CN102614907B - Molecular sieve catalyst and preparation method thereof - Google Patents
Molecular sieve catalyst and preparation method thereof Download PDFInfo
- Publication number
- CN102614907B CN102614907B CN201110028885.2A CN201110028885A CN102614907B CN 102614907 B CN102614907 B CN 102614907B CN 201110028885 A CN201110028885 A CN 201110028885A CN 102614907 B CN102614907 B CN 102614907B
- Authority
- CN
- China
- Prior art keywords
- molecular sieve
- copper
- catalyst
- ammonium
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 123
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 117
- 239000003054 catalyst Substances 0.000 title claims abstract description 64
- 238000002360 preparation method Methods 0.000 title claims description 23
- 239000010949 copper Substances 0.000 claims abstract description 119
- 229910052802 copper Inorganic materials 0.000 claims abstract description 62
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 58
- 238000000034 method Methods 0.000 claims abstract description 39
- 229910052809 inorganic oxide Inorganic materials 0.000 claims abstract description 17
- 239000007864 aqueous solution Substances 0.000 claims description 19
- 150000001875 compounds Chemical class 0.000 claims description 15
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 10
- 229910001431 copper ion Inorganic materials 0.000 claims description 9
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 claims description 8
- 239000005750 Copper hydroxide Substances 0.000 claims description 8
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 8
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 8
- 229910001956 copper hydroxide Inorganic materials 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 239000012065 filter cake Substances 0.000 claims description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 239000000243 solution Substances 0.000 claims description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- 150000003863 ammonium salts Chemical class 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 claims description 4
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 239000000395 magnesium oxide Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 239000012266 salt solution Substances 0.000 claims description 3
- HWCKGOZZJDHMNC-UHFFFAOYSA-M tetraethylammonium bromide Chemical compound [Br-].CC[N+](CC)(CC)CC HWCKGOZZJDHMNC-UHFFFAOYSA-M 0.000 claims description 3
- YMBCJWGVCUEGHA-UHFFFAOYSA-M tetraethylammonium chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC YMBCJWGVCUEGHA-UHFFFAOYSA-M 0.000 claims description 3
- 229910021591 Copper(I) chloride Inorganic materials 0.000 claims description 2
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims description 2
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 2
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 claims description 2
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 claims description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 2
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 claims description 2
- QKSIFUGZHOUETI-UHFFFAOYSA-N copper;azane Chemical compound N.N.N.N.[Cu+2] QKSIFUGZHOUETI-UHFFFAOYSA-N 0.000 claims description 2
- 229940045803 cuprous chloride Drugs 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- DDFYFBUWEBINLX-UHFFFAOYSA-M tetramethylammonium bromide Chemical compound [Br-].C[N+](C)(C)C DDFYFBUWEBINLX-UHFFFAOYSA-M 0.000 claims description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 claims 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 abstract description 27
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 abstract description 24
- 238000005804 alkylation reaction Methods 0.000 abstract description 13
- 230000008569 process Effects 0.000 abstract description 13
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 abstract description 9
- 239000005977 Ethylene Substances 0.000 abstract description 9
- 239000007791 liquid phase Substances 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 7
- 230000002194 synthesizing effect Effects 0.000 abstract description 2
- 238000005342 ion exchange Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- 230000009615 deamination Effects 0.000 description 10
- 238000006481 deamination reaction Methods 0.000 description 10
- 230000029936 alkylation Effects 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 238000004876 x-ray fluorescence Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229960003280 cupric chloride Drugs 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 3
- -1 ammonium ions Chemical class 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- MPTQRFCYZCXJFQ-UHFFFAOYSA-L copper(II) chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Cu+2] MPTQRFCYZCXJFQ-UHFFFAOYSA-L 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000010555 transalkylation reaction Methods 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 2
- 239000005695 Ammonium acetate Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 229940043376 ammonium acetate Drugs 0.000 description 2
- 235000019257 ammonium acetate Nutrition 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000007323 disproportionation reaction Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000002186 photoelectron spectrum Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910001428 transition metal ion Inorganic materials 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 239000005749 Copper compound Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 241000219793 Trifolium Species 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000013064 chemical raw material Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000007833 oxidative deamination reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
Abstract
本发明公开了一种分子筛催化剂,其特征在于该催化剂含有60~90wt%的β分子筛和10~40wt%的无机氧化物载体,所说的β分子筛中以分子筛为基准,含有以CuO计为0.01~10wt%的铜且β分子筛表面的Cu+/(Cu++Cu2+)≥50wt%。该催化剂用于苯和乙烯液相烷基化反应合成乙苯工艺中,在低温条件下,具有高的活性和乙苯选择性。The invention discloses a molecular sieve catalyst, which is characterized in that the catalyst contains 60-90 wt% of β molecular sieve and 10-40 wt% of inorganic oxide carrier, and the said β molecular sieve is based on molecular sieve and contains 0.01 ~10 wt% copper and Cu + /(Cu + +Cu 2+ ) > 50 wt% on the surface of the beta molecular sieve. The catalyst is used in the process of synthesizing ethylbenzene by the liquid-phase alkylation reaction of benzene and ethylene, and has high activity and ethylbenzene selectivity under low temperature conditions.
Description
技术领域 technical field
本发明是关于一种分子筛催化剂及其制备方法,具体地说是关于一种适合于苯和乙烯液相烷基化制备乙苯的催化剂及其制备该催化剂的方法。The invention relates to a molecular sieve catalyst and a preparation method thereof, in particular to a catalyst suitable for preparing ethylbenzene by liquid-phase alkylation of benzene and ethylene and a method for preparing the catalyst.
背景技术 Background technique
乙苯是重要的有机化工原料,工业上主要通过苯和乙烯的烷基化反应和多乙苯与苯的烷基转移反应来制得,比较成熟制备工艺主要包括:三氯化铝法、分子筛气相烷基化法和分子筛液相烷基化法。目前,利用分子筛液相烷基化法生产乙苯仍已成为该行业发展趋势。Ethylbenzene is an important organic chemical raw material. In industry, it is mainly produced through the alkylation reaction of benzene and ethylene and the transalkylation reaction of polyethylbenzene and benzene. The relatively mature preparation processes mainly include: aluminum chloride method, molecular sieve Gas-phase alkylation and molecular sieve liquid-phase alkylation. At present, the use of molecular sieve liquid-phase alkylation to produce ethylbenzene has become the development trend of this industry.
美国专利US4891458首次报道使用β分子筛催化剂在液相烷基化条件下合成乙苯,所说的催化剂是由经过铵和稀土离子交换得到的β分子筛与氧化铝载体组成。U.S. Patent No. 4,891,458 first reported the use of a β molecular sieve catalyst to synthesize ethylbenzene under liquid-phase alkylation conditions. The catalyst was composed of a β molecular sieve and an alumina carrier obtained through ammonium and rare earth ion exchange.
美国专利US59890859提出了用水蒸汽处理的β分子筛和铵离子交换法改性的分子筛用于液相烷基化制乙苯,得到良好的烷基化活性和选择性。β分子筛先在540~650℃下焙烧脱除有机胺模板剂,再经过500~800℃、优选550~700℃水蒸汽处理,然后在pH为1.0-3.5的条件下进行铵离子交换,脱去非骨架铝。U.S. Patent No. 59890859 proposes that β molecular sieve treated with water steam and molecular sieve modified by ammonium ion exchange method are used for liquid-phase alkylation to produce ethylbenzene, so as to obtain good alkylation activity and selectivity. The β molecular sieve is first roasted at 540-650°C to remove the organic amine template, and then treated with water vapor at 500-800°C, preferably 550-700°C, and then carries out ammonium ion exchange at a pH of 1.0-3.5 to remove Non-skeleton aluminum.
美国专利US5723710,US6162416和US6440886报道了表面改性的β分子筛及其在芳烃烷基化中的应用,将未经过焙烧脱胺的β分子筛用酸在pH为0~2和低于125℃的条件下处理,改变了Al的化学环境但不造成β分子筛的脱铝,经过表面改性后,分子筛表面Al的2P结合能达到74.8电子伏特以上。U.S. Patents US5723710, US6162416 and US6440886 have reported surface-modified β molecular sieves and their application in the alkylation of aromatic hydrocarbons. The β molecular sieves that have not been deaminated by roasting are treated with acid at a pH of 0 to 2 and below 125 ° C. Down treatment changed the chemical environment of Al but did not cause dealumination of β molecular sieve. After surface modification, the 2P binding energy of Al on the surface of molecular sieve reached above 74.8 electron volts.
中国专利CN1098028A公开了一种用于甲苯歧化和烷基转移反应的β分子筛催化剂及其制备方法。催化剂由10-90重量%的β分子筛、5-90重量%的粘结剂、0.05-5重量%的选自Ni、Co、Cu、Ag、Sn、Ca等金属促进剂组成,具有很高的歧化和烷基转移的活性和选择性。。催化剂的制备方法中,首先将β分子筛进行焙烧脱胺,然后脱胺后的分子筛与粘结剂,挤条焙烧成型,经过铵离子交换,再通过金属盐溶液浸渍交换,最后通过焙烧氢气还原制得。Chinese patent CN1098028A discloses a β molecular sieve catalyst for toluene disproportionation and transalkylation reactions and a preparation method thereof. The catalyst is composed of 10-90% by weight of β molecular sieve, 5-90% by weight of binder, and 0.05-5% by weight of metal promoters selected from Ni, Co, Cu, Ag, Sn, Ca, etc., and has a high Activity and selectivity for disproportionation and transalkylation. . In the preparation method of the catalyst, firstly, the β molecular sieve is deaminated by roasting, and then the deaminated molecular sieve and binder are extruded and roasted to shape, exchanged with ammonium ions, then impregnated and exchanged by metal salt solution, and finally prepared by roasting hydrogen reduction. have to.
中国专利CN1872685A公开了一种改性的β分子筛,是通过磷以及过渡金属Fe、Co、Ni、Cu、Mn、Zn和Sn中的一种改性,该方法是首先将钠型β分子筛铵交换,然后引入磷和过渡金属水溶液浸渍改性。该改性的β分子筛用于催化裂化工艺中,作为催化剂或者助剂活性组分。Chinese patent CN1872685A discloses a modified β molecular sieve, which is modified by phosphorus and transition metals Fe, Co, Ni, Cu, Mn, Zn and Sn. , and then introduce phosphorus and transition metal aqueous solution impregnation modification. The modified β molecular sieve is used in the catalytic cracking process as a catalyst or auxiliary active component.
上述方法均是先脱除β分子筛中的模板剂后,再通过水热处理或者稀土及过渡金属改性来调变分子筛的酸量和酸性,或者进行孔道修饰改性来满足不同反应的要求的。The above methods are to remove the template agent in the β molecular sieve first, and then adjust the acidity and acidity of the molecular sieve through hydrothermal treatment or rare earth and transition metal modification, or modify the pores to meet the requirements of different reactions.
欧洲专利EP1690831A1公开了一种分子筛的制备方法,该方法首先将有机模板剂加入硅源和铝源中,晶化得到分子筛原粉,然后将分子筛原粉加入含有氧化剂和过渡金属离子组成的水溶液中,在100℃下进行脱胺处理,脱胺的同时进行离子交换,制备出含有不同金属组分的分子筛样品。所用的氧化剂包括双氧水,臭氧,硝酸和过氧酸,其中优选双氧水,过渡金属离子更优选Fe3+离子。该方法提出将溶剂氧化脱胺和液态离子交换制备分子筛结合在一起,低温脱胺法既保护了分子筛骨架免于破坏,抑制骨架脱铝,又简化了分子筛处理工序;其不足之处是离子交换过程受到脱胺过程的限制,脱胺不充分也会导致离子交换不充分,而且为了配合氧化剂使用常常引入其他金属离子,使得离子交换种类受到限制。European patent EP1690831A1 discloses a method for preparing molecular sieves. In this method, an organic template is first added to a silicon source and an aluminum source, crystallized to obtain a molecular sieve powder, and then the molecular sieve powder is added to an aqueous solution containing an oxidizing agent and a transition metal ion. , deamination treatment was performed at 100°C, and ion exchange was performed during deamination to prepare molecular sieve samples containing different metal components. The oxidizing agent used includes hydrogen peroxide, ozone, nitric acid and peroxyacid, wherein hydrogen peroxide is preferred, and transition metal ions are more preferably Fe 3+ ions. This method proposes to combine solvent oxidative deamination and liquid ion exchange to prepare molecular sieves. The low-temperature deamination method not only protects the molecular sieve framework from damage, inhibits the framework dealumination, but also simplifies the molecular sieve treatment process; its disadvantage is that ion exchange The process is limited by the deamination process. Insufficient deamination will also lead to insufficient ion exchange, and in order to cooperate with the use of oxidants, other metal ions are often introduced, which limits the types of ion exchange.
发明内容 Contents of the invention
本发明的目的在于提供一种有别于现有技术表面金属分布的分子筛催化剂及其制备方法,该催化剂与同类催化剂相比,在苯和乙烯液相烷基化合成乙苯工艺中,在低温条件下具有更高的活性和乙苯选择性。The purpose of the present invention is to provide a molecular sieve catalyst and its preparation method which is different from the metal distribution on the surface of the prior art. It has higher activity and ethylbenzene selectivity under the conditions.
本发明提供的分子筛催化剂,其特征在于该催化剂含有60~90wt%的β分子筛和10~40wt%的无机氧化物载体,所说的β分子筛中以分子筛为基准,含有以CuO计为0.01~10wt%的铜且β分子筛表面的Cu+/(Cu++Cu2+)≥50wt%。The molecular sieve catalyst provided by the present invention is characterized in that the catalyst contains 60 to 90 wt% of β molecular sieve and 10 to 40 wt% of inorganic oxide carrier, and the said β molecular sieve is based on molecular sieve and contains 0.01 to 10 wt% of CuO. % copper and Cu + /(Cu + +Cu 2+ ) on the surface of the β molecular sieve ≥ 50wt%.
本发明还提供了分子筛催化剂的制备方法,该方法包括:The present invention also provides the preparation method of molecular sieve catalyst, and this method comprises:
(1)将含有模板剂的β分子筛,经过铵交换得到铵型β分子筛,使其中的Na2O的含量小于0.3wt%;(1) Ammonium-type β-molecular sieves are obtained by ammonium-exchanging the β-molecular sieve containing the template agent, so that the content of Na 2 O therein is less than 0.3wt%;
(2)将步骤1)得到的铵型β分子筛与含铜化合物的水溶液或者凝胶在室温下接触混合,经干燥、焙烧后得到含铜β分子筛;或者将步骤(1)的铵型β分子筛与含铜化合物的水溶液或者凝胶在室温下接触混合,经干燥、焙烧,再将焙烧样品冷却,与浓度为2~5wt%的铵盐水溶液接触交换出部分铜离子,过滤含铜溶液,然后将滤饼洗涤,加热到110℃干燥后得到含铜β分子筛;(2) The ammonium-type β molecular sieve obtained in
(3)将含铜β分子筛与无机氧化物载体混捏成型,干燥后,在空气气氛中加热至250~600℃焙烧1~10小时,得到β分子筛催化剂。(3) Kneading and kneading the copper-containing β molecular sieve with the inorganic oxide carrier, drying, heating to 250-600° C. and calcining for 1-10 hours in an air atmosphere to obtain the β molecular sieve catalyst.
本发明提供的催化剂,其优点在于用于苯和乙烯液相烷基化反应合成乙苯工艺中,在低温条件下,具有高的活性和乙苯选择性。The catalyst provided by the invention has the advantage of being used in the process of synthesizing ethylbenzene by the liquid-phase alkylation reaction of benzene and ethylene, and has high activity and ethylbenzene selectivity under low temperature conditions.
附图说明 Description of drawings
图1、图2、图3、图4分别为对实施例样品S1、S2、S3、S4的表面铜元素的X射线光电子谱图。Fig. 1, Fig. 2, Fig. 3, and Fig. 4 are the X-ray photoelectron spectra of the surface copper elements of the samples S1, S2, S3, and S4 of the embodiment respectively.
图5为对比例样品D1表面铜元素的X射线光电子谱图。Fig. 5 is the X-ray photoelectron spectrum of the copper element on the surface of sample D1 of the comparative example.
图6为实施例样品S1的表面铜元素的X射线光电子谱图的分峰谱图。Fig. 6 is a peak-splitting spectrum of the X-ray photoelectron spectrum of the copper element on the surface of the sample S1 of the embodiment.
具体实施方式 Detailed ways
本发明提供的分子筛催化剂,含有60~90wt%的β分子筛和10~40wt%的无机氧化物载体,The molecular sieve catalyst provided by the invention contains 60-90 wt% of β molecular sieve and 10-40 wt% of inorganic oxide carrier,
所说的β分子筛是经铜改性得到的,以分子筛为基准,含有以CuO计为0.01~10wt%,优选为0.2~8重%的铜;Na2O含量小于0.3%,优选小于0.2%,更优选小于0.1%。所说的β分子筛的以SiO2与Al2O3计的硅铝摩尔比在5~80,优选10~60,更优选为15~50。The β molecular sieve is obtained by copper modification, based on the molecular sieve, it contains 0.01-10 wt%, preferably 0.2-8 wt% copper in terms of CuO; the Na2O content is less than 0.3%, preferably less than 0.2% , more preferably less than 0.1%. The silicon-aluminum molar ratio of the β molecular sieve calculated by SiO 2 and Al 2 O 3 is 5-80, preferably 10-60, more preferably 15-50.
