CN102800809B - Use the organic electronic device of the simplification of the polymeric anode with high work function - Google Patents
Use the organic electronic device of the simplification of the polymeric anode with high work function Download PDFInfo
- Publication number
- CN102800809B CN102800809B CN201210165809.0A CN201210165809A CN102800809B CN 102800809 B CN102800809 B CN 102800809B CN 201210165809 A CN201210165809 A CN 201210165809A CN 102800809 B CN102800809 B CN 102800809B
- Authority
- CN
- China
- Prior art keywords
- electrode
- work function
- electronic device
- energy material
- substituted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08L27/18—Homopolymers or copolymers or tetrafluoroethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F14/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F14/18—Monomers containing fluorine
- C08F14/26—Tetrafluoroethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/002—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds
- C08G65/005—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens
- C08G65/007—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens containing fluorine
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/117—Shapes of semiconductor bodies
- H10D62/118—Nanostructure semiconductor bodies
- H10D62/119—Nanowire, nanosheet or nanotube semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/881—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being a two-dimensional material
- H10D62/882—Graphene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/466—Lateral bottom-gate IGFETs comprising only a single gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/80—Constructional details
- H10K10/82—Electrodes
- H10K10/84—Ohmic electrodes, e.g. source or drain electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/81—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
- H10K50/818—Reflective anodes, e.g. ITO combined with thick metallic layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/80—Composition varying spatially, e.g. having a spatial gradient
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/311—Flexible OLED
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/331—Nanoparticles used in non-emissive layers, e.g. in packaging layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/917—Electroluminescent
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Electroluminescent Light Sources (AREA)
- Photovoltaic Devices (AREA)
- Electrodes Of Semiconductors (AREA)
- Thin Film Transistor (AREA)
Abstract
本发明涉及使用具有高功函数的聚合物阳极的简化的有机电子器件。The present invention relates to simplified organic electronic devices using polymer anodes with high work function.
Description
相关专利申请的交叉引用Cross references to related patent applications
本申请要求2011年5月27日在韩国知识产权局提交的韩国专利申请No.10-2011-0050845的权益,其公开内容全部引入本文作为参考。This application claims the benefit of Korean Patent Application No. 10-2011-0050845 filed with the Korean Intellectual Property Office on May 27, 2011, the disclosure of which is incorporated herein by reference in its entirety.
技术领域technical field
本发明涉及包括具有高功函数的聚合物阳极的简化的有机电子器件。The present invention relates to simplified organic electronic devices comprising polymer anodes with high work function.
背景技术Background technique
作为自发射器件的有机发光器件具有例如宽视角、优异的对比度、快速的响应、高亮度、优异的驱动电压特性的优点,且可提供多色图像。Organic light emitting devices, which are self-emitting devices, have advantages such as wide viewing angles, excellent contrast, fast response, high luminance, excellent driving voltage characteristics, and can provide multicolor images.
常规的有机发光器件包括阳极、阴极、及置于所述阳极和阴极之间的有机层。所述有机层可包括电子注入层(EIL)、空穴传输层(HTL)、发射层(EML)、电子传输层(ETL)和阴极。当在所述阳极和阴极之间施加电压时,从阳极注入的空穴经由HTL移动到EML,和从阴极注入的电子经由ETL移动到EML。所述空穴和电子在EML中复合以产生激子。当所述激子从激发态落到基态时,发射光。A conventional organic light emitting device includes an anode, a cathode, and an organic layer interposed between the anode and the cathode. The organic layer may include an electron injection layer (EIL), a hole transport layer (HTL), an emission layer (EML), an electron transport layer (ETL), and a cathode. When a voltage is applied between the anode and cathode, holes injected from the anode move to the EML via the HTL, and electrons injected from the cathode move to the EML via the ETL. The holes and electrons recombine in the EML to generate excitons. When the excitons fall from an excited state to a ground state, light is emitted.
同时,已经在世界范围内进行了对可再生能量的许多研究。在这点上,作为未来能源,有机太阳能电池由于其使用太阳能的潜力已引起许多注意。与使用硅的无机太阳能电池相比,有机太阳能电池可更有效地形成薄膜且可以低制造成本制造,且因此可应用于多种柔性器件。Meanwhile, many studies on renewable energy have been conducted worldwide. In this regard, organic solar cells have drawn much attention as a future energy source due to their potential to use solar energy. Compared with inorganic solar cells using silicon, organic solar cells can form thin films more efficiently and can be manufactured at low manufacturing costs, and thus can be applied to various flexible devices.
常用在有机发光二极管和有机太阳能电池中的氧化铟锡(ITO)电极的成本由于铟的枯竭而持续增加,且ITO是脆的并在冲击或弯曲时易于破坏。因此,ITO不能应用于柔性器件。尽管已进行了对用于代替ITO的电极的研究,但是所开发的电极不具有足够的功函数。因此,在所述电极上形成用于平稳注入和传输电荷的多层结构。但是,该结构增加用于制备电子器件的材料的量和制造成本。因此,需要开发通过使用具有高功函数的柔性电极但不使用空穴传输/提取辅助层而具有拥有优异性能的简化结构的有机电子器件,和将所述有机电子器件应用于柔性器件以及常规的平板器件。The cost of indium tin oxide (ITO) electrodes commonly used in organic light-emitting diodes and organic solar cells continues to increase due to depletion of indium, and ITO is brittle and easily broken when impacted or bent. Therefore, ITO cannot be applied to flexible devices. Although research on electrodes for replacing ITO has been conducted, the developed electrodes do not have a sufficient work function. Accordingly, a multilayer structure for smooth injection and transfer of charges is formed on the electrodes. However, this structure increases the amount of materials used to prepare the electronic device and the manufacturing cost. Therefore, there is a need to develop an organic electronic device having a simplified structure with excellent performance by using a flexible electrode with a high work function without using a hole transport/extraction auxiliary layer, and to apply the organic electronic device to flexible devices as well as conventional Tablet device.
发明内容Contents of the invention
本发明提供包括具有高电导率和高功函数的柔性电极的简化电子器件。The present invention provides simplified electronics including flexible electrodes with high conductivity and high work function.
根据本发明的一个方面,提供使用高功函数且高电导率的电极的电子器件,所述电极包括具有0.1S/cm或更大的电导率的导电材料和低表面能材料,且具有第一表面和与所述第一表面相反的第二表面,其中在所述第二表面中所述低表面能材料的浓度大于所述第一表面的所述低表面能材料的浓度,且所述第二表面的功函数为5.0eV或更大。According to one aspect of the present invention, there is provided an electronic device using an electrode having a high work function and high conductivity, the electrode comprising a conductive material having a conductivity of 0.1 S/cm or more and a low surface energy material, and having a first surface and a second surface opposite to the first surface, wherein the concentration of the low surface energy material in the second surface is greater than the concentration of the low surface energy material in the first surface, and the second surface The work functions of the two surfaces are 5.0 eV or more.
所述低表面能材料的浓度可在从所述第一表面至所述第二表面的方向上逐渐增加。A concentration of the low surface energy material may gradually increase in a direction from the first surface to the second surface.
所述低表面能材料可为具有至少一个F的氟化材料。The low surface energy material may be a fluorinated material having at least one F.
所述导电材料可包括聚噻吩、聚苯胺、聚吡咯、聚苯乙烯、磺化聚苯乙烯、聚(3,4-亚乙基二氧噻吩)、自掺杂的导电聚合物、其任意衍生物、及其任意组合。The conductive material may include polythiophene, polyaniline, polypyrrole, polystyrene, sulfonated polystyrene, poly(3,4-ethylenedioxythiophene), self-doped conductive polymer, any derivative thereof objects, and any combination thereof.
所述高功函数且高电导率的电极可进一步包括如下的至少一种:金属纳米线、半导体纳米线、金属纳米点、石墨烯、还原的石墨烯氧化物、和石墨。The high work function and high conductivity electrode may further include at least one of metal nanowires, semiconductor nanowires, metal nanodots, graphene, reduced graphene oxide, and graphite.
所述金属纳米线可选自Ag、Au、Cu、Pt、硅化镍(NiSix)、金属碳纳米管、及其至少两种的任意复合物例如合金或核-壳结构,但不限于此。The metal nanowires may be selected from Ag, Au, Cu, Pt, nickel silicide ( NiSix ), metal carbon nanotubes, and any composites of at least two thereof such as alloys or core-shell structures, but are not limited thereto.
所述半导体纳米线可选自Si、Ge、用B或N掺杂的Si、用B或N掺杂的Ge、及其至少两种的任意复合物例如合金或核-壳结构,但不限于此。The semiconductor nanowire can be selected from Si, Ge, Si doped with B or N, Ge doped with B or N, and any composite of at least two thereof such as an alloy or a core-shell structure, but not limited to this.
所述金属纳米点可选自Ag、Au、Cu、Pt、及其至少两种的任意复合物例如合金或核-壳结构,但不限于此。The metal nanodots may be selected from Ag, Au, Cu, Pt, and any composites of at least two thereof such as alloys or core-shell structures, but are not limited thereto.
至少一个由-S(Z100)或-Si(Z101)(Z102)(Z103)表示的部分可附着到所述金属纳米线、半导体纳米线和金属纳米点的表面,其中Z100、Z101、Z102和Z103各自独立地为氢原子、卤素原子、取代或未取代的C1-C20烷基、或者取代或未取代的C1-C20烷氧基。At least one moiety represented by -S(Z 100 ) or -Si(Z 101 )(Z 102 )(Z 103 ), wherein Z 100 , Z 101 , Z 102 and Z 103 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted C 1 -C 20 alkyl group, or a substituted or unsubstituted C 1 -C 20 alkoxy group.
所述第二表面的功函数可在5.0eV-6.5eV的范围内。例如,所述第二表面的功函数可在5.3eV-6.2eV的范围内。A work function of the second surface may be in the range of 5.0eV-6.5eV. For example, the work function of the second surface may be in the range of 5.3eV-6.2eV.
所述电子器件可包括有机发光器件、有机太阳能电池、有机存储器件、或有机薄膜晶体管,但不限于此。可使用所有类型的有机电子器件、无机电子器件和能量器件。The electronic device may include an organic light emitting device, an organic solar cell, an organic memory device, or an organic thin film transistor, but is not limited thereto. All types of organic electronic devices, inorganic electronic devices and energy devices can be used.
如果所述电子器件为包括具有5.0eV或更大的电离势(其比通常的氧化铟锡(ITO)电极的功函数(其在约4.7-4.9eV的范围内)大0.3eV或更多)的发射层的有机发光器件,可使用根据本发明的高功函数且高电导率的电极代替ITO阳极。在这点上,所述高功函数且高电导率的电极的第二表面可面对所述发射层。另外,所述高功函数且高电导率的电极的第二表面可与所述发射层接触。或者,空穴传输层可选择性地置于所述高功函数且高电导率的电极和所述发射层之间。这里,所述高功函数且高电导率的电极的第二表面可与所述空穴传输层接触。通常,空穴注入层和空穴传输层置于所述ITO阳极和所述发射层之间。但是,由于使用所述高功函数且高电导率的电极,可不形成HIL和/或HTL。因此,可使用所述高功函数且高电导率的电极制造柔性有机发光显示器以及平板有机发光显示器,且可简化所述有机发光器件的结构。If the electronic device is composed of an ionization potential of 5.0 eV or greater (which is 0.3 eV or more greater than the work function of a typical indium tin oxide (ITO) electrode (which is in the range of about 4.7-4.9 eV) In the organic light-emitting device of the emission layer, the electrode with high work function and high conductivity according to the present invention can be used instead of the ITO anode. In this regard, the second surface of the high work function and high conductivity electrode may face the emission layer. In addition, a second surface of the high work function and high conductivity electrode may be in contact with the emission layer. Alternatively, a hole transport layer may be selectively interposed between the high work function and high conductivity electrode and the emission layer. Here, the second surface of the high work function and high conductivity electrode may be in contact with the hole transport layer. Typically, a hole injection layer and a hole transport layer are placed between the ITO anode and the emissive layer. However, due to the use of the high work function and high conductivity electrodes, HIL and/or HTL may not be formed. Therefore, a flexible organic light emitting display and a flat organic light emitting display can be manufactured using the electrode with high work function and high conductivity, and the structure of the organic light emitting device can be simplified.
同时,如果所述电子器件为包括具有5.0eV或更大的电离势(其比通常的ITO电极的功函数大0.3eV或更多)的光活性层的有机太阳能电池,可使用根据本发明的高功函数且高电导率的电极代替ITO阳极。在这点上,所述高功函数且高电导率的电极的第二表面可面对所述光活性层。这里,所述高功函数且高电导率的电极的第二表面可与所述光活性层接触。通常,空穴提取层置于所述ITO阳极和所述光活性层之间。但是,由于使用所述高功函数且高电导率的电极,可不形成所述空穴提取层。因此,可使用所述高功函数且高电导率的电极制造柔性有机太阳能电池以及平板太阳能电池,且可简化所述有机太阳能电池的结构。Meanwhile, if the electronic device is an organic solar cell including a photoactive layer having an ionization potential of 5.0 eV or more (which is 0.3 eV or more larger than the work function of a general ITO electrode), the method according to the present invention can be used. An electrode with high work function and high conductivity replaces the ITO anode. In this regard, the second surface of the high work function and high conductivity electrode may face the photoactive layer. Here, the second surface of the high work function and high conductivity electrode may be in contact with the photoactive layer. Typically, a hole extraction layer is placed between the ITO anode and the photoactive layer. However, since the high work function and high conductivity electrode is used, the hole extraction layer may not be formed. Therefore, flexible organic solar cells and flat solar cells can be manufactured using the high work function and high conductivity electrodes, and the structure of the organic solar cells can be simplified.
附图说明Description of drawings
通过参考附图详细描述其示例性实施方式,本发明的以上和其它特征和优点将变得明晰,其中:The above and other features and advantages of the present invention will become apparent by describing in detail exemplary embodiments thereof with reference to the accompanying drawings, in which:
图1是根据本发明实施方式的电极的示意性横截面图;1 is a schematic cross-sectional view of an electrode according to an embodiment of the present invention;
图2是根据本发明实施方式的有机发光器件的示意性横截面图;2 is a schematic cross-sectional view of an organic light emitting device according to an embodiment of the present invention;
图3示意性地显示所述有机发光器件的基底、电极(阳极)和空穴传输层(HTL)的功函数;Figure 3 schematically shows the work function of the substrate, electrode (anode) and hole transport layer (HTL) of the organic light emitting device;
图4是根据本发明实施方式的有机太阳能电池的示意性横截面图;4 is a schematic cross-sectional view of an organic solar cell according to an embodiment of the present invention;
图5是根据本发明实施方式的有机薄膜晶体管(TFT)的示意性横截面图;5 is a schematic cross-sectional view of an organic thin film transistor (TFT) according to an embodiment of the present invention;
图6是说明X射线光电子能谱法(XPS)的能谱的图,其显示相对于溅射时间的根据实施例1制备的电极4的分子浓度;6 is a graph illustrating an energy spectrum of X-ray photoelectron spectroscopy (XPS), which shows the molecular concentration of the electrode 4 prepared according to Example 1 with respect to sputtering time;
图7是说明根据实施例1和对比例A制备的电极1-4和A的透光率的图;7 is a graph illustrating the transmittance of electrodes 1-4 and A prepared according to Example 1 and Comparative Example A;
图8是说明根据实施例1制备的电极1-4的空穴迁移率的图;Figure 8 is a graph illustrating the hole mobility of electrodes 1-4 prepared according to Example 1;
图9是说明根据实施例1制备的电极1-4的空穴注入效率的图;9 is a graph illustrating the hole injection efficiency of electrodes 1-4 prepared according to Example 1;
图10是说明根据实施例2和对比例1-3制备的有机发光二极管(OLED)1-4和A-B的效率相对于亮度的图;10 is a graph illustrating the efficiency versus luminance of organic light emitting diodes (OLEDs) 1-4 and A-B prepared according to Example 2 and Comparative Examples 1-3;
图11是说明根据实施例2和对比例1-3制备的OLED 1-4和A-B的亮度相对于电压的图;和Figure 11 is a graph illustrating brightness versus voltage for OLEDs 1-4 and A-B prepared according to Example 2 and Comparative Examples 1-3; and
图12是说明根据实施例2和对比例1-3制备的OLED 1-4和A-B的亮度相对于时间的图。12 is a graph illustrating the brightness versus time of OLEDs 1-4 and A-B prepared according to Example 2 and Comparative Examples 1-3.
具体实施方式detailed description
下文中,将参照附图详细描述本发明的示例性实施方式。Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
如本文中使用的术语“和/或”包括相关所列项目的一种或多种的任何和全部组合。表述如“的至少一种(个)”当在要素列表之后时修饰整个要素列表且不是修饰所述列表的单独的要素。As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. Expressions such as "at least one of" when preceding a list of elements modify the entire list of elements and do not modify the individual elements of the list.
图1是根据本发明实施方式的高功函数且高电导率的电极15和基底10的示意性横截面图。1 is a schematic cross-sectional view of a high work function and high conductivity electrode 15 and substrate 10 according to an embodiment of the present invention.
高功函数且高电导率的电极15包括具有0.1S/cm或更大的电导率的导电材料和低表面能材料。高功函数且高电导率的电极15具有第一表面15A和与第一表面15A相反的第二表面15B。在第二表面15B中所述低表面能材料的浓度大于在第一表面15A中所述低表面能材料的浓度。第二表面15B可具有5.0eV或更大的功函数。具有100nm厚度的高功函数且高电导率的电极15的电导率为1S/cm或更大。The high work function and high conductivity electrode 15 includes a conductive material having a conductivity of 0.1 S/cm or more and a low surface energy material. The electrode 15 having a high work function and high conductivity has a first surface 15A and a second surface 15B opposite to the first surface 15A. The concentration of the low surface energy material in the second surface 15B is greater than the concentration of the low surface energy material in the first surface 15A. The second surface 15B may have a work function of 5.0 eV or more. The high work function and high conductivity electrode 15 having a thickness of 100 nm has a conductivity of 1 S/cm or more.
本文中使用的“低表面能材料”是指能够形成具有低表面能的膜的材料,特别是具有比所述导电材料低的表面能的材料。在包括所述低表面能材料和导电材料的组合物中,由于所述低表面能材料和导电材料之间的表面能差异,发生相偏析(相分离,phasesegregation),使得所述低表面能材料形成上部相,和所述导电材料形成下部相。所述低表面能材料包括至少一个F且可具有比所述导电材料高的疏水性。另外,所述低表面能材料可为能够提供比所述导电材料高的功函数的材料。例如,具有100nm厚度且由所述低表面能材料形成的薄膜可具有30mN/m或更小的表面能和在10-15至10-1S/cm范围内的电导率。另外,具有100nm厚度且由包括所述低表面能材料的导电聚合物组合物形成的薄膜可具有30mN/m或更小的表面能和在10-7至10-1S/cm范围内的电导率。The "low surface energy material" used herein refers to a material capable of forming a film with low surface energy, particularly a material having a lower surface energy than the conductive material. In the composition comprising the low surface energy material and the conductive material, due to the difference in surface energy between the low surface energy material and the conductive material, phase segregation (phase separation, phasesegregation) occurs, so that the low surface energy material An upper phase is formed, and the conductive material forms a lower phase. The low surface energy material includes at least one F and may have a higher hydrophobicity than the conductive material. In addition, the low surface energy material may be a material capable of providing a higher work function than the conductive material. For example, a thin film having a thickness of 100 nm and formed of the low surface energy material may have a surface energy of 30 mN/m or less and an electrical conductivity in the range of 10 −15 to 10 −1 S/cm. In addition, a thin film having a thickness of 100 nm and formed from the conductive polymer composition including the low surface energy material may have a surface energy of 30 mN/m or less and conductance in the range of 10 -7 to 10 -1 S/cm Rate.
因此,当将包括所述导电材料和低表面能材料的用于形成电极的组合物施加到基底10时,由于所述低表面能材料的低表面能,所述导电材料和低表面能材料不能均匀地彼此混合。替代地,所述导电材料和低表面能材料可分布,使得所述低表面能材料的浓度在从第一表面15A至第二表面15B的方向上逐渐增加,和相对地,所述导电材料的浓度在从第二表面15B至第一表面15A的方向上逐渐增加。然后,将包括所述导电材料和低表面能材料且施加到基底10的用于形成电极的组合物烘焙以形成高功函数且高电导率的电极15,其中所述低表面能材料的浓度在从第一表面15A至第二表面15B的方向上逐渐增加。Therefore, when the composition for forming an electrode including the conductive material and the low surface energy material is applied to the substrate 10, due to the low surface energy of the low surface energy material, the conductive material and the low surface energy material cannot Mix with each other evenly. Alternatively, the conductive material and the low surface energy material may be distributed such that the concentration of the low surface energy material gradually increases in the direction from the first surface 15A to the second surface 15B, and relatively, the conductive material The concentration gradually increases in the direction from the second surface 15B to the first surface 15A. Then, the composition for forming an electrode comprising the conductive material and the low surface energy material and applied to the substrate 10 is baked to form a high work function and high conductivity electrode 15, wherein the concentration of the low surface energy material is gradually increases in the direction from the first surface 15A to the second surface 15B.
由于高功函数且高电导率的电极15通过进行一溶液成膜方法(one solutionfilm-forming process)经由所述导电材料和低表面能材料的自组织形成,其具有单层结构,其中在所述导电材料层和所述低表面能材料层之间的边界是不可识别的。Since the electrode 15 having a high work function and high conductivity is formed by self-organization of the conductive material and the low surface energy material by performing a one solution film-forming process, it has a single-layer structure in which the The boundary between the layer of conductive material and the layer of low surface energy material is not identifiable.
高功函数且高电导率的电极15的第一表面15A的功函数可等于或大于所述导电材料的功函数,并且高功函数且高电导率的电极15的第二表面15B的功函数可等于或小于所述低表面能材料的功函数,但是所述功函数不限于此。The work function of the first surface 15A of the high work function and high conductivity electrode 15 may be equal to or greater than the work function of the conductive material, and the work function of the second surface 15B of the high work function and high conductivity electrode 15 may be equal to or less than the work function of the low surface energy material, but the work function is not limited thereto.
所述低表面能材料可为在极性溶剂中具有90%或更大、例如95%或更大的溶解度的材料。所述极性溶剂的实例包括水、醇(甲醇、乙醇、正丙醇、2-丙醇、正丁醇等)、乙二醇、丙三醇、二甲基甲酰胺(DMF)、二甲亚砜(DMSO)、丙酮等,但不限于此。The low surface energy material may be a material having a solubility in polar solvents of 90% or greater, such as 95% or greater. Examples of the polar solvent include water, alcohols (methanol, ethanol, n-propanol, 2-propanol, n-butanol, etc.), ethylene glycol, glycerol, dimethylformamide (DMF), dimethyl Sulfoxide (DMSO), acetone, etc., but not limited thereto.
所述低表面能材料可包括至少一个F。例如,所述低表面能材料可为具有至少一个F的氟化聚合物或氟化低聚物。The low surface energy material may include at least one F. For example, the low surface energy material can be a fluorinated polymer or oligomer having at least one F.
根据本发明的实施方式,所述低表面能材料可为具有由下式1-3之一表示的重复单元的氟化聚合物。According to an embodiment of the present invention, the low surface energy material may be a fluorinated polymer having a repeating unit represented by one of the following formulas 1-3.
式1Formula 1
在式1中,a为0-10,000,000的数;In Formula 1, a is a number from 0 to 10,000,000;
b为1-10,000,000的数;和b is a number from 1 to 10,000,000; and
Q1为-[O-C(R1)(R2)-C(R3)(R4)]c-[OCF2CF2]d-R5、-COOH或-O-Rf-R6;Q 1 is -[OC(R 1 )(R 2 )-C(R 3 )(R 4 )] c -[OCF 2 CF 2 ] d -R 5 , -COOH or -OR f -R 6 ;
其中R1x、R2、R3和R4各自独立地为-F、-CF3、-CHF2或-CH2F;wherein R 1 x , R 2 , R 3 and R 4 are each independently -F, -CF 3 , -CHF 2 or -CH 2 F;
c和d各自独立地为0-20的数;c and d are each independently a number from 0-20;
Rf为其中z为1-50的整数的-(CF2)z-或其中z为1-50的整数的-(CF2CF2O)z-CF2CF2-;R f is -(CF 2 ) z -, where z is an integer from 1 to 50, or -(CF 2 CF 2 O) z -CF 2 CF 2 -, where z is an integer from 1 to 50;
R5和R6各自独立地为-SO3M、-PO3M2或-CO2M;R 5 and R 6 are each independently -SO 3 M, -PO 3 M 2 or -CO 2 M;
其中M为Na+、K+、Li+、H+、CH3(CH2)wNH3 +、NH4 +、NH2 +、NHSO2CF3 +、CHO+、C2H5OH+、CH3OH+或CH3(CH2)wCHO+,其中w为0-50的整数。Where M is Na + , K + , Li + , H + , CH 3 (CH 2 ) w NH 3 + , NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + or CH 3 (CH 2 ) w CHO + , wherein w is an integer of 0-50.
式2Formula 2
在式2中,Q2为氢原子、取代或未取代的C6-C60芳基、或者-COOH;In formula 2, Q 2 is a hydrogen atom, a substituted or unsubstituted C 6 -C 60 aryl group, or -COOH;
Q3为氢原子、或者取代或未取代的C1-C20烷基;Q 3 is a hydrogen atom, or a substituted or unsubstituted C 1 -C 20 alkyl group;
Q4为-O-(CF2)r-SO3M、-O-(CF2)r-PO3M2、-O-(CF2)r-CO2M 或-CO-NH-(CH2)s-(CF2)t-CF3;Q 4 is -O-(CF 2 ) r -SO 3 M, -O-(CF 2 ) r -PO 3 M 2 , -O-(CF 2 ) r -CO 2 M or -CO-NH-(CH 2 ) s -(CF 2 ) t -CF 3 ;
其中r、s和t各自独立地为0-20的数;和wherein r, s and t are each independently a number from 0 to 20; and
其中M为Na+、K+、Li+、H+、CH3(CH2)wNH3 +、NH4 +、NH2 +、NHSO2CF3 +、CHO+、C2H5OH+、CH3OH+或CH3(CH2)wCHO+,其中w为0-50的整数。Where M is Na + , K + , Li + , H + , CH 3 (CH 2 ) w NH 3 + , NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + or CH 3 (CH 2 ) w CHO + , wherein w is an integer of 0-50.
式3Formula 3
在式3中,0≤m<10,000,000和0<n≤10,000,000;In formula 3, 0≤m<10,000,000 and 0<n≤10,000,000;
x和y各自独立地为0-20的数;和x and y are each independently a number from 0 to 20; and
Y为-SO3M、-PO3M2或-CO2M;Y is -SO 3 M, -PO 3 M 2 or -CO 2 M;
其中M为Na+、K+、Li+、H+、CH3(CH2)wNH3 +、NH4 +、NH2 +、NHSO2CF3 +、CHO+、C2H5OH+、CH3OH+或CH3(CH2)wCHO+,其中w为0-50的整数。Where M is Na + , K + , Li + , H + , CH 3 (CH 2 ) w NH 3 + , NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + or CH 3 (CH 2 ) w CHO + , wherein w is an integer of 0-50.
例如,所述低表面能材料可为包括由式1表示的重复单元的氟化聚合物,但不限于此。For example, the low surface energy material may be a fluorinated polymer including a repeating unit represented by Formula 1, but is not limited thereto.
例如,所述低表面能材料为包括由式1表示的重复单元的氟化聚合物,其中a为100-10000的数,b为50-1000的数,且Q1为-[O-C(R1)(R2)-C(R3)(R4)]c-[OCF2CF2]d-R5。For example, the low surface energy material is a fluorinated polymer comprising repeating units represented by formula 1, wherein a is a number from 100 to 10000, b is a number from 50 to 1000, and Q 1 is -[OC(R 1 )(R 2 )-C(R 3 )(R 4 )] c -[OCF 2 CF 2 ] d -R 5 .
例如,所述低表面能材料可为包括由式1表示的重复单元的氟化聚合物,其中a为100-10000的数,b为50-1000的数,Q1为-[O-C(R1)(R2)-C(R3)(R4)]c-[OCF2CF2]d-R5,其中c为1-3的数,R1、R2和R3为-F,R4为-CF3,d为1-3的数,且R5为-SO3M,但是所述低表面能材料不限于此。For example, the low surface energy material may be a fluorinated polymer comprising repeating units represented by formula 1, wherein a is a number from 100 to 10000, b is a number from 50 to 1000, Q 1 is -[OC(R 1 )(R 2 )-C(R 3 )(R 4 )] c- [OCF 2 CF 2 ] d -R 5 , wherein c is the number of 1-3, R 1 , R 2 and R 3 are-F, R 4 is -CF 3 , d is a number of 1-3, and R 5 is -SO 3 M, but the low surface energy material is not limited thereto.
同时,所述低表面能材料可为由下式10表示的基于氟化硅烷的材料。Meanwhile, the low surface energy material may be a fluorinated silane-based material represented by Formula 10 below.
式10Formula 10
X-Mf n-Mh m-Ma r-(G)p XM f n -M h m -M a r -(G) p
在式10中,In Equation 10,
X为端基;X is a terminal group;
Mf为源自通过全氟聚醚醇、多异氰酸酯和异氰酸酯反应性的非氟化单体的缩合反应制备的氟化单体的单元或氟化的C1-C20亚烷基:M f is a unit derived from a fluorinated monomer or a fluorinated C 1 -C 20 alkylene group prepared by the condensation reaction of perfluoropolyether alcohols, polyisocyanates and isocyanate-reactive non-fluorinated monomers:
Mh为源自非氟化单体的单元; M is a unit derived from a non-fluorinated monomer;
Ma为具有由-Si(Y4)(Y5)(Y6)表示的甲硅烷基的单元,M a is a unit having a silyl group represented by -Si(Y 4 )(Y 5 )(Y 6 ),
其中,Y4、Y5和Y6各自独立地为卤素原子、取代或未取代的C1-C20烷基、取代或未取代的C6-C30芳基、或者能水解的取代基,其中Y4、Y5和Y6的至少一个为能水解的取代基,Wherein, Y 4 , Y 5 and Y 6 are each independently a halogen atom, a substituted or unsubstituted C 1 -C 20 alkyl group, a substituted or unsubstituted C 6 -C 30 aryl group, or a hydrolyzable substituent, wherein at least one of Y 4 , Y 5 and Y 6 is a hydrolyzable substituent,
G为包括链转移剂的单价有机基团;G is a monovalent organic group including a chain transfer agent;
n为1-100的数;n is a number from 1 to 100;
m为0-100的数;m is a number from 0 to 100;
r为0-100的数;r is a number from 0-100;
其中n+m+r≥2;和where n+m+r≥2; and
p为0-10的数。p is a number from 0-10.
例如,X可为卤素原子,Mf可为氟化的C1-C10亚烷基,Mh可为C2-C10亚烷基,Y4、Y5和Y6可各自独立地为卤素原子(Br、Cl、F等),和p可为0。例如,所述由式10表示的基于氟化硅烷的材料可为CF3CH2CH2SiCl3,但不限于此。For example, X can be a halogen atom, M f can be a fluorinated C 1 -C 10 alkylene group, M h can be a C 2 -C 10 alkylene group, Y 4 , Y 5 and Y 6 can each be independently Halogen atoms (Br, Cl, F, etc.), and p may be 0. For example, the fluorinated silane-based material represented by Formula 10 may be CF 3 CH 2 CH 2 SiCl 3 , but is not limited thereto.
所述由式10表示的基于氟化硅烷的材料描述在美国专利No.7728098中,其公开内容全部引入本文作为参考。The fluorinated silane-based material represented by Formula 10 is described in US Patent No. 7,728,098, the disclosure of which is incorporated herein by reference in its entirety.
所述导电材料可为具有0.1S/cm或更大、例如1S/cm或更大的高电导率的导电聚合物。The conductive material may be a conductive polymer having a high electrical conductivity of 0.1 S/cm or more, such as 1 S/cm or more.
例如,所述导电材料可包括聚噻吩、聚苯胺、聚吡咯、聚苯乙烯、磺化聚苯乙烯、聚(3,4-亚乙基二氧噻吩)、自掺杂的导电聚合物、及其任意衍生物和组合。所述衍生物可包括各种磺酸。For example, the conductive material may include polythiophene, polyaniline, polypyrrole, polystyrene, sulfonated polystyrene, poly(3,4-ethylenedioxythiophene), self-doped conductive polymers, and Any derivatives and combinations thereof. The derivatives may include various sulfonic acids.
例如,所述导电材料可包括聚苯胺/十二烷基苯磺酸(Pani:DBSA,参照下式)、聚(3,4-亚乙基二氧噻吩)/聚(4-磺苯乙烯)(PEDOT:PSS,参照下式)、聚苯胺/樟脑磺酸(Pani:CSA)、或聚苯胺/聚(4-磺苯乙烯)(PANI:PSS),但不限于此。For example, the conductive material may include polyaniline/dodecylbenzenesulfonic acid (Pani:DBSA, see formula below), poly(3,4-ethylenedioxythiophene)/poly(4-sulfostyrene) (PEDOT:PSS, refer to the following formula), polyaniline/camphorsulfonic acid (Pani:CSA), or polyaniline/poly(4-sulfonylstyrene) (PANI:PSS), but not limited thereto.
这里,R可为H或C1-C10烷基。Here, R can be H or C 1 -C 10 alkyl.
所述自掺杂的导电聚合物可具有在10-10,000,000范围内的聚合度且可包括由下式13表示的重复单元。The self-doping conductive polymer may have a degree of polymerization in the range of 10-10,000,000 and may include repeating units represented by Formula 13 below.
式13Formula 13
在式13中,0<m<10,000,000,0<n<10,000,000,0≤a≤20和0≤b≤20;In formula 13, 0<m<10,000,000, 0<n<10,000,000, 0≤a≤20 and 0≤b≤20;
R1、R2、R3、R′1、R′2、R′3和R′4的至少一个包括离子基团,且A、B、A′和B′各自独立地选自C、Si、Ge、Sn和Pb;At least one of R 1 , R 2 , R 3 , R' 1 , R' 2 , R' 3 and R' 4 includes an ionic group, and A, B, A' and B' are each independently selected from C, Si , Ge, Sn and Pb;
R1、R2、R3、R′1、R′2、R′3和R′4各自独立地选自氢原子、卤素原子、硝基、取代或未取代的氨基、氰基、取代或未取代的C1-C30烷基、取代或未取代的C1-C30烷氧基、取代或未取代的C6-C30芳基、取代或未取代的C6-C30芳基烷基、取代或未取代的C6-C30芳氧基、取代或未取代的C2-C30杂芳基、取代或未取代的C2-C30杂芳基烷基、取代或未取代的C2-C30杂芳氧基、取代或未取代的C5-C30环烷基、取代或未取代的C5-C30杂环烷基、取代或未取代的C1-C30烷基酯基、和取代或未取代的C6-C30芳基酯基,其中氢原子或卤素原子选择性地附着到式13的重复单元的碳;R 1 , R 2 , R 3 , R' 1 , R' 2 , R' 3 and R' 4 are each independently selected from a hydrogen atom, a halogen atom, a nitro group, a substituted or unsubstituted amino group, a cyano group, a substituted or Unsubstituted C 1 -C 30 alkyl, substituted or unsubstituted C 1 -C 30 alkoxy, substituted or unsubstituted C 6 -C 30 aryl, substituted or unsubstituted C 6 -C 30 aryl Alkyl, substituted or unsubstituted C 6 -C 30 aryloxy, substituted or unsubstituted C 2 -C 30 heteroaryl, substituted or unsubstituted C 2 -C 30 heteroarylalkyl, substituted or unsubstituted Substituted C 2 -C 30 heteroaryloxy, substituted or unsubstituted C 5 -C 30 cycloalkyl, substituted or unsubstituted C 5 -C 30 heterocycloalkyl, substituted or unsubstituted C 1 -C 30 alkyl ester groups, and substituted or unsubstituted C 6 -C 30 aryl ester groups, wherein a hydrogen atom or a halogen atom is selectively attached to the carbon of the repeating unit of formula 13;
R4为共轭导电聚合物链;和R is a conjugated conductive polymer chain ; and
X和X′各自独立地选自单键、O、S、取代或未取代的C1-C30亚烷基、取代或未取代的C1-C30亚杂烷基、取代或未取代的C6-C30亚芳基、取代或未取代的C6-C30亚芳基烷基(C6-C30芳基亚烷基)、取代或未取代的C2-C30亚杂芳基、取代或未取代的C2-C30亚杂芳基烷基(C2-C30杂芳基亚烷基)、取代或未取代的C5-C20亚环烷基、和取代或未取代的C5-C30亚杂环烷基,其中氢原子或卤素原子选择性地附着到式13的重复单元的碳。X and X' are each independently selected from a single bond, O, S, substituted or unsubstituted C 1 -C 30 alkylene, substituted or unsubstituted C 1 -C 30 heteroalkylene, substituted or unsubstituted C 6 -C 30 arylene, substituted or unsubstituted C 6 -C 30 arylene alkyl (C 6 -C 30 arylalkylene), substituted or unsubstituted C 2 -C 30 heteroarylene substituted or unsubstituted C 2 -C 30 heteroarylalkylene (C 2 -C 30 heteroarylalkylene), substituted or unsubstituted C 5 -C 20 cycloalkylene, and substituted or Unsubstituted C 5 -C 30 heterocycloalkylene in which a hydrogen atom or a halogen atom is selectively attached to the carbon of the repeating unit of Formula 13.
例如,所述离子基团可选自:选自PO3 2-、SO3 -(SO3 2-)、COO-、I-和CH3COO-的阴离子基团;选自Na+、K+、Li+、Mg2+、Zn2+和Al3+的金属离子;及选自H+、NH4 +和CH3(-CH2-)nO+的有机离子,其中n为1-50的自然数。所述离子基团可进一步包括与所述阴离子基团匹配的阳离子基团。For example, the ionic groups may be selected from: anionic groups selected from PO 3 2- , SO 3 - (SO 3 2- ), COO - , I - and CH 3 COO - ; selected from Na + , K + , Li + , Mg 2+ , Zn 2+ and Al 3+ metal ions; and organic ions selected from H + , NH 4 + and CH 3 (-CH 2 -) n O + , wherein n is 1-50 of natural numbers. The ionic group may further include a cationic group matching the anionic group.
例如,在式13的自掺杂导电聚合物中,R1、R2、R3、R′1、R′2、R′3和R′4的至少一个可为氟或用氟取代的基团,但所述自掺杂的导电聚合物不限于此。For example, in the self-doping conductive polymer of formula 13, at least one of R 1 , R 2 , R 3 , R' 1 , R' 2 , R' 3 and R' 4 may be fluorine or a group substituted with fluorine group, but the self-doping conductive polymer is not limited thereto.
未取代的烷基的实例包括直链或支化的烷基,如甲基、乙基、丙基、异丁基、仲丁基、叔丁基、戊基、异戊基和己基。所述烷基中的一个或多个氢原子可用如下取代:卤素原子、羟基、硝基、氰基、取代或未取代的氨基(-NH2、-NH(R)或-N(R′)(R"),其中R、R′和R"各自独立地为C1-C10烷基)、脒基、肼、腙、羧基、磺酸基、磷酸基、C1-C20烷基、C1-C20卤代烷基、C1-C20烯基(C2-C20烯基)、C1-C20炔基(C2-C20炔基)、C1-C20杂烷基、C6-C20芳基、C6-C20芳基烷基(C7-C20芳烷基)、C6-C20杂芳基、或C6-C20杂芳基烷基。Examples of unsubstituted alkyl groups include linear or branched alkyl groups such as methyl, ethyl, propyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl and hexyl. One or more hydrogen atoms in the alkyl group can be substituted by: a halogen atom, a hydroxyl group, a nitro group, a cyano group, a substituted or unsubstituted amino group (-NH 2 , -NH(R) or -N(R') (R"), wherein R, R' and R" are each independently C 1 -C 10 alkyl), amidino, hydrazine, hydrazone, carboxyl, sulfonic acid, phosphoric acid, C 1 -C 20 alkyl, C 1 -C 20 haloalkyl, C 1 -C 20 alkenyl (C 2 -C 20 alkenyl), C 1 -C 20 alkynyl (C 2 -C 20 alkynyl), C 1 -C 20 heteroalkyl , C 6 -C 20 aryl, C 6 -C 20 arylalkyl (C 7 -C 20 aralkyl), C 6 -C 20 heteroaryl, or C 6 -C 20 heteroarylalkyl.
杂烷基为由于用杂原子如O、S、N或P代替烷基的主链的一个或多个碳原子如1-5个碳原子而形成的基团。A heteroalkyl group is a group formed by replacing one or more carbon atoms, such as 1 to 5 carbon atoms, of the main chain of the alkyl group with a heteroatom such as O, S, N or P.
芳基是指包括一个或多个芳族环的碳环芳族体系,所述环通过悬垂方法(process)连接或稠合在一起。芳基的实例包括苯基、萘基和四氢萘基。芳基的一个或多个氢原子可用与在烷基中相同的取代基取代。Aryl refers to a carbocyclic aromatic system comprising one or more aromatic rings joined or fused together by a pendant process. Examples of aryl groups include phenyl, naphthyl and tetrahydronaphthyl. One or more hydrogen atoms of the aryl group may be substituted with the same substituents as in the alkyl group.
杂芳基是指具有1、2或3个选自N、O、P和S的杂原子且其余环原子为碳的5-30元的芳族环体系,其中所述环通过悬垂方法连接或稠合在一起。此外,杂芳基的一个或多个氢原子可用与在烷基中相同的取代基取代。Heteroaryl means a 5-30 membered aromatic ring system having 1, 2 or 3 heteroatoms selected from N, O, P and S and the remaining ring atoms being carbon, wherein the rings are attached by pendant means or Fused together. In addition, one or more hydrogen atoms of the heteroaryl group may be substituted with the same substituents as in the alkyl group.
烷氧基是指基团-O-烷基,其中所述烷基如上限定。烷氧基的实例包括甲氧基、乙氧基、丙氧基、异丁氧基、仲丁氧基、戊氧基、异戊氧基、和己氧基。烷氧基的一个或多个氢原子可用与在烷基中相同的取代基取代。Alkoxy refers to the group -O-alkyl wherein said alkyl is as defined above. Examples of alkoxy include methoxy, ethoxy, propoxy, isobutoxy, sec-butoxy, pentyloxy, isopentyloxy, and hexyloxy. One or more hydrogen atoms of the alkoxy group may be substituted with the same substituents as in the alkyl group.
杂烷氧基是指其中在烷基链中存在至少一个杂原子如O、S或N的烷氧基,且杂烷氧基的实例包括CH3CH2OCH2CH2O-、C4H9OCH2CH2OCH2CH2O-和CH3O(CH2CH2O)nH、CH3O(CH2CH2O)n-。Heteroalkoxy means an alkoxy group in which at least one heteroatom such as O, S or N is present in the alkyl chain, and examples of heteroalkoxy include CH3CH2OCH2CH2O- , C4H 9 OCH 2 CH 2 OCH 2 CH 2 O- and CH 3 O(CH 2 CH 2 O) n H, CH 3 O(CH 2 CH 2 O) n -.
芳基烷基是指用低级烷基如甲基、乙基、丙基等代替以上限定的芳基的一些氢原子而形成的基团。例如,芳基烷基可为苄基、苯乙基等。芳基烷基的一个或多个氢原子可用与在烷基中相同的取代基取代。Arylalkyl means a group formed by substituting a lower alkyl group such as methyl, ethyl, propyl, etc. for some of the hydrogen atoms of the aryl group defined above. For example, arylalkyl can be benzyl, phenethyl, and the like. One or more hydrogen atoms of the arylalkyl group may be substituted with the same substituents as in the alkyl group.
杂芳基烷基是指由于用低级烷基代替杂芳基的一些氢原子而形成的基团。在所述杂芳基烷基中,所述杂芳基如上限定。杂芳基烷基的一个或多个氢原子可用与在烷基中相同的取代基取代。Heteroarylalkyl refers to a group formed by replacing some of the hydrogen atoms of a heteroaryl with a lower alkyl. In the heteroarylalkyl group, the heteroaryl group is as defined above. One or more hydrogen atoms of the heteroarylalkyl group may be substituted with the same substituents as in the alkyl group.
芳氧基是指基团-O-芳基,其中所述芳基如上限定。芳氧基的实例包括苯氧基、萘氧基、蒽氧基、菲氧基、芴氧基和茚氧基。芳氧基的一个或多个氢原子可用与在烷基中相同的取代基取代。Aryloxy refers to the group -O-aryl, wherein the aryl is as defined above. Examples of the aryloxy group include phenoxy, naphthyloxy, anthracenyloxy, phenanthrenyloxy, fluorenyloxy and indenyloxy. One or more hydrogen atoms of the aryloxy group may be substituted with the same substituents as in the alkyl group.
杂芳氧基是指基团-O-杂芳基,其中所述杂芳基如上限定。Heteroaryloxy refers to the group -O-heteroaryl, wherein said heteroaryl is as defined above.
杂芳氧基的实例包括苄氧基和苯乙氧基。杂芳氧基的一个或多个氢原子可用与在烷基中相同的取代基取代。Examples of heteroaryloxy include benzyloxy and phenethoxy. One or more hydrogen atoms of the heteroaryloxy group may be substituted with the same substituents as in the alkyl group.
环烷基是指具有5-30个碳原子的单价单环体系。环烷基的一个或多个氢原子可用与在烷基中相同的取代基取代。Cycloalkyl refers to a monovalent monocyclic ring system having 5-30 carbon atoms. One or more hydrogen atoms of the cycloalkyl group may be substituted with the same substituents as in the alkyl group.
杂环烷基是指具有1、2或3个选自N、O、P或S的杂原子且其余环原子为C的5-30元的单价单环体系。杂环烷基的一个或多个氢原子可用与在烷基中相同的取代基取代。Heterocycloalkyl refers to a 5-30 membered monovalent monocyclic ring system having 1, 2 or 3 heteroatoms selected from N, O, P or S and the remaining ring atoms being C. One or more hydrogen atoms of the heterocycloalkyl group may be substituted with the same substituents as in the alkyl group.
烷基酯基是指其中烷基与酯基组合的官能团,其中所述烷基如上限定。Alkyl ester group refers to a functional group in which an alkyl group is combined with an ester group, wherein the alkyl group is as defined above.
杂烷基酯基是指其中杂烷基与酯基组合的官能团,其中所述杂烷基如上限定。A heteroalkyl ester group refers to a functional group in which a heteroalkyl group is combined with an ester group, wherein the heteroalkyl group is as defined above.
芳基酯基是指其中芳基与酯基组合的官能团,其中所述芳基如上限定。An aryl ester group refers to a functional group in which an aryl group is combined with an ester group, wherein the aryl group is as defined above.
杂芳基酯基是指其中杂芳基与酯基组合的官能团,其中所述杂芳基如上限定。氨基是指-NH2、-NH(R)或-N(R′)(R"),其中R、R′和R"各自独立地为C1-C10烷基。A heteroaryl ester group refers to a functional group in which a heteroaryl group is combined with an ester group, wherein the heteroaryl group is as defined above. Amino refers to -NH 2 , -NH(R) or -N(R')(R"), wherein R, R' and R" are each independently C 1 -C 10 alkyl.
卤素原子可为氟、氯、溴、碘或砹,例如氟。The halogen atom may be fluorine, chlorine, bromine, iodine or astatine, eg fluorine.
除了上述导电材料和低表面能材料之外,高功函数且高电导率的电极15可进一步包括金属纳米线。所述金属纳米线可改善高功函数且高电导率的电极15的电导率、光学性质和机械强度。所述金属纳米线可选自例如Ag、Au、Cu、Pt、硅化镍(NiSix)、金属碳纳米管、及其至少两种的任意复合物例如合金或核-壳结构,但不限于此。The high work function and high conductivity electrode 15 may further include metal nanowires in addition to the aforementioned conductive material and low surface energy material. The metal nanowires may improve electrical conductivity, optical properties, and mechanical strength of the high work function and high electrical conductivity electrode 15 . The metal nanowires can be selected from, for example, Ag, Au, Cu, Pt, nickel silicide ( NiSix ), metal carbon nanotubes, and any composites of at least two thereof such as alloys or core-shell structures, but are not limited thereto .
除了上述导电材料和低表面能材料之外,高功函数且高电导率的电极15可进一步包括以下的至少一种:石墨烯薄片和点、还原的石墨烯氧化物、和石墨。The high work function and high conductivity electrode 15 may further include at least one of graphene flakes and dots, reduced graphene oxide, and graphite, in addition to the aforementioned conductive material and low surface energy material.
除了所述导电材料和低表面能材料之外,高功函数且高电导率的电极15可进一步包括半导体纳米线。所述半导体纳米线和金属纳米线可进一步改善高功函数且高电导率的电极15的电导率和光学性质。所述半导体纳米线可选自Si、Ge、用B或N掺杂的Si、用B或N掺杂的Ge、及其至少两种的任意复合物例如合金或核-壳结构,但不限于此。The high work function and high conductivity electrode 15 may further include semiconductor nanowires in addition to the conductive material and low surface energy material. The semiconductor nanowires and metal nanowires can further improve the electrical conductivity and optical properties of the high work function and high electrical conductivity electrode 15 . The semiconductor nanowire can be selected from Si, Ge, Si doped with B or N, Ge doped with B or N, and any composite of at least two thereof such as an alloy or a core-shell structure, but not limited to this.
所述金属纳米线和半导体纳米线可具有在5nm-100nm范围内的直径和在500nm-100μm范围内的长度。但是,所述金属纳米线和半导体纳米线的直径和长度可根据制造所述金属纳米线和半导体纳米线的方法改变。The metal nanowires and semiconductor nanowires may have a diameter in a range of 5 nm-100 nm and a length in a range of 500 nm-100 μm. However, the diameter and length of the metal nanowires and semiconductor nanowires may vary according to methods of manufacturing the metal nanowires and semiconductor nanowires.
除了上述导电材料和低表面能材料之外,高功函数且高电导率的电极15可进一步包括金属纳米点。所述金属纳米点可选自Ag、Au、Cu、Pt、及其至少两种的任意复合物例如合金或核-壳结构,但不限于此。The high work function and high conductivity electrode 15 may further include metal nanodots in addition to the above-mentioned conductive material and low surface energy material. The metal nanodots may be selected from Ag, Au, Cu, Pt, and any composites of at least two thereof such as alloys or core-shell structures, but are not limited thereto.
至少一个由-S(Z100)和-Si(Z101)(Z102)(Z103)表示的部分可附着到所述金属纳米线、半导体纳米线和金属纳米点的表面,其中Z100、Z101、Z102和Z103各自独立地为氢原子、卤素原子、取代或未取代的C1-C20烷基、或者取代或未取代的C1-C20烷氧基。所述由-S(Z100)和-Si(Z101)(Z102)(Z103)表示的部分是自组装的部分,通过其可分别改善在所述金属纳米线、半导体纳米线和金属纳米点内的结合力,或可改善所述金属纳米线、半导体纳米线或金属纳米点与基底10之间的结合力。因此,可改善高功函数且高电导率的电极15的电特性和机械强度。At least one moiety represented by -S(Z 100 ) and -Si(Z 101 )(Z 102 )(Z 103 ), wherein Z 100 , Z 101 , Z 102 and Z 103 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted C 1 -C 20 alkyl group, or a substituted or unsubstituted C 1 -C 20 alkoxy group. The moieties represented by -S(Z 100 ) and -Si(Z 101 )(Z 102 )(Z 103 ) are self-assembled moieties by which the metal nanowires, semiconductor nanowires and metal nanowires can be improved, respectively. The binding force within the nanodots may improve the binding force between the metal nanowires, semiconductor nanowires or metal nanodots and the substrate 10 . Therefore, the electrical characteristics and mechanical strength of the high work function and high conductivity electrode 15 can be improved.
所述金属纳米线、半导体纳米线和/或金属纳米点可均匀地分散在高功函数且高电导率的电极15中,或非均匀地分散在高功函数且高电导率的电极15的特定区域中。The metal nanowires, semiconductor nanowires and/or metal nanodots may be uniformly dispersed in the electrode 15 with high work function and high conductivity, or non-uniformly dispersed in a specific portion of the electrode 15 with high work function and high conductivity. in the area.
例如,所述金属纳米线可通过如下仅形成在高功函数且高电导率的电极15的第一表面15A上:通过使用已知的方法在基底10上形成金属纳米线,将包括所述导电材料和低表面能材料的用于形成电极的组合物施加在其上形成金属纳米线的基底10上,和将所述结构体烘焙。For example, the metal nanowires can be formed only on the first surface 15A of the high work function and high conductivity electrode 15 by forming the metal nanowires on the substrate 10 using known methods, which will include the conductive A composition for forming an electrode of a material and a low surface energy material is applied on the substrate 10 on which the metal nanowires are formed, and the structure is baked.
所述金属纳米线、半导体纳米线和金属纳米点可与高功函数且高电导率的电极15中包含的所述导电材料和低表面能材料的至少一种组合,即物理和/或化学地组合,以形成复合物。The metal nanowires, semiconductor nanowires and metal nanodots may be combined with at least one of the conductive material and the low surface energy material contained in the electrode 15 having a high work function and high conductivity, that is, physically and/or chemically combined to form a compound.
在高功函数且高电导率的电极15中低表面能材料的总含量可在10重量份-500重量份、例如20重量份-400重量份的范围内,基于100重量份所述导电材料,但不限于此。如果所述低表面能材料的含量在上述范围内,高功函数且高电导率的电极15可具有第二表面15B的高电导率和高功函数。The total content of the low surface energy material in the high work function and high conductivity electrode 15 may be in the range of 10 parts by weight to 500 parts by weight, such as 20 parts by weight to 400 parts by weight, based on 100 parts by weight of the conductive material, But not limited to this. If the content of the low surface energy material is within the above range, the high work function and high conductivity electrode 15 may have high conductivity and high work function of the second surface 15B.
如果高功函数且高电导率的电极15用作透明电极,高功函数且高电导率的电极15的厚度L可在20nm-500nm、例如50nm-200nm的范围内。如果高功函数且高电导率的电极15的厚度L在上述范围内,功函数、透射率和柔性可改善。同时,如果高功函数且高电导率的电极15用作反射电极和/或线路(wire),高功函数且高电导率的电极15的厚度L可在20nm-100μm、例如500nm-5μm范围内。如果高功函数且高电导率的电极15的厚度在上述范围内,功函数和电导率可改善。If the high work function and high conductivity electrode 15 is used as a transparent electrode, the thickness L of the high work function and high conductivity electrode 15 may be in the range of 20nm-500nm, for example, 50nm-200nm. If the thickness L of the high work function and high conductivity electrode 15 is within the above range, work function, transmittance, and flexibility may be improved. At the same time, if the electrode 15 with high work function and high conductivity is used as a reflective electrode and/or wire, the thickness L of the electrode 15 with high work function and high conductivity can be in the range of 20nm-100μm, such as 500nm-5μm . If the thickness of the high work function and high conductivity electrode 15 is within the above range, the work function and conductivity can be improved.
如上所述的高功函数且高电导率的电极15可通过如下形成:将包括所述导电材料、所述低表面能材料和溶剂的用于形成电极的组合物施加到基底10,和热处理所述组合物。The electrode 15 having a high work function and high conductivity as described above can be formed by applying a composition for forming an electrode including the conductive material, the low surface energy material, and a solvent to the substrate 10, and heat-treating the electrode 15. said composition.
首先,基底10可为在半导体工艺中通常使用的任何基底。例如,基底10可包括玻璃、蓝宝石、硅、氧化硅、金属箔如铜箔和铝箔、钢如不锈钢、金属氧化物、聚合物基底、及其至少两种的任意组合。所述金属氧化物的实例包括氧化铝、氧化钼、氧化铟锡、氧化锡、和氧化铟锡,且所述聚合物基底的实例包括聚酰亚胺树脂(聚均苯四酰亚胺,kapton)箔、聚醚砜(PES)、聚丙烯酸酯(PAR)、聚醚酰亚胺(PEI)、聚萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸乙二醇酯(PET)、聚苯硫醚(PPS)、聚烯丙基化物(polyallylate)、聚酰亚胺、聚碳酸酯(PC)、三乙酸纤维素(TAC)、乙酸丙酸纤维素(CAP)等,但实例不限于此。First, the substrate 10 may be any substrate commonly used in semiconductor processes. For example, substrate 10 may include glass, sapphire, silicon, silicon oxide, metal foils such as copper and aluminum foils, steel such as stainless steel, metal oxides, polymer substrates, and any combination of at least two thereof. Examples of the metal oxide include aluminum oxide, molybdenum oxide, indium tin oxide, tin oxide, and indium tin oxide, and examples of the polymer base include polyimide resins (polypyromellimid, kapton ) foil, polyethersulfone (PES), polyacrylate (PAR), polyetherimide (PEI), polyethylene naphthalate (PEN), polyethylene terephthalate (PET) , polyphenylene sulfide (PPS), polyallylate (polyallylate), polyimide, polycarbonate (PC), cellulose triacetate (TAC), cellulose acetate propionate (CAP), etc., but examples Not limited to this.
例如,基底10可为如上所述的聚合物基底,但不限于此。For example, substrate 10 may be a polymer substrate as described above, but is not limited thereto.
然后,将包括所述导电材料、低表面能材料和溶剂的用于形成电极的组合物施加到基底10。Then, a composition for forming an electrode including the conductive material, the low surface energy material, and a solvent is applied to the substrate 10 .
在所述用于形成电极的组合物中,所述导电材料和低表面能材料如上限定。In the composition for forming an electrode, the conductive material and the low surface energy material are as defined above.
在所述用于形成电极的组合物中,所述溶剂可为与所述导电材料和低表面能材料能混溶的且通过热处理能除去的任何溶剂。所述溶剂可为极性溶剂,且所述溶剂的实例包括水,醇如甲醇、乙醇、正丙醇、2-丙醇和正丁醇,极性有机溶剂如乙二醇、丙三醇、二甲基甲酰胺(DMF)和二甲亚砜(DMSO),或其至少两种的任意组合。In the composition for forming an electrode, the solvent may be any solvent that is miscible with the conductive material and the low surface energy material and that can be removed by heat treatment. The solvent may be a polar solvent, and examples of the solvent include water, alcohols such as methanol, ethanol, n-propanol, 2-propanol, and n-butanol, polar organic solvents such as ethylene glycol, glycerol, di Methylformamide (DMF) and dimethyl sulfoxide (DMSO), or any combination of at least two thereof.
所述溶剂可为至少两种不同材料的混合物。或者,所述溶剂可包括所述极性有机溶剂。例如,所述溶剂可为极性有机溶剂,水和醇的混合物,水和极性有机溶剂的混合物,醇和极性有机溶剂的混合物,或者水、醇和极性有机溶剂的混合物,且它的其它改变是可能的。The solvent may be a mixture of at least two different materials. Alternatively, the solvent may include the polar organic solvent. For example, the solvent may be a polar organic solvent, a mixture of water and alcohol, a mixture of water and a polar organic solvent, a mixture of alcohol and a polar organic solvent, or a mixture of water, alcohol and a polar organic solvent, and other Change is possible.
所述极性有机溶剂的实例包括乙二醇、丙三醇、DMF、DMSO、及其至少两种的任意组合,但实例不限于此。Examples of the polar organic solvent include ethylene glycol, glycerin, DMF, DMSO, and any combination of at least two thereof, but examples are not limited thereto.
由于所述极性有机溶剂改善所述用于形成电极的组合物中包含的导电聚合物的聚集和结晶能力,可控制或改善所述用于形成电极的组合物和通过使用所述组合物制备的电极的电导率。Since the polar organic solvent improves the aggregation and crystallization ability of the conductive polymer contained in the electrode-forming composition, it is possible to control or improve the electrode-forming composition and the The conductivity of the electrode.
如果所述溶剂包括极性有机溶剂,所述极性有机溶剂的含量可在1-30重量%的范围内,基于100重量%的用于形成电极的组合物,但不限于此。If the solvent includes a polar organic solvent, the content of the polar organic solvent may range from 1 to 30% by weight based on 100% by weight of the composition for forming an electrode, but is not limited thereto.
例如,高功函数且高电导率的电极15不是通过分别形成导电材料层和低表面能材料层形成。相反,因为所述导电材料和低表面能材料由于表面能差异而自排列以形成浓度梯度,因此高功函数且高电导率的电极15通过使用包括如下的一层形成方法(one layer-forming process)形成:将包括所述导电材料、低表面能材料和溶剂的用于形成电极的组合物施加到基底10和热处理所述组合物。因此,其制造方法简单。从而,高功函数且高电导率的电极15可有效地用在大面积电子器件的制备中。For example, the electrode 15 having a high work function and high conductivity is not formed by separately forming a conductive material layer and a low surface energy material layer. On the contrary, since the conductive material and the low surface energy material self-align to form a concentration gradient due to the difference in surface energy, the electrode 15 having a high work function and high conductivity is obtained by using a one layer-forming process including ) formation: applying a composition for forming an electrode including the conductive material, a low surface energy material, and a solvent to the substrate 10 and heat-treating the composition. Therefore, its manufacturing method is simple. Thus, the electrode 15 with high work function and high conductivity can be effectively used in the fabrication of large-area electronic devices.
高功函数且高电导率的电极15可用于多种电子器件中。高功函数且高电导率的电极15具有柔性,这使其区别于ITO。因此,可通过使用柔性结构制造柔性电子器件。因此,所述电子器件可具有柔性。柔性基底可为上述聚合物基底,但不限于此。The electrode 15 with high work function and high conductivity can be used in various electronic devices. The high work function and high conductivity electrode 15 has flexibility, which distinguishes it from ITO. Therefore, flexible electronic devices can be fabricated by using flexible structures. Therefore, the electronic device can have flexibility. The flexible substrate may be the above-mentioned polymer substrate, but is not limited thereto.
所述电子器件可为具有各种已知结构且执行各种功能的器件,例如有机发光器件、有机太阳能电池、有机存储器件、或有机薄膜晶体管(TFT)。The electronic device may be a device having various known structures and performing various functions, such as an organic light emitting device, an organic solar cell, an organic memory device, or an organic thin film transistor (TFT).
所述电子器件可用于多种电子设备例如显示设备、照明灯和半导体芯片中。The electronic device can be used in various electronic devices such as display devices, lighting lamps, and semiconductor