coil-selected frequency band resonant matching network of vibrating plate; 功率匹配输出单元的功率输出端口始端连接到频带匹配、换能网络的匹配电感线圈始端;功率匹配输出单元功率输出端口的第一级输出端、第二级输出端、...、第十级输出端分别通过功率匹配输出第一路接线端子、功率匹配输出第二路接线端子、...、功率匹配输出第十路接线端子连接到频带切换电路的进线对应接线端子;频带切换电路的出线对应接线端子分别连接到频带匹配、换能网络的第一路振板第一接线端子、第二路振板第一接线端子、...、第十路振板第一接线端子;The beginning end of the power output port of the power matching output unit is connected to the beginning end of the matching inductance coil of the frequency band matching and transducer network; the first stage output end, the second stage output end, ..., the tenth stage of the power output port of the power matching output unit The output terminals are respectively connected to the corresponding connecting terminals of the incoming line of the frequency band switching circuit through the first power matching output terminal, the second power matching output terminal, ..., the tenth power matching output terminal; The connecting terminals corresponding to the outgoing lines are respectively connected to the first connecting terminal of the first vibrating plate, the first connecting terminal of the second vibrating plate, ..., the first connecting terminal of the tenth vibrating plate of the frequency band matching and the transducing network; 第一路切换执行继电器常开接点进线端连接到功率匹配输出第一路接线端子,第一路切换执行继电器常开接点出线端连接到第一路振板的第一路振板第一接线端子;第一路振板的第一路振板第二接线端子连接到匹配电感线圈第一路接线端子;第二路切换执行继电器常开接点进线端连接到功率匹配输出第二路接线端子,第二路切换执行继电器常开接点出线端连接到第二路振板的第二路振板第一接线端子;第二路振板的第二路振板第二接线端子连接到匹配电感线圈第二路接线端子;......第十路切换执行继电器常开接点进线端连接到功率匹配输出第十路接线端子,第十路切换执行继电器常开接点出线端连接到第十路振板的第十路振板第十接线端子;第十路振板的第十路振板第二接线端子连接到匹配电感线圈第十路接线端子。The normally open contact input end of the first switching execution relay is connected to the first wiring terminal of the power matching output, and the first switching execution relay normally open contact outlet terminal is connected to the first wiring of the first vibration plate of the first vibration plate Terminals; the second connecting terminal of the first vibrating plate of the first vibrating plate is connected to the first connecting terminal of the matching inductance coil; the second connecting terminal of the normally open contact of the switching executive relay is connected to the second connecting terminal of the power matching output , the outlet end of the normally open contact of the second-way switching execution relay is connected to the first terminal of the second-way vibration plate of the second-way vibration plate; the second terminal of the second-way vibration plate of the second-way vibration plate is connected to the matching inductance coil The second wiring terminal; ... the tenth switching execution relay normally open contact input terminal is connected to the power matching output tenth wiring terminal, and the tenth switching execution relay normally open contact output terminal is connected to the tenth The tenth connection terminal of the tenth vibration plate of the road vibration plate; the second connection terminal of the tenth vibration plate of the tenth vibration plate is connected to the tenth connection terminal of the matching inductance coil. 2.根据权利要求1所述的超声波频率搜索生物处理系统的频带匹配结构,其特征是:功率匹配输出单元的功率输出端口通过电压检测网络连接到信号处理、反馈控制电路的电压反馈信号输入端口对应端,将电压反馈信号v送入信号处理、反馈控制电路;功率匹配输出单元的功率输出端口始端连接到频带匹配、换能网络的匹配电感线圈始端T0;功率匹配输出单元功率输出端口的第一级输出端、第二级输出端、...、第十级输出端分别通过功率匹配输出第一路接线端子TO1、功率匹配输出第二路接线端子TO2、...、功率匹配输出第十路接线端子TO10连接到频带切换电路的进线对应接线端子;频带切换电路的出线对应接线端子分别连接到频带匹配、换能网络的第一路振板第一接线端子TZ1、第二路振板第一接线端子TZ2、...、第十路振板第一接线端子TZ10;频带匹配、换能网络的匹配电感线圈始端T0引线通过电流信号检测器件连接到信号处理、反馈控制电路的电流反馈信号输入端口对应端,将电流相量反馈信号i送入信号处理、反馈控制电路。2. the frequency band matching structure of ultrasonic frequency search bioprocessing system according to claim 1, it is characterized in that: the power output port of power matching output unit is connected to signal processing, the voltage feedback signal input port of feedback control circuit by voltage detection network The corresponding end sends the voltage feedback signal v into the signal processing and feedback control circuit; the power output port start of the power matching output unit is connected to the frequency band matching and the start end T 0 of the matching inductance coil of the energy conversion network; the power output port of the power matching output unit The output terminal of the first stage, the output terminal of the second stage, ..., the output terminal of the tenth stage respectively output the first terminal T O1 through power matching, the second terminal T O2 of the power matching output, ..., power The tenth connecting terminal T O10 of the matching output is connected to the corresponding connecting terminal of the incoming line of the frequency band switching circuit; the corresponding connecting terminal of the outgoing line of the frequency band switching circuit is respectively connected to the first connecting terminal T Z1 of the first vibration plate of the frequency band matching and transducing network , the first connecting terminal T Z2 of the second road vibrating plate, ..., the first connecting terminal T Z10 of the tenth road vibrating plate; the frequency band matching, the matching inductance coil starting end T0 lead wire of the energy conversion network is connected to the The corresponding terminal of the current feedback signal input port of the signal processing and feedback control circuit sends the current phasor feedback signal i into the signal processing and feedback control circuit. 3.根据权利要求1所述的超声波频率搜索生物处理系统的频带匹配结构法,其特征是:频带匹配、换能网络的内浸式振板结构与处理液浓度检测装置装配于超声波生物处理槽内,构成超声波生物处理终端;超声波生物处理终端通过处理液浓度检测装置连接到信号处理、反馈控制电路,将浓度反馈信号De送入信号处理、反馈控制电路。3. The frequency band matching structure method of ultrasonic frequency search biological treatment system according to claim 1, it is characterized in that: frequency band matching, the submerged vibrating plate structure of transduction network and the treatment liquid concentration detection device are assembled in ultrasonic biological treatment tank Inside, the ultrasonic biological treatment terminal is formed; the ultrasonic biological treatment terminal is connected to the signal processing and feedback control circuit through the treatment liquid concentration detection device, and sends the concentration feedback signal De to the signal processing and feedback control circuit. 4.根据权利要求1所述的超声波频率搜索生物处理系统的频带匹配结构,其特征是:信号处理、反馈控制电路通过切换数据接口的对应频带接线端连接到频带切换电路,将频带切换控制数据FT,即其中的第一频带切换信号F1、第二频带切换信号F2、...、第十频带切换信号F10同时送入频带切换电路;信号处理、反馈控制电路的频率控制信号输出接线端连接到正弦波信号产生单元的频率控制信号输入接线端,将频率控制信号FC送入正弦波信号产生单元;信号处理、反馈控制电路的功率控制信号输出接线端和间歇控制信号输出接线端分别连接到斩波调功电路的功率控制信号输入接线端和间歇控制信号输入接线端,将功率控制信号FC和间歇控制信号MC送入斩波调功电路;信号处理、反馈控制电路通过相应数据接口与人-机交互终端构成数据连接,将频率状态数据FS、功率状态数据FC和效率状态数据Ef送入人-机交互终端。4. the frequency band matching structure of ultrasonic frequency search bioprocessing system according to claim 1, it is characterized in that: signal processing, feedback control circuit are connected to frequency band switching circuit by the corresponding frequency band terminal of switching data interface, frequency band switching control data F T , that is, the first frequency band switching signal F 1 , the second frequency band switching signal F 2 , ..., and the tenth frequency band switching signal F 10 are sent to the frequency band switching circuit at the same time; the frequency control signal of the signal processing and feedback control circuit The output terminal is connected to the frequency control signal input terminal of the sine wave signal generating unit, and the frequency control signal F C is sent to the sine wave signal generating unit; the power control signal output terminal of the signal processing and feedback control circuit and the intermittent control signal output The terminals are respectively connected to the power control signal input terminal and the intermittent control signal input terminal of the chopper power regulation circuit, and the power control signal F C and the intermittent control signal M C are sent to the chopper power regulation circuit; signal processing, feedback control The circuit forms a data connection with the human-computer interaction terminal through the corresponding data interface, and sends the frequency state data F S , power state data F C and efficiency state data Ef to the human-computer interaction terminal. 5.根据权利要求1所述的超声波频率搜索生物处理系统的频带匹配结构,其特征是:人-机交互终端通过相应数据接口与信号处理、反馈控制电路构成数据连接,将功率给定参数P、模式给定参数M和频率给定参数F的设置值送入信号处理、反馈控制电路;人-机交互终端通过相应信号接口与信号处理、反馈控制电路构成信号连接,将系统启动信号K送入信号处理、反馈控制电路。5. the frequency band matching structure of ultrasonic frequency search bioprocessing system according to claim 1, it is characterized in that: human-computer interaction terminal forms data connection with signal processing, feedback control circuit by corresponding data interface, and power given parameter P , the set value of mode given parameter M and frequency given parameter F are sent to the signal processing and feedback control circuit; the human-computer interaction terminal forms a signal connection with the signal processing and feedback control circuit through the corresponding signal interface, and sends the system start signal K to Input signal processing, feedback control circuit. 6.根据权利要求1所述的超声波频率搜索生物处理系统的频带匹配结构,其特征是:在切换执行单元电路结构图中:6. The frequency band matching structure of the ultrasonic frequency search bioprocessing system according to claim 1, characterized in that: in the circuit structure diagram of the switching execution unit: 第一路切换信号耦合电阻R1的一端连接到第一频带切换信号接线端TF1,另一端与第一路开关晶体管T1的基极连接;第一路开关晶体管T1的集电极连接到DC15V工作电源正极接线端E,第一路开关晶体管T1的发射极连接到第一路切换执行继电器电磁线圈J1的一端;第一路切换执行继电器电磁线圈J1的另一端接地;第一路切换执行继电器常开接点J1-1进线端连接到功率匹配输出第一路接线端子TO1,第一路切换执行继电器常开接点J1-1出线端连接到第一路振板Z1的第一路振板第一接线端子TZ1;第一路振板Z1的第一路振板第二接线端子连接到匹配电感线圈第一路接线端子TL1One end of the first switching signal coupling resistor R 1 is connected to the first frequency band switching signal terminal T F1 , and the other end is connected to the base of the first switching transistor T 1 ; the collector of the first switching transistor T 1 is connected to The positive terminal E of the DC15V working power supply, the emitter of the first switching transistor T1 is connected to one end of the electromagnetic coil J1 of the first switching execution relay; the other end of the electromagnetic coil J1 of the first switching execution relay is grounded; the first The normally open contact J 1 -1 of the switching execution relay is connected to the first power matching output terminal T O1 , and the normally open contact J 1 -1 of the first switching execution relay is connected to the first vibration plate Z The first connection terminal T Z1 of the first vibration plate of 1 ; the second connection terminal of the first vibration plate of the first vibration plate Z1 is connected to the first connection terminal T L1 of the matching inductance coil; 第二路切换信号耦合电阻R2的一端连接到第二频带切换信号接线端TF2,另一端与第二路开关晶体管T2的基极连接;第二路开关晶体管T2的集电极连接到DC15V工作电源正极接线端E,第二路开关晶体管T2的发射极连接到第二路切换执行继电器电磁线圈J2的一端;第二路切换执行继电器电磁线圈J2的另一端接地;第二路切换执行继电器常开接点J2-1进线端连接到功率匹配输出第二路接线端子TO2,第二路切换执行继电器常开接点J2-1出线端连接到第二路振板Z2的第二路振板第一接线端子TZ2;第二路振板Z2的第二路振板第二接线端子连接到匹配电感线圈第二路接线端子TL2One end of the second switching signal coupling resistor R 2 is connected to the second frequency band switching signal terminal T F2 , and the other end is connected to the base of the second switching transistor T 2 ; the collector of the second switching transistor T 2 is connected to DC15V working power positive terminal E, the emitter of the second switching transistor T2 is connected to one end of the electromagnetic coil J2 of the second switching execution relay; the other end of the electromagnetic coil J2 of the second switching execution relay is grounded; the second The normally open contact J 2 -1 of the switching execution relay is connected to the power matching output second wiring terminal T O2 , and the second switching execution relay normally open contact J 2 -1 is connected to the second vibration plate Z The first connection terminal T Z2 of the second vibration plate of 2 ; the second connection terminal of the second vibration plate of the second vibration plate Z 2 is connected to the second connection terminal T L2 of the matching inductance coil; 第十路切换信号耦合电阻R10的一端连接到第十频带切换信号接线端TF10,另一端与第十路开关晶体管T10的基极连接;第十路开关晶体管T10的集电极连接到DC15V工作电源正极接线端E,第十路开关晶体管T10的发射极连接到第十路切换执行继电器电磁线圈J10的一端;第十路切换执行继电器电磁线圈J10的另一端接地;第十路切换执行继电器常开接点J10-1进线端连接到功率匹配输出第十路接线端子TO10,第十路切换执行继电器常开接点J10-1出线端连接到第十路振板Z10的第十路振板第十接线端子TZ10;第十路振板Z10的第十路振板第二接线端子连接到匹配电感线圈第十路接线端子TL10One end of the tenth switching signal coupling resistor R 10 is connected to the tenth frequency band switching signal terminal T F10 , and the other end is connected to the base of the tenth switching transistor T 10 ; the collector of the tenth switching transistor T 10 is connected to DC15V working power positive pole terminal E, the emitter of the tenth switching transistor T10 is connected to one end of the electromagnetic coil J10 of the tenth switching execution relay; the other end of the tenth switching execution relay electromagnetic coil J10 is grounded; The normally open contact J 10 -1 of the switching execution relay is connected to the tenth power matching output terminal T O10 , and the normally open contact J 10 -1 of the tenth switching execution relay is connected to the tenth vibration plate Z The tenth connection terminal T Z10 of the tenth vibration plate of 10 ; the second connection terminal of the tenth vibration plate of the tenth vibration plate Z 10 is connected to the tenth connection terminal T L10 of the matching inductance coil. 7.根据权利要求1所述的超声波频率搜索生物处理系统的频带匹配结构,其特征是:受控多路转换单元为以DG406型多路转换器U芯片为核心的电路结构,作为信号处理、反馈控制电路10内部的频带切换数据变换环节,将反馈控制电路产生的频带切换控制码(C0、C1、C2和C3)转换为频带切换控制数据FT(F1、F2、...、F10);多路转换器U的1脚和28脚均连接到DC5V工作电源正极接线端E0;多路转换器U的4脚、5脚、6脚、26脚、25脚、24脚、23脚、22脚、21脚和20脚分别连接到第一频带切换信号接线端TF1、第二频带切换信号接线端TF2、第三频带切换信号接线端TF3、第四频带切换信号接线端TF3、第五频带切换信号接线端TF5、第六频带切换信号接线端TF6、第七频带切换信号接线端TF7、第八频带切换信号接线端TF8、第九频带切换信号接线端TF9和第十频带切换信号接线端TF10;多路转换器U的12脚接地;多路转换器U的14脚、15脚、16脚和17脚分别与频带切换控制码一位接线端C0、频带切换控制码二位接线端C1、频带切换控制码四位接线端C2和频带切换控制码八位接线端C3连接;多路转换器U的18脚与间歇时点到达信号接线端
Figure FDA0000139972670000031
连接。
7. the frequency band matching structure of ultrasonic frequency search bioprocessing system according to claim 1 is characterized in that: the controlled multiplexing unit is the circuit structure with the DG406 type multiplexer U chip as the core, as signal processing, The frequency band switching data conversion link inside the feedback control circuit 10 converts the frequency band switching control codes (C 0 , C 1 , C 2 and C 3 ) generated by the feedback control circuit into frequency band switching control data FT (F 1 , F 2 , ..., F 10 ); pins 1 and 28 of the multiplexer U are connected to the positive terminal E 0 of the DC5V working power supply; pins 4, 5, 6, 26, and 25 of the multiplexer U Pins, 24 pins, 23 pins, 22 pins, 21 pins and 20 pins are respectively connected to the first frequency band switching signal terminal T F1 , the second frequency band switching signal terminal T F2 , the third frequency band switching signal terminal T F3 , the Four-band switching signal terminal T F3 , fifth frequency band switching signal terminal T F5 , sixth frequency band switching signal terminal T F6 , seventh frequency band switching signal terminal T F7 , eighth frequency band switching signal terminal T F8 , Nine frequency band switching signal terminal T F9 and the tenth frequency band switching signal terminal T F10 ; the 12 pins of the multiplexer U are grounded; the 14 pins, 15 pins, 16 pins and 17 pins of the multiplexer U are respectively connected to the frequency band switching The one-digit terminal C 0 of the control code, the two-digit terminal C 1 of the frequency band switching control code, the four-digit terminal C 2 of the frequency band switching control code and the eight-digit terminal C 3 of the frequency band switching control code are connected; 18 of the multiplexer U The pin and the intermittent time point reach the signal terminal
Figure FDA0000139972670000031
connect.
CN2012100517292A 2012-03-01 2012-03-01 Frequency band matching structure of ultrasonic frequency search biological processing system Pending CN102594295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012100517292A CN102594295A (en) 2012-03-01 2012-03-01 Frequency band matching structure of ultrasonic frequency search biological processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012100517292A CN102594295A (en) 2012-03-01 2012-03-01 Frequency band matching structure of ultrasonic frequency search biological processing system

Publications (1)

Publication Number Publication Date
CN102594295A true CN102594295A (en) 2012-07-18

Family

ID=46482569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012100517292A Pending CN102594295A (en) 2012-03-01 2012-03-01 Frequency band matching structure of ultrasonic frequency search biological processing system

Country Status (1)

Country Link
CN (1) CN102594295A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105281590A (en) * 2015-11-09 2016-01-27 江南大学 Ultrasonic frequency detection method of ultrasonic biological treatment
CN112986544A (en) * 2019-12-18 2021-06-18 北部湾大学 Laboratory ultrasonic biological treatment system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050007879A1 (en) * 2003-06-03 2005-01-13 Masaru Nishida Ultrasonic transmitter, ultrasonic transceiver and sounding apparatus
CN102723928A (en) * 2012-01-09 2012-10-10 江南大学 Frequency band searching and matching method of ultrasonic-wave biological treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050007879A1 (en) * 2003-06-03 2005-01-13 Masaru Nishida Ultrasonic transmitter, ultrasonic transceiver and sounding apparatus
CN102723928A (en) * 2012-01-09 2012-10-10 江南大学 Frequency band searching and matching method of ultrasonic-wave biological treatment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105281590A (en) * 2015-11-09 2016-01-27 江南大学 Ultrasonic frequency detection method of ultrasonic biological treatment
WO2017079994A1 (en) * 2015-11-09 2017-05-18 江南大学 Ultrasonic frequency detection method for ultrasonic biological treatment
CN105281590B (en) * 2015-11-09 2017-09-19 江南大学 Ultrasonic frequency detection method for ultrasonic biological treatment
CN112986544A (en) * 2019-12-18 2021-06-18 北部湾大学 Laboratory ultrasonic biological treatment system
CN112986544B (en) * 2019-12-18 2021-11-26 北部湾大学 Laboratory ultrasonic biological treatment system

Similar Documents

Publication Publication Date Title
CN105226840B (en) Apparatus, method and integrated circuit for wireless power transfer
CN102723928B (en) Frequency band searching and matching method of ultrasonic-wave biological treatment
CN106160086B (en) A kind of wireless charging output device
CN207117238U (en) A kind of multifunction wireless power supply platform
CN108181506A (en) Search the method and system of energy converter resonant frequency point
CN105281590B (en) Ultrasonic frequency detection method for ultrasonic biological treatment
CN103746434A (en) Charging method and charging system
CN104269893B (en) Charge control method and charging system
CN203367660U (en) Intelligent metering socket
CN205160394U (en) Ultrasonic Frequency Detection Structure for Ultrasonic Biological Treatment
CN102594295A (en) Frequency band matching structure of ultrasonic frequency search biological processing system
CN106374809A (en) Power device parallel current sharing device of power converter of switched reluctance motor
CN106603641A (en) Intelligent control method and intelligent control system of IoT device
CN102097801A (en) Power grid system and power grid system-based power utilization management method
CN206038763U (en) Impulse current's testing arrangement
CN106292481B (en) A kind of the multi-frequency ultrasonic power supply and its control method of touch control
CN202995432U (en) Intelligent controller for hotel guest room
CN103997194B (en) A kind of driving method of BUCK circuits breaker in middle pipe
CN113595060B (en) A multi-energy fusion scheduling method based on power carrier technology
CN206193486U (en) Touch panel's multifrequency ultrasonic power supply
CN205481176U (en) Electromagnetic oven
CN205283437U (en) Pressure regulating circuit, soft starter and motor
CN204155098U (en) Fruits and vegetables agricultural chemicals removes the control circuit of residual device
CN107681702A (en) Alternating current-direct current series-parallel connection adjusting method and circuit
CN110783937B (en) Low-voltage line three-inlet two-outlet type intelligent phase modulation device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120718