CN102622031A - Low-voltage high-precision band-gap reference voltage source - Google Patents
Low-voltage high-precision band-gap reference voltage source Download PDFInfo
- Publication number
- CN102622031A CN102622031A CN2012101021735A CN201210102173A CN102622031A CN 102622031 A CN102622031 A CN 102622031A CN 2012101021735 A CN2012101021735 A CN 2012101021735A CN 201210102173 A CN201210102173 A CN 201210102173A CN 102622031 A CN102622031 A CN 102622031A
- Authority
- CN
- China
- Prior art keywords
- current mirror
- tube
- current
- mirror tube
- resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Control Of Electrical Variables (AREA)
Abstract
本发明涉及BJT以及CMOS晶体管电路技术领域,特别涉及一种低压高精度带隙基准电压源。所述电压源,包括第一电流产生电路、第二电流产生电路、第三电流产生电路和电流叠加电路;第一电流产生电路,用于产生一路与温度变化呈正比例关系的电流;第二电流产生电路,用于产生一路一阶温度系数为负,二阶温度系数为正的电流;第三电流产生电路,用于产生一路一阶温度系数为负,二阶温度系数为负的电流;电流叠加电路,用于将所产生的三路电流叠加,叠加后的电流通过电阻提供输出所需的基准电压。本发明改善了带隙基准电压源的精度,并使输出基准电压可根据实际需要进行调整,使整个带隙基准电压电路能够在较低的电源电压下正常工作。
The invention relates to the technical field of BJT and CMOS transistor circuits, in particular to a low-voltage high-precision bandgap reference voltage source. The voltage source includes a first current generating circuit, a second current generating circuit, a third current generating circuit and a current superposition circuit; the first current generating circuit is used to generate a current that is directly proportional to the temperature change; the second current A generating circuit for generating a current with a negative first-order temperature coefficient and a positive second-order temperature coefficient; a third current generating circuit for generating a current with a negative first-order temperature coefficient and a negative second-order temperature coefficient; The superposition circuit is used to superimpose the generated three currents, and the superimposed current provides the reference voltage required for output through the resistance. The invention improves the precision of the bandgap reference voltage source, enables the output reference voltage to be adjusted according to actual needs, and enables the entire bandgap reference voltage circuit to work normally at a lower power supply voltage.
Description
技术领域 technical field
本发明涉及BJT以及CMOS晶体管电路技术领域,特别涉及一种低压高精度带隙基准电压源。The invention relates to the technical field of BJT and CMOS transistor circuits, in particular to a low-voltage high-precision bandgap reference voltage source.
背景技术 Background technique
现有技术中存在一种如图1所示的传统带隙基准电压源电路,包括三极晶体管Q1和Q2,误差放大器OP,反馈电阻R1和R2,调整电阻R3;晶体管Q1和Q2的发射极模拟接地AVSS,放大器两个输入端分别连接节点A和B,输出端连接VOUT,同时连接电阻R1和R2。图1所示的带隙基准电路的工作原理如下:In the prior art, there is a traditional bandgap reference voltage source circuit as shown in Figure 1, which includes triode transistors Q1 and Q2, error amplifier OP, feedback resistors R1 and R2, and adjustment resistor R3; the emitters of transistors Q1 and Q2 The analog ground is AVSS, the two input terminals of the amplifier are connected to nodes A and B respectively, the output terminal is connected to V OUT , and resistors R1 and R2 are connected at the same time. The working principle of the bandgap reference circuit shown in Figure 1 is as follows:
放大器OP工作于深度负反馈,两个输入端分别连接节点A和B,使两点电压相等,放大器OP输出端连接VOUT,同时连接两个阻值相同的电阻R1和R2,使流过Q1和Q2的两路电流相等,从而得到:The amplifier OP works in deep negative feedback. The two input terminals are respectively connected to nodes A and B, so that the voltages of the two points are equal. The output terminal of the amplifier OP is connected to V OUT . and the two currents of Q2 are equal, so as to obtain:
VBE1-VBE2=I2R3=VTInN(1);V BE1 -V BE2 =I 2 R 3 =V T InN(1);
若节点A和B的电压不完全相等,误差放大器OP将节点A和节点B的电压进行比较后,将其差值ΔV放大后得到ΔVmax,ΔVmax使流过晶体管Q1和Q2的电流发生不同程度的改变,电阻R3的压降也随之改变,从而,使节点A与节点B的电压近似相等,进而,使得输出电压VOUT的电压值趋于恒定为:If the voltages of nodes A and B are not completely equal, the error amplifier OP compares the voltages of nodes A and B, and amplifies the difference ΔV to obtain ΔVmax, which causes the currents flowing through transistors Q1 and Q2 to vary in different degrees Change, the voltage drop of resistor R3 also changes accordingly, so that the voltages of node A and node B are approximately equal, and then the voltage value of the output voltage V OUT tends to be constant as:
公式(2)第一项的一阶温度系数为-1.5mV/℃,第二项VT具有正温度系数为0.086mV/℃,适当选取N及电阻R2和R3的比值,可以得到零温度系数的输出电压VREF。The first-order temperature coefficient of the first term in formula (2) is -1.5mV/℃, and the second term V T has a positive temperature coefficient of 0.086mV/℃. By properly selecting N and the ratio of resistors R2 and R3, a zero temperature coefficient can be obtained output voltage VREF.
图1所示电路存在以下两个问题,首先,通常VREF为1.25V左右,不能应用在低压电路中;其次,该方法没有补偿VBE的二阶温度系数,其温度系数通常被限制在几十个ppm/℃。The circuit shown in Figure 1 has the following two problems. First, V REF is usually about 1.25V, which cannot be used in low-voltage circuits. Second, this method does not compensate the second-order temperature coefficient of V BE , and its temperature coefficient is usually limited to several Ten ppm/°C.
现有技术还存在一种如图2所示的带隙电路,该带隙电路中M1,M2和M3组成电流镜,放大器OP1处于深度负反馈状态,使AB两点电压相等,为VBE,即流过R2的电流为VBE/R2,具有负温度系数,而通过电阻R1的电流是与VT成正比例关系的电流,两路电流之和流过M2,被复制到I3,则电阻R3两端电压为:In the prior art, there is also a bandgap circuit as shown in Figure 2. In this bandgap circuit, M1, M2 and M3 form a current mirror, and the amplifier OP1 is in a deep negative feedback state, so that the voltages of AB and AB are equal, which is V BE , That is, the current flowing through R2 is V BE /R2, which has a negative temperature coefficient, and the current passing through the resistor R1 is a current proportional to V T. The sum of the two currents flows through M2 and is copied to I3, then the resistor R3 The voltage across is:
适当选取N,R1,R2和R3可以得到零温度系数的输出电压VREF,并且输出电压的温度系数与R3相独立,即输出的带隙基准电压可以调节。Proper selection of N, R1, R2 and R3 can obtain the output voltage V REF with zero temperature coefficient, and the temperature coefficient of the output voltage is independent of R3, that is, the output bandgap reference voltage can be adjusted.
但是如图2所示的电路只有一阶温度系数补偿,没有二阶补偿,所以温度系数通常为10-20ppm/℃。However, the circuit shown in Figure 2 only has first-order temperature coefficient compensation and no second-order compensation, so the temperature coefficient is usually 10-20ppm/°C.
发明内容 Contents of the invention
本发明的目的在于提供了一种低压高精度带隙基准电压源,有效的改善了带隙基准电压源的精度,且使输出基准电压可以根据实际需要进行调整。The purpose of the present invention is to provide a low-voltage high-precision bandgap reference voltage source, which effectively improves the accuracy of the bandgap reference voltage source and enables the output reference voltage to be adjusted according to actual needs.
本发明解决上述技术问题的技术方案如下:The technical scheme that the present invention solves the problems of the technologies described above is as follows:
一种低压高精度带隙基准电压源,包括第一电流产生电路、第二电流产生电路、第三电流产生电路和电流叠加电路;A low-voltage high-precision bandgap reference voltage source, including a first current generating circuit, a second current generating circuit, a third current generating circuit and a current superposition circuit;
所述第一电流产生电路,用于产生一路随温度变化呈特定关系的电流,所述第一电流产生电路中电流与温度的关系为:与温度变化呈正比例关系;The first current generating circuit is used to generate a current with a specific relationship with the temperature change, and the relationship between the current and the temperature in the first current generating circuit is: proportional to the temperature change;
所述第二电流产生电路,用于产生一路随温度变化呈特定关系的电流,所述第二电流产生电路中电流与温度的关系为:一阶温度系数为负,二阶温度系数为正;The second current generating circuit is used to generate a current that has a specific relationship with temperature changes. The relationship between current and temperature in the second current generating circuit is: the first-order temperature coefficient is negative, and the second-order temperature coefficient is positive;
所述第三电流产生电路,用于产生一路随温度变化呈特定关系的电流,所述第三电流产生电路中电流与温度的关系为:一阶温度系数为负,二阶温度系数为负;The third current generation circuit is used to generate a current with a specific relationship with temperature changes, the relationship between the current and temperature in the third current generation circuit is: the first-order temperature coefficient is negative, and the second-order temperature coefficient is negative;
所述电流叠加电路,用于将所述第一电流产生电路、所述第二电流产生电路和所述第三电流产生电路所产生的三路电流叠加,叠加后的电流通过调节电阻提供输出所需的基准电压;The current superimposition circuit is used to superimpose the three currents generated by the first current generation circuit, the second current generation circuit and the third current generation circuit, and the superimposed current provides the output value through the adjustment resistor. The required reference voltage;
所述电流叠加电路,利用所述三路电流产生电路产生的电流温度系数的特征,通过调节三路电流的比例,使叠加电流的一阶和二阶温度系数为零,产生一阶和二阶温度系数为零的基准电压。The current superimposition circuit uses the characteristics of the current temperature coefficient generated by the three-way current generating circuit to make the first-order and second-order temperature coefficients of the superimposed current zero by adjusting the ratio of the three-way current to generate the first-order and second-order Reference voltage with zero temperature coefficient.
上述方案中,所述第一电流产生电路包括三极管Q1和三极管Q2,电阻R1,电流镜管M2和M3,放大器OP1;三极管Q1的发射极通过电阻R1与电流镜管M2的集电极连接,三极管Q2的发射极与电流镜管M3的集电极连接,电流镜管M2和电流镜管M3的发射极分别连接电源电压VDD,三极管Q1和三极管Q2的集电极分别接地;放大器OP1两个输入端分别连接电阻R1与电流镜管M2之间的节点A和三极管Q2与电流镜管M3之间的节点B,放大器OP1的输出端分别与电流镜管M2和电流镜管M3的栅极连接,控制电流镜管M2和电流镜管M3的栅电压,形成反馈环路。In the above scheme, the first current generating circuit includes a triode Q1 and a triode Q2, a resistor R1, current mirror tubes M2 and M3, and an amplifier OP1; the emitter of the triode Q1 is connected to the collector of the current mirror tube M2 through a resistor R1, and the triode The emitter of Q2 is connected to the collector of the current mirror tube M3, the emitters of the current mirror tube M2 and the current mirror tube M3 are respectively connected to the power supply voltage V DD , the collectors of the transistor Q1 and the transistor Q2 are respectively grounded; the two input terminals of the amplifier OP1 Respectively connect the node A between the resistor R1 and the current mirror tube M2 and the node B between the triode Q2 and the current mirror tube M3, the output terminals of the amplifier OP1 are respectively connected to the gates of the current mirror tube M2 and the current mirror tube M3, and the control The gate voltages of the current mirror tube M2 and the current mirror tube M3 form a feedback loop.
上述方案中,所述第二电流产生电路包括电流镜管M1,负载管M11,电阻R2,放大器OP21,反馈管M9,电流镜管M5;电流镜管M1的源极连接VDD,电流镜管M1的栅极连接电流镜管M2和电流镜管M3的栅极,电流镜管M1的漏极连接放大器OP21的正输入端和负载管M11的漏极和栅极,负载管M11呈二极管连接方式,负载管M11的源极和电阻R2的一端共同接地,电阻R2另一端接反馈管M9的源极和放大器OP21的负输入端,放大器OP21的输出端接反馈管M9的栅极,反馈管M9漏极接电流镜管M5的栅极和漏极,电流镜管M5的源极接VDD,且呈二极管连接方式,放大器OP21与反馈管M9、电阻R2以及负载管M11构成反馈环路。In the above solution, the second current generating circuit includes a current mirror tube M1, a load tube M11, a resistor R2, an amplifier OP21, a feedback tube M9, and a current mirror tube M5; the source of the current mirror tube M1 is connected to VDD, and the current mirror tube M1 The grid of the current mirror tube M2 and the grid of the current mirror tube M3 are connected, the drain of the current mirror tube M1 is connected to the positive input terminal of the amplifier OP21 and the drain and the grid of the load tube M11, and the load tube M11 is in a diode connection mode. The source of the load tube M11 and one end of the resistor R2 are commonly grounded, the other end of the resistor R2 is connected to the source of the feedback tube M9 and the negative input terminal of the amplifier OP21, the output terminal of the amplifier OP21 is connected to the gate of the feedback tube M9, and the drain of the feedback tube M9 The pole is connected to the gate and drain of the current mirror tube M5, the source of the current mirror tube M5 is connected to VDD, and is in a diode connection mode. The amplifier OP21 forms a feedback loop with the feedback tube M9, the resistor R2 and the load tube M11.
上述方案中,所述第三电流产生电路包括三极管Q2,电阻R3,放大器OP22,反馈管M10,电流镜管M7;放大器OP22的正输入端接三极管Q2的发射极,放大器OP22的负输入端接反馈管M10的源极和电阻R3的一端,电阻R3的另一端接地,放大器OP22的输出端接反馈管M10的栅极,反馈管M10的漏极接电流镜管M7的漏极和栅极,电流镜管M7源极接VDD,且呈二极管连接方式,放大器OP22与反馈管M10、电阻R3以及三极管Q2构成反馈环路。In the above scheme, the third current generating circuit includes a triode Q2, a resistor R3, an amplifier OP22, a feedback tube M10, and a current mirror tube M7; the positive input terminal of the amplifier OP22 is connected to the emitter of the triode Q2, and the negative input terminal of the amplifier OP22 is connected to The source of the feedback tube M10 and one end of the resistor R3, the other end of the resistor R3 is grounded, the output terminal of the amplifier OP22 is connected to the gate of the feedback tube M10, the drain of the feedback tube M10 is connected to the drain and the gate of the current mirror tube M7, The source of the current mirror tube M7 is connected to VDD and is in a diode connection mode. The amplifier OP22 forms a feedback loop with the feedback tube M10, the resistor R3 and the transistor Q2.
上述方案中,所述电流叠加电路包括电阻R4,电流镜管M4,电流镜管M6和电流镜管M8;电流镜管M4、电流镜管M6和电流镜管M8的源极接VDD,漏极接电阻R4的一端,栅极分别接电流镜管M3、电流镜管M5和电流镜管M7的栅极,电阻R4另一端接地。In the above scheme, the current superposition circuit includes a resistor R4, a current mirror tube M4, a current mirror tube M6 and a current mirror tube M8; the sources of the current mirror tube M4, the current mirror tube M6 and the current mirror tube M8 are connected to VDD, and the drains One end of the resistor R4 is connected, the grid is respectively connected to the grids of the current mirror tube M3, the current mirror tube M5 and the current mirror tube M7, and the other end of the resistor R4 is grounded.
上述方案中,所述电流镜管M1,电流镜管M2,电流镜管M3和电流镜管M4具有相同的宽长比,且为电流镜连接。In the above solution, the current mirror tubes M1 , M2 , M3 and M4 have the same width-to-length ratio and are connected by current mirrors.
上述方案中,所述负载管M5和电流镜管M6具有相同的宽长比,且为电流镜连接。In the above solution, the load tube M5 and the current mirror tube M6 have the same width-to-length ratio, and are connected by a current mirror.
上述方案中,所述负载管M7和电流镜管M8具有相同的宽长比,且为电流镜连接。In the above solution, the load tube M7 and the current mirror tube M8 have the same width-to-length ratio, and are connected by a current mirror.
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
本发明提供的带隙基准电压源电路由于采用三路温度特性不同的电流叠加的方式,使叠加之后的电流的一阶和二阶温度系数趋于零,因此使输出的基准电压的温度系数远小于现有技术中输出电压的温度系数,有效的改善了带隙基准电压源的精度;并且,本发明提供的带隙基准电路采用的结构,使输出基准电压可以根据实际需要进行调整,并且由于放大器可以正常工作在低压电路中,因此,整个带隙基准电压电路能够在较低的电源电压下正常工作。The bandgap reference voltage source circuit provided by the present invention adopts the method of superimposing three currents with different temperature characteristics, so that the first-order and second-order temperature coefficients of the superimposed current tend to zero, so that the temperature coefficient of the output reference voltage is far away. It is smaller than the temperature coefficient of the output voltage in the prior art, effectively improving the accuracy of the bandgap reference voltage source; and, the structure adopted by the bandgap reference circuit provided by the present invention enables the output reference voltage to be adjusted according to actual needs, and due to The amplifier can work normally in the low voltage circuit, therefore, the whole bandgap reference voltage circuit can work normally under the lower supply voltage.
附图说明 Description of drawings
图1为现有技术中的一种带隙基准电压源的电路图;Fig. 1 is the circuit diagram of a kind of bandgap reference voltage source in the prior art;
图2为现有技术中的另一种带隙基准电压源的电路图;Fig. 2 is the circuit diagram of another kind of bandgap reference voltage source in the prior art;
图3为本发明实施例提供的带隙基准电压源的电路图。FIG. 3 is a circuit diagram of a bandgap reference voltage source provided by an embodiment of the present invention.
具体实施方式 Detailed ways
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。The principles and features of the present invention are described below in conjunction with the accompanying drawings, and the examples given are only used to explain the present invention, and are not intended to limit the scope of the present invention.
如图3所示,本发明实施例提供一种低压高精度带隙基准电压源,包括第一电流产生电路、第二电流产生电路、第三电流产生电路和电流叠加电路;As shown in FIG. 3 , an embodiment of the present invention provides a low-voltage high-precision bandgap reference voltage source, including a first current generating circuit, a second current generating circuit, a third current generating circuit, and a current superposition circuit;
第一电流产生电路,用于产生一路随温度变化呈特定关系的电流,该电流与温度的关系为:与温度变化呈正比例关系;The first current generating circuit is used to generate a current with a specific relationship with the temperature change, and the relationship between the current and the temperature is: proportional to the temperature change;
第二电流产生电路,用于产生一路随温度变化呈特定关系的电流,该电流与温度的关系为:一阶温度系数为负,二阶温度系数为正;The second current generation circuit is used to generate a current with a specific relationship with temperature, the relationship between the current and temperature is: the first-order temperature coefficient is negative, and the second-order temperature coefficient is positive;
第三电流产生电路,用于产生一路随温度变化呈特定关系的电流,该电流与温度的关系为:一阶温度系数为负,二阶温度系数为负;The third current generation circuit is used to generate a current with a specific relationship with temperature, the relationship between the current and temperature is: the first-order temperature coefficient is negative, and the second-order temperature coefficient is negative;
电流叠加电路,用于将上述三路电流产生电路所产生的三路电流叠加,叠加电流通过调节电阻提供输出所需的基准电压;The current superposition circuit is used to superimpose the three currents generated by the above three current generation circuits, and the superimposed current provides the reference voltage required for output through the adjustment resistor;
上述四部分电路中,电流叠加电路利用三路电流产生电路产生的电流温度系数的特征,通过调节三路电流的比例,使叠加电流的一阶和二阶温度系数为零,产生一阶和二阶温度系数为零的基准电压。In the above-mentioned four-part circuit, the current superposition circuit utilizes the characteristics of the current temperature coefficient generated by the three-way current generating circuit, and by adjusting the ratio of the three-way current, the first-order and second-order temperature coefficients of the superimposed current are zero, and the first-order and second-order temperature coefficients are generated. Reference voltage with zero step temperature coefficient.
其中,第一电流产生电路包括三极管Q1和三极管Q2,电阻R1,电流镜管M2和M3,放大器OP1;三极管Q1的发射极通过电阻R1与电流镜管M2的集电极连接,三极管Q2的发射极与电流镜管M3的集电极连接,电流镜管M2和电流镜管M3的发射极分别连接电源电压VDD,三极管Q1和三极管Q2的集电极分别接地;放大器OP1两个输入端分别连接电阻R1与电流镜管M2之间的节点A和三极管Q2与电流镜管M3之间的节点B,放大器OP1的输出端分别与电流镜管M2和电流镜管M3的栅极连接,控制电流镜管M2和电流镜管M3的栅电压,形成反馈环路。Wherein, the first current generating circuit includes triode Q1 and triode Q2, resistor R1, current mirror tubes M2 and M3, and amplifier OP1; the emitter of triode Q1 is connected with the collector of current mirror tube M2 through resistor R1, and the emitter of triode Q2 Connect to the collector of the current mirror tube M3, the emitters of the current mirror tube M2 and the current mirror tube M3 are respectively connected to the power supply voltage V DD , the collectors of the transistor Q1 and the transistor Q2 are respectively grounded; the two input terminals of the amplifier OP1 are respectively connected to the resistor R1 The node A between the current mirror tube M2 and the node B between the triode Q2 and the current mirror tube M3, the output terminals of the amplifier OP1 are respectively connected to the gates of the current mirror tube M2 and the current mirror tube M3, and control the current mirror tube M2 and the gate voltage of the current mirror tube M3 to form a feedback loop.
第二电流产生电路包括电流镜管M1,负载管M11,电阻R2,放大器OP21,反馈管M9,负载管M5;电流镜管M1的源极连接VDD,栅极连接电流镜管M2和M3的栅极,漏极连接放大器OP21的正输入端和负载管M11的漏极和栅极,负载管M11呈二极管连接方式,负载管M11的源极和电阻R2的一端接地,电阻R2另一端接反馈管M9的源极和放大器OP21负输入端,放大器OP21的输出端接反馈管M9的栅极,反馈管M9漏极接电流镜管M5的栅极和漏极,电流镜管M5源极接VDD,呈二极管连接方式,放大器OP21与反馈管M9、电阻R2以及负载管M11构成反馈环路。The second current generating circuit comprises a current mirror tube M1, a load tube M11, a resistor R2, an amplifier OP21, a feedback tube M9, and a load tube M5; the source of the current mirror tube M1 is connected to VDD, and the gate is connected to the gates of the current mirror tubes M2 and M3 The pole and drain are connected to the positive input terminal of the amplifier OP21 and the drain and gate of the load tube M11. The load tube M11 is in a diode connection mode. The source of the load tube M11 and one end of the resistor R2 are grounded, and the other end of the resistor R2 is connected to the feedback tube. The source of M9 and the negative input terminal of the amplifier OP21, the output terminal of the amplifier OP21 is connected to the gate of the feedback tube M9, the drain of the feedback tube M9 is connected to the gate and drain of the current mirror tube M5, and the source of the current mirror tube M5 is connected to VDD, In a diode connection mode, the amplifier OP21 forms a feedback loop with the feedback tube M9, the resistor R2 and the load tube M11.
第三电流产生电路包括三极管Q2,电阻R3,放大器OP22,反馈管M10,负载管M7;放大器OP22的正输入端接三极管Q2的发射极,负输入端接M10的源极和电阻R3的一端,电阻R3的另一端接地,放大器OP22输出端接反馈管M10的栅极,反馈管M10的漏极接电流镜管M7的漏极和栅极,电流镜管M7源极接VDD,且呈二极管连接方式,放大器OP22与反馈管M10、电阻R3以及三极管Q2构成反馈环路。The third current generating circuit includes a triode Q2, a resistor R3, an amplifier OP22, a feedback tube M10, and a load tube M7; the positive input terminal of the amplifier OP22 is connected to the emitter of the triode Q2, the negative input terminal is connected to the source of M10 and one end of the resistor R3, The other end of the resistor R3 is grounded, the output terminal of the amplifier OP22 is connected to the gate of the feedback tube M10, the drain of the feedback tube M10 is connected to the drain and gate of the current mirror tube M7, the source of the current mirror tube M7 is connected to VDD, and is diode-connected In this way, the amplifier OP22 forms a feedback loop with the feedback tube M10, the resistor R3 and the transistor Q2.
电流叠加电路包括电阻R4,电流镜管M4,电流镜管M6和电流镜管M8;电流镜管M4,M6和M8的源极接VDD,漏极接电阻R4的一端,栅极分别接电流镜管M3,M5和M7的栅极,电阻R4的另一端接地。The current superposition circuit includes a resistor R4, a current mirror tube M4, a current mirror tube M6 and a current mirror tube M8; the sources of the current mirror tubes M4, M6 and M8 are connected to VDD, the drains are connected to one end of the resistor R4, and the gates are respectively connected to the current mirror The gates of tubes M3, M5 and M7, and the other end of resistor R4 are grounded.
本实施例中,电流镜管M1,电流镜管M2,电流镜管M3和电流镜管M4具有相同的宽长比,且为电流镜连接;负载管M5和电流镜管M6具有相同的宽长比,且为电流镜连接;负载管M7和电流镜管M8具有相同的宽长比,且为电流镜连接。In this embodiment, the current mirror tube M1, the current mirror tube M2, the current mirror tube M3 and the current mirror tube M4 have the same width-to-length ratio, and are connected by a current mirror; the load tube M5 and the current mirror tube M6 have the same width and length Ratio, and is a current mirror connection; the load tube M7 and the current mirror tube M8 have the same width-to-length ratio, and is a current mirror connection.
本发明实施例提供的带隙基准电压源的工作原理为:The working principle of the bandgap reference voltage source provided by the embodiment of the present invention is as follows:
第一电流产生电路中的放大器OP1两个输入端分别连接节点A和节点B,放大器OP1的输出端控制电流镜管M1,M2,M3,M4构成的电流镜的栅电压,形成反馈环路,放大器OP1工作在深度负反馈使得A、B两点的电压相等,即The two input terminals of the amplifier OP1 in the first current generating circuit are respectively connected to the node A and the node B, and the output terminal of the amplifier OP1 controls the gate voltage of the current mirror composed of the current mirror tubes M1, M2, M3, and M4 to form a feedback loop, Amplifier OP1 works in deep negative feedback so that the voltages at A and B are equal, that is
VA=VB(4);V A = V B (4);
由于电流镜管M1,M2,M3和M4具有相同的宽长比,而且它们是电流镜连接,因此Since the current mirror tubes M1, M2, M3 and M4 have the same aspect ratio, and they are current mirror connections, so
VBE1和,VBE2是三级管Q1和,Q2的基极-发射极电压,N是Q1和Q2面积的比值。V BE1 and V BE2 are the base-emitter voltages of transistors Q1 and Q2 , and N is the ratio of the areas of Q1 and Q2 .
I2正比于VT,即I2是与绝对温度成正比的电流;I 2 is proportional to V T , that is, I 2 is a current proportional to absolute temperature;
第二电流产生电路中的放大器OP21与反馈管M9、电阻R2以及负载管M11构成的反馈环路使得电阻R2两端的电压为VGS,因此,流过负载管M5和反馈管M9的电流I5为The feedback loop formed by the amplifier OP21 in the second current generation circuit, the feedback tube M9, the resistor R2 and the load tube M11 makes the voltage across the resistor R2 be V GS , therefore, the current I 5 flowing through the load tube M5 and the feedback tube M9 for
假设负载管M11工作在强反型区,由MOS器件的平方率关系,得到Assuming that the load tube M11 works in the strong inversion region, from the square rate relationship of the MOS device, we can get
其中Un为NMOS的中载流子迁移率,Cox为栅和沟道之间的氧化层电容,W/L为MOS管的宽长比。Among them, Un is the medium carrier mobility of NMOS, Cox is the oxide layer capacitance between the gate and the channel, and W/L is the width-to-length ratio of the MOS transistor.
由于受电离杂质散射和声学波散射的影响,迁移率Un与温度有着复杂的关系,在强反型区,当温度在300K以上时,反型层内的有效迁移率与温度有T-2的幂指数关系,阈值电压VT也与温度有复杂的关系;它们共同的影响使得VGS在一段温度范围内的一阶温度系数负,二阶温度系数为正;不妨设Due to the influence of ionized impurity scattering and acoustic wave scattering, the mobility Un has a complex relationship with temperature. In the strong inversion region, when the temperature is above 300K, the effective mobility in the inversion layer has a relationship with the temperature of T -2 Power exponential relationship, the threshold voltage V T also has a complex relationship with temperature; their common influence makes the first-order temperature coefficient of V GS in a certain temperature range negative, and the second-order temperature coefficient is positive; it may be assumed that
VGS=β0+β1T+β2T2(8),V GS = β 0 + β 1 T + β 2 T 2 (8),
其中β0>0,β2>0,β1<0。Wherein, β 0 >0, β 2 >0, and β 1 <0.
假设忽略电阻R2的温度系数时,I5具有负的一阶温度系数和正的二阶温度系数。负载管M5和电流镜管M6构成电流镜且具有相同的宽长比,因此Assuming that the temperature coefficient of resistor R2 is neglected, I5 has a negative first-order temperature coefficient and a positive second-order temperature coefficient. The load tube M5 and the current mirror tube M6 constitute a current mirror and have the same width-to-length ratio, so
I6=I5(9);I 6 =I 5 (9);
第三电流产生电路中的放大器OP22与反馈管M10、电阻R3以及三极管Q2构成的反馈环路使得电阻R3两端的电压为VBE2,因此流过反馈管M10、电阻R3和负载管M7的电流I7为The feedback loop formed by the amplifier OP22 in the third current generation circuit, the feedback tube M10, the resistor R3 and the transistor Q2 makes the voltage across the resistor R3 be V BE2 , so the current I flowing through the feedback tube M10, the resistor R3 and the load tube M7 7 for
VBE2具有一阶温度系数和二阶温度系数都为负值,不妨设V BE2 has both the first-order temperature coefficient and the second-order temperature coefficient are negative, it may be set
VBE2=α0+α1T+α2T2(11),V BE2 = α 0 + α 1 T + α 2 T 2 (11),
其中,α0>0,α1<0,α2<0,假设忽略电阻的温度系数时,I7具有负的一阶温度系数和负的二阶温度系数。负载管M7和电流镜管M8构成电流镜且具有相同的宽长比,因此Wherein, α 0 >0, α 1 <0, and α 2 <0. Assuming that the temperature coefficient of resistance is ignored, I 7 has a negative first-order temperature coefficient and a negative second-order temperature coefficient. The load tube M7 and the current mirror tube M8 constitute a current mirror and have the same width-to-length ratio, so
I8=I7(12);I 8 =I 7 (12);
电流叠加电路包括电阻R4,电流镜管M4,M6和M8,3个放大器形成3个反馈环路,产生3路电流I4,I6和I8流过电阻R4,得到的输出电压VREF为The current superposition circuit includes resistor R4, current mirror tubes M4, M6 and M8, and three amplifiers form three feedback loops to generate three currents I 4 , I 6 and I 8 flow through resistor R4, and the obtained output voltage V REF is
将公式(8)、(11)代入(13),于是得到Substituting formulas (8) and (11) into (13), we get
适当调节公式(14)中的N,R4/R2以及R4/R3的值,使温度的一阶系数和二阶系数均为零,能够产生二阶补偿的零温度系数参考电压。Properly adjust the values of N, R4/R2 and R4/R3 in the formula (14), so that the first-order coefficient and the second-order coefficient of temperature are both zero, and the reference voltage with zero temperature coefficient of the second-order compensation can be generated.
本发明提供的带隙基准电压源电路与图1所示的带隙基准电压源电路相比,由于采用三路温度特性不同的电流叠加的方式,使叠加之后的电流的一阶和二阶温度系数趋于零,因此使输出的基准电压的温度系数远小于图1所示电路的输出电压的温度系数,有效的改善了带隙基准电压源的精度;并且,本发明提供的带隙基准电路采用的结构,使输出基准电压可以根据实际需要进行调整,并且由于放大器可以正常工作在低压电路中,因此,整个带隙基准电压电路能够在较低的电源电压下正常工作。Compared with the bandgap reference voltage source circuit shown in Figure 1, the bandgap reference voltage source circuit provided by the present invention adopts the method of superimposing three currents with different temperature characteristics, so that the first-order and second-order temperatures of the superimposed current The coefficient tends to zero, so the temperature coefficient of the output reference voltage is much smaller than the temperature coefficient of the output voltage of the circuit shown in Figure 1, effectively improving the accuracy of the bandgap reference voltage source; and, the bandgap reference circuit provided by the present invention The adopted structure enables the output reference voltage to be adjusted according to actual needs, and since the amplifier can normally work in a low-voltage circuit, the entire bandgap reference voltage circuit can work normally at a lower power supply voltage.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210102173.5A CN102622031B (en) | 2012-04-09 | 2012-04-09 | Low-voltage high-precision band-gap reference voltage source |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210102173.5A CN102622031B (en) | 2012-04-09 | 2012-04-09 | Low-voltage high-precision band-gap reference voltage source |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102622031A true CN102622031A (en) | 2012-08-01 |
| CN102622031B CN102622031B (en) | 2014-04-02 |
Family
ID=46561992
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210102173.5A Active CN102622031B (en) | 2012-04-09 | 2012-04-09 | Low-voltage high-precision band-gap reference voltage source |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102622031B (en) |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103631306A (en) * | 2013-12-01 | 2014-03-12 | 西安电子科技大学 | Low-temperature coefficient current source reference circuit |
| CN103631297A (en) * | 2012-08-28 | 2014-03-12 | 三星半导体(中国)研究开发有限公司 | Low voltage output band-gap reference circuit |
| CN103926966A (en) * | 2014-04-11 | 2014-07-16 | 安徽大学 | Low-voltage band-gap reference circuit |
| CN105204564A (en) * | 2015-10-30 | 2015-12-30 | 无锡纳讯微电子有限公司 | Low temperature coefficient reference source circuit |
| CN105388960A (en) * | 2014-08-28 | 2016-03-09 | 株式会社村田制作所 | Band-gap reference voltage circuit |
| CN106094960A (en) * | 2016-07-05 | 2016-11-09 | 湖北大学 | A kind of bandgap voltage reference |
| CN106933286A (en) * | 2015-12-31 | 2017-07-07 | 上海贝岭股份有限公司 | Reference voltage module |
| CN108008180A (en) * | 2017-09-25 | 2018-05-08 | 珠海智融科技有限公司 | A kind of current sampling circuit of Switching Power Supply |
| CN109725672A (en) * | 2018-09-05 | 2019-05-07 | 南京浣轩半导体有限公司 | A kind of band-gap reference circuit and high-order temperature compensated method |
| CN111984052A (en) * | 2020-07-28 | 2020-11-24 | 广东美的白色家电技术创新中心有限公司 | Voltage source |
| CN112684845A (en) * | 2020-12-22 | 2021-04-20 | 重庆百瑞互联电子技术有限公司 | Three-junction band gap circuit with zero Kelvin reference voltage |
| CN113056658A (en) * | 2018-08-29 | 2021-06-29 | ams国际有限公司 | Temperature sensor apparatus, light sensor apparatus, mobile computing device including the apparatus, and method of using the apparatus |
| CN114237339A (en) * | 2021-12-01 | 2022-03-25 | 重庆吉芯科技有限公司 | Band-gap reference voltage circuit and compensation method of band-gap reference voltage |
| CN114740937A (en) * | 2022-03-07 | 2022-07-12 | 长鑫存储技术有限公司 | Band-gap reference core circuit, band-gap reference source and semiconductor memory |
| CN116301178A (en) * | 2023-03-20 | 2023-06-23 | 龙芯中科(南京)技术有限公司 | Band gap reference circuit and chip |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1811656A (en) * | 2006-01-16 | 2006-08-02 | 电子科技大学 | Negative temperature compensating current generating circuit and temperature compensating current reference source |
| US20090146730A1 (en) * | 2007-12-06 | 2009-06-11 | Industrial Technology Research Institue | Bandgap reference circuit |
| US7570107B2 (en) * | 2006-06-30 | 2009-08-04 | Hynix Semiconductor Inc. | Band-gap reference voltage generator |
| US20100052643A1 (en) * | 2008-09-01 | 2010-03-04 | Electronics And Telecommunications Research Institute | Band-gap reference voltage generator |
| CN101950191A (en) * | 2010-09-16 | 2011-01-19 | 电子科技大学 | Voltage reference source with high-order temperature compensation circuit |
-
2012
- 2012-04-09 CN CN201210102173.5A patent/CN102622031B/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1811656A (en) * | 2006-01-16 | 2006-08-02 | 电子科技大学 | Negative temperature compensating current generating circuit and temperature compensating current reference source |
| US7570107B2 (en) * | 2006-06-30 | 2009-08-04 | Hynix Semiconductor Inc. | Band-gap reference voltage generator |
| US20090146730A1 (en) * | 2007-12-06 | 2009-06-11 | Industrial Technology Research Institue | Bandgap reference circuit |
| US20100052643A1 (en) * | 2008-09-01 | 2010-03-04 | Electronics And Telecommunications Research Institute | Band-gap reference voltage generator |
| CN101950191A (en) * | 2010-09-16 | 2011-01-19 | 电子科技大学 | Voltage reference source with high-order temperature compensation circuit |
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103631297A (en) * | 2012-08-28 | 2014-03-12 | 三星半导体(中国)研究开发有限公司 | Low voltage output band-gap reference circuit |
| CN103631297B (en) * | 2012-08-28 | 2015-11-11 | 三星半导体(中国)研究开发有限公司 | Low pressure exports band-gap reference circuit |
| CN103631306A (en) * | 2013-12-01 | 2014-03-12 | 西安电子科技大学 | Low-temperature coefficient current source reference circuit |
| CN103926966A (en) * | 2014-04-11 | 2014-07-16 | 安徽大学 | Low-voltage band-gap reference circuit |
| CN103926966B (en) * | 2014-04-11 | 2015-07-08 | 安徽大学 | Low Voltage Bandgap Reference Circuit |
| CN105388960A (en) * | 2014-08-28 | 2016-03-09 | 株式会社村田制作所 | Band-gap reference voltage circuit |
| CN105204564A (en) * | 2015-10-30 | 2015-12-30 | 无锡纳讯微电子有限公司 | Low temperature coefficient reference source circuit |
| CN106933286A (en) * | 2015-12-31 | 2017-07-07 | 上海贝岭股份有限公司 | Reference voltage module |
| CN106094960A (en) * | 2016-07-05 | 2016-11-09 | 湖北大学 | A kind of bandgap voltage reference |
| CN108008180A (en) * | 2017-09-25 | 2018-05-08 | 珠海智融科技有限公司 | A kind of current sampling circuit of Switching Power Supply |
| CN113056658A (en) * | 2018-08-29 | 2021-06-29 | ams国际有限公司 | Temperature sensor apparatus, light sensor apparatus, mobile computing device including the apparatus, and method of using the apparatus |
| US12039902B2 (en) | 2018-08-29 | 2024-07-16 | Ams International Ag | Temperature sensor arrangement, light sensor arrangement, mobile computing device including the same and methods using the same |
| CN109725672A (en) * | 2018-09-05 | 2019-05-07 | 南京浣轩半导体有限公司 | A kind of band-gap reference circuit and high-order temperature compensated method |
| CN109725672B (en) * | 2018-09-05 | 2023-09-08 | 南京浣轩半导体有限公司 | Band gap reference circuit and high-order temperature compensation method |
| CN111984052A (en) * | 2020-07-28 | 2020-11-24 | 广东美的白色家电技术创新中心有限公司 | Voltage source |
| CN112684845A (en) * | 2020-12-22 | 2021-04-20 | 重庆百瑞互联电子技术有限公司 | Three-junction band gap circuit with zero Kelvin reference voltage |
| CN112684845B (en) * | 2020-12-22 | 2022-06-03 | 重庆百瑞互联电子技术有限公司 | Three-junction band gap circuit with zero Kelvin reference voltage |
| CN114237339A (en) * | 2021-12-01 | 2022-03-25 | 重庆吉芯科技有限公司 | Band-gap reference voltage circuit and compensation method of band-gap reference voltage |
| WO2023097857A1 (en) * | 2021-12-01 | 2023-06-08 | 重庆吉芯科技有限公司 | Bandgap reference voltage circuit and bandgap reference voltage compensation method |
| CN114740937A (en) * | 2022-03-07 | 2022-07-12 | 长鑫存储技术有限公司 | Band-gap reference core circuit, band-gap reference source and semiconductor memory |
| CN116301178A (en) * | 2023-03-20 | 2023-06-23 | 龙芯中科(南京)技术有限公司 | Band gap reference circuit and chip |
| CN116301178B (en) * | 2023-03-20 | 2024-05-10 | 龙芯中科(南京)技术有限公司 | Band gap reference circuit and chip |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102622031B (en) | 2014-04-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102622031B (en) | Low-voltage high-precision band-gap reference voltage source | |
| JP4817825B2 (en) | Reference voltage generator | |
| CN106959723B (en) | A kind of bandgap voltage reference of wide input range high PSRR | |
| CN106125811B (en) | A kind of ultra-low temperature drift high PSRR bandgap voltage reference | |
| CN101840240B (en) | Adjustable multi-value output reference voltage source | |
| CN105022441B (en) | A Temperature-Independent Current Reference Source for Integrated Circuits | |
| US7323857B2 (en) | Current source with adjustable temperature coefficient | |
| CN100511082C (en) | Reference voltage module and temperature compensating method thereof | |
| JP4722502B2 (en) | Band gap circuit | |
| CN101807088B (en) | Bandgap reference circuit with output insensitive to offset voltage | |
| CN103677031B (en) | Method and circuit for providing zero-temperature coefficient voltage and zero-temperature coefficient current | |
| CN106406410A (en) | Band-gap reference source circuit with self-biased structure | |
| CN102279611A (en) | Variable-curvature compensated bandgap voltage reference source | |
| CN104111688B (en) | A kind of BiCMOS with temperature-monitoring function is without amplifier band gap voltage reference source | |
| CN104156023B (en) | A kind of High-precision band-gap reference circuit | |
| CN104460799B (en) | CMOS reference voltage source circuit | |
| CN103197716A (en) | Band-gap reference voltage circuit for reducing offset voltage influence | |
| TWI592786B (en) | Bandgap reference circuit | |
| KR20190049551A (en) | Bandgap reference circuitry | |
| CN103399612B (en) | Resistance-less bandgap reference source | |
| CN103246311B (en) | Non-resistor band-gap reference voltage source with high-order curvature compensation | |
| CN205721472U (en) | A kind of automatic biasing structure band-gap reference source apparatus | |
| CN101149628B (en) | A reference voltage source circuit | |
| CN109343641A (en) | A High Precision Current Reference Circuit | |
| CN203870501U (en) | Temperature-independent integrated circuit current reference |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20201222 Address after: 510000 601, building a, 136 Kaiyuan Avenue, Huangpu District, Guangzhou City, Guangdong Province Patentee after: AoXin integrated circuit technology (Guangdong) Co.,Ltd. Address before: 100029 Beijing city Chaoyang District Beitucheng West Road No. 3 Patentee before: Institute of Microelectronics of the Chinese Academy of Sciences |
|
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20220424 Address after: 510000 room 710, Jianshe building, No. 348, Kaifa Avenue, Huangpu District, Guangzhou, Guangdong Patentee after: Ruili flat core Microelectronics (Guangzhou) Co.,Ltd. Address before: 510000 601, building a, 136 Kaiyuan Avenue, Huangpu District, Guangzhou City, Guangdong Province Patentee before: AoXin integrated circuit technology (Guangdong) Co.,Ltd. |