CN102670232B - Positron emission computed tomography device, and method executed through the same - Google Patents
Positron emission computed tomography device, and method executed through the same Download PDFInfo
- Publication number
- CN102670232B CN102670232B CN201210061629.8A CN201210061629A CN102670232B CN 102670232 B CN102670232 B CN 102670232B CN 201210061629 A CN201210061629 A CN 201210061629A CN 102670232 B CN102670232 B CN 102670232B
- Authority
- CN
- China
- Prior art keywords
- value
- signal value
- total signal
- scintillator
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Nuclear Medicine (AREA)
Abstract
提供一种正电子发射计算机断层摄影装置,以及通过正电子发射计算机断层摄影装置执行的方法。该正电子发射计算机断层摄影装置能够提高能量分辨率。实施方式涉及的正电子发射计算机断层摄影装置具备:闪烁器阵列、光传感器、确定部、保存部、导出部。确定部根据从一个或多个光传感器输出的信号值,以被分割成比闪烁器的数量多的数量的区域的单位来确定γ射线与闪烁器的相互作用事件的检测位置。保存部导出合计信号值,并将导出的合计信号值与检测位置相关联地保存于存储部中。导出部根据与检测位置相关联地保存于存储部中的合计信号值与规定能量值,对每个区域的单位导出校正能量值的校正值。
A positron emission computed tomography apparatus and a method performed by the positron emission computed tomography apparatus are provided. The positron emission computed tomography apparatus is capable of improved energy resolution. A positron emission computed tomography apparatus according to an embodiment includes a scintillator array, an optical sensor, a determination unit, a storage unit, and a derivation unit. The specifying unit specifies detection positions of interaction events of gamma rays and scintillators in units of regions divided into a number greater than the number of scintillators based on signal values output from the one or more photosensors. The storage unit derives the total signal value, and stores the derived total signal value in the storage unit in association with the detection position. The derivation unit derives a correction value for correcting the energy value for each area unit based on the total signal value and the predetermined energy value stored in the storage unit in association with the detection position.
Description
本申请主张2011年3月11日申请的美国专利申请号13/045,610以及2012年2月14日申请的日本专利申请号2012-029889的优先权,并在本申请中引用上述专利申请的全部内容。This application claims priority to U.S. Patent Application No. 13/045,610, filed March 11, 2011, and Japanese Patent Application No. 2012-029889, filed February 14, 2012, the entire contents of which are incorporated herein by reference .
技术领域 technical field
实施方式涉及正电子发射计算机断层摄影装置、以及通过正电子发射计算机断层摄影装置执行的方法。Embodiments relate to a positron emission computed tomography apparatus, and a method performed by a positron emission computed tomography apparatus.
背景技术 Background technique
在医用成像领域,γ射线检测器、特别是正电子发射计算机断层摄影装置,即,PET(Positron Emission Tomography)装置的利用正在增加。在基于PET装置的PET成像中,放射性医药品通过注入、吸入、或食物摄取,被取入图像化的被检体。投放放射性医药品后,根据药剂的物理以及生物分子特性,药剂积聚于被检体内的特定部位。药剂的实际的空间分布、药剂积聚区域的浓度、以及从投放到最终排出的过程的动态均为临床上具有重要性的因素。在该过程中,附着于放射性药剂上的正电子放射体根据半衰期或分支比等同位素的物理性质而放射正电子。In the field of medical imaging, the use of gamma ray detectors, particularly positron emission computed tomography devices, that is, PET (Positron Emission Tomography) devices, is increasing. In PET imaging using a PET device, radiopharmaceuticals are taken into an imaged subject by injection, inhalation, or ingestion. After administration of radiopharmaceuticals, the drugs accumulate in specific parts of the subject's body according to their physical and biomolecular properties. The actual spatial distribution of the agent, the concentration in the area where the agent accumulates, and the dynamics of the process from administration to eventual discharge are all clinically important factors. In this process, a positron emitter attached to a radiopharmaceutical emits positrons according to the physical properties of the isotope such as half-life or branching ratio.
放射性核素放射正电子。当被放射出的正电子与电子相碰撞时,发生相互湮灭事件,正电子以及电子湮灭。大多数情况下,通过相互湮灭事件产生向大致180度相反方向放射出的两条γ射线(511keV)。Radionuclides emit positrons. When the emitted positron collides with the electron, a mutual annihilation event occurs, the positron and the electron annihilate. In most cases, two gamma rays (511 keV) are emitted in roughly 180-degree opposite directions by mutual annihilation events.
PET装置能够通过检测大致同时检测到的两条γ射线,并在这些检测位置之间,引出直线,即LOR(Line-of-response:响应线),从而以高概率,导出大致相互湮灭的位置。通过蓄积大量的这种LOR,并执行断层摄影重建过程,从而能够推定原来的分布。除了两个湮灭事件的位置信息以外,还能够利用正确的检测定时信息(数百皮秒以内)时,能够通过计算TOF(time-of-flight:飞行时间)来进一步增加与沿着LOR的湮灭事件的推定位置相关的信息。通过PET装置所具有的时间分辨率的界限,决定沿着该LOR的定位的精度。另外,通过决定本来的湮灭事件的位置时的界限,将能够决定PET装置的最终的空间分辨率。另一方面,同位素的固有的特性(例如,正电子能量)也成为决定(由于直到发生两个湮灭γ射线的正电子的射程、或对两个湮灭γ射线间的角度产生影响的因素)PET装置的空间分辨率的重要原因。The PET device can detect two gamma rays detected approximately at the same time, and draw a straight line between these detection positions, that is, LOR (Line-of-response: Line of Response), thereby deriving the position of approximately mutual annihilation with a high probability . The original distribution can be estimated by accumulating a large number of such LORs and executing a tomographic reconstruction process. In addition to the position information of the two annihilation events, when the correct detection timing information (within hundreds of picoseconds) is also available, it is possible to further increase the annihilation along the LOR by calculating the TOF (time-of-flight: time-of-flight) Information about the presumed location of an event. The accuracy of positioning along the LOR is determined by the limit of the temporal resolution of the PET apparatus. In addition, the final spatial resolution of the PET apparatus can be determined by determining the limit at the time of determining the position of the original annihilation event. On the other hand, the inherent properties of the isotope (e.g., positron energy) also become factors that determine (due to the range of the positron until two annihilation gamma rays occur, or the angle between two annihilation gamma rays) PET important reason for the spatial resolution of the device.
现有技术文献prior art literature
非专利文献1:W.W.Moses著,“Time of Flight in PETRevisited”,IEEE Transactions on Nuclear Science,Vol.50,No.5,pp.1325-1330Non-Patent Document 1: W.W.Moses, "Time of Flight in PETRevisited", IEEE Transactions on Nuclear Science, Vol.50, No.5, pp.1325-1330
发明内容 Contents of the invention
(发明要解决的问题)(problem to be solved by the invention)
本发明要解决的问题在于,提供一种能够提高能量分辨率的正电子发射计算机断层摄影装置,以及通过正电子发射计算机断层摄影装置执行的方法。The problem to be solved by the present invention is to provide a positron emission computed tomography apparatus capable of improving energy resolution and a method performed by the positron emission computed tomography apparatus.
(解决问题所用的方案)(the solution used to solve the problem)
实施方式涉及的正电子发射计算机断层摄影装置具备闪烁器阵列、多个光传感器、确定部、保存部、导出部。上述闪烁器阵列具有多个闪烁器。上述多个光传感器检测对上述闪烁器输入规定能量值的γ射线而生成的闪烁光。上述确定部根据通过上述闪烁光的扩散而由一个或多个上述光传感器进行检测、并从上述光传感器输出的信号值,以被分割成比上述闪烁器的数量多的数量的区域的单位来确定上述γ射线与闪烁器的相互作用事件的检测位置。上述保存部根据从上述光传感器输出的信号值导出合计信号值,并将导出的合计信号值与上述检测位置相关联地保存于存储部。上述导出部根据与上述检测位置相关联地保存于存储部中的合计信号值与上述规定能量值,对每个上述区域的单位导出校正上述相互作用事件的能量值的校正值。A positron emission computed tomography apparatus according to an embodiment includes a scintillator array, a plurality of photosensors, a determination unit, a storage unit, and a derivation unit. The above scintillator array has a plurality of scintillators. The plurality of photosensors detect scintillation light generated by inputting gamma rays of a predetermined energy value to the scintillator. The determining unit is divided into a unit of a number of regions larger than the number of the scintillators based on signal values detected by the one or more photosensors and output from the photosensors through the diffusion of the scintillation light. Determine the detection location of the above gamma ray interaction event with the scintillator. The storage unit derives a total signal value from the signal value output from the optical sensor, and stores the derived total signal value in a storage unit in association with the detection position. The derivation unit derives a correction value for correcting the energy value of the interaction event for each of the region units based on the total signal value stored in the storage unit in association with the detection position and the predetermined energy value.
(发明效果)(invention effect)
起到能够提高能量分辨率的效果。There is an effect of being able to improve the energy resolution.
附图说明 Description of drawings
图1表示γ射线检测器被来自各种放射性同位素的γ射线照射时的、非线性的SiPM(Silicon Photomultiplier:硅光电倍增管)响应的例子。FIG. 1 shows an example of nonlinear SiPM (Silicon Photomultiplier: silicon photomultiplier) response when a gamma ray detector is irradiated with gamma rays from various radioactive isotopes.
图2A表示从与薄的光导连结的5×5的闪烁器阵列(或闪烁器阵列)放射出的光的分布的三个例子。在图2A所示的三个例子中,光的强度的积分值都相同,但光的扩展范围分别大不相同。图2A表示在根据所识别出的相互作用的闪烁器的一个非线性校正中不充分的情况。Figure 2A shows three examples of distributions of light emitted from a 5x5 scintillator array (or array of scintillators) coupled to a thin light guide. In the three examples shown in FIG. 2A , the integrated values of the intensity of light are all the same, but the spread ranges of light are greatly different from each other. FIG. 2A shows the situation where a non-linearity correction of the scintillator based on the identified interactions is insufficient.
图2B-1表示大概在图2A所示的三个例子内的一个例子中生成的近似计算的信号水平的例子。FIG. 2B-1 shows an example of approximately calculated signal levels generated roughly in one of the three examples shown in FIG. 2A.
图2B-2表示大概在图2A所示的三个例子内的一个例子中生成的近似计算的信号水平的例子。FIG. 2B-2 shows an example of approximately calculated signal levels generated roughly in one of the three examples shown in FIG. 2A.
图2B-3表示大概在图2A所示的三个例子内的一个例子中生成的近似计算的信号水平的例子。如图2B-1~3所示,三个例子的任一情况下都提供511keV的能量值,但所输出的信号水平(输出信号的信号水平)在各自的情况下不同。2B-3 show examples of approximate calculated signal levels generated roughly in one of the three examples shown in FIG. 2A. As shown in FIGS. 2B-1 to 3 , any of the three examples provided an energy value of 511 keV, but the output signal level (signal level of the output signal) was different in each case.
图3是用于说明实施方式涉及的PET装置的结构的图。FIG. 3 is a diagram for explaining the configuration of the PET apparatus according to the embodiment.
图4是用于说明实施方式涉及的PET装置内的中央处理装置的结构的图。FIG. 4 is a diagram for explaining the configuration of a central processing unit in the PET apparatus according to the embodiment.
图5表示根据使用了光学系统汇集处理以及4部分的光电倍增管(PMR(Photomultiplier Tube))的闪烁器阵列的读出而得到的泛源直方图(flood histogram)。FIG. 5 shows a flood histogram obtained by reading out a scintillator array using an optical system integration process and a four-part photomultiplier tube (PMR (Photomultiplier Tube)).
图6表示根据使用了模拟数据汇集处理以及位置感应型雪崩光电二极管(avalanche photodiode)的闪烁器阵列的读出而得到的泛源直方图(flood histogram)。Figure 6 shows a flood histogram obtained from the readout of a scintillator array using analog data aggregation processing and position sensitive avalanche photodiodes (avalanche photodiodes).
图7A表示通过实施方式涉及的PET装置执行的方法的步骤的流程图。FIG. 7A is a flowchart showing the steps of a method performed by the PET apparatus according to the embodiment.
图7B表示通过另一实施方式涉及的PET装置执行的方法的步骤的流程图。FIG. 7B shows a flowchart of the steps of a method performed by a PET device according to another embodiment.
图8A表示通过γ射线与闪烁器阵列相接触发生的、来自响应光的入射的光传感器的典型的脉冲。Figure 8A shows a typical pulse from a photosensor in response to the incidence of light that occurs through contact of gamma rays with a scintillator array.
图8B-1是变更了图8A的时间轴的图。FIG. 8B-1 is a diagram in which the time axis of FIG. 8A is changed.
图8B-2是表示与图8A所示的脉冲对应的能量的信息的图。Fig. 8B-2 is a diagram showing energy information corresponding to the pulse shown in Fig. 8A.
图9A表示实施方式涉及的γ射线检测器的结构。图9A表示闪烁器阵列、光导、以及光传感器的位置关系。FIG. 9A shows the structure of the γ-ray detector according to the embodiment. FIG. 9A shows the positional relationship of the scintillator array, light guide, and photosensor.
图9B表示实施方式涉及的γ射线检测器的结构。图9A表示闪烁器阵列、光导、以及光传感器的位置关系。FIG. 9B shows the structure of the gamma ray detector according to the embodiment. FIG. 9A shows the positional relationship of the scintillator array, light guide, and photosensor.
图10A表示泛源直方图。Figure 10A shows a flood histogram.
图10B表示与泛源直方图对应的闪烁器ID查找表。Figure 10B shows the scintillator ID lookup table corresponding to the flood histogram.
(符号说明)(Symbol Description)
100 闪烁器100 scintillators
105 闪烁器阵列105 scintillator array
130 光导130 light guide
135、140 光传感器135, 140 light sensor
300 闪烁器300 scintillators
305 闪烁器阵列305 scintillator array
330 光导330 light guide
335、340 光传感器335, 340 light sensor
具体实施方式 Detailed ways
以下,参照附图对实施方式涉及的PET装置、以及通过PET装置执行的方法进行说明。Hereinafter, the PET apparatus according to the embodiment and the method performed by the PET apparatus will be described with reference to the drawings.
实施方式涉及的PET装置具备具有表示显著的非线性的光传感器的γ射线检测器。该非线性的程度依存于光传感器表面上的光子束的空间分布。实施方式涉及的PET装置为了减少所需的电子通道的数量而具备能够进行光学系统的汇集处理或模拟信号的汇集处理的γ射线检测器,并提供了一种进行非线性的校正的改良方法。The PET apparatus according to the embodiment includes a gamma ray detector having a photosensor showing remarkable nonlinearity. The degree of this nonlinearity depends on the spatial distribution of the photon beams on the surface of the photosensor. In order to reduce the number of required electron channels, the PET device according to the embodiment includes a γ-ray detector capable of performing optical system integration processing or analog signal integration processing, and provides an improved method for performing nonlinear correction.
PET装置通过收集多个相互湮灭γ射线的检测事件,并基于该事件数据进行图像重建,从而生成被检体的投予药剂分布的图像。相互湮灭γ射线是通过从被投予被检体的药剂所产生的正电子与产生点附近的电子相互湮灭,从而在大约180度的方向产生的2条γ射线。在PET装置中,根据在γ射线检测器的检测元件中大致同时检测到的事件信息,根据几何学特性形成能够进行直方图化的LOR。根据该LOR,规定作为重建的对象数据的投影数据或正弦图数据。另外,通过将LOR一个个地直接地追加写入图像数据,也能够形成图像数据。The PET apparatus collects a plurality of detection events of mutually annihilated γ-rays, and performs image reconstruction based on the event data, thereby generating an image of the distribution of the administered drug in the subject. Mutual annihilation γ-rays are two γ-rays generated in a direction of approximately 180 degrees by mutual annihilation of positrons generated from a drug administered to a subject and electrons near the point of generation. In the PET apparatus, based on event information detected substantially simultaneously by the detection elements of the gamma ray detector, an LOR that can be histogrammed is formed based on geometrical characteristics. According to the LOR, projection data or sinogram data to be reconstructed is specified. In addition, image data can also be formed by directly adding LORs one by one to the image data.
从而,在PET装置中,LOR是提供投予药剂的相互湮灭位置信息的基本的要素,与该相互湮灭位置信息相关,能够得到下述的附加的信息。首先,众所周知,描绘具有PET装置的点的能力在图像重建区域整体中空间性地变化,但在中心部变得更高,向周围逐渐地降低。PSF(Point Spread Function:点扩散函数)是表现该特性的典型的函数,近年来,正被编入重建过程中。接着,PET装置能够根据TOF,即,相互湮灭γ射线到达检测器的时间差信息,计算在LOR上发生相互湮灭事件的点的概率分布。Therefore, in the PET apparatus, the LOR is a basic element that provides mutual annihilation position information of administered drugs, and the following additional information can be obtained in relation to the mutual annihilation position information. First, it is well known that the ability to draw a point with a PET device varies spatially in the entire image reconstruction area, but becomes higher in the center and gradually decreases toward the periphery. PSF (Point Spread Function: Point Spread Function) is a typical function that expresses this characteristic, and it has been included in the reconstruction process in recent years. Then, the PET device can calculate the probability distribution of the points where mutual annihilation events occur on the LOR based on the TOF, ie, the time difference information of mutual annihilation gamma rays reaching the detector.
上述的过程(成像过程)需要多个相互湮灭事件。在目前的研究中,典型的是,在决定为了能够进行充分的成像处理而需要的相互湮灭事件的数量时,虽然必须对一个一个的成像事例进行解析,但对典型的长度为100cm的FDG(fluoro-deoxyglucose:氟代脱氧葡萄糖)中的检查,需要重复数亿次。为了得到这些事件数所需的时间通过药剂的注入量以及PET装置的灵敏度与计数能力来决定。The above-mentioned process (imaging process) requires multiple mutual annihilation events. In the current study, it is typical to determine the number of mutual annihilation events required to enable adequate imaging processing, although each imaging event must be resolved individually, but for a typical length of 100cm FDG ( Fluoro-deoxyglucose: checks in fluorodeoxyglucose) need to be repeated hundreds of millions of times. The time required to obtain these event numbers is determined by the injection amount of the drug and the sensitivity and counting capability of the PET apparatus.
PET成像系统、即PET装置为了检测从被检体放射出的γ射线,使用被配置在相互对置的位置上的γ射线检测器。典型地,PET装置为了检测从各角度飞来的γ射线,使用被配置成环状的γ射线检测器。从而,典型地,PET装置的扫描仪为了能够尽可能多地捕捉放射线而为大致圆筒形状,当然必须为各向同性。另外,扫描仪也可以是缺少圆环的一部分的形状,此时,也能够使γ射线检测器旋转,以捕捉缺少的角度。但是,那样的方法对PET装置的整体的灵敏度产生重大的影响。为圆筒形状时,一个面所包含的所有的γ射线响应γ射线检测器的可能性高,如果使轴方向的尺寸变大,则对捕捉放射线的灵敏度或性能极为有效。从而,最优的结构是能够检测所有的γ射线的球体结构。当然,在对人体的应用中,球状结构变得极大,且极为昂贵。从而,在现实中,γ射线检测器的轴方向的长度可变的圆筒形状是最新的PET装置的扫描仪的结构的基本。A PET imaging system, that is, a PET apparatus uses gamma-ray detectors arranged at positions facing each other in order to detect gamma-rays emitted from a subject. Typically, a PET apparatus uses gamma-ray detectors arranged in a ring to detect gamma-rays coming from various angles. Therefore, typically, the scanner of the PET apparatus has an approximately cylindrical shape in order to capture as much radiation as possible, and of course must be isotropic. In addition, the scanner may have a shape missing a part of the ring, and in this case, the gamma-ray detector can also be rotated to capture the missing angle. However, such a method has a great influence on the sensitivity of the PET apparatus as a whole. In the case of a cylindrical shape, all the gamma rays included in one surface are likely to respond to the gamma ray detector, and increasing the size in the axial direction is extremely effective in the sensitivity and performance of capturing radiation. Therefore, the optimal structure is a spherical structure capable of detecting all gamma rays. Of course, in applications to the human body, spherical structures become very large and expensive. Therefore, in reality, the cylindrical shape in which the axial length of the gamma ray detector is variable is the basis of the structure of the scanner of the latest PET apparatus.
扫描仪由多个检测器模块构成,检测器模块由多个闪烁器构成。为了使PET装置的性能优良,需要配置尽可能多的闪烁器,且挡住尽可能多的γ射线并转换成光。PET装置为了重建放射性同位素的时间空间分布,必须得到所检测到的各事件的能量值(即,在闪烁器内生成的光量)、位置、以及定时的信息。大多最新PET扫描仪都由数千个个别的闪烁器构成。这些闪烁器被配置在检测器模块内,用于确定相互湮灭事件的位置。典型地,闪烁器元件具有大约4mm×4mm的断面。也能够是更小的尺寸或更大的尺寸,或,不是正方形的断面。闪烁器的长度或深度决定γ射线的阻止能力,典型地,是10~30mm的范围。检测器模块是扫描仪的主要的构成要素。The scanner is composed of a plurality of detector modules, and the detector module is composed of a plurality of scintillators. In order to make the performance of the PET device excellent, it is necessary to configure as many scintillators as possible, and to block as much gamma rays as possible and convert them into light. In order to reconstruct the spatial and temporal distribution of radioactive isotopes, the PET apparatus must obtain information on the energy value (ie, the amount of light generated in the scintillator), position, and timing of each detected event. Most of the latest PET scanners consist of thousands of individual scintillators. These scintillators are configured within the detector module to determine the location of mutual annihilation events. Typically, scintillator elements have a cross-section of approximately 4mm x 4mm. Also possible are smaller or larger sizes, or non-square cross-sections. The length or depth of the scintillator determines the gamma-ray blocking capability, and typically ranges from 10 to 30 mm. The detector module is the main constituent element of the scanner.
基于PET装置的PET成像的性能依存于基于高速且高亮度的闪烁器的、从γ射线向光的转换。PET装置能够确定在检测器中发生闪烁的位置(γ射线与闪烁器发生相互作用的位置),并对各个事件根据时间信息进行配对(也就是,结合在某个时间窗中检测到的两个检测事件),并计算相互湮灭事件的位置。为了进行这些动作,需要非常高速的检测器(检测器以及电子设备),也需要优异的信噪比。如果使用高质量的电子设备,则信噪比主要根据与检测过程相关的泊松分布来决定。总之,如果检测更多的光子则将提高信噪比,从而进一步提高空间分辨率以及时间分辨率。另外,在检测过程中错过闪烁光时,即使具有检测器的设计以及电子设备的改善也不能够进行补偿。能够对于在闪烁器内所产生的光实际地进行检测的光量的比例是适合于表示设计部件的效率的指标。因此,无论是谁想要使光的检测量最大化,大概都要使光传感器尽可能与闪烁器相接近,并且回避反射以及其他的边缘效应。如果进行这样的步骤,则γ射线检测器大概必须为闪烁器与光传感器之间的距离短、具有大的闪烁器阵列的检测器。The performance of PET imaging based on PET devices depends on the conversion of gamma rays to light based on a high-speed and high-brightness scintillator. The PET device is able to determine where scintillation occurs in the detector (where the gamma ray interacts with the scintillator) and make a temporal pairing of the events (that is, combine two detection events), and calculate the location of mutual annihilation events. In order to perform these operations, a very high-speed detector (detector and electronic equipment) is required, and an excellent signal-to-noise ratio is also required. If high-quality electronics are used, the signal-to-noise ratio is largely determined by the Poisson distribution associated with the detection process. In conclusion, if more photons are detected, the signal-to-noise ratio will be improved, thereby further improving the spatial resolution as well as the temporal resolution. In addition, when scintillation light is missed during detection, even with improved detector design and electronics, it cannot compensate. The ratio of the amount of light that can actually be detected with respect to the light generated in the scintillator is an index suitable for expressing the efficiency of a design component. So whoever wants to maximize the amount of light detected will probably want to place the light sensor as close as possible to the scintillator and avoid reflections and other edge effects. If such a procedure is performed, the gamma ray detector will presumably have to be a detector with a large scintillator array with a short distance between the scintillator and the photosensor.
如上述那样,PET装置并不仅仅是计数器。PET装置在检测相互湮灭事件的存在之外,也需要进行相互湮灭事件的位置的识别。如果为了能够识别各相互作用的位置而最简单地设计,大概要对每个闪烁器都设计独立的光传感器以及A/D转换器。为了制约光传感器的物理大小、A/D转换器所需的电力、以及这些的成本,以削减光传感器数以及电子设备的通道数为目的,通常通过任何装置来对数据进行汇集。As mentioned above, PET devices are not just counters. In addition to detecting the existence of a mutual annihilation event, the PET device also needs to identify the location of the mutual annihilation event. For the simplest design to be able to identify the position of each interaction, an independent optical sensor and A/D converter should be designed for each scintillator. In order to limit the physical size of the photosensor, the power required for the A/D converter, and the cost of these, data is generally collected by any device for the purpose of reducing the number of photosensors and the number of channels of the electronic device.
数据汇集的最一般的两个方式是光学系统的汇集处理与模拟信号的汇集处理。为了使光分散到4个光电倍增管而使用光导的方式是光学系统的汇集处理的例子。通过适当地记录如何地将光分配到多个光传感器,从而对于任何的光传感器响应的组合,都能够计算与γ射线的相互作用事件的位置。另外,作为模拟信号的汇集处理的例子,存在所谓的位置感应型雪崩光电二极管、位置感应型SiPM。The two most common methods of data collection are the collection processing of optical systems and the collection processing of analog signals. The method of using a light guide to disperse light to four photomultiplier tubes is an example of the collection process of the optical system. By properly recording how light is distributed to multiple photosensors, the location of an interaction event with gamma rays can be calculated for any combination of photosensor responses. In addition, there are so-called position-sensitive avalanche photodiodes and position-sensitive SiPMs as examples of analog signal collection processing.
在光学系统汇集处理或模拟数据汇集处理的设计中,使用安格(anger)逻辑(重心计算)或统计方法来计算各相互作用事件的检测器框内的相对位置。在此,所谓“相对位置”是指闪烁器与γ射线发生相互作用事件的实际的位置(例如,被检体内的绝对位置)的相对位置,是通过计算γ射线入射到闪烁器的位置从而确定的“检测位置”。作为相对位置为了确定γ射线相互作用的闪烁器,通常,PET装置将作为结果得到的泛源直方图分割成闪烁器的查找表。根据泛源直方图以及查找表中的位置识别出了相互作用的闪烁器之后,对每个闪烁器进行能量值以及定时的校正。作为能量值的校正也能够进行非线性校正。通常,该校正是根据使用了多个不同的同位素(例如,511以及1275keV的22Na、662keV的137Cs、356keV的133Ba、122keV的57Co、60keV的241Am)的测量的校正,对每个闪烁都进行。另外,如后述的那样,实施方式涉及的PET装置不以闪烁器的单位,而以被分割成比闪烁器的数量多的数量的区域的单位来进行能量值的校正。In the design of the optical system pooling process or the analog data pooling process, Anger logic (centroid calculation) or statistical methods are used to calculate the relative position within the detector frame of each interaction event. Here, the so-called "relative position" refers to the relative position of the actual position (for example, the absolute position in the subject) of the interaction event between the scintillator and the γ-ray, which is determined by calculating the position where the γ-ray is incident on the scintillator "Detection position" of the . In order to determine the gamma-ray interacting scintillators as relative positions, typically the PET device partitions the resulting flood histogram into look-up tables for the scintillators. After the interacting scintillators are identified according to the flood histogram and the position in the look-up table, the energy value and timing of each scintillator are corrected. Non-linear correction can also be performed as correction of the energy value. Typically, the correction is based on measurements using a number of different isotopes (e.g., 22 Na at 511 and 1275 keV, 137 Cs at 662 keV, 133 Ba at 356 keV, 57 Co at 122 keV, 241 Am at 60 keV), for each Both flashes are performed. In addition, as will be described later, the PET apparatus according to the embodiment corrects the energy value not in units of scintillators but in units of regions divided into a number greater than the number of scintillators.
图1表示γ射线检测器被来自各种的放射性同位素的γ射线进行照射时的、非线性的SiPM响应的例子。γ射线检测器包含3mm×3mm×10mm的LYSO(Lutetium Yttrium Oxyorthosilicate:硅酸镥钇)晶体、以及具有3600个单元的3mm×3mm的SiPM(滨松光子学株式会社制)。FIG. 1 shows an example of nonlinear SiPM response when a gamma ray detector is irradiated with gamma rays from various radioactive isotopes. The γ-ray detector includes a 3 mm×3 mm×10 mm LYSO (Lutetium Yttrium Oxyorthosilicate: lutetium yttrium silicate) crystal and a 3 mm×3 mm SiPM (manufactured by Hamamatsu Photonics Co., Ltd.) having 3600 cells.
检测高能量值的γ射线时(例如,PET用511keV等),有时在γ射线检测器内γ射线通过多个闪烁器进行康普顿(Compton)散射。由此,γ射线对于多个闪烁器赋予能量。一般而言,511keV的γ射线的超过30%与多个闪烁器发生相互作用。即使在被赋予闪烁器的总能量相同的情况下,根据相互作用的过程或相互作用的闪烁器的数量的不同,对光传感器的光的扩展有时也相当不同。例如,将对一个闪烁器赋予511keV的能量时、与对两个相邻的闪烁器赋予合计511keV的能量时相比较得知,通过光传感器的光的扩展存在很大的差异。When detecting high-energy gamma rays (for example, 511 keV for PET, etc.), gamma rays may be Compton-scattered by a plurality of scintillators in a gamma-ray detector. Thus, the γ-rays impart energy to a plurality of scintillators. In general, more than 30% of the 511 keV gamma rays interact with multiple scintillators. Even when the total energy given to the scintillators is the same, the spread of light to the photosensor may be quite different depending on the process of interaction or the number of interacting scintillators. For example, when energy of 511 keV is applied to one scintillator and when a total of energy of 511 keV is applied to two adjacent scintillators, it can be seen that there is a large difference in the spread of light passing through the photosensor.
该光的扩展的差异在光传感器的非线性校正中成为问题。这是由于根据所检测到的光子的空间分布的不同,其非线性的程度不同。这是所谓的使用了SiPM的情况。SiPM即硅光电倍增管(作为固体光电倍增管的SSPM(Solid-State Photomultiplier),或者被称为GAPD或MAPD)由多个独立的雪崩光电二极管构成。另外,SiPM被称为“微单元(micro cell)”,在盖革(Geiger)模式下动作。在盖革模式下,如果微单元检测到一个以上的光子,则SiPM放电。放电期间所放射出的电荷根据微单元的静电容量以及动作电压来决定。所放射出的电荷不被进行放电的光子的数量所左右。例如,根据通过闪烁器内的γ射线的相互作用而发生的事件,如果光的脉冲与SiPM相接触,则多个微单元进行放电,并产生电脉冲。该电脉冲的振幅与放电的微单元的数量成比例。当光子的密度非常小时,由于多个光子与相同的微单元接触的概率非常低,因此,电脉冲的振幅相对于光子数直线地变化。由于光子的密度越增加,多个光子与相同的微单元接触的概率越增加,因此,信号的非线性变强。This difference in light spread becomes a problem in nonlinear correction of the photosensor. This is due to the degree of non-linearity of the detected photons depending on their spatial distribution. This is a so-called case where SiPM is used. SiPM is a silicon photomultiplier tube (SSPM (Solid-State Photomultiplier) as a solid photomultiplier tube, or GAPD or MAPD) consisting of multiple independent avalanche photodiodes. In addition, SiPM is called a "micro cell" and operates in Geiger mode. In Geiger mode, the SiPM discharges if the microcell detects more than one photon. The charge emitted during discharge is determined by the capacitance and operating voltage of the microcell. The emitted charge is independent of the number of photons that make the discharge. For example, when a pulse of light comes into contact with the SiPM according to an event generated by the interaction of γ-rays in the scintillator, a plurality of microcells are discharged and electric pulses are generated. The amplitude of this electrical pulse is proportional to the number of microcells discharged. When the density of photons is very small, the amplitude of the electrical pulse varies linearly with respect to the number of photons because the probability of multiple photons contacting the same microcell is very low. As the density of photons increases, the probability of multiple photons contacting the same micro-unit increases, so the nonlinearity of the signal becomes stronger.
图2A表示从与薄的光导相连结的5×5的闪烁器阵列放射出的光的分布的三个例子。图2A表示对闪烁器阵列内赋予511keV的能量的、通过三个不同的事件中预测的光的强度的不同。在该例子中,5×5的闪烁器阵列内的闪烁器光学地进行分离(即,这些闪烁器在各自之间具有反射材料),并与薄的光导相结合,并进一步与阵列状的光传感器或位置感应型光传感器相结合。图2A的格子线表示闪烁器的边界。在各自的案例中,积分的光的强度相同。在第1(左端)案例中,所有的能量被赋予中央的闪烁器,峰值的光的强度(或光子束)最高。在第2案例中,γ射线将能量的67%赋予中央的闪烁器(基于康普顿散射),将剩余的能量的33%赋予附近的闪烁器。在第3案例(右端)中,γ射线的能量在两个闪烁器之间均匀地分布。在该案例中,作为结果得到的每个闪烁器的光的最大强度最低。如果依存于光子的密度,对该γ射线检测器的读出使用光的强度与输出变化的SiPM等的光传感器,则积分的光的强度相同,但光的扩展不同,因此,光传感器的输出在于此所示的三个案例中不同。其结果能量分辨率恶化。例如,在图2A所示的例子中,例如即使在各案例中对闪烁器赋予511keV的能量,在三个案例各自中被非线性校正的信号水平也不同(假设在各案例中应用相同的非线性校正)。这是使能量分辨率恶化的机制的代表性例子。Figure 2A shows three examples of the distribution of light emitted from a 5 x 5 scintillator array coupled to a thin light guide. FIG. 2A shows the difference in intensity of light predicted by three different events when an energy of 511 keV is given to the scintillator array. In this example, the scintillators within a 5 x 5 array of scintillators are optically separated (i.e., they have reflective material between each) and combined with thin light guides, which are further integrated with the arrayed light sensors or position-sensitive light sensors. The grid lines in FIG. 2A represent the boundaries of the scintillator. In each case, the intensity of the integrated light is the same. In case 1 (left end), all energy is imparted to the central scintillator, and the intensity of the peak light (or photon beam) is highest. In case 2, gamma rays impart 67% of the energy to the central scintillator (based on Compton scattering) and the remaining 33% to nearby scintillators. In Case 3 (right end), the energy of the gamma rays is evenly distributed between the two scintillators. In this case, the resulting maximum intensity of light per scintillator is the lowest. If an optical sensor such as SiPM whose intensity and output of light vary depending on the density of photons is used for reading out the gamma ray detector, the intensity of integrated light is the same, but the spread of light is different, so the output of the optical sensor It is different in the three cases shown here. As a result, energy resolution deteriorates. For example, in the example shown in FIG. 2A , for example, even if an energy of 511 keV is applied to the scintillator in each case, the signal levels corrected by nonlinearity are different in each of the three cases (assuming that the same non-linearity is applied in each case). linear correction). This is a representative example of the mechanism that deteriorates the energy resolution.
图2B表示通过图2A所示的三个案例生成的、近似计算的信号水平。在此,作为例子考虑两个闪烁器。根据光的扩展的不同以及SiPM的非线性,即使三个案例都对两个闪烁器赋予合计511keV的能量,在各自的案例中积分的信号水平也不同。Figure 2B represents the approximate calculated signal levels generated by the three cases shown in Figure 2A. Here, consider two scintillators as an example. Depending on the spread of light and the nonlinearity of the SiPM, the integrated signal levels differ in the respective cases even though a total energy of 511 keV is applied to the two scintillators in all three cases.
对上述详细进行说明。例如,当γ射线入射到一个闪烁器的中央附近时,康普顿散射的效果较小,朝向光传感器的光的扩展容易变小。另一方面,例如,当γ射线入射到一个闪烁器的边界附近时,康普顿散射的效果变得较大,朝向光传感器的光的扩展容易变大。在前者的情况下,由于光的扩展小,因此,被认为光子接触较少数量的微单元(作为光传感器的SiPM的微单元),在后者的情况下,由于光的扩展大,因此,被认为光子接触比较多的数量的微单元。在此,当光子连续地与相同的微单元相接触时,由于其硬件的限制,SiPM有时不能检测到所有的光子。另一方面,通过微单元放电而生成的电脉冲的振幅和放电的微单元的数量成比例。即,当光子与比较少的数量的微单元相接触的前者的情况下,由于光子连续地与相同的微单元相接触的概率也变高,因此,SiPM不能检测到所有的光子的概率也变高,具有信号值变低的倾向。相反,当光子与比较多的数量的微单元相接触的后者的情况下,由于光子连续地与相同的微单元相接触的概率变低,因此,SiPM能够检测所有的光子,具有信号值变高的倾向。这样,γ射线入射到一个闪烁器内的哪一位置会对信号值产生影响。这是由于实施方式涉及的PET装置如以下说明的那样,对于通过光传感器输出的信号值,以比闪烁器的单位细的单位,进行非线性的校正。The above will be described in detail. For example, when gamma rays are incident near the center of a scintillator, the effect of Compton scattering is small, and the spread of light toward the photosensor tends to be small. On the other hand, for example, when γ-rays are incident near the boundary of one scintillator, the effect of Compton scattering becomes larger, and the spread of light toward the photosensor tends to be larger. In the former case, since the spread of light is small, it is considered that the photons touch a small number of microcells (microcells of the SiPM as a photosensor), and in the latter case, since the spread of light is large, therefore, Photons are considered to contact a relatively large number of microcells. Here, when photons are continuously in contact with the same microcell, SiPM sometimes cannot detect all photons due to its hardware limitation. On the other hand, the amplitude of an electric pulse generated by discharging a microcell is proportional to the number of discharged microcells. That is, in the case of the former in which photons are in contact with a relatively small number of microcells, since the probability that photons are continuously in contact with the same microcells becomes high, the probability that SiPM cannot detect all photons also becomes lower. High, there is a tendency for the signal value to become low. On the contrary, in the case of the latter in which photons are in contact with a relatively large number of microcells, since the probability that photons are continuously in contact with the same microcell becomes low, the SiPM can detect all photons and has a signal value change. high tendency. Thus, where in a scintillator the gamma rays are incident has an effect on the signal value. This is because the PET apparatus according to the embodiment corrects the nonlinearity in units smaller than the unit of the scintillator with respect to the signal value output by the photosensor as described below.
本说明书所公开的实施方式以亚像素(sub-pixel)单位或连续地应用非线性校正(non-linearity correction)。在此,所谓亚像素单位是指被分割成比闪烁器的数量多的数量的区域的单位。如果使用光学系统汇集处理或模拟数据汇集处理,则能够根据与各个闪烁器对应的峰值相关的泛源直方图中的闪烁器与γ射线的相互作用事件的位置,得到针对多个闪烁器间的相互作用的追加信息。由于泛源直方图内发生闪烁的位置根据安格逻辑(重心计算)进行计算,因此,对两个闪烁器内赋予能量的事件配置于与两个闪烁器对应的峰值之间。对于本领域的技术人员而言不言而喻,在这些案例中所计算出的相互作用位置不一定与单一的物理位置对应,而是表示通过光传感器生成的相对信号水平的位置。Embodiments disclosed in this specification apply non-linearity correction in sub-pixel units or continuously. Here, a sub-pixel unit refers to a unit divided into a number of regions greater than the number of scintillators. If optical system aggregation processing or analog data aggregation processing is used, the scintillator-γ-ray interaction event position in the flood histogram related to the peak value corresponding to each scintillator can be used to obtain the interaction between multiple scintillators Additional information for the interaction. Since the location where flicker occurs in the flood histogram is calculated by Angus logic (centroid calculation), events that energize the two scintillators are placed between the peaks corresponding to the two scintillators. It is self-evident to a person skilled in the art that the calculated interaction positions in these cases do not necessarily correspond to a single physical position, but represent positions of relative signal levels generated by the light sensors.
另外,如果忽视来自噪音的影响,各个闪烁器的峰值之间的正确的位置根据对两个闪烁器内赋予的相对的能量来决定。非线性的变动也根据对两个闪烁器内赋予的相对的能量来决定。从而,能够通过对泛源直方图进行亚像素化,并对各亚像素区域应用不同的非线性校正,从而,进行更优的非线性校正。或者,也可以应用在各个闪烁器的峰值之间连续地变化的非线性校正。Also, if the influence of noise is ignored, the correct position between the peaks of the scintillators is determined by the relative energy applied to the two scintillators. Non-linear fluctuations are also determined by relative energies applied to the two scintillators. Therefore, by sub-pixelizing the flood histogram and applying different nonlinear corrections to each sub-pixel region, more optimal nonlinear correction can be performed. Alternatively, a non-linear correction that varies continuously between the peaks of the individual scintillators may also be applied.
图3是用于说明实施方式涉及的PET装置的结构的图。对于本领域的技术人员而言不言而喻,图3所示的γ射线检测器系统形成PET装置或TOF型PET装置的一部分。为了简洁省略针对PET装置以及TOF型PET装置的附加的解说。另外,针对TOF型PET装置的解说在非专利文献1中,通过参照其内容整体而结合于本说明书。FIG. 3 is a diagram for explaining the configuration of the PET apparatus according to the embodiment. It is self-evident to a person skilled in the art that the gamma-ray detector system shown in Fig. 3 forms part of a PET device or a TOF-type PET device. Additional explanations for the PET device and the TOF-type PET device are omitted for brevity. In addition, the explanation about the TOF PET apparatus is given in Non-Patent Document 1, and its entirety is referred to in this specification.
在图3中,非线性的光传感器135以及140被配置在光导130上,具有多个闪烁器的闪烁器阵列105被配置在光导130之下。对于本领域的技术人员而言不言而喻,本实施方式也能够适用于使用包含SiPM或阵列状的SiPM的任意的非线性光传感器的γ射线检测器中。具有多个闪烁器的第2闪烁器阵列305与闪烁器阵列105对置,与光导330、光传感器335以及340重叠地配置。In FIG. 3 , nonlinear photosensors 135 and 140 are disposed on the light guide 130 , and a scintillator array 105 having a plurality of scintillators is disposed below the light guide 130 . It goes without saying to those skilled in the art that the present embodiment can also be applied to a gamma ray detector using any nonlinear optical sensor including SiPM or arrayed SiPM. The second scintillator array 305 having a plurality of scintillators faces the scintillator array 105 and is arranged to overlap the light guide 330 and the photosensors 335 and 340 .
在图3中,如果从被检体(省略图示)放射出相互湮灭γ射线,则它们在相互约180度的相反方向上前进。相互湮灭γ射线通过闪烁器100与闪烁器300大致同时被检测出。并且,在既定的限制时间内,如果通过闪烁器100与闪烁器300来检测γ射线,则确定相互作用事件110。这样,γ射线检测系统通过闪烁器100与闪烁器300同时检测出γ射线。但是,为了简略,在此只对通过闪烁器100的γ射线检测进行说明。对于本领域的技术人员而言不言而喻,针对闪烁器100的说明也同样能够适用于通过闪烁器300的γ射线检测中。In FIG. 3 , when mutual annihilation γ-rays are emitted from a subject (not shown), they advance in opposite directions about 180 degrees from each other. The mutual annihilation gamma rays are detected by the scintillator 100 and the scintillator 300 approximately simultaneously. And, if gamma rays are detected by the scintillator 100 and the scintillator 300 within a predetermined time limit, an interaction event 110 is determined. In this way, the gamma ray detection system simultaneously detects gamma rays through the scintillator 100 and the scintillator 300 . However, for the sake of brevity, only the gamma-ray detection by the scintillator 100 will be described here. It goes without saying for those skilled in the art that the description about the scintillator 100 is also applicable to the gamma-ray detection by the scintillator 300 .
返回到图3,各光传感器135、光传感器140、光传感器335、光传感器340与数据收集部350或数据收集部360连接。数据收集部350、数据收集部360通过对响应闪烁光的光传感器140、光传感器135、光传感器340、光传感器335所生成的对应波形进行积分,从而生成数字化的输出值。Returning to FIG. 3 , each of the optical sensor 135 , the optical sensor 140 , the optical sensor 335 , and the optical sensor 340 is connected to the data collection unit 350 or the data collection unit 360 . The data collection unit 350 and the data collection unit 360 generate digitized output values by integrating corresponding waveforms generated by the light sensor 140 , the light sensor 135 , the light sensor 340 , and the light sensor 335 in response to the flicker light.
数据收集部350、数据收集部360包含以1千兆赫~5千兆赫的采样率动作的∑-Δ(sigma delta)转换器等模拟数字转换器。或者,数据收集部350、数据收集部360也可以包含不以一定的采样率,而在触发中使用电压阈值来对光传感器波形进行采样的多重阈值采样器。对于本领域的技术人员不言而喻,在不脱离本实施方式的范围内,也能够包含其他的采样方法以及数据收集部。例如,也能够根据能量值与定时使用各自的其他通道。此时,典型地,在能量通道中,使用整形滤波器以及更低的采样率的模拟数字转换器。另外,定时通道典型地合计来自多个光传感器的信号。接着,将合计后的定时信号输入比较器,并通过时间数字转换器针对各事件的每次到达都生成时间戳。The data collection unit 350 and the data collection unit 360 include an analog-to-digital converter such as a sigma delta (sigma delta) converter operating at a sampling rate of 1 GHz to 5 GHz. Alternatively, the data collection unit 350 and the data collection unit 360 may include a multi-threshold sampler that samples the optical sensor waveform using a voltage threshold as a trigger instead of a constant sampling rate. It is obvious to those skilled in the art that other sampling methods and data collection units can be included without departing from the scope of the present embodiment. For example, it is also possible to use respective other channels according to the energy value and timing. At this time, typically, in the energy channel, a shaping filter and an analog-to-digital converter with a lower sampling rate are used. Additionally, the timing channel typically sums the signals from multiple photosensors. The aggregated timing signal is then input to a comparator and a time-to-digital converter is used to generate time stamps for each arrival of each event.
如果得到输出值,则输出值被送至运算部370,并根据以下说明的方法来决定闪烁器及相互作用事件的能量水平。接着,输出值以及到达时间被存储在电子存储装置375中,并能够显示于显示器385。接口380也可以用于进行运算装置370的构成以及控制的双方或一方、和对运算部370发出附加的命令的双方或一方。If the output value is obtained, the output value is sent to the calculation unit 370, and the energy level of the scintillator and the interaction event is determined according to the method described below. The output value and time of arrival are then stored in electronic storage device 375 and can be displayed on display 385 . The interface 380 may be used for both or one of the configuration and control of the computing device 370 , and for both or one of issuing additional commands to the computing unit 370 .
对于本领域的技术人员而言不言而喻,显示器385也可以是CRT(Cathode Ray Tube:阴极射线管)或LCD(Liquid Crystal Display:液晶显示器)等。接口380可以是用于将键盘、鼠标、轨迹球、麦克风、触摸屏等与中央处理装置连接来发挥作用的既知的设备。同样地,对于本领域的技术人员而言不言而喻,电子存储装置375也可以是硬盘驱动器、CD-ROM、DVD磁盘、闪存、或者其他的中央处理装置。另外,电子存储装置375能够从运算部370拆卸或分离,或者也可以在其上不进行安装。电子存储装置375经由网络与运算装置连接,因此,也可以设置于其他的房间或建筑物等、运算部370相关联的其他的场所。It goes without saying to those skilled in the art that the display 385 may also be a CRT (Cathode Ray Tube: Cathode Ray Tube) or an LCD (Liquid Crystal Display: Liquid Crystal Display) or the like. The interface 380 may be a known device for connecting a keyboard, a mouse, a trackball, a microphone, a touch screen, etc. to the central processing unit to function. Likewise, it is self-evident to those skilled in the art that the electronic storage device 375 can also be a hard disk drive, CD-ROM, DVD disk, flash memory, or other central processing devices. In addition, the electronic storage device 375 may be detachable or separated from the calculation unit 370, or may not be mounted thereon. Since the electronic storage device 375 is connected to the computing device via a network, it may be installed in another place where the computing unit 370 is associated, such as another room or a building.
图4是用于说明实施方式涉及的PET装置内的中央处理装置的结构的图。运算部370包含处理存储于主存储器440与ROM(Read OnlyMemory:只读存储器)450的双方或一方中的数据和命令的处理部480。另外,处理部480也可以处理存储于磁盘410或CD-ROM420的信息。示例性的处理部480可以是美国Intel公司制的Xenon处理器(注册商标)或者美国AMD公司制的Opteron处理器(注册商标)。对于本领域的人员而言不言而喻,处理装置480也可以是Pentium处理器(注册商标)或Core 2Duo处理器(注册商标)等。这样,与用于γ射线检测器的方法对应的命令也可以存储于磁盘410、CD-ROM420、主存储器440、或者ROM450中的任一个中。FIG. 4 is a diagram for explaining the configuration of a central processing unit in the PET apparatus according to the embodiment. The computing unit 370 includes a processing unit 480 that processes data and commands stored in both or one of the main memory 440 and the ROM (Read Only Memory) 450 . In addition, processing unit 480 may process information stored on magnetic disk 410 or CD-ROM 420 . An exemplary processing unit 480 may be a Xenon processor (registered trademark) manufactured by Intel Corporation of the United States or an Opteron processor (registered trademark) manufactured by AMD Corporation of the United States. It goes without saying to those skilled in the art that the processing device 480 may also be a Pentium processor (registered trademark) or a Core 2Duo processor (registered trademark), or the like. Thus, commands corresponding to methods for the gamma ray detector may also be stored in any one of the magnetic disk 410 , CD-ROM 420 , main memory 440 , or ROM 450 .
另外,运算部370为了通过接口与因特网或个人网络等网络连接,也可以包含美国Intel公司制的Intel Ethernet PRO网络接口卡(注册商标)等网络接口475。显示器控制部430也可以是用于连接显示器385并发挥作用的美国NVIDIA公司制的NVIDIA G-Force GTX图形适配器(graphics adapter)(注册商标)。另外,运算部370也可以包含用于将键盘295、定位设备285、或麦克风、轨迹球、操纵杆、触摸屏等其他通用接口连接并发挥作用的I/O接口490。In addition, the calculation unit 370 may include a network interface 475 such as an Intel Ethernet PRO network interface card (registered trademark) manufactured by Intel Corporation of America in order to connect to a network such as the Internet or a personal network through an interface. The display control unit 430 may be an NVIDIA G-Force GTX graphics adapter (graphics adapter) (registered trademark) manufactured by NVIDIA Corporation of the United States for connecting to the display 385 and functioning. In addition, the computing unit 370 may also include an I/O interface 490 for connecting the keyboard 295 , the pointing device 285 , or other general-purpose interfaces such as a microphone, a trackball, a joystick, and a touch screen to function.
磁盘控制部460将磁盘410以及CD-ROM420或DVD驱动器与总线470相互连接。磁盘410可以是硬盘驱动器或闪存驱动器。总线470也可以是将工业标准体系结构(ISA(Industry StandardArchitecture:))、扩展工业标准体系结构(EISA(Extended IndustryStandard Architecture:))、视屏电子装置标准协会(VESA(VideoElectronics Standards Association:))、外围设备相互连接(PCI(Peripheral Component Interconnect:))等、运算部370的所有的构成部件相互连接的总线。由于关于运算部370的构成部件的一般的功能以及功能性是周知的,因此,为了简洁省略说明。当然,也可以使用美国Freescale公司制的Freescale ColdFire、I.MX(注册商标)、以及ARM处理器(注册商标)等,该技术领域所熟知的其他处理装置或硬件制造商以及产品。Disk control unit 460 connects disk 410 , CD-ROM 420 or DVD drive, and bus 470 to each other. Disk 410 may be a hard drive or a flash drive. The bus 470 can also be an industry standard architecture (ISA (Industry Standard Architecture:)), an extended industry standard architecture (EISA (Extended IndustryStandard Architecture:)), a video screen electronic device standard association (VESA (VideoElectronics Standards Association:)), peripheral Device interconnection (PCI (Peripheral Component Interconnect:)), etc., is a bus for interconnecting all components of the calculation unit 370 . Since the general functions and functionality of the components of the computing unit 370 are well known, descriptions are omitted for brevity. Of course, Freescale ColdFire, I.MX (registered trademark), and ARM processor (registered trademark) manufactured by Freescale Corporation of the United States, and other processing devices or hardware manufacturers and products well known in this technical field can also be used.
另外,示例性的运算部370也可以分别被安装在FPGA(FieldProgrammable Gate Array:现场可编程门阵列)、特殊ASIC(Application Specific Integrated Circuit:专用集成电路)、微控制器、PLD(Programmable Logic Device:可编程逻辑器件)、或光盘等计算机可读介质上。另外,示例性的运算部370是PC(PersonalComputer:个人计算机)等计算设备的硬件平台,处理部480是IntelPentium处理器(注册商标)等本技术领域所熟知的任意的处理装置。存储于主存储器440、ROM450、磁盘410、或CD-ROM420中的任一个的计算机可读取的命令作为应用程序、背景程式、或操作系统的构成要素、或者它们的组合来提供,与处理部480、以及MicrosoftWindows Vista(注册商标)、UNIX(注册商标),Solaris(注册商标)、Linux(注册商标)、以及Apple Mac OS(注册商标)等本领域的技术人员所熟知的系统联动地执行。In addition, the exemplary computing unit 370 can also be installed in FPGA (Field Programmable Gate Array: Field Programmable Gate Array), special ASIC (Application Specific Integrated Circuit: Application Specific Integrated Circuit), microcontroller, PLD (Programmable Logic Device: Programmable Logic Devices), or computer-readable media such as CD-ROMs. In addition, an exemplary calculation unit 370 is a hardware platform of a computing device such as a PC (Personal Computer), and the processing unit 480 is an arbitrary processing device known in the art such as an Intel Pentium processor (registered trademark). The computer-readable commands stored in any one of the main memory 440, ROM 450, magnetic disk 410, or CD-ROM 420 are provided as application programs, background programs, or components of the operating system, or a combination thereof, and the processing unit 480, and systems well known to those skilled in the art such as Microsoft Windows Vista (registered trademark), UNIX (registered trademark), Solaris (registered trademark), Linux (registered trademark), and Apple Mac OS (registered trademark) are executed in conjunction.
主存储器440以及ROM450的双方或一方支持运算部370的记录以及同样的功能。因此,主存储器440可以是RAM(Random AccessMemory:随机存储器)、闪存、EPROM(Electrically ErasableProgrammable Read Only Memory:电可擦写可编程只读存储器)存储器等。另一方面,ROM450是PROM等只读存储器。另外,由于这样的存储器是熟知的,为了简洁省略主存储器440以及ROM450的说明。Both or one of the main memory 440 and the ROM 450 supports the recording of the calculation unit 370 and the same function. Therefore, the main memory 440 may be RAM (Random Access Memory), flash memory, EPROM (Electrically Erasable Programmable Read Only Memory: Electrically Erasable Programmable Read Only Memory) memory, and the like. On the other hand, ROM 450 is a read-only memory such as PROM. In addition, since such memories are well known, descriptions of the main memory 440 and the ROM 450 are omitted for brevity.
图5以及图6表示能够明确地识别闪烁器间的康普顿散射的两个泛源直方图。图5表示作为光学系统汇集处理通过使用了分割成4部分的光电倍增管的闪烁器阵列的读出而得到的泛源直方图。在图5中,36个峰值分别表示闪烁器阵列所包含的36个闪烁器。另外,可以看见连接闪烁器阵列内的最近的峰值的线,位于峰值之间的位置的相互作用事件通过闪烁器阵列内进行康普顿散射的事件而产生。5 and 6 show two flood histograms that can clearly identify Compton scattering between scintillators. FIG. 5 shows a flood histogram obtained by reading out a scintillator array using four-divided photomultiplier tubes as an optical system integration process. In FIG. 5 , the 36 peaks respectively represent 36 scintillators included in the scintillator array. In addition, lines connecting the nearest peaks in the scintillator array can be seen, and interaction events at positions between the peaks are generated by Compton scattering events in the scintillator array.
图6表示作为模拟数据汇集处理通过使用了位置感应型雪崩光电二极管的闪烁器阵列的读出而得到的泛源直方图。在图6中,64个峰值分别表示8×8的闪烁阵列所包含的64个闪烁器。另外,位于尖锐的峰值间的相互作用事件通过闪烁器阵列内进行康普顿散射的事件而生成。在图6中,可以清晰地看到连接最近的峰值的线的图案。这是基于对最近的闪烁器对赋予能量的康普顿相互作用的结果。FIG. 6 shows a flood histogram obtained by readout of a scintillator array using a position-sensitive avalanche photodiode as an analog data collection process. In FIG. 6 , 64 peaks respectively represent 64 scintillators included in the 8×8 scintillation array. In addition, the interaction events between the sharp peaks are generated by Compton scattering events in the scintillator array. In Figure 6, the pattern of lines connecting the nearest peaks can be clearly seen. This is based on the Compton interaction that energizes the closest pair of scintillators.
作为具体例,讨论图5所示的案例。在该案例中,36个由个别的闪烁器构成的6×6的闪烁器阵列使用分割成4部分的光电倍增管来进行读出。假定使不用分割成4部分的光电倍增管来读出闪烁器阵列,而使用分割成4部分的SiPM阵列来读出的案例。如果使用以往的方法,则图5的泛源直方图被分割成36个区域,各区域表示一个闪烁器。能量校正系数可能包含非线性校正,大概适用于每个闪烁器。在一实施方式中,泛源直方图被分割成多个亚像素(例如,900个)。接着,根据校准数据(calibration date)求得不同的非线性校正,并适用于各亚像素区域。As a specific example, consider the case shown in FIG. 5 . In this example, a 6×6 scintillator array consisting of 36 individual scintillators is read out using photomultiplier tubes divided into four. Assume a case in which the scintillator array is read out using a four-divided photomultiplier tube, but is read out using a four-divided SiPM array. If the conventional method is used, the flood histogram in FIG. 5 is divided into 36 regions, and each region represents one scintillator. Energy correction coefficients may contain non-linear corrections, presumably for each scintillator. In one embodiment, the flood histogram is partitioned into a number of sub-pixels (eg, 900). Then, according to the calibration data (calibration date), different nonlinear corrections are obtained and applied to each sub-pixel area.
在另一实施方式中,根据校准数据求得了用于各子区域的校正之后,导出将非线性校正作为泛源直方图内的位置的函数而连续地变化的数学函数。此时,数学函数被看作是插补校准所使用的多个区域的中心之间的方法。In another embodiment, after the corrections for each sub-region have been found from the calibration data, a mathematical function is derived that varies the nonlinear correction continuously as a function of position within the flood histogram. At this point, the math function is seen as a method of interpolating between the centers of the multiple regions used by the calibration.
以下说明的实施方式涉及的PET装置具备闪烁器阵列、多个光传感器、确定部、保存部、以及导出部。闪烁器阵列具有多个闪烁器。多个光传感器检测通过规定能量值的γ射线与闪烁器相互作用而生成的闪烁光。确定部根据通过闪烁光的扩散而由一个或多个光传感器进行检测、并从光传感器输出的信号值,以被分割成比闪烁器的数量多的数量的区域的单位来确定γ射线与闪烁器的相互作用事件的检测位置。保存部根据从光传感器输出的信号值导出合计信号值,并将导出的合计信号值与检测位置相关联地保存于存储部。导出部根据与检测位置相关联地保存于存储部的合计信号值和规定能量值,对每个区域的单位导出校正相互作用事件的能量值的校正值。The PET apparatus according to the embodiment described below includes a scintillator array, a plurality of photosensors, a determination unit, a storage unit, and a derivation unit. The scintillator array has a plurality of scintillators. The plurality of photosensors detect scintillation light generated by interaction of gamma rays of a predetermined energy value with the scintillator. The determining unit determines gamma rays and scintillation in units of areas divided into a number larger than the number of scintillators based on signal values that are detected by one or more photosensors and output from the photosensors through the diffusion of scintillation light. The detection position of the interaction event of the organ. The storage unit derives a total signal value from the signal value output from the photosensor, and stores the derived total signal value in association with the detection position in the storage unit. The derivation unit derives a correction value for correcting an energy value of an interaction event for each area unit based on the total signal value and the predetermined energy value stored in the storage unit in association with the detection position.
另外,在实施方式涉及的PET装置中,确定部也可以分别针对多个相互作用事件,根据从光传感器输出的信号值确定检测位置。保存部也可以分别针对多个相互作用事件导出合计信号值,并将导出的合计信号值与检测位置相关联地保存于存储部。导出部也可以根据与检测位置相关联地保存于存储部的多个合计信号值,进一步导出每个区域的单位的平均值,并根据导出的平均值与规定能量值,对每个区域的单位导出校正相互作用事件的能量值的校正值。In addition, in the PET apparatus according to the embodiment, the specifying unit may specify the detection position for each of the plurality of interaction events based on the signal value output from the optical sensor. The storage unit may derive total signal values for each of the plurality of interaction events, and may store the derived total signal values in association with the detection positions in the storage unit. The derivation unit may further derive an average value for each area unit based on a plurality of total signal values stored in the storage unit in association with the detection position, and calculate a value for each area unit based on the derived average value and a predetermined energy value. A correction value that corrects the energy value of the interaction event is derived.
另外,在实施方式涉及的PET装置中,当输出信号值的光传感器为多个时,确定部也可以通过根据于各光传感器输出的信号值对各光传感器的位置进行加权平均,从而确定检测位置。另外,导出部也可以将规定能量值与合计信号值的比作为校正值针对每个区域的单位导出。另外,光传感器也可以包含至少一个硅光电倍增管。另外,PET装置也可以是TOF型。In addition, in the PET apparatus according to the embodiment, when there are a plurality of optical sensors outputting signal values, the determination unit may determine the position of each optical sensor based on the weighted average of the signal values output by each optical sensor, thereby determining the position of the optical sensor. Location. In addition, the derivation unit may derive the ratio of the predetermined energy value to the total signal value as a unit of correction value for each region. In addition, the light sensor may also comprise at least one silicon photomultiplier tube. In addition, the PET device may also be a TOF type.
另外,确定部、保存部、以及导出部等各部例如被装备在使用图3进行说明了的运算部370中。In addition, each unit such as a specifying unit, a saving unit, and a deriving unit is equipped in, for example, the computing unit 370 described using FIG. 3 .
另外,另一实施方式涉及的PET装置具备闪烁器阵列、多个光传感器、确定部、以及校正部。闪烁器阵列具有多个闪烁器。多个光传感器检测通过对闪烁器输入规定能量值的γ射线而生成的闪烁光。确定部根据通过闪烁光的扩散而由一个或多个光传感器进行检测、并从光传感器输出的信号值,以被分割成比闪烁器的数量多的数量的区域的单位来确定γ射线的相互作用事件的检测位置。校正部根据从光传感器输出的信号值导出合计信号值,并使用导出的合计信号值与通过确定部确定的检测位置,参照校准数据,并根据与检测位置对应的校正值,来校正合计信号值。校准数据是针对每个区域的单位定义校正相互作用事件的能量值的校正值的数据。In addition, a PET apparatus according to another embodiment includes a scintillator array, a plurality of photosensors, a specifying unit, and a correcting unit. The scintillator array has a plurality of scintillators. The plurality of photosensors detect scintillation light generated by inputting gamma rays of a predetermined energy value to the scintillator. The determination unit determines the interaction of gamma rays in units of regions divided into a number larger than the number of scintillators based on signal values that are detected by one or more photosensors and output from the photosensors through the diffusion of scintillation light. The detection position of the action event. The correction unit derives a total signal value from the signal value output from the optical sensor, and corrects the total signal value based on a correction value corresponding to the detection position by referring to the calibration data using the derived total signal value and the detection position determined by the determination unit. . The calibration data is data defining a correction value for correcting an energy value of an interaction event for each area unit.
另外,在另一实施方式涉及的PET装置中,当输出信号值的光传感器为多个时,确定部也可以通过根据由各光传感器输出的信号值对各光传感器的位置进行加权平均,来确定检测位置。另外,校正部也可以通过对合计信号值乘以校正值,来校正合计信号值。另外,PET装置也可以是TOF型。In addition, in the PET apparatus according to another embodiment, when there are a plurality of photosensors that output signal values, the determination unit may perform a weighted average on the positions of the respective photosensors based on the signal values output from the respective photosensors to determine Determine the detection location. In addition, the correction unit may correct the total signal value by multiplying the total signal value by the correction value. In addition, the PET device may also be a TOF type.
另外,确定部以及校正部等各部例如被装备在使用图3进行说明了的运算部370中。In addition, each unit, such as a specifying unit and a correcting unit, is equipped, for example, in the computing unit 370 described using FIG. 3 .
另外,另一实施方式涉及的PET装置具备闪烁器阵列、多个光传感器、确定部、保存部、以及导出部。闪烁器阵列具有多个闪烁器。多个光传感器检测通过对闪烁器输入规定能量值的γ射线而生成的闪烁光。确定部根据通过闪烁光的扩散而由一个或多个光传感器进行检测、并从光传感器输出的信号值,以被分割成比闪烁器的数量多的数量的区域的单位来确定γ射线的相互作用事件的检测位置。保存部根据从光传感器输出的信号值导出合计信号值,并将导出的合计信号值与检测位置相关联地保存于存储部。导出部根据与检测位置相关联地保存于存储部的合计信号值与规定能量值,导出校正相互作用事件的能量值的校正值作为检测位置的函数连续地变化的数学函数。In addition, a PET apparatus according to another embodiment includes a scintillator array, a plurality of photosensors, a determination unit, a storage unit, and a derivation unit. The scintillator array has a plurality of scintillators. The plurality of photosensors detect scintillation light generated by inputting gamma rays of a predetermined energy value to the scintillator. The determination unit determines the interaction of gamma rays in units of regions divided into a number larger than the number of scintillators based on signal values that are detected by one or more photosensors and output from the photosensors through the diffusion of scintillation light. The detection position of the action event. The storage unit derives a total signal value from the signal value output from the photosensor, and stores the derived total signal value in association with the detection position in the storage unit. The derivation unit derives a mathematical function that continuously changes a correction value for correcting an energy value of an interaction event as a function of the detection position, based on the total signal value and the predetermined energy value stored in the storage unit in association with the detection position.
另外,确定部、保存部、以及导出部等各部例如被装备在使用图3进行说明了的运算部370中。In addition, each unit such as a specifying unit, a saving unit, and a deriving unit is equipped in, for example, the computing unit 370 described using FIG. 3 .
另外,另一实施方式涉及的PET装置具备闪烁器阵列、多个光传感器、确定部、保存部、以及能窗(energy window)导出部。闪烁器阵列具有多个闪烁器。多个光传感器检测通过对闪烁器输入规定能量值的γ射线而生成的闪烁光。确定部根据通过闪烁光的扩散而由一个或多个光传感器进行检测、并从光传感器输出的信号值,以被分割成比闪烁器的数量多的数量的区域的单位来确定γ射线的相互作用事件的检测位置。保存部根据从光传感器输出的信号值导出合计信号值,并将导出的合计信号值与检测位置相关联地保存于存储部。能窗导出部根据与检测位置相关联地保存于存储部的合计信号值与规定能量值,对每个区域的单位导出能窗。In addition, a PET apparatus according to another embodiment includes a scintillator array, a plurality of photosensors, a determination unit, a storage unit, and an energy window derivation unit. The scintillator array has a plurality of scintillators. The plurality of photosensors detect scintillation light generated by inputting gamma rays of a predetermined energy value to the scintillator. The determination unit determines the interaction of gamma rays in units of regions divided into a number larger than the number of scintillators based on signal values that are detected by one or more photosensors and output from the photosensors through the diffusion of scintillation light. The detection position of the action event. The storage unit derives a total signal value from the signal value output from the photosensor, and stores the derived total signal value in association with the detection position in the storage unit. The energy window derivation unit derives the energy window for each region based on the total signal value and the predetermined energy value stored in the storage unit in association with the detection position.
图7A是表示通过实施方式涉及的PET装置执行的方法的步骤的流程图。图7A表示决定校正值(也被称为“校正系数”)的组的方法。该校正值用于决定通过γ射线检测器检测到的相互作用事件的能量值。另外,该γ射线检测器具有被配置在由闪烁器元件构成的闪烁器阵列上的、一个以上的非线性光传感器。另外,该γ射线检测器使用光学系统汇集处理或模拟数据汇集处理。通过图7A所示的方法,决定用于决定正确的能量值的校正值的组,并通过决定校正值的组来校准γ射线检测器。换而言之,例如,如图1所示,图7A所示的方法的目的在于,对与相互作用事件的相对位置对应的亚像素的每个单元位置,决定通过光传感器生成、并进行积分计算的信号与相互作用事件的能量值之间的非线性关系。单元位置的数量比闪烁器阵列所包含的闪烁器的数量多。FIG. 7A is a flowchart showing steps of a method performed by the PET apparatus according to the embodiment. FIG. 7A shows a method of determining a set of correction values (also referred to as "correction coefficients"). This correction value is used to determine the energy value of the interaction event detected by the gamma ray detector. In addition, this γ-ray detector has one or more nonlinear optical sensors arranged on a scintillator array composed of scintillator elements. In addition, the gamma ray detector uses optical system collection processing or analog data collection processing. By the method shown in FIG. 7A , a set of correction values for determining an accurate energy value is determined, and the gamma ray detector is calibrated by determining the set of correction values. In other words, for example, as shown in FIG. 1, the purpose of the method shown in FIG. 7A is to determine and integrate the The calculated nonlinear relationship between the signal and the energy value of the interaction event. The number of cell positions is greater than the number of scintillators contained in the scintillator array.
在步骤S710中,从实施方式涉及的PET装置产生具有第1能量值(例如,511keV)的γ射线的射线源,检测器接受γ射线。该γ射线是从22Na、68Ge、或18F的放射线源产生的射线,典型地,该射线源的射线量的范围为数十微居里到数毫居里。为了得到足够高的计数率,即,为了在适当的时间内(数十分钟至数小时)收集需要的数据而选择射线源的射线量。另外,由于计数率过高导致相互作用事件重合,其结果会产生重大的误差,为了避免这种情况而选择射线源的射线量。In step S710, the PET apparatus according to the embodiment generates gamma rays having a first energy value (for example, 511 keV) from a radiation source, and a detector receives gamma rays. The gamma rays are generated from a 22 Na, 68 Ge, or 18 F radiation source, and typically, the radiation dose of the radiation source ranges from tens of microcuries to several millicuries. In order to obtain a sufficiently high count rate, that is, to collect the required data within an appropriate time (tens of minutes to several hours), the radiation dose of the radiation source is selected. In addition, because the count rate is too high, the interaction events overlap, and the result will produce significant errors. In order to avoid this situation, the radiation dose of the radiation source is selected.
在步骤S720中,γ射线与由闪烁器元件构成的闪烁器阵列相互作用,生成闪烁光,所生成的闪烁光通过一个以上的光传感器进行检测。实施方式涉及的数据收集部通过对每个光传感器收集从光传感器输出的信号值(任意单位),作为以相互作用事件为契机的能量值。例如,图8A表示通过511keV的γ射线接触闪烁器阵列而发生的、来自响应光的入射的光传感器的典型的脉冲。另外,图8B-1表示变更了图8A的时间轴的图,图8B-2表示与图8A所示的脉冲对应的能量的信息的图。如图8B-1所示,从脉冲的上升沿得到定时的信息,另外,通过脉冲的积分来得到能量的信息。In step S720, the gamma rays interact with the scintillator array composed of scintillator elements to generate scintillation light, and the generated scintillation light is detected by more than one photosensor. The data collection unit according to the embodiment collects, for each photosensor, a signal value (arbitrary unit) output from the photosensor as an energy value triggered by an interaction event. For example, FIG. 8A shows a typical pulse from a photosensor in response to the incidence of light that occurs by contacting a scintillator array with 511 keV gamma rays. 8B-1 shows a diagram in which the time axis of FIG. 8A is changed, and FIG. 8B-2 shows a diagram of energy information corresponding to the pulse shown in FIG. 8A . As shown in Fig. 8B-1, timing information is obtained from the rising edge of the pulse, and energy information is obtained by integrating the pulse.
在步骤S730中,实施方式涉及的PET装置根据从各光传感器输出的信号值,决定闪烁器事件的相对位置以及合计信号值。图9A以及图9B表示实施方式涉及的γ射线检测器的结构。另外,图9A以及图9B表示决定相互作用事件的相对位置的一个方法。图9A以及图9B是γ射线检测器的两个图,表示闪烁器、光导、以及光传感器的位置关系。In step S730, the PET apparatus according to the embodiment determines the relative position of the scintillator event and the total signal value based on the signal value output from each photosensor. 9A and 9B show the configuration of the gamma ray detector according to the embodiment. In addition, FIG. 9A and FIG. 9B show a method for determining the relative positions of interaction events. 9A and 9B are two diagrams of a γ-ray detector, showing the positional relationship of a scintillator, a light guide, and an optical sensor.
来自一个闪烁器的闪烁光通过光导扩散到多个光传感器上。实施方式涉及的PET装置能够根据通过不同的光传感器接收的信号的比例,如下述那样计算相互作用事件的相对位置。Scintillation light from a scintillator is diffused through a light guide to multiple photosensors. The PET apparatus according to the embodiment can calculate the relative position of the interaction event as follows based on the ratio of signals received by different optical sensors.
x=(∑xi Signali)/∑Signali …(1)x=(∑x i Signal i )/∑Signal i …(1)
y=(∑yi Signali)/∑Signali …(2)y=(∑y i Signal i )/∑Signal i …(2)
在此,Signali是从第i个光传感器输出的信号值,xi以及yi是第i个光传感器的中心的位置。另外,PET装置也能够使用其他的算法来决定通过多个光传感器检测的相互作用事件的相对位置。另外,实施方式涉及的PET装置能够根据接受了相互作用事件的闪烁光的各光传感器中的信号值的合计(合计信号值),来计算相互作用事件的能量值的总量。Here, Signal i is a signal value output from the i-th photosensor, and x i and y i are the positions of the center of the i-th photosensor. In addition, PET devices can also use other algorithms to determine the relative positions of interaction events detected by multiple light sensors. In addition, the PET apparatus according to the embodiment can calculate the total amount of energy values of the interaction event from the sum of the signal values (total signal value) of the respective photosensors that received the scintillation light of the interaction event.
在一实施方式中,相对位置作为与规定数的单元位置之一对应的位置来决定。在此,该单元(亚像素)位置的规定数比由闪烁器元件构成的闪烁器阵列中的闪烁器元件的数量多。In one embodiment, the relative position is determined as a position corresponding to one of a predetermined number of cell positions. Here, the predetermined number of cell (sub-pixel) positions is greater than the number of scintillator elements in the scintillator array composed of scintillator elements.
在步骤S740中,实施方式涉及的PET装置将与相互作用事件相关的合计信号值与在步骤S730中决定的相互作用事件的相对位置相关联地保存于存储部。In step S740 , the PET apparatus according to the embodiment stores the total signal value related to the interaction event in the storage unit in association with the relative position of the interaction event determined in step S730 .
在步骤S750中,实施方式涉及的PET装置针对多个相互作用事件重复步骤S710~S740。图10A表示泛源直方图。另外,图10B表示与泛源直方图对应的闪烁器ID查找表。如图10A所示,以往,表示相互作用事件的频率的泛源直方图对每个相互作用事件根据所保存的数据而生成。泛源直方图表示对每个闪烁器个别的峰值。另外,通过配置闪烁器或光传感器等,生成独特的歪曲的图案。如图10B所示,PET装置通过对泛源直方图分割成区域,从而能够使用泛源直方图来确定被认为发生相互作用事件的闪烁器。符合相同的区域的所有的相互作用事件都被分配给相同的闪烁器。这样,生成查找表,PET装置能够将泛源直方图内的相互作用事件的相对位置转换成闪烁器的位置。In step S750, the PET apparatus according to the embodiment repeats steps S710 to S740 for a plurality of interaction events. Figure 10A shows a flood histogram. In addition, FIG. 10B shows a scintillator ID lookup table corresponding to the flood histogram. As shown in FIG. 10A , conventionally, a flooded histogram representing the frequency of interaction events is generated for each interaction event from stored data. Flooded histograms represent individual peaks for each scintillator. In addition, by arranging a scintillator, an optical sensor, etc., a unique distorted pattern is generated. As shown in FIG. 10B , the PET device can use the flood histogram to determine the scintillator that is believed to have an interaction event by segmenting the flood histogram into regions. All interaction events that fit the same region are assigned to the same scintillator. In this way, a look-up table is generated and the PET device is able to convert the relative positions of interaction events within the flood histogram to scintillator positions.
在一实施方式中,图10A所示的泛源直方图内的各区域再次被分割成多个单元(亚像素)。实施方式涉及的PET装置对每个亚像素决定校正相互作用事件的能量值的校正值。In one embodiment, each area in the flood histogram shown in FIG. 10A is divided into multiple units (sub-pixels) again. In the PET apparatus according to the embodiment, a correction value for correcting an energy value of an interaction event is determined for each sub-pixel.
在步骤S760中,实施方式涉及的PET装置根据所存储的相互作用事件的数据,针对每个相对位置(亚像素的单元位置)决定与多个相互作用事件相关的合计信号值的平均值。另外,PET装置将合计信号值的平均值与用于生成相互作用事件的γ射线的第1能量值相关联地保存于存储部。In step S760 , the PET apparatus according to the embodiment determines an average value of total signal values related to a plurality of interaction events for each relative position (sub-pixel unit position) based on the stored data of the interaction events. In addition, the PET apparatus stores the average value of the total signal value in the storage unit in association with the first energy value of the gamma rays used to generate the interaction event.
在步骤S770中,实施方式涉及的PET装置根据针对每个相对位置所决定的合计信号值的平均值与第1能量值,对每个相对位置决定校正值。例如,PET装置将规定的能量值(例如,511keV)与对于亚像素的单元位置的合计信号值的平均值(任意单位)之比,设定为与该单元位置相关的校正值。In step S770 , the PET apparatus according to the embodiment determines a correction value for each relative position based on the average value of the total signal values determined for each relative position and the first energy value. For example, the PET apparatus sets a ratio of a predetermined energy value (for example, 511 keV) to an average value (arbitrary unit) of total signal values for a sub-pixel cell position as a correction value for the cell position.
在步骤S780中,实施方式涉及的PET装置也针对具有规定的能量值的其他的γ射线,重复步骤S710~S770,决定与各规定的能量值、各单元位置相对应的校正值。这样,步骤S77之后,在校准过程的最后,实施方式涉及的PET装置对各单元(亚像素)位置,例如,具有数据值{Si,Ei}的组。在此,Si是合计信号值(任意单位),Ei是能量值(keV)。PET装置使用该数据值的组,对每个单元位置生成例如如图1所示的那样的、将信号值与校正后能量值相关联的非线性曲线。并且,PET装置能够使用在每个单元位置所生成的非线性曲线,将相互作用事件的信号值转换成能量值,并能够补偿SiPM响应的非线性。In step S780, the PET apparatus according to the embodiment also repeats steps S710 to S770 for other γ-rays having predetermined energy values, and determines correction values corresponding to each predetermined energy value and each cell position. In this way, after step S77 , at the end of the calibration process, the PET device according to the embodiment performs each unit (sub-pixel) position, for example, a group with data values {S i , E i }. Here, S i is a total signal value (arbitrary unit), and E i is an energy value (keV). Using this set of data values, the PET device generates, for each cell position, a non-linear curve, such as that shown in FIG. 1 , relating signal values to corrected energy values. Also, the PET device is able to convert the signal value of the interaction event into an energy value using the non-linear curve generated at each cell location, and can compensate for the non-linearity of the SiPM response.
如上述那样,另一实施方式涉及的PET装置对每个单元位置根据校准数据导出校正值之后,将作为泛源直方图内的位置的函数的、连续地变化的数学函数作为非线性校正导出。此时,数学函数被看作是插补于校准所使用的多个区域的中心彼此之间的方法。As described above, the PET apparatus according to another embodiment derives a mathematical function that changes continuously as a function of position in a flooded histogram after deriving a correction value for each cell position from calibration data as a nonlinear correction. At this time, the mathematical function is regarded as a method of interpolating the centers of the multiple regions used for calibration with each other.
在另一实施方式中,使用具有某种能量的γ射线的射线源,在正在进行该解析的过程中,也同时针对另一能量进行解析。此时,PET装置能够使用,康普顿边缘或后方散射峰值这样的、能够在所取得的光谱内发现既知的能量的特征点,来校准γ射线检测器的非线性响应。In another embodiment, a radiation source of gamma rays having a certain energy is used, and while the analysis is being performed, an analysis is also performed for another energy at the same time. In this case, PET devices can use feature points such as Compton edges or backscatter peaks where known energies can be found in the acquired spectrum to calibrate the non-linear response of the gamma ray detector.
图7B是表示通过另一实施方式涉及的PET装置执行的方法的步骤的流程图。如图7B所示,另一实施方式涉及的PET装置使用通过图7A所示的方法得到的校正值,来校正相互作用事件的能量值。FIG. 7B is a flowchart showing the steps of a method performed by the PET apparatus according to another embodiment. As shown in FIG. 7B , a PET apparatus according to another embodiment corrects the energy value of an interaction event using the correction value obtained by the method shown in FIG. 7A .
在步骤S715中,实施方式涉及的PET装置的检测器接受从某个射线源产生的γ射线。In step S715 , the detector of the PET apparatus according to the embodiment receives gamma rays generated from a certain radiation source.
在步骤S725中,如果γ射线与由闪烁器元件构成的闪烁器阵列相接触,则生成闪烁光,所生成的闪烁光由一个以上的光传感器进行检测。实施方式涉及的数据收集部对从光传感器输出的信号值(任意单位)通过每个光传感器进行收集,作为以与γ射线的相互作用事件为契机的能量值。In step S725, if the gamma rays come into contact with the scintillator array composed of scintillator elements, scintillation light is generated, and the generated scintillation light is detected by one or more photosensors. The data collection unit according to the embodiment collects signal values (arbitrary units) output from the photosensors for each photosensor as energy values triggered by interaction events with γ-rays.
在步骤S735中,实施方式涉及的PET装置根据从各光传感器输出的信号值,如上述那样决定与γ射线的相互作用事件的相对位置以及合计信号值。相对位置被决定为与规定数的单元位置之一对应的位置。相对位置被转换成取得校准数据的多个单元位置中的对应的单元位置。单元(亚像素)位置的规定数比由闪烁器元件构成的闪烁器阵列中的闪烁器元件的数量多。In step S735 , the PET apparatus according to the embodiment determines the relative position of the interaction event with the gamma ray and the total signal value based on the signal value output from each photosensor as described above. The relative position is determined as a position corresponding to one of the predetermined number of cell positions. The relative position is converted to a corresponding unit position of the plurality of unit positions from which the calibration data was taken. The predetermined number of cell (sub-pixel) positions is greater than the number of scintillator elements in a scintillator array composed of scintillator elements.
在步骤S745中,实施方式涉及的PET装置根据与相对位置对应的每个单元位置所存储的合计信号值(在步骤S735中决定的值)、以及校准数据,计算对于相互作用事件的校正能量值。在此,校准数据是对每个单元位置的信号值与能量值的非线性关系进行定义的数据。例如,校准数据实质上是对表示信号值与能量值的关系的非线性曲线进行定义。在一实施方式中,实施方式涉及的PET装置通过对在步骤S735中决定的合计信号值,使用非线性曲线乘以校正值,从而得到校正后的能量值。对于本领域的技术人员而言不言而喻,应用在此所述的实施方式之前,在不脱离本实施方式的范围内,也能够对信号应用附加的增益或偏移校正。In step S745, the PET apparatus according to the embodiment calculates the corrected energy value for the interaction event based on the total signal value (value determined in step S735) stored for each cell position corresponding to the relative position and the calibration data . Here, the calibration data is data defining a nonlinear relationship between a signal value and an energy value at each cell position. For example, calibration data essentially defines a non-linear curve representing the relationship between signal value and energy value. In one embodiment, the PET apparatus according to the embodiment obtains a corrected energy value by multiplying the total signal value determined in step S735 by a correction value using a nonlinear curve. It is self-evident for a person skilled in the art that, prior to applying the embodiments described herein, additional gain or offset corrections can also be applied to the signal without departing from the scope of the present embodiments.
比以往的系统优异的点是:根据在此所述的实施方式,能够进行更优的非线性校正,能够改善能量分辨率。对于PET而言,能量分辨率的改善换而言之能够降低散射分数,最终,能够改善图像质量。An advantage over conventional systems is that, according to the embodiment described here, better nonlinear correction can be performed and energy resolution can be improved. For PET, an improvement in energy resolution can in other words reduce the scatter fraction and, ultimately, improve image quality.
另外,实施方式涉及的PET装置也具备对每个区域的单位导出能窗的能窗导出部。能窗导出部根据与检测位置相关联地保存于存储部的合计信号值与规定能量值,对于每个区域的单位导出能窗。在此,PET装置也可以设置能窗,信号值只将能窗内的信号作为处理的对象。该能窗例如通过预先设定固定的上限值以及下限值等来进行运用。如上述那样,γ射线入射到一个闪烁器内的哪一位置,会对信号值产生影响。因此,实施方式涉及的PET装置根据每个区域的单位所保存的合计信号值,例如,可以将以合计信号值为中心的规定宽度的能窗,根据每个区域的单位来决定。In addition, the PET apparatus according to the embodiment also includes an energy window derivation unit that derives an energy window for each region. The energy window derivation unit derives the energy window for each region based on the total signal value and the predetermined energy value stored in the storage unit in association with the detection position. Here, the PET apparatus may also be provided with an energy window, and the signal value only takes the signal within the energy window as an object of processing. This energy window is operated by setting a fixed upper limit value, lower limit value, etc. in advance, for example. As described above, the position where the γ-rays enter one scintillator affects the signal value. Therefore, the PET apparatus according to the embodiment may determine, for example, an energy window of a predetermined width centered on the total signal value on a per-area basis based on the total signal value stored in each area unit.
另外,能窗导出部也可以通过根据与检测位置相关联地保存于存储部的合计信号值,生成能量分布曲线,并对生成的能量分布曲线下的从中央的面积到整体面积的规定比例进行合计,从而导出能窗。In addition, the energy window deriving unit may generate an energy distribution curve based on the total signal value stored in the storage unit in association with the detection position, and perform a predetermined ratio from the central area to the entire area under the generated energy distribution curve. Taken together, the energy window is derived.
如上述那样,在一实施方式中,提供了用于决定为了决定事件的能量而使用的校正系数的方法。通过γ射线检测器检测事件。γ射线检测器具有配置在由闪烁器元件构成的闪烁器阵列上的、至少一个非线性光传感器。γ射线检测器使用光学系汇集处理或模拟数据汇集处理。上述的方法包含(a)生成具有第1规定的能量值的γ射线的步骤。另外,上述的方法包含(b)取得通过至少一个非线性光传感器生成的对应信号值的步骤。至少一个非线性光传感器分别响应表示事件的发生的、一条所生成的γ射线的到达,并响应接受从由闪烁器元件构成的阵列中的至少一个闪烁器放射出的闪烁光,生成对应信号值。另外,上述的方法包含(c)根据分别通过至少一个非线性光传感器取得的信号值,决定事件的相对位置与合计信号值的步骤。该相对位置是规定数的单元位置之一,单元位置的规定数比由闪烁器元件构成的阵列内的闪烁器元件的数量多。另外,上述的方法包含(d)将合计信号值与所决定的单元位置相关联地存储的步骤。另外,上述的方法包含(e)为了生成所存储的事件数据,对于多个事件,重复取得步骤、决定步骤、以及存储步骤的步骤。另外,上述的方法包含(f)对每个单元位置,根据所存储的事件数据,决定对于第1规定的能量值的平均合计信号值的步骤。另外,上述的方法包含(g)对每个单元位置,根据所决定的平均合计信号值与第1规定的能量值来决定校正系数的步骤。As described above, in one embodiment, a method for determining a correction coefficient used for determining the energy of an event is provided. Events are detected by a gamma ray detector. The gamma ray detector has at least one nonlinear optical sensor arranged on a scintillator array composed of scintillator elements. Gamma ray detectors use either optical system collection processing or analog data collection processing. The above method includes (a) the step of generating gamma rays having a first predetermined energy value. Additionally, the method described above includes the step of (b) obtaining a corresponding signal value generated by at least one nonlinear optical sensor. at least one nonlinear optical sensor generating corresponding signal values in response to the arrival of a generated gamma ray indicative of the occurrence of an event and in response to receiving scintillation light emanating from at least one scintillator in the array of scintillator elements, respectively . In addition, the above-mentioned method includes (c) the step of determining the relative position of the event and the total signal value based on the signal values respectively obtained by at least one nonlinear optical sensor. The relative position is one of a predetermined number of cell positions greater than the number of scintillator elements in the array of scintillator elements. In addition, the above-mentioned method includes (d) a step of storing the total signal value in association with the determined cell position. In addition, the above-mentioned method includes (e) the step of repeating the acquisition step, the determination step, and the storage step for a plurality of events in order to generate the stored event data. In addition, the above-mentioned method includes (f) a step of determining, for each cell position, an average total signal value for the first predetermined energy value based on the stored event data. In addition, the above-mentioned method includes (g) a step of determining a correction coefficient for each cell position based on the determined average total signal value and the first predetermined energy value.
根据上述的实施方式的一方式,上述的方法还包含(1)生成具有第2规定的能量值的第2γ射线的步骤。另外,上述的方法包含(2)为了对于每个单元位置,决定与第2规定的能量值对应的第2校正系数,重复步骤(a)~(g)的步骤。另外,上述的方法包含(3)对每个单元位置,将各决定的校正值与对应的规定的能量值相关联地存储的步骤。According to one aspect of the above-mentioned embodiment, the above-mentioned method further includes (1) a step of generating a second γ-ray having a second predetermined energy value. In addition, the above method includes (2) repeating steps (a) to (g) in order to determine a second correction coefficient corresponding to a second predetermined energy value for each cell position. In addition, the above-mentioned method includes (3) a step of storing each determined correction value in association with a corresponding predetermined energy value for each cell position.
根据另一方式,上述的方法还包含对每个单元位置,根据所存储的校正系数,决定信号值与能量值的非线性关系的步骤。According to another mode, the above method further includes the step of determining, for each unit position, a nonlinear relationship between the signal value and the energy value based on the stored correction coefficients.
另外,根据另一方式,决定相对位置的上述的步骤包含为了与相对位置相对应而决定规定数的单元位置之一的步骤。In addition, according to another aspect, the above-mentioned step of determining the relative position includes a step of determining one of a predetermined number of cell positions in order to correspond to the relative position.
另外,根据另一方式,决定相对位置的上述的步骤包含(1)根据接受与事件对应的闪烁光的、至少一个非线性光传感器的各自的x-y位置,计算加权平均的步骤。平均通过接受与事件对应的闪烁光的、至少一个非线性光传感器各自的、对应的取得的信号值来提供加权值。另外,决定相对位置的上述的步骤包含(2)通过合计至少一个非线性光传感器的各自的、所取得的信号值,从而决定合计信号值的步骤。In addition, according to another aspect, the above-mentioned step of determining the relative position includes (1) a step of calculating a weighted average based on the respective x-y positions of at least one nonlinear optical sensor receiving the flicker light corresponding to the event. Averaging provides a weighted value by accepting the corresponding acquired signal values of the at least one non-linear light sensor for the flicker light corresponding to the event. In addition, the above-mentioned step of determining the relative position includes (2) a step of determining a total signal value by totaling the respective acquired signal values of at least one nonlinear optical sensor.
另外,根据另一方式,决定校正值的上述的步骤包含将每个单元位置的与第1规定的能量值对应的校正值,作为第1规定的能量值与针对单元位置决定的合计信号值之比来求得的步骤。In addition, according to another aspect, the above-mentioned step of determining the correction value includes setting the correction value corresponding to the first predetermined energy value for each cell position as the difference between the first predetermined energy value and the total signal value determined for the cell position. The steps to get it.
另外,根据另一方式,至少一个非线性光传感器包含至少一个硅光电倍增管。In addition, according to another mode, at least one nonlinear light sensor comprises at least one silicon photomultiplier tube.
在另一实施方式中,提供了保存计算机程序的计算机可读介质,该程序通过计算机来执行。计算机决定用于决定事件的能量的校正系数。通过γ射线检测器来检测事件。γ射线检测器具有被配置在由闪烁器元件构成的闪烁器阵列上的至少一个非线性光传感器。γ射线检测器使用光学系统汇集处理或模拟数据汇集处理。通过上述的程序,上述的计算机执行(1)接收通过至少一个非线性光传感器生成的对应信号值的步骤。至少一个非线性光传感器分别响应表示事件的发生的、一条所生成的γ射线的到达,并响应接受从由闪烁器元件构成的阵列中的至少一个闪烁器放射出的闪烁光,来生成对应信号值。另外,计算机执行(2)根据分别从至少一个非线性光传感器取得的信号值,决定事件的相对位置与合计信号值的步骤。该相对位置是规定数的单元位置之一,单元位置的规定数比由闪烁器元件构成的阵列内的闪烁器元件的数量多。另外,计算机执行(3)对合计信号值与所决定的单元位置相关联地进行存储的步骤。另外,计算机执行(4)为了生成所存储的事件数据,对于多个事件,重复取得步骤、决定步骤、以及存储步骤的步骤。另外,计算机执行(5)对每个单元位置,根据所存储的事件数据,决定对于第1规定的能量值的平均合计信号值的步骤。另外,计算机执行(6)对于每个单元位置,根据所决定的平均合计信号值与第1规定的能量值来决定校正系数的步骤。In another embodiment, a computer-readable medium storing a computer program for execution by a computer is provided. The computer determines the correction factor used to determine the energy of the event. Events are detected by a gamma ray detector. The gamma ray detector has at least one nonlinear optical sensor arranged on a scintillator array composed of scintillator elements. Gamma ray detectors use optical system collection processing or analog data collection processing. Through the above-mentioned program, the above-mentioned computer executes the step of (1) receiving a corresponding signal value generated by at least one nonlinear optical sensor. at least one non-linear optical sensor responsive to the arrival of a generated gamma ray indicative of the occurrence of an event and responsive to receiving scintillation light emanating from at least one scintillator of the array of scintillator elements to generate a corresponding signal value. In addition, the computer executes (2) the step of determining the relative position of the event and the total signal value based on the signal values respectively obtained from at least one nonlinear optical sensor. The relative position is one of a predetermined number of cell positions greater than the number of scintillator elements in the array of scintillator elements. In addition, the computer executes (3) the step of storing the total signal value in association with the determined cell position. Also, the computer executes (4) repeating the acquiring step, determining step, and storing step for a plurality of events in order to generate the stored event data. In addition, the computer executes (5) the step of determining the average total signal value for the first predetermined energy value based on the stored event data for each cell position. In addition, the computer executes (6) the step of determining a correction coefficient for each cell position based on the determined average total signal value and the first predetermined energy value.
在另一实施方式中,提供了用于决定为了决定事件的能量而使用的校正系数的方法。通过γ射线检测器检测事件。γ射线检测器具有被配置在由闪烁器元件构成的闪烁器阵列上的至少一个非线性光传感器。上述的方法包含(1)生成多条γ射线的步骤。另外,上述的方法包含(2)取得通过至少一个非线性光传感器生成的对应信号值的步骤。至少一个非线性光传感器分别响应表示事件的发生的、一条所生成的γ射线的到达,并响应接受从由闪烁器元件构成的阵列中的至少一个闪烁器放射出的闪烁光,来生成对应信号值。另外,上述的方法包含(3)根据分别从至少一个非线性光传感器取得的信号值,决定事件的相对位置与合计信号值的步骤。该相对位置是规定数的单元位置之一,单元位置的规定数比由闪烁器元件构成的阵列内的闪烁器元件的数量多。另外,上述的方法包含(4)根据对于与所决定的相对位置相对应的单元位置的合计信号值与所存储的校准数据,计算对于事件的校正能量值的步骤。所存储的校准数据对每个单元位置的信号值与能量值的非线性关系进行定义。In another embodiment, a method for determining a correction factor to use in determining the energy of an event is provided. Events are detected by a gamma ray detector. The gamma ray detector has at least one nonlinear optical sensor arranged on a scintillator array composed of scintillator elements. The above method includes (1) the step of generating a plurality of gamma rays. In addition, the above method includes (2) the step of obtaining a corresponding signal value generated by at least one nonlinear optical sensor. at least one non-linear optical sensor responsive to the arrival of a generated gamma ray indicative of the occurrence of an event and responsive to receiving scintillation light emanating from at least one scintillator of the array of scintillator elements to generate a corresponding signal value. In addition, the above-mentioned method includes (3) the step of determining the relative position of the event and the total signal value based on the signal values respectively obtained from at least one nonlinear optical sensor. The relative position is one of a predetermined number of cell positions greater than the number of scintillator elements in the array of scintillator elements. In addition, the above-mentioned method includes (4) a step of calculating a corrected energy value for an event based on the summed signal value for the cell position corresponding to the determined relative position and the stored calibration data. The stored calibration data defines the non-linear relationship between the signal value and the energy value at each cell location.
在另一实施方式中,提供保存计算机程序的计算机可读介质,该程序通过计算机来执行。计算机决定与通过被配置在由闪烁器元件构成的闪烁器阵列上的、具有至少一个非线性光传感器的γ射线检测器而进行检测的事件相对应的校正能量值。通过上述的程序,上述的计算机执行(1)接收通过至少一个非线性光传感器生成的对应信号值的步骤。至少一个非线性光传感器分别响应表示事件的发生的、一条所生成的γ射线的到达,并响应接受从由闪烁器元件构成的阵列中的至少一个闪烁器放射出的闪烁光,来生成对应信号值。另外,计算机执行(2)根据分别从至少一个非线性光传感器取得的信号值,决定事件的相对位置与合计信号值的步骤。该相对位置是规定数的单元位置之一,单元位置的规定数比由闪烁器元件构成的阵列内的闪烁器元件的数量多。另外,计算机执行(3)根据对于与所决定的相对位置对应的单元位置的合计信号值与所存储的校准数据,计算对于事件的校正能量值的步骤。所存储的校准数据对每个单元位置的信号值与能量值的非线性关系进行定义。In another embodiment, a computer-readable medium storing a computer program executed by a computer is provided. A computer determines corrected energy values corresponding to events detected by a gamma ray detector having at least one nonlinear photosensor disposed on a scintillator array of scintillator elements. Through the above-mentioned program, the above-mentioned computer executes the step of (1) receiving a corresponding signal value generated by at least one nonlinear optical sensor. at least one non-linear optical sensor responsive to the arrival of a generated gamma ray indicative of the occurrence of an event and responsive to receiving scintillation light emanating from at least one scintillator of the array of scintillator elements to generate a corresponding signal value. In addition, the computer executes (2) the step of determining the relative position of the event and the total signal value based on the signal values respectively obtained from at least one nonlinear optical sensor. The relative position is one of a predetermined number of cell positions greater than the number of scintillator elements in the array of scintillator elements. In addition, the computer executes (3) a step of calculating a corrected energy value for an event based on the total signal value for the cell position corresponding to the determined relative position and the stored calibration data. The stored calibration data defines the non-linear relationship between the signal value and the energy value at each cell location.
在另一实施方式中,提供了用于决定为了决定事件的能量而使用的校正系数的方法。通过γ射线检测器来检测事件。γ射线检测器具有被配置在由闪烁器元件构成的闪烁器阵列上的至少一个非线性光传感器。上述的方法包含(a)生成具有第1规定的能量值的γ射线的步骤。另外,上述的方法包含(b)取得通过至少一个非线性光传感器生成的对应信号值的步骤。至少一个非线性光传感器分别响应表示事件的发生的、一条所生成的γ射线的到达,并响应接受从由闪烁器元件构成的阵列中的至少一个闪烁器放射出的闪烁光,来生成对应信号值。另外,上述的方法包含(c)根据分别通过至少一个非线性光传感器取得的信号值,决定事件的相对位置与合计信号值的步骤。该相对位置是规定数的单元位置之一,单元位置的规定数比由闪烁器元件构成的阵列内的闪烁器元件的数量多。另外,上述的方法包含(d)将合计信号值与所决定的单元位置相关联地进行存储的步骤。另外,上述的方法包含(e)为了生成所存储的事件数据,对于多个事件,重复取得步骤、决定步骤、以及存储步骤的步骤。另外,上述的方法包含(f)根据所存储的事件数据与第1规定的能量值,将连续地变化的数学校正函数的参数,决定为由闪烁器元件构成的阵列内的位置的函数的步骤。数学校正函数表示取得的事件的合计信号值中的空间变化。In another embodiment, a method for determining a correction factor to use in determining the energy of an event is provided. Events are detected by a gamma ray detector. The gamma ray detector has at least one nonlinear optical sensor arranged on a scintillator array composed of scintillator elements. The above method includes (a) the step of generating gamma rays having a first predetermined energy value. Additionally, the method described above includes the step of (b) obtaining a corresponding signal value generated by at least one nonlinear optical sensor. at least one non-linear optical sensor responsive to the arrival of a generated gamma ray indicative of the occurrence of an event and responsive to receiving scintillation light emanating from at least one scintillator of the array of scintillator elements to generate a corresponding signal value. In addition, the above-mentioned method includes (c) the step of determining the relative position of the event and the total signal value based on the signal values respectively obtained by at least one nonlinear optical sensor. The relative position is one of a predetermined number of cell positions greater than the number of scintillator elements in the array of scintillator elements. In addition, the above method includes (d) a step of storing the total signal value in association with the determined cell position. In addition, the above-mentioned method includes (e) the step of repeating the acquisition step, the determination step, and the storage step for a plurality of events in order to generate the stored event data. In addition, the method described above includes (f) the step of determining parameters of a continuously varying mathematical correction function as a function of position within an array of scintillator elements based on the stored event data and the first prescribed energy value . The mathematical correction function represents the spatial variation in the aggregated signal value of the acquired events.
另外,该实施方式的上述的方法包含对每个事件,使用事件的所决定的数学校正函数与所决定的相对位置,来决定事件的能量的步骤。In addition, the above-mentioned method of this embodiment includes, for each event, the step of determining the energy of the event using the determined mathematical correction function and the determined relative position of the event.
根据以上所述的至少一个实施方式的正电子发射计算机断层摄影装置,以及通过正电子发射计算机断层摄影装置执行的方法,能够提高能量分辨率。According to the positron emission computed tomography apparatus of at least one embodiment described above, and the method performed by the positron emission computed tomography apparatus, energy resolution can be improved.
虽然说明了本发明的几个实施方式,但这些实施方式是作为例子进行提示的,并不用于限定本发明的范围。这些实施方式能够以其他的各种形态进行实施。在不脱离发明的要旨的范围内,能够进行各种省略、置换、变更。这些实施方式或其变形包含于发明的范围或要旨中,同样地,包含于权利要求所记载的发明及其同等的范围中。Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the present invention. These embodiments can be implemented in other various forms. Various omissions, substitutions, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope or gist of the invention, and are also included in the invention described in the claims and its equivalent scope.
Claims (16)
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/045,610 US8294110B2 (en) | 2011-03-11 | 2011-03-11 | Method for improved correction of SiPM non-linearity in multiplexed radiation detectors |
| US13/045,610 | 2011-03-11 | ||
| JP2012-029889 | 2012-02-14 | ||
| JP2012029889A JP5984246B2 (en) | 2011-03-11 | 2012-02-14 | Positron emission computed tomography apparatus, program for causing positron emission computed tomography apparatus to execute, and method executed by positron emission computed tomography apparatus |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102670232A CN102670232A (en) | 2012-09-19 |
| CN102670232B true CN102670232B (en) | 2015-01-28 |
Family
ID=46803260
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210061629.8A Active CN102670232B (en) | 2011-03-11 | 2012-03-09 | Positron emission computed tomography device, and method executed through the same |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102670232B (en) |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104035122A (en) * | 2014-05-22 | 2014-09-10 | 沈阳东软医疗系统有限公司 | Method and device for correcting energy value |
| JP2016061584A (en) * | 2014-09-16 | 2016-04-25 | キヤノン株式会社 | Radiation measurement device |
| CN104382611B (en) * | 2014-11-13 | 2017-01-11 | 沈阳东软医疗系统有限公司 | Correction method and device of output energy of photomultiplier |
| CN104597474B (en) * | 2014-12-29 | 2017-06-27 | 沈阳东软医疗系统有限公司 | A kind of PET detector counts bearing calibration and device |
| CN107411768B (en) * | 2017-07-31 | 2020-11-10 | 东软医疗系统股份有限公司 | Equipment calibration method and device |
| CN107569249A (en) * | 2017-08-25 | 2018-01-12 | 沈阳东软医疗系统有限公司 | A kind of crystal energy bearing calibration and device |
| CN112639533A (en) * | 2018-10-09 | 2021-04-09 | 深圳帧观德芯科技有限公司 | Method and system for radiation imaging |
| CN109633733B (en) * | 2019-01-25 | 2022-06-10 | 成都理工大学 | Digital anti-Compton energy spectrum measuring system adopting particle event reading mode |
| JP6814848B1 (en) * | 2019-07-18 | 2021-01-20 | 浜松ホトニクス株式会社 | Signal reading circuit of photodetector, signal reading device and signal reading method |
| EP4212913A4 (en) * | 2020-09-09 | 2024-07-17 | Mitsubishi Chemical Corporation | SIGNAL PROCESSING SYSTEM, POSITRON EMISSION TOMOGRAPHY DEVICE, AND POSITRON EMISSION TOMOGRAPHY APPARATUS |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4323977A (en) * | 1979-11-20 | 1982-04-06 | Siemens Gammasonics, Inc. | Non-uniformity energy correction method and apparatus |
| CN101600972A (en) * | 2006-07-28 | 2009-12-09 | 皇家飞利浦电子股份有限公司 | Time-of-Flight Measurements in Positron Emission Tomography |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060011853A1 (en) * | 2004-07-06 | 2006-01-19 | Konstantinos Spartiotis | High energy, real time capable, direct radiation conversion X-ray imaging system for Cd-Te and Cd-Zn-Te based cameras |
| US7411197B2 (en) * | 2005-09-30 | 2008-08-12 | The Regents Of The University Of Michigan | Three-dimensional, position-sensitive radiation detection |
-
2012
- 2012-03-09 CN CN201210061629.8A patent/CN102670232B/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4323977A (en) * | 1979-11-20 | 1982-04-06 | Siemens Gammasonics, Inc. | Non-uniformity energy correction method and apparatus |
| CN101600972A (en) * | 2006-07-28 | 2009-12-09 | 皇家飞利浦电子股份有限公司 | Time-of-Flight Measurements in Positron Emission Tomography |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102670232A (en) | 2012-09-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8294110B2 (en) | Method for improved correction of SiPM non-linearity in multiplexed radiation detectors | |
| CN102670232B (en) | Positron emission computed tomography device, and method executed through the same | |
| US10527741B2 (en) | Setup of SIPM based PET detector using LSO background radiation | |
| EP2876464B1 (en) | Data acquisition device, pair annihilation gamma ray detector, and pair annihilation gamma ray detection method | |
| US9029786B2 (en) | Nuclear medicine imaging apparatus, and nuclear medicine imaging method | |
| US8791514B2 (en) | Providing variable cell density and sizes in a radiation detector | |
| US20130327932A1 (en) | Methods and systems for gain calibration of gamma ray detectors | |
| EP3376959B1 (en) | Detector in an imaging system | |
| CN102262237B (en) | Photonic radiation detection device, and methods for dimensioning and operating such device | |
| JP7317586B2 (en) | MEDICAL IMAGE PROCESSING APPARATUS, METHOD AND PROGRAM | |
| US7626172B2 (en) | Nuclear medical diagnosis apparatus | |
| US8340377B2 (en) | Method for energy calculation and pileup determination for continuously sampled nuclear pulse processing | |
| US11543545B2 (en) | Method and apparatus to use a broad-spectrum energy source to correct a nonlinear energy response of a gamma-ray detector | |
| US8520797B2 (en) | Medical imaging apparatus, control method, and computer program product | |
| Vaquero et al. | Performance characteristics of a compact position-sensitive LSO detector module | |
| JP6912304B2 (en) | Wave frequency distribution acquisition device, wave frequency distribution acquisition method, wave frequency distribution acquisition program and radiation imaging device | |
| JP5707478B2 (en) | Gamma ray detection module and PET scanner | |
| CN102073058B (en) | Gamma ray detection module with variable light guide thickness | |
| CN110770604B (en) | Radiation detection device and nuclear medicine diagnosis device provided with same | |
| JP4594855B2 (en) | Nuclear medicine diagnostic apparatus, radiation camera, and radiation detection method in nuclear medicine diagnostic apparatus | |
| Belcari et al. | PET/CT and PET/MR tomographs: Image acquisition and processing | |
| CN113253330B (en) | Gamma-ray radiation imaging device and energy calibration method | |
| Kijewski | Positron emission tomography and single-photon emission computed tomography physics | |
| Del Guerra et al. | PET Detectors | |
| Vaquero López et al. | Performance characteristics of a compact position-sensitive LSO detector module |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C41 | Transfer of patent application or patent right or utility model | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20160718 Address after: Japan Tochigi Patentee after: Toshiba Medical System Co., Ltd. Address before: Tokyo, Japan, Japan Patentee before: Toshiba Corp Patentee before: Toshiba Medical System Co., Ltd. |