本发明提供的分子筛催化剂,所述的含铜β分子筛,是铜离子催化低温脱胺和铜离子固态离子交换耦合处理技术得到的,具体的说就是在低温脱除有机胺模板剂的同时由铜离子与分子筛进行的固态离子交换改性得到的。分子筛铜离子交换改性过程和其低温脱胺过程是同时配合进行,制备得到的含铜β分子筛与常规的铜改性的分子筛的β分子筛也有所不同,铜的化学环境也受到脱胺影响。发明人注意到,根据本发明的分子筛催化剂,其中所说的的β分子筛表面(1~10nm深度)一价铜离子与二价铜离子含量关系为Cu+/(Cu++Cu2+)≥50wt%,在优选情况下为Cu+/(Cu++Cu2+)≥60wt%,在更优选情况下为Cu+/(Cu++Cu2+)≥80wt%。分子筛表面(1~10nm深度)铜元素价态的定性是根据光电子谱线中Cu 2P3/2所对应的结合能和Cu LMM的俄歇动能共同确定的,根据不同价态铜所对应的结合能位移对Cu 2P3/2谱峰进行分峰处理,然后通过对Cu 2p3/2谱峰和Cu 2p3/2 shake up谱峰的进行面积归一化处理得到一价铜和二价铜的比例,其计算方法如下:(参照《材料表面科学》,曹立礼,清华大学出版社,2007)The molecular sieve catalyst provided by the present invention, the copper-containing β molecular sieve, is obtained by copper ion catalyzed low-temperature deamination and copper ion solid-state ion exchange coupling treatment technology, specifically is to remove the organic amine template at low temperature and at the same time by copper It is obtained by solid-state ion exchange modification of ions and molecular sieves. The molecular sieve copper ion exchange modification process and its low-temperature deamination process are carried out simultaneously, and the prepared copper-containing β molecular sieve is also different from the β molecular sieve of the conventional copper-modified molecular sieve, and the chemical environment of copper is also affected by deamination. The inventor noticed that, according to the molecular sieve catalyst of the present invention, the relationship between the content of monovalent copper ions and divalent copper ions on the surface of said β molecular sieve (1-10nm depth) is Cu + /(Cu + +Cu 2+ )≥ 50 wt%, in a preferred case Cu + /(Cu + +Cu 2+ )≥60 wt%, in a more preferred case Cu + /(Cu + +Cu 2+ )≥80 wt%. The qualitative determination of the valence state of copper on the surface of molecular sieves (1-10nm depth) is based on the binding energy corresponding to Cu 2P 3/2 in the photoelectron spectrum and the Auger kinetic energy of Cu LMM. The Cu 2P3/2 spectrum peak is divided into peaks by the energy shift, and then the Cu 2p 3/2 spectrum peak and the Cu 2p 3/2 shake up spectrum peak are normalized to obtain the monovalent copper and divalent copper The calculation method is as follows: (Refer to "Material Surface Science", Cao Lili, Tsinghua University Press, 2007)
Cu+1/Cu+2=Cu 2p3/2(+1)/[Cu 2p3/2(+2)+Cu 2P3/2 shake up]Cu +1 /Cu +2 =Cu 2p 3/2 (+1)/[Cu 2p 3/2 (+2)+Cu 2p 3/2 shake up]
本发明提供的分子筛催化剂,其中所说的无机氧化物载体为本领域技术人员所公知,例如氧化铝、氧化硅、氧化硅-氧化铝、氧化镁、氧化钛、氧化锌、氧化锆和碱土金属氧化物中等常规的无机氧化物载体中一种或几种,可以通过本领域技术人员公知的共沉淀法制备,或者通过商购得到。在优选的情况下,优选的无机氧化物为氧化铝或氧化硅。Molecular sieve catalyst provided by the present invention, wherein said inorganic oxide carrier is known to those skilled in the art, such as alumina, silica, silica-alumina, magnesium oxide, titania, zinc oxide, zirconia and alkaline earth metal One or more of conventional inorganic oxide supports such as oxides can be prepared by a coprecipitation method known to those skilled in the art, or can be obtained commercially. In preferred cases, the preferred inorganic oxides are alumina or silica.
所说的分子筛催化剂,其形状为本领域中常规采用的催化剂形状,例如截面为圆形或者三叶草形的条状或者球状催化剂等,本发明对其没有特别限制。The shape of the molecular sieve catalyst is a catalyst shape commonly used in the art, such as a strip or spherical catalyst with a circular or clover-shaped cross section, which is not particularly limited in the present invention.
本发明还提供上述分子筛催化剂的制备方法,包括下列几个步骤:The present invention also provides the preparation method of above-mentioned molecular sieve catalyst, comprises following several steps:
(1)常规合成得到的含有模板剂的β分子筛,经过铵交换,使其中的Na2O的含量小于0.3wt%。(1) The conventionally synthesized β molecular sieve containing a template is subjected to ammonium exchange so that the content of Na 2 O therein is less than 0.3 wt%.
(2)将铵型β分子筛与含铜化合物的水溶液或者凝胶在室温下搅拌混合,室温至120℃干燥后,在空气气氛中加热至200~450℃焙烧2~8小时得到含铜β分子筛;或者将铵型β分子筛与含铜化合物的水溶液或者凝胶在室温下搅拌混合,室温至120℃干燥后,在空气气氛中加热至200~450℃焙烧2~8小时,焙烧样品冷却后加入浓度为2~5wt%的铵盐水溶液搅拌,交换出部分铜离子,过滤含铜溶液,然后将滤饼洗涤,加热到110℃干燥后得到含铜β分子筛;(2) Stir and mix the ammonium-type β molecular sieve and the aqueous solution or gel of the copper-containing compound at room temperature, and after drying at room temperature to 120°C, heat to 200-450°C in an air atmosphere and roast for 2-8 hours to obtain the copper-containing β-molecular sieve or mix the ammonium-type β molecular sieve with the aqueous solution or gel of copper-containing compound at room temperature, dry at room temperature to 120°C, heat to 200-450°C in an air atmosphere and roast for 2-8 hours, and add the roasted sample after cooling Stir the ammonium salt aqueous solution with a concentration of 2-5 wt%, exchange part of the copper ions, filter the copper-containing solution, then wash the filter cake, heat to 110°C and dry to obtain the copper-containing β molecular sieve;
(3)含铜β分子筛与无机氧化物载体混捏成型,干燥后,在空气气氛中加热至250~600℃焙烧1~10小时,即得含铜的β分子筛催化剂。(3) Copper-containing β molecular sieve and inorganic oxide carrier are kneaded and formed, after drying, heated to 250-600° C. for 1-10 hours in an air atmosphere to obtain a copper-containing β molecular sieve catalyst.
本发明提供的制备方法,其步骤(1)中,所述的常规合成β分子筛的过程为水热法合成过程,所说的常规合成的β分子筛的方法可以参考文献US3308069、EP159846、EP164208等。In the preparation method provided by the present invention, in the step (1), the conventional synthetic process of β molecular sieve is a hydrothermal synthesis process, and the conventional synthetic method of β molecular sieve can refer to documents US3308069, EP159846, EP164208, etc.
本发明提供的方法中,所述的模板剂是指分子筛合成过程中引入的有机胺化合物,可以是四乙基氢氧化胺,四乙基溴化胺,四乙基氯化胺,四甲基氢氧化胺,四甲基溴化胺等的一种或几种,优选为四乙基氢氧化胺,四乙基溴化胺,四乙基氯化胺的一种或几种。In the method provided by the present invention, the template agent refers to the organic amine compound introduced in the molecular sieve synthesis process, which can be tetraethylammonium hydroxide, tetraethylammonium bromide, tetraethylammonium chloride, tetramethylamine One or more of amine hydroxide, tetramethylammonium bromide, etc., preferably one or more of tetraethylammonium hydroxide, tetraethylammonium bromide, tetraethylammonium chloride.
步骤(1)中,所述的铵交换是将β分子筛经过铵盐如硫酸铵、硝酸铵、氯化铵、醋酸铵等的水溶液在室温至100℃条件下交换以降低分子筛中的钠离子含量,使其中的Na2O的含量小于0.3wt%,优选小于0.1wt%的过程。In step (1), the ammonium exchange is to exchange the β molecular sieve through an aqueous solution of ammonium salts such as ammonium sulfate, ammonium nitrate, ammonium chloride, ammonium acetate, etc. at room temperature to 100°C to reduce the sodium ion content in the molecular sieve , making the content of Na 2 O therein less than 0.3wt%, preferably less than 0.1wt%.
本发明提供的制备方法,其步骤(2)中,所述的含铜化合物选自硝酸铜、氯化铜、氯化亚铜、硫酸铜、醋酸铜、铜氨溶液,氢氧化铜等含一价或二价铜化合物的一种或几种,优选为氯化铜和氢氧化铜,更优选为氢氧化铜。所述的铵型β分子筛与含铜化合物的投料摩尔比为1∶0.5~1∶10,优选为1∶0.5~1∶4所说的铵型β分子筛以铝计,所说的含铜化合物以铜计。In the preparation method provided by the present invention, in step (2), the copper-containing compound is selected from copper nitrate, copper chloride, cuprous chloride, copper sulfate, copper acetate, copper ammonia solution, copper hydroxide, etc. One or more of valent or divalent copper compounds, preferably copper chloride and copper hydroxide, more preferably copper hydroxide. The molar ratio of the ammonium type β molecular sieve to the copper-containing compound is 1:0.5 to 1:10, preferably 1:0.5 to 1:4. The ammonium type β molecular sieve is calculated as aluminum, and the copper-containing compound is Measured in copper.
本发明提供的方法中,所述的含铜化合物凝胶的制备方法是将氨水等碱溶液按照一定化学计量比液逐滴加入金属铜的水溶液,形成含有氢氧化铜的絮状凝胶。In the method provided by the present invention, the preparation method of the copper-containing compound gel is to add an alkaline solution such as ammonia water to an aqueous solution of metallic copper dropwise according to a certain stoichiometric ratio to form a flocculent gel containing copper hydroxide.
本发明提供的制备方法,其步骤(3)中,所述含铜的β分子筛和无机氧化物载体混合的比例为重量比50∶50~90∶10。优选为重量比60∶40-85∶15。In the preparation method provided by the present invention, in the step (3), the mixing ratio of the copper-containing β molecular sieve and the inorganic oxide carrier is 50:50-90:10 by weight. A weight ratio of 60:40-85:15 is preferred.
步骤(3)所述的无机氧化物载体为常规的无机氧化物载体,例如氧化铝、氧化硅、氧化硅-氧化铝、氧化镁、氧化钛、氧化锌、氧化锆和碱土金属氧化物中等常规的载体材料,本发明对其没有特别的限制;其中优选的无机氧化物载体为氧化铝和氧化硅。The inorganic oxide carrier described in step (3) is a conventional inorganic oxide carrier, such as aluminum oxide, silicon oxide, silicon oxide-alumina, magnesium oxide, titanium oxide, zinc oxide, zirconium oxide and alkaline earth metal oxides, etc. The carrier material of the present invention is not particularly limited; wherein the preferred inorganic oxide carrier is alumina and silicon oxide.
步骤(3)所述的催化剂成型最高焙烧温度为250~600℃,优选为350~550℃。The highest calcining temperature for catalyst shaping in step (3) is 250-600°C, preferably 350-550°C.
下面通过实施例对本发明做进一步说明,但并不因此而限制本发明。The present invention will be further described below by way of examples, but the present invention is not limited thereto.
在实施例中,所用的X射线光电子谱仪(简称XPS)为美国ULVCA-PHI公司的Quantera型X射线光电子谱仪。表面铜元素价态的定性是根据光电子谱线中Cu 2P3/2所对应的结合能和Cu LMM的俄歇动能共同确定的,根据不同价态铜所对应的结合能位移对Cu 2P3/2谱峰进行分峰处理,然后通过对Cu 2p3/2谱峰和Cu 2p3/2 shake up谱峰的进行面积归一化处理得到一价铜和二价铜的比例,其计算方法如下:(参照《材料表面科学》,曹立礼,清华大学出版社,2007)In the embodiment, the X-ray photoelectron spectrometer (XPS for short) used is Quantera type X-ray photoelectron spectrometer of ULVCA-PHI Company of the United States. The quality of the valence state of copper on the surface is determined based on the binding energy corresponding to Cu 2P 3/2 in the photoelectron spectrum and the Auger kinetic energy of Cu LMM. Spectrum peaks are divided into peaks, and then the ratio of monovalent copper to divalent copper is obtained by performing area normalization on Cu 2p 3/2 peaks and Cu 2p 3/2 shake up peaks. The calculation method is as follows: (Refer to "Material Surface Science", Cao Lili, Tsinghua University Press, 2007)
Cu+1/Cu+2=Cu 2p3/2(+1)/[Cu 2p3/2(+2)+Cu 2P3/2 shake up]Cu +1 /Cu +2 =Cu 2p 3/2 (+1)/[Cu 2p 3/2 (+2)+Cu 2p 3/2 shake up]
铜含量的分析方法采用的仪器是日本理学电机株式3013型X射线荧光光谱仪,将样品压片成型后,测定Si、Al、Na、Cu等各元素的特征谱线的强度,求出分子筛中SiO2,Al2O3及其他元素在β分子筛催化剂内的含量。The instrument used for the analysis method of copper content is Japan Rigaku Electric Co., Ltd. 3013 X-ray fluorescence spectrometer. After the sample is pressed into tablets, the intensity of the characteristic lines of Si, Al, Na, Cu and other elements is measured, and the SiO in the molecular sieve is obtained. 2 , the content of Al 2 O 3 and other elements in the β molecular sieve catalyst.
硅铝摩尔比的分析方法,先测出SiO2,Al2O3在分子筛内的质量百分含量,测得的质量分数除以SiO2和Al2O3的摩尔质量之比为硅铝摩尔比。The analysis method of the silicon-aluminum molar ratio, first measure the mass percentage of SiO 2 and Al 2 O 3 in the molecular sieve, and divide the measured mass fraction by the molar mass ratio of SiO 2 and Al 2 O 3 to get the silicon-aluminum molar ratio Compare.
实施例和对比例中所使用的含有机胺模板剂的钠型β分子筛(Naβ)系中国石化长岭催化剂公司生产,模板剂为四乙基氢氧化胺,约占干基质量的15%~25%。。其干基中Al2O3的质量分数7.28%,SiO2的质量分数92.5%,Na2O的质量分数0.034%,骨架硅铝比为11.26。The sodium type β molecular sieve (Naβ) containing organic amine template used in the examples and comparative examples is produced by Sinopec Changling Catalyst Co., Ltd. The template is tetraethylammonium hydroxide, which accounts for about 15% to 25%. . The mass fraction of Al 2 O 3 in the dry basis is 7.28%, the mass fraction of SiO 2 is 92.5%, the mass fraction of Na 2 O is 0.034%, and the ratio of silicon to aluminum in the skeleton is 11.26.
实施例1Example 1
取Naβ沸石加入10%(重量)的硝酸铵溶液,液/固=4∶1,在90℃水浴搅拌的条件下离子交换2小时,过滤洗涤,110℃烘干,重复交换得到含有有机胺模板剂的NH4β分子筛,使其中的Na2O的含量小于0.3wt%。Take Naβ zeolite and add 10% (weight) ammonium nitrate solution, liquid/solid = 4:1, ion exchange for 2 hours under the condition of stirring in a water bath at 90°C, filter and wash, dry at 110°C, repeat the exchange to obtain a template containing organic amine The NH 4 β molecular sieve of the agent is used so that the content of Na 2 O therein is less than 0.3wt%.
称取0.61g二水氯化铜,加水500g形成氯化铜水溶液,逐滴加0.48g质量分数为25%的浓氨水,配制成氢氧化铜凝胶。称取20g的NH4β分子筛在室温下与之搅拌混合,过滤,洗涤,滤饼烘干后置于马弗炉中,在空气气氛中,由室温升温至400℃,在400℃恒温焙烧4小时,得到样品S1。Weigh 0.61g of copper chloride dihydrate, add 500g of water to form an aqueous solution of copper chloride, add dropwise 0.48g of concentrated ammonia water with a mass fraction of 25%, and prepare a copper hydroxide gel. Weigh 20g of NH 4 β molecular sieve and mix it with it at room temperature, filter, wash, dry the filter cake and put it in a muffle furnace, in an air atmosphere, heat up from room temperature to 400°C, and roast at a constant temperature of 400°C for 4 hours, sample S1 was obtained.
样品S1经过X射线荧光法分析,其中铜含量以CuO计为2.06wt%。Sample S1 was analyzed by X-ray fluorescence method, wherein the copper content was 2.06wt% calculated as CuO.
样品S1的X射线光电子谱图见附图1,分峰谱图见图6,其中Cu+/(Cu++Cu2+)的比值为81.78。The X-ray photoelectron spectrum of sample S1 is shown in Figure 1, and the peak spectrum is shown in Figure 6, where the ratio of Cu + /(Cu + +Cu 2+ ) is 81.78.
实施例2Example 2
称取2.43g二水氯化铜,加水500g形成氯化铜水溶液,逐滴加1.94g质量分数为25%的浓氨水,配制成氢氧化铜凝胶。加入20g经实施例1处理得到的NH4β分子筛,在室温下搅拌混合,过滤,洗涤,滤饼烘干后置于马弗炉中,在空气气氛中,升温至350℃,在350℃恒温焙烧4小时,得到样品S2a。Weigh 2.43g of copper chloride dihydrate, add 500g of water to form a copper chloride aqueous solution, add 1.94g of concentrated ammonia water with a mass fraction of 25% dropwise, and prepare a copper hydroxide gel. Add 20g of the NH 4 β molecular sieve obtained by the treatment in Example 1, stir and mix at room temperature, filter, wash, dry the filter cake and place it in a muffle furnace, raise the temperature to 350°C in an air atmosphere, and keep the temperature constant at 350°C Calcined for 4 hours to obtain sample S2a.
将焙烧后的样品S2a在石英研磨中研碎成粉末状,加入质量分数为10%的醋酸铵水溶液100mL,用氨水调节PH在7.0左右。室温搅拌120~180分钟,经过过滤洗涤,干燥后得到最终样品S2。Grind the roasted sample S2a into powder in a quartz grinder, add 100 mL of ammonium acetate aqueous solution with a mass fraction of 10%, and adjust the pH to about 7.0 with ammonia water. Stir at room temperature for 120-180 minutes, filter, wash, and dry to obtain the final sample S2.
样品S2经过X射线荧光法分析,其中铜含量以CuO计为1.14wt%。Sample S2 was analyzed by X-ray fluorescence method, wherein the copper content was 1.14wt% calculated as CuO.
样品S2的X射线光电子谱图见附图2,其中Cu+/(Cu++Cu2+)的比值为85.31.The X-ray photoelectron spectrum of sample S2 is shown in Figure 2, wherein the ratio of Cu + /(Cu + +Cu 2+ ) is 85.31.
实施例3Example 3
称取0.81g二水氯化铜,加水20g形成氯化铜水溶液,加入20g经实施例1处理得到的NH4β分子筛,在室温下搅拌混合,烘干后置于马弗炉中,在空气气氛中升温至380℃,380℃恒温焙烧4小时,得到样品S3。Weigh 0.81g cupric chloride dihydrate, add 20g water to form a cupric chloride aqueous solution, add 20g NH4β molecular sieve obtained through the treatment of Example 1, stir and mix at room temperature, place in a muffle furnace after drying, The temperature was raised to 380° C. in the atmosphere, and then fired at a constant temperature of 380° C. for 4 hours to obtain sample S3.
样品S3经过X射线荧光法分析,其中铜含量以CuO计为2.55wt%。Sample S3 was analyzed by X-ray fluorescence method, wherein the copper content was 2.55 wt% calculated as CuO.
样品S3的X射线光电子谱图见图3,其中Cu+/(Cu++Cu2+)的比值为81.59.The X-ray photoelectron spectrum of sample S3 is shown in Figure 3, where the ratio of Cu + /(Cu + +Cu 2+ ) is 81.59.
实施例4Example 4
称取0.81g二水氯化铜,配制成20g氯化铜水溶液,加入20g经实施例1处理得到的NH4β分子筛,在室温下搅拌混合,烘干后置于马弗炉中,在氧气气氛中升温至380℃,380℃恒温焙烧4小时。Weigh 0.81g cupric chloride dihydrate, prepare 20g cupric chloride aqueous solution, add 20g NH 4 β molecular sieves obtained through the treatment of Example 1, stir and mix at room temperature, place in a muffle furnace after drying, under oxygen The temperature was raised to 380° C. in the atmosphere, and it was roasted at a constant temperature of 380° C. for 4 hours.
将焙烧后的样品在石英研磨中研碎成粉末状,加入质量分数为10%的硝酸铵水溶液100mL,用氨水调节PH在7.0左右。室温搅拌120~180分钟,经过滤洗涤,干燥后得到最终样品S4。Grind the calcined sample into powder in a quartz grinder, add 100 mL of ammonium nitrate aqueous solution with a mass fraction of 10%, and adjust the pH to about 7.0 with ammonia water. Stir at room temperature for 120-180 minutes, filter, wash, and dry to obtain the final sample S4.
样品S4经过X射线荧光法分析,其中铜含量以CuO计为0.8wt%。Sample S4 was analyzed by X-ray fluorescence method, wherein the copper content was 0.8 wt% calculated as CuO.
样品S4的X射线光电子谱图见图4,其中Cu+/(Cu++Cu2+)的比值为89.1.The X-ray photoelectron spectrum of sample S4 is shown in Figure 4, where the ratio of Cu + /(Cu + +Cu 2+ ) is 89.1.
对比例1Comparative example 1
本对比例说明按照专利CN1098028A所提供的方式由脱胺后的β分子筛通过溶液浸渍制备含β铜分子筛的过程。This comparative example illustrates the process of preparing β-copper-containing molecular sieves from deaminated β-molecular sieves by solution impregnation according to the method provided by the patent CN1098028A.
称取20g经实施例1处理得到的NH4β分子筛,置于马弗炉中,在空气气氛中,由室温经2小时升温至400℃,焙烧2小时,再经2小时升温至600℃,恒温焙烧5小时进行脱胺处理。Weigh 20g of the NH 4 β molecular sieve obtained by the treatment in Example 1, place it in a muffle furnace, and in an air atmosphere, heat up from room temperature to 400°C over 2 hours, calcinate for 2 hours, and then heat up to 600°C over 2 hours. Roast at constant temperature for 5 hours to carry out deamination treatment.
称取0.61g二水氯化铜,加水500g形成氯化铜水溶液,逐滴加0.48g质量分数为25%的浓氨水,配制成氢氧化铜凝胶。称取20g脱胺后的β分子筛在室温下与之搅拌混合,过滤,洗涤,滤饼烘干后置于马弗炉中,在空气气氛中,由室温升温至400℃,在400℃恒温焙烧4小时,得到对比样品D1。Weigh 0.61g of copper chloride dihydrate, add 500g of water to form an aqueous solution of copper chloride, add dropwise 0.48g of concentrated ammonia water with a mass fraction of 25%, and prepare a copper hydroxide gel. Weigh 20g of deaminated β-molecular sieve, stir and mix with it at room temperature, filter, wash, dry the filter cake and put it in a muffle furnace. In an air atmosphere, heat up from room temperature to 400°C, and roast at a constant temperature of 400°C. After 4 hours, comparative sample D1 was obtained.
样品D1经过X射线荧光法分析,其中铜含量以CuO计为2.53%。Sample D1 was analyzed by X-ray fluorescence method, wherein the copper content was 2.53% as CuO.
样品D1的X射线光电子谱图见附图5,其中Cu+/(Cu++Cu2+)的比值为38.35.The X-ray photoelectron spectrum of sample D1 is shown in Figure 5, wherein the ratio of Cu + /(Cu + +Cu 2+ ) is 38.35.
实施例5Example 5
本实例说明以本发明提供的方法制备催化剂CA1。This example illustrates the preparation of catalyst CA1 by the method provided by the present invention.
称取20g(干基重)分子筛S1,加入10g(干基重)硅溶胶(含40wt%SiO2,长岭催长化剂厂生产),适量的去离子水混合均匀后滚球成型为2mm的球形颗粒,120烘干,经过400℃焙烧4小时后,得到催化剂CA1。Weigh 20g (dry basis weight) of molecular sieve S1, add 10g (dry basis weight) of silica sol (containing 40wt% SiO 2 , produced by Changling Catalytic Agent Factory), mix evenly with an appropriate amount of deionized water, and roll into a 2mm The spherical particles were dried at 120°C and calcined at 400°C for 4 hours to obtain catalyst CA1.
实施例6Example 6
本实例说明以本发明提供的方法制备催化剂CA2。This example illustrates the preparation of catalyst CA2 by the method provided by the present invention.
称取20g(干基重)分子筛S2,加入9g(干基重)拟薄水铝石(长岭催化剂厂生产),混合均匀后加入0.5柠檬酸,0.25g田箐粉和适量的硝酸水溶液,再用Φ1.5的三叶草孔板挤条,成型为直径为1.6mm的条状催化剂,120℃烘干,经过500℃焙烧4小时后,得到催化剂CA2。Take by weighing 20g (dry basis weight) molecular sieve S2, add 9g (dry basis weight) pseudoboehmite (produced by Changling Catalyst Factory), mix well and add 0.5 citric acid, 0.25g Tianqing powder and an appropriate amount of nitric acid aqueous solution, Then extrude the strips with a clover orifice plate of Φ1.5 to form a strip-shaped catalyst with a diameter of 1.6mm, dry at 120°C, and roast at 500°C for 4 hours to obtain the catalyst CA2.
实施例7Example 7
本实例说明以本发明提供的方法制备催化剂CA3。This example illustrates the preparation of catalyst CA3 by the method provided by the present invention.
将样品S3按照上述S1制备催化剂的方法制备成催化剂,记做催化剂CA3。The sample S3 was prepared as a catalyst according to the method for preparing the catalyst in S1 above, which was denoted as catalyst CA3.
实施例8Example 8
本实例说明以本发明提供的方法制备催化剂CA4。This example illustrates the preparation of catalyst CA4 by the method provided by the present invention.
将样品S4按照上述S2制备催化剂的方法制备成催化剂,记做催化剂CA4。The sample S4 was prepared as a catalyst according to the method for preparing the catalyst in S2 above, and it was recorded as catalyst CA4.
对比例2Comparative example 2
本对比例说明制备对比催化剂DC1和DC2。This comparative example illustrates the preparation of comparative catalysts DC1 and DC2.
将分子筛D1按照实施例5中催化剂C1的制备方法制备对比催化剂,记做DC1。Molecular sieve D1 was used to prepare a comparative catalyst according to the preparation method of catalyst C1 in Example 5, which was recorded as DC1.
对比例3Comparative example 3
将分子筛D1按照实施例7中催化剂C2的制备方法制备对比催化剂,记做DC2。Molecular sieve D1 was prepared as a comparison catalyst according to the preparation method of catalyst C2 in Example 7, which was recorded as DC2.
测试例test case
本测试例模拟工业装置的工艺条件评价催化剂CA1~CA4以及对比催化剂DC1、DC2用于苯和乙烯液相烷基化低温活性评价结果。This test example simulates the process conditions of an industrial device to evaluate the low-temperature activity evaluation results of the catalysts CA1-CA4 and the comparative catalysts DC1 and DC2 for the liquid-phase alkylation of benzene and ethylene.
将上述得到的催化剂破碎成16~20目的颗粒,取8mL装入Φ12.5mm不锈钢反应器中,催化剂在110℃氮气吹扫后,用进料泵连续进入分析纯苯,进料液液体的体积空速为3小时-1,系统以50℃/小时的升温速度升至250℃,然后进入聚合级乙烯,反应压力为3.5Mpa,苯/乙烯摩尔比为12,运行48小时稳定后,分别至200℃,190℃,180℃温度点,各反应48小时,取样进行色谱分析,其中乙烯的转化率和乙苯选择性结果列于表1。Break the catalyst obtained above into 16-20 mesh particles, take 8mL and put it into a Φ12.5mm stainless steel reactor. After the catalyst is purged with nitrogen at 110°C, use a feed pump to continuously enter analytically pure benzene. The volume of the feed liquid is The space velocity is 3 hours -1 , the system rises to 250°C at a rate of 50°C/hour, and then enters the polymerization grade ethylene, the reaction pressure is 3.5Mpa, the benzene/ethylene molar ratio is 12, and after 48 hours of stable operation, respectively to 200°C, 190°C, and 180°C temperature points, each reacted for 48 hours, and samples were taken for chromatographic analysis. The results of the conversion rate of ethylene and the selectivity of ethylbenzene are listed in Table 1.
表1Table 1
从表1中看出经过低温脱胺和同步铜离子交换处理,使得β分子筛催化剂在苯和乙烯液相烷基化反应中低温反应活性大大提高,并且具有较好的乙苯选择性。It can be seen from Table 1 that after low-temperature deamination and simultaneous copper ion exchange treatment, the low-temperature reaction activity of the β molecular sieve catalyst in the liquid-phase alkylation reaction of benzene and ethylene is greatly improved, and it has better ethylbenzene selectivity.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201110028885.2A CN102614907B (en) | 2011-01-27 | 2011-01-27 | Molecular sieve catalyst and preparation method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201110028885.2A CN102614907B (en) | 2011-01-27 | 2011-01-27 | Molecular sieve catalyst and preparation method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102614907A CN102614907A (en) | 2012-08-01 |
| CN102614907B true CN102614907B (en) | 2014-04-30 |
Family
ID=46555321
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201110028885.2A Active CN102614907B (en) | 2011-01-27 | 2011-01-27 | Molecular sieve catalyst and preparation method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102614907B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109718843A (en) * | 2018-08-31 | 2019-05-07 | 济南大学 | A kind of preparation and application of novel carbon dioxide methanation catalyst |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100413585C (en) * | 2003-04-24 | 2008-08-27 | Abb路慕斯全球股份有限公司 | Methods of processing zeolites |
| CN101628240A (en) * | 2009-03-03 | 2010-01-20 | 太原理工大学 | Method for preparing CuCl and Cu<I> loaded solid phase catalyst |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6500972B2 (en) * | 2001-01-03 | 2002-12-31 | Chinese Petroleim Corp. | Synthesis of TMBQ with transition metal-containing molecular sieve as catalysts |
-
2011
- 2011-01-27 CN CN201110028885.2A patent/CN102614907B/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100413585C (en) * | 2003-04-24 | 2008-08-27 | Abb路慕斯全球股份有限公司 | Methods of processing zeolites |
| CN101628240A (en) * | 2009-03-03 | 2010-01-20 | 太原理工大学 | Method for preparing CuCl and Cu<I> loaded solid phase catalyst |
Non-Patent Citations (2)
| Title |
|---|
| Cu/MCM-41对苯羟基化为苯酚的催化作用;邵凤琴 等;《抚顺石油学院学报》;20020630;第18-21页 * |
| 邵凤琴 等.Cu/MCM-41对苯羟基化为苯酚的催化作用.《抚顺石油学院学报》.2002,第18-21页. |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102614907A (en) | 2012-08-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102616804B (en) | Copper-containing beta molecular sieve and preparation method thereof | |
| JP2908959B2 (en) | New catalyst composition | |
| CN105452168B (en) | Zeolite and its production method and use | |
| CN103506150B (en) | The catalyst of preparing gasoline by methanol and method for making thereof and application is used for by steam modification | |
| KR20160030933A (en) | Aei zeolite containing phosphorus, and method for producing same | |
| JP2558568B2 (en) | Catalyst for catalytic reduction of nitrogen oxides | |
| CN112264038B (en) | Noble metal loaded eggshell type catalyst and preparation method and application thereof | |
| CN104475114A (en) | Copper-zinc-cerium-based catalyst for low-temperature deep removal of carbon monoxide and preparation method and application of catalyst | |
| CN102500409A (en) | Gasoline aromatization and isomerization reforming catalyst and preparation method and applications thereof | |
| JP2005254240A (en) | Improving method of oxidation and ammoxidation catalyst | |
| CN102614907B (en) | Molecular sieve catalyst and preparation method thereof | |
| JP6817022B2 (en) | Highly water-resistant chabazite type zeolite and its manufacturing method | |
| JP2516516B2 (en) | Catalyst for catalytic reduction of nitrogen oxides | |
| JPH05245372A (en) | Catalyst for catalytic reduction of nitrogen oxides | |
| CN114425400B (en) | Wear-resistant catalytic cracking catalyst and preparation method and application thereof | |
| TW202039075A (en) | Ammonia decomposition catalyst and exhaust gas treatment method | |
| CN106833731B (en) | A kind of hydro-dearsenic method of naphtha | |
| JP2019093382A (en) | Hydrocarbon adsorbent and hydrocarbon adsorption method | |
| JP2558566B2 (en) | Catalyst for catalytic reduction of nitrogen oxides | |
| CN113522280A (en) | Catalyst, and defect regulation method and application of catalyst | |
| JP3246933B2 (en) | Metal-containing crystalline aluminosilicate catalyst for disproportionation of toluene | |
| CN106807420A (en) | A kind of catalyst and preparation method for petroleum naphtha hydrogenation dearsenification | |
| WO2024002036A1 (en) | Silicon-aluminum molecular sieve-hydrogenation metal component-alumina complex, and preparation and use thereof | |
| CN101433859B (en) | Catalyst for alkylation reaction and preparation method thereof | |
| CN114534687A (en) | Hydrocarbon adsorption and desorption composite comprising zeolite with controlled cation ratio and method for preparing same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |