CN102680974B - Signal processing method of satellite-bone sliding spotlight synthetic aperture radar - Google Patents
Signal processing method of satellite-bone sliding spotlight synthetic aperture radar Download PDFInfo
- Publication number
- CN102680974B CN102680974B CN 201210168820 CN201210168820A CN102680974B CN 102680974 B CN102680974 B CN 102680974B CN 201210168820 CN201210168820 CN 201210168820 CN 201210168820 A CN201210168820 A CN 201210168820A CN 102680974 B CN102680974 B CN 102680974B
- Authority
- CN
- China
- Prior art keywords
- azimuth
- aperture
- distance
- theta
- lambda
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003672 processing method Methods 0.000 title claims abstract description 9
- 238000012545 processing Methods 0.000 claims abstract description 19
- 230000006835 compression Effects 0.000 claims abstract description 17
- 238000007906 compression Methods 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 11
- 230000005012 migration Effects 0.000 claims abstract description 8
- 238000013508 migration Methods 0.000 claims abstract description 8
- 238000012937 correction Methods 0.000 claims abstract description 5
- 230000014759 maintenance of location Effects 0.000 claims abstract description 3
- 230000009466 transformation Effects 0.000 claims description 22
- 238000005070 sampling Methods 0.000 claims description 6
- 238000003384 imaging method Methods 0.000 abstract description 19
- 208000004350 Strabismus Diseases 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000007781 pre-processing Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 3
- 238000010606 normalization Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Landscapes
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种星载滑动聚束合成孔径雷达的信号处理方法,对滑动聚束SAR的原始回波数据进行划分子孔径处理;用CS算法进行距离向压缩及距离徙动校正;在CS算法中引入斜视角的补偿;对场景的空变性进行补偿;CS变标因子中以全孔径的多普勒参数为基准,将各个子孔径的距离徙动量都调为一致;在频域进行方位向压缩及二次项补偿,在时域进行去调频处理;将各个子孔径的数据进行拼接以恢复全孔径的分辨率;最后通过SPECAN处理,使得信号具有相位保持性。采用本发明的方法,能够在大场景斜视条件下提高成像质量。
The invention discloses a signal processing method of a space-borne sliding beamforming synthetic aperture radar, which divides the original echo data of the sliding beamforming SAR into sub-apertures; uses the CS algorithm to perform range compression and range migration correction; The algorithm introduces the compensation of oblique angle of view; compensates for the spatial variability of the scene; in the CS scaling factor, the Doppler parameter of the full aperture is used as the benchmark, and the distance migration of each sub-aperture is adjusted to be consistent; the azimuth is carried out in the frequency domain Directional compression and quadratic compensation, de-frequency modulation processing in the time domain; splicing the data of each sub-aperture to restore the resolution of the full aperture; finally, through SPECAN processing, the signal has phase retention. By adopting the method of the invention, the imaging quality can be improved under the condition of squinting in a large scene.
Description
技术领域 technical field
本发明涉及一种对合成孔径雷达信号进行处理的方法,特别涉及一种滑动聚束模式大场景斜视条件下的信号处理方法。The invention relates to a method for processing synthetic aperture radar signals, in particular to a signal processing method under the condition of squinting in a large scene in a sliding spotlight mode.
背景技术 Background technique
合成孔径雷达(SAR)是一种对地侦察成像的典型雷达系统,主要用于军事侦察和灾害监测,它是目前能够实现全天时,全天候工作的重要微波遥感仪器之一。目前,常见的合成孔径雷达工作模式主要有条带模式、扫描模式、聚束模式、滑动聚束模式以及TOPS模式等等。在这几种SAR成像模式中,条带模式可以实现方位向宽测绘带,然而难以实现高分辨率;扫描模式下虽然可以同时获得距离向上和方位向上宽的测绘带,但是以牺牲分辨率为代价的,其分辨率比同等情况下的条带模式更低;聚束模式虽然可以获得高分辨率,然而其方位向上的测绘带很小,只有一个波束足迹的大小;滑动聚束模式可以突破聚束模式的限制,不仅可以实现高分辨率也可以实现宽的方位向测绘带。滑动聚束模式的处理算法主要有子孔径方法以及基于方位向预处理的方法。其中子孔径处理滑动聚束模式的信号处理框图如图1所示。基于方位向预处理的滑动聚束处理框图如图2所示。现有滑动聚束合成孔径雷达的信号处理方法可以概括为:采集回波信号,采用子孔径或者是采用方位向预处理的方法降低PRF,避免成像的方位向模糊,再采用常规的算法,比如CS算法,RD算法,RMA算法进行成像。Synthetic Aperture Radar (SAR) is a typical radar system for ground reconnaissance and imaging. It is mainly used for military reconnaissance and disaster monitoring. It is currently one of the important microwave remote sensing instruments that can work all day and all day. At present, the common working modes of SAR mainly include strip mode, scanning mode, spotlight mode, sliding spotlight mode, TOPS mode and so on. Among these SAR imaging modes, the strip mode can achieve a wide swath in azimuth, but it is difficult to achieve high resolution; in the scan mode, although a swath with a wide range and azimuth can be obtained at the same time, the resolution is sacrificed. At the cost, its resolution is lower than that of the strip mode in the same situation; although the spotlight mode can obtain high resolution, its azimuth swath is very small, only the size of a beam footprint; the sliding spotlight mode can break through Constrained by the spotlight mode, not only high resolution but also wide azimuth swaths can be achieved. The processing algorithms of the sliding beamforming mode mainly include the sub-aperture method and the method based on azimuth preprocessing. The signal processing block diagram of the sub-aperture processing sliding beamforming mode is shown in Fig. 1 . The block diagram of sliding beamforming based on azimuth preprocessing is shown in Figure 2. The existing signal processing method of sliding spotlight synthetic aperture radar can be summarized as follows: collect the echo signal, use the sub-aperture or the azimuth preprocessing method to reduce the PRF, avoid the ambiguity of the imaging azimuth, and then use the conventional algorithm, such as CS algorithm, RD algorithm, RMA algorithm for imaging.
在卫星或者飞机实际飞行过程中,由于控制或其它原理,可能会造成天线相位中心指向的目标多普勒频移并不为零,天线相位中心存在一定程度的斜视角。斜视角的存在将造成雷达成像时会信噪比损失,方位模糊度下降,图像偏移。另外,星载合成孔径雷达波束照射的范围大,尤其是高分辨率成像中,场景的空变性不能够忽略。现有的滑动聚束SAR成像算法没有考虑到斜视角下的情况,也没有考虑对大场景下的情况进行场景空变性的补偿,没有对各个子孔径的相位进行一致性补偿(在多个子孔径进行最后拼接时会影响图像质量),以上的三个方面都会影响成像质量。因此,必需研制一种能够在大场景斜视条件下提高图像质量的滑动聚束SAR成像算法。During the actual flight of a satellite or an aircraft, due to control or other principles, the Doppler frequency shift of the target pointed by the antenna phase center may not be zero, and there is a certain degree of oblique angle at the antenna phase center. The existence of oblique angle of view will cause the loss of signal-to-noise ratio, decrease of azimuth ambiguity and image shift during radar imaging. In addition, spaceborne synthetic aperture radar beams illuminate a large range, especially in high-resolution imaging, where the spatial variability of the scene cannot be ignored. The existing sliding beam spotlight SAR imaging algorithm does not take into account the situation under the oblique angle of view, nor does it consider the compensation of the spatial variability of the scene in the case of a large scene, and does not perform consistent compensation for the phase of each sub-aperture (in multiple sub-apertures The image quality will be affected when the final stitching is performed), and the above three aspects will affect the image quality. Therefore, it is necessary to develop a sliding spotlight SAR imaging algorithm that can improve the image quality under the condition of large scene squint.
发明内容 Contents of the invention
本发明所要解决的技术问题是:针对现有技术的不足,提供一种星载滑动聚束合成孔径雷达的信号处理方法,能够在大场景斜视条件下提高成像质量。The technical problem to be solved by the present invention is to provide a signal processing method of a spaceborne sliding spotlight synthetic aperture radar, which can improve the imaging quality under the condition of large scene squint.
本发明包括如下技术方案:The present invention includes following technical solutions:
一种星载滑动聚束合成孔径雷达的信号处理方法,其特征在于,包括如下步骤:A signal processing method of a spaceborne sliding spotlight synthetic aperture radar, characterized in that it comprises the following steps:
(1)对采集的滑动聚束合成孔径雷达原始数据进行子孔径划分;(1) Carry out sub-aperture division to the original data of the sliding spotlight synthetic aperture radar collected;
(2)对划分后的每一个子孔径数据分别进行如下处理:(2) Each sub-aperture data after division is processed as follows:
进行方位向FFT变换;将方位向傅里叶变换后的数据乘以变标因子;进行距离向FFT变换,然后进行距离压缩及距离徙动校正;进行距离向逆FFT变换;逆FFT变换后做方位向压缩并补偿剩余相位;方位向压缩后进行二次项补偿;然后进行方位向逆FFT变换;方位向逆FFT变换后进行去调频处理;Carry out azimuth to FFT transformation; multiply the data after azimuth to Fourier transform by the scaling factor; perform distance to FFT transformation, and then perform distance compression and distance migration correction; perform distance to inverse FFT transformation; after inverse FFT transformation, do Azimuth compression and residual phase compensation; azimuth compression followed by quadratic item compensation; then azimuth inverse FFT transformation; azimuth inverse FFT transformation followed by frequency modulation processing;
(3)对处理后的子孔径数据进行合成,合成一个全孔径数据;(3) Synthesize the processed sub-aperture data to synthesize a full-aperture data;
(4)对全孔径数据进行方位向FFT变换;(4) carry out azimuth to FFT transformation to full aperture data;
(5)进行残留调频补偿;(5) Carry out residual frequency modulation compensation;
(6)进行方位向逆FFT变换;(6) Carry out azimuth to inverse FFT transformation;
(7)进行Specan补偿,使得信号具有相位保持性。(7) Perform Specan compensation to make the signal have phase retention.
所述步骤(2)中变标因子的公式如下:
其中,fdc为全孔径的多普勒中心频率,t为卫星飞行时间,fa为方位向频率,c为光速;R0为场景中心斜距,k(fa;R)为等效调频率;R(fa,R0)为场景中心到卫星的瞬时距离;V为卫星飞行的速度,θref为场景中心处的斜视角,θc为全孔径中心处的斜视角,λ为波长。Among them, f dc is the Doppler center frequency of the full aperture, t is the satellite flight time, f a is the azimuth frequency, c is the speed of light; R 0 is the slant distance from the center of the scene, k(f a ; R) is the equivalent modulation Frequency; R(f a , R 0 ) is the instantaneous distance from the center of the scene to the satellite; V is the speed of the satellite, θ ref is the oblique angle at the center of the scene, θ c is the oblique angle at the center of the full aperture, and λ is the wavelength .
kr为线性信号调频率,其中R=R0+c/2/fs[-nrn/2:nrn/2-1],R0为场景中心斜距,其中fs为信号采样率,nrn为距离向采样点数。k r is the modulation frequency of the linear signal, where R=R 0 +c/2/f s [-nrn/2:nrn/2-1], R 0 is the slope distance from the center of the scene, where f s is the signal sampling rate, nrn is the number of sampling points in the distance direction.
所述步骤(2)中,方位向压缩并补偿剩余相位的方位向压缩函数为:In the step (2), the azimuth compression function that compresses the azimuth and compensates the residual phase is:
本发明与现有技术相比具有如下优点:Compared with the prior art, the present invention has the following advantages:
本发明的方法针对大场景斜视下的滑动聚束工作模式进行成像。本发明既考虑到了斜视角的补偿,考虑了子孔径间相位一致性补偿,又考虑了大场景情况下距离徙动的空变性。The method of the present invention is aimed at performing imaging in the sliding beamforming working mode under the oblique view of a large scene. The present invention not only considers the compensation of the oblique angle, the phase consistency compensation between the sub-apertures, but also the space variation of the distance migration in the case of a large scene.
附图说明 Description of drawings
图1为现有的子孔径滑动聚束处理框图;Fig. 1 is the block diagram of existing sub-aperture sliding beamforming;
图2为现有的基于方位向预处理的滑动聚束处理框图;FIG. 2 is a block diagram of existing sliding beamforming processing based on azimuth preprocessing;
图3为本发明的处理方法流程图;Fig. 3 is a flow chart of the processing method of the present invention;
图4为子孔径1成像;Fig. 4 is sub-aperture 1 imaging;
图5为子孔径1点目标频谱;Fig. 5 is sub-aperture 1 point target frequency spectrum;
图6为子孔径2成像;Fig. 6 is sub-aperture 2 imaging;
图7为子孔径2点目标频谱;Fig. 7 is sub-aperture 2 target frequency spectrum;
图8为滑动聚束SAR全孔径成像;Figure 8 is the full-aperture imaging of sliding spotlight SAR;
图9为全孔径成像点目标频谱。Fig. 9 is the full-aperture imaging point target spectrum.
具体实施方式 Detailed ways
下面就结合附图对本发明做进一步介绍。如图3所示,本发明的处理方法包括如下步骤:The present invention will be further introduced below in conjunction with the accompanying drawings. As shown in Figure 3, processing method of the present invention comprises the steps:
(1)子孔径划分(1) Sub-aperture division
首先应该对原始的滑动聚束SAR数据进行子孔径划分,子孔径的长度应大于滑动聚束SAR目标点的瞬时带宽。可以根据公式确定子孔径划分的个数,PRF为脉冲重复频率,Ba为信号瞬时带宽,krot为卫星到旋转中心点的调频斜率。通过划分子孔径,有效地去除了滑动聚束合成孔径雷达方位向模糊,并且降低了系统的重复频率,可以使得系统在脉冲重复频率上的选择与条带模式下的选取一致,大大减少了合成孔径雷达数传的数据量。另外一方面,通过子孔径的划分减少了距离徙动量,降低距离向和方位向的耦合量,有利于成像算法中的解耦合处理。First, the original sliding spotlight SAR data should be divided into sub-apertures, and the length of the sub-aperture should be greater than the instantaneous bandwidth of the sliding spotlight SAR target point. according to the formula Determine the number of sub-aperture divisions, PRF is the pulse repetition frequency, Ba is the instantaneous bandwidth of the signal, and k rot is the frequency modulation slope from the satellite to the center of rotation. By dividing the sub-aperture, the azimuth ambiguity of the sliding beamforming synthetic aperture radar is effectively removed, and the repetition frequency of the system is reduced, which can make the selection of the pulse repetition frequency of the system consistent with the selection in the strip mode, greatly reducing the synthesis The amount of data transmitted by the aperture radar. On the other hand, the division of sub-apertures reduces the range migration amount, reduces the coupling amount in the range direction and the azimuth direction, and is beneficial to the decoupling processing in the imaging algorithm.
(2)对划分后的子孔径数据分别进行方位向FFT变换(2) Perform azimuth FFT transformation on the divided sub-aperture data respectively
经过方位向傅里叶变换后表示如下:After azimuth Fourier transform, it is expressed as follows:
式中,为方位向窗函数,X为地面目标点方位向起始位置,L波束足迹的长度,va为波束足迹在地面速度,t为卫星飞行时间,rect((t-2R(fa;r)/c)/T)为距离向窗函数,T为距离向回波时延周期,R(fa;r)为卫星到地面目标点的斜距,r为平台到地面的最近距离,θ为斜视角,λ为波长,V为卫星速度,k(fa;R)为等效调频率,fa为方位向频率,c为光速。In the formula, is the azimuth window function, X is the azimuth starting position of the ground target point, the length of the L beam footprint, v a is the velocity of the beam footprint on the ground, t is the satellite flight time, rect((t-2R(f a ; r) /c)/T) is the range window function, T is the range echo time delay period, R(f a ; r) is the slant distance from the satellite to the ground target point, r is the shortest distance from the platform to the ground, and θ is Slant angle, λ is the wavelength, V is the satellite velocity, k(f a ; R) is the equivalent modulation frequency, f a is the azimuth frequency, and c is the speed of light.
(3)将方位向傅里叶变换后的数据乘以变标因子(3) Multiply the azimuth to Fourier transformed data by the scaling factor
此时的CS因子为:
Δα(fa)=α(fa)-α(fdc)Δα(f a )=α(f a )-α(f dc )
R(fa,R0)为场景中心到卫星的瞬时距离,fdc为合成孔径划分前全孔径的多普勒中心频率,θc为全孔径中心处的斜视角,θref为场景中心处的斜视角。这里需要注意的是:为了最后子孔径拼接的一致性,用以改变调频率尺度的CS因子需要进行归一化的选取,即通过归一化处理使得每个子孔径的CS因子取值为一致。R(f a , R 0 ) is the instantaneous distance from the scene center to the satellite, f dc is the Doppler center frequency of the full aperture before synthetic aperture division, θ c is the oblique angle at the center of the full aperture, and θ ref is the scene center oblique angle. It should be noted here that for the consistency of the final sub-aperture splicing, the CS factor used to change the modulation frequency scale needs to be selected for normalization, that is, the value of the CS factor of each sub-aperture is consistent through normalization.
在等效调频率中考虑大场景的空变性,
kr为线性信号调频率,其中R=R0+c/2/fs[-nrn/2:nrn/2-1],R0为场景中心斜距,其中fs为信号采样率,nrn为距离向采样点数。k r is the modulation frequency of the linear signal, where R=R 0 +c/2/f s [-nrn/2:nrn/2-1], R 0 is the slope distance from the center of the scene, where f s is the signal sampling rate, nrn is the number of sampling points in the distance direction.
(4)接下来进行距离向FFT变换(4) Next, perform distance to FFT transformation
(5)然后进行距离压缩及距离徙动校正(5) Then perform distance compression and distance migration correction
经过上步操作之后,需要进行距离压缩及距离徙动校正,相位函数为After the previous step, distance compression and distance migration correction are required, and the phase function is
fr为距离向频率。f r is the range frequency.
(6)进行距离向逆FFT变换,(6) Perform distance to inverse FFT transformation,
(7)变换后做方位向压缩并补偿剩余相位乘以如下方位向压缩函数:(7) Perform azimuth compression after transformation and compensate the remaining phase to multiply the following azimuth compression function:
其中,
(8)方位压缩后进行二次项补偿(8) Quadratic item compensation after azimuth compression
乘二次补偿项函数H4:Multiply the quadratic compensation term function H4:
其中
(9)方位向逆FFT变换(9) Azimuth to inverse FFT transformation
(10)变换后进行去调频处理(10) DeFM processing after conversion
方位向逆FFT后,为了进一步减少方位向的处理带宽,采用去调频处理H5=exp(-jπkrot(r)(ta-tmid)),其中ta为方位向时间,tmid为场景中心时刻。After the inverse FFT in the azimuth direction, in order to further reduce the processing bandwidth in the azimuth direction, the frequency modulation processing H 5 =exp(-jπk rot (r)(t a -t mid )) is used, where t a is the azimuth time, and t mid is the central moment of the scene.
(11)将每个子孔径的数据都按步骤(2)-(10)处理后依照时间顺序进行子孔径合成,合成一个全孔径的数据。(11) After the data of each sub-aperture are processed according to steps (2)-(10), the sub-apertures are synthesized according to time sequence, and a full-aperture data is synthesized.
(12)对处理后全孔径数据作方位向FFT处理(12) Perform azimuth FFT processing on the processed full-aperture data
(13)然后进行残留调频补偿(13) Then perform residual FM compensation
将合成后的全孔径数据乘以H6:Multiply the synthesized full aperture data by H 6 :
(14)进行方位向逆FFT变换(14) Perform azimuth to inverse FFT transformation
(15)最后进行频谱分析(Specan)补偿(15) Finally, perform spectrum analysis (Specan) compensation
为了使得最后成像结果具有相位保持性,需要乘以下面相位函数:In order to make the final imaging result have phase preservation, it needs to be multiplied by the following phase function:
其中,
上述步骤考虑了斜视角下的处理,在CS算法中引入了斜视角的补偿。如因子
下面对大场景斜视SAR滑动聚束算法进行点目标仿真,选取的仿真参数如下:The following is a point target simulation for the large-scene squint SAR sliding beamforming algorithm, and the selected simulation parameters are as follows:
中心频率:9.6GHzCenter frequency: 9.6GHz
脉冲重频:;3800HzPulse repetition frequency: ;3800Hz
信号带宽:600MHzSignal bandwidth: 600MHz
方位分辨率:1米Azimuth resolution: 1 meter
旋转中心斜距:1234千米Rotation center slant distance: 1234 km
场景中心斜距:617千米Slope distance from scene center: 617 kilometers
场景中心处对应天线斜视角:3°Corresponding antenna oblique angle at the center of the scene: 3°
天线孔径:4米Antenna aperture: 4 meters
场景大小:15公里(距离向)×20公里(方位向)Scene size: 15 kilometers (distance direction) × 20 kilometers (azimuth direction)
点目标放置在场景中心The point target is placed in the center of the scene
从图5和图7可以看出,子孔径数据经过本方法处理后都实现了良好的聚焦,峰值旁比为-13dB左右,积分旁瓣比为-9.5dB左右。由于成像算法的最后步骤用到了去调频处理,此时,方位向的像素间隔为It can be seen from Figure 5 and Figure 7 that after the sub-aperture data are processed by this method, they all achieve good focus, the peak-to-side ratio is about -13dB, and the integral sidelobe ratio is about -9.5dB. Since the last step of the imaging algorithm uses frequency modulation processing, at this time, the pixel interval in the azimuth direction is
其中,N为方位向处理点数,按照此方法分辨可算出分成两个子孔径之后方位向像素间隔为0.3662,合成全孔径后像素间隔为0.1881。在图4和图6中,3dB宽度处的间隔大约为6和5左右,则子孔径成像分辨率大约为2米,而图8经过全孔径处理后分辨率提高到1米。可见,大场景斜视下全孔径处理不仅使得分辨率提高,而且获得了良好的聚焦效果。Among them, N is the number of processing points in the azimuth direction. According to this method, the pixel interval in azimuth direction after being divided into two sub-apertures can be calculated to be 0.3662, and the pixel interval in the azimuth direction is 0.1881 after the full aperture is synthesized. In Figure 4 and Figure 6, the interval at the 3dB width is about 6 and 5, and the sub-aperture imaging resolution is about 2 meters, while the resolution of Figure 8 is improved to 1 meter after full-aperture processing. It can be seen that the full-aperture processing not only improves the resolution but also obtains a good focusing effect under the squint view of a large scene.
本发明未详细说明部分属本领域技术人员公知常识。Parts not described in detail in the present invention belong to the common knowledge of those skilled in the art.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201210168820 CN102680974B (en) | 2012-05-25 | 2012-05-25 | Signal processing method of satellite-bone sliding spotlight synthetic aperture radar |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201210168820 CN102680974B (en) | 2012-05-25 | 2012-05-25 | Signal processing method of satellite-bone sliding spotlight synthetic aperture radar |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102680974A CN102680974A (en) | 2012-09-19 |
| CN102680974B true CN102680974B (en) | 2013-08-28 |
Family
ID=46813186
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 201210168820 Active CN102680974B (en) | 2012-05-25 | 2012-05-25 | Signal processing method of satellite-bone sliding spotlight synthetic aperture radar |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102680974B (en) |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103728618B (en) * | 2014-01-16 | 2015-12-30 | 中国科学院电子学研究所 | The satellite-borne SAR system implementation method of a kind of high resolving power, wide swath |
| CN105629231B (en) * | 2014-11-06 | 2018-08-28 | 航天恒星科技有限公司 | A kind of sub-aperture stitching method and system of SAR |
| CN104391297B (en) * | 2014-11-17 | 2017-09-15 | 南京航空航天大学 | One kind divides sub-aperture PFA radar imaging methods |
| CN104678393B (en) * | 2015-01-30 | 2017-01-18 | 南京航空航天大学 | Subaperture wave number domain imaging method for squint sliding spotlight SAR (Synthetic Aperture Radar) |
| CN106950567B (en) * | 2017-03-30 | 2019-05-14 | 中国人民解放军国防科学技术大学 | The sliding poly- SAR image processing method of ultra wide band based on high-order sub-aperture CS |
| CN107390217B (en) * | 2017-07-19 | 2019-05-31 | 中国人民解放军国防科学技术大学 | The step-scan umber of pulse design method of Sliding spotlight SAR |
| CN108318867B (en) * | 2017-11-23 | 2020-01-14 | 北京遥感设备研究所 | Range migration correction method of sliding window pulse group aiming at alpha-beta tracking filtering |
| CN108267736B (en) * | 2017-12-20 | 2019-11-29 | 西安空间无线电技术研究所 | A kind of GEO SAR staring imaging mode orientation fuzziness determines method |
| CN109613507B (en) * | 2018-12-21 | 2021-04-06 | 北京理工大学 | A detection method for radar echoes of high-order maneuvering targets |
| CN110058232B (en) * | 2019-04-19 | 2021-04-13 | 北京空间飞行器总体设计部 | A method and system for azimuth preprocessing of echo signals of spaceborne SAR large squint sliding beamforming mode |
| CN113359132A (en) * | 2021-04-30 | 2021-09-07 | 西安电子科技大学 | Real-time imaging method and device for spaceborne squint synthetic aperture radar |
| CN113376632B (en) * | 2021-05-18 | 2023-12-15 | 南京航空航天大学 | A large squint airborne SAR imaging method based on preprocessing and improved PFA |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101581780A (en) * | 2008-05-14 | 2009-11-18 | 中国科学院电子学研究所 | Three-dimensional focus imaging method of side-looking chromatography synthetic aperture radar |
| CN102288964A (en) * | 2011-08-19 | 2011-12-21 | 中国资源卫星应用中心 | Imaging processing method for spaceborne high-resolution synthetic aperture radar |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB0606489D0 (en) * | 2006-03-31 | 2006-05-10 | Qinetiq Ltd | System and method for processing imagery from synthetic aperture systems |
-
2012
- 2012-05-25 CN CN 201210168820 patent/CN102680974B/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101581780A (en) * | 2008-05-14 | 2009-11-18 | 中国科学院电子学研究所 | Three-dimensional focus imaging method of side-looking chromatography synthetic aperture radar |
| CN102288964A (en) * | 2011-08-19 | 2011-12-21 | 中国资源卫星应用中心 | Imaging processing method for spaceborne high-resolution synthetic aperture radar |
Non-Patent Citations (4)
| Title |
|---|
| Airborne SAR Prosscing of Highly Squinted Data Using a Chirp Scaling Approach with Integrated Motion Compensation;Alberto Moreira等;《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING》;19940930;第32卷(第5期);第1029-1040页 * |
| Alberto Moreira等.Airborne SAR Prosscing of Highly Squinted Data Using a Chirp Scaling Approach with Integrated Motion Compensation.《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING》.1994,第32卷(第5期), |
| 兰天.滑动聚束式SAR技术研究.《中国优秀硕士学位论文全文数据库 信息科技辑》.2011,第2011年卷(第S2期), |
| 滑动聚束式SAR技术研究;兰天;《中国优秀硕士学位论文全文数据库 信息科技辑》;20111231;第2011年卷(第S2期);第26-33页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102680974A (en) | 2012-09-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102680974B (en) | Signal processing method of satellite-bone sliding spotlight synthetic aperture radar | |
| US7532150B1 (en) | Restoration of signal to noise and spatial aperture in squint angles range migration algorithm for SAR | |
| CN102176016B (en) | Large squint sliding spotlight SAR (synthetic aperture radar) imaging processing method | |
| CN107741586B (en) | Satellite-borne Ka InSAR signal processing method based on DBF-TOPS weighting | |
| CN101344590B (en) | Wide area observation method of sector scanning | |
| CN102879784B (en) | Unified imaging method for synthetic aperture radar (SAR) in four modes | |
| CN107390181B (en) | Radar high-resolution imaging method based on multi-beam scanning | |
| CN106932778B (en) | Orientation multichannel FMCW SAR slides spotlight imaging method | |
| Chen et al. | Very high resolution synthetic aperture radar systems and imaging: A review | |
| CN107942327A (en) | Single channel HRWS SAR imaging methods based on impulse phase coding | |
| CN103235305B (en) | Spaceborne ultrahigh-resolution sliding bunching SAR (synthetic aperture radar) imaging method | |
| CN104133215B (en) | Synchronous orbit radar imaging method based on range migration fine adjustment and sub-band division | |
| CN103336280B (en) | Large-scene imaging method of near-space slow-velocity platform synthetic aperture radar | |
| CN109270528A (en) | The fixed dual station SAR imaging method in a station based on complete solution analysis distance model | |
| CN105974409B (en) | Spaceborne Sliding Spotlight MIMO-SAR Imaging Method Based on Multi-frequency Subband Concurrency | |
| Zhao et al. | Image formation method for spaceborne video SAR | |
| CN104062657A (en) | Generalized polar coordinate imaging method for synthetic aperture radar (SAR) | |
| CN110531355A (en) | A kind of satellite-borne synthetic aperture radar unifies imaging method in real time | |
| CN110208798A (en) | A kind of spaceborne mosaic SAR image processing method of high score wide cut and system | |
| Fan et al. | High frame-rate and low-latency video SAR based on robust Doppler parameters estimation in the terahertz regime | |
| CN116794612A (en) | Synthetic aperture radar distance-aperture space-variant motion compensation method based on linear transformation | |
| CN103278819B (en) | Onboard high-resolution strabismus bunching synthetic aperture radar (SAR) imaging method based on sliding receiving window | |
| Guo et al. | Extended wavenumber domain algorithm for highly squinted sliding spotlight SAR data processing | |
| CN103235308B (en) | Forward-looking radar scanning coherent imaging method | |
| CN111722225A (en) | Two-dimensional self-focusing method for bistatic SAR based on prior phase structure information |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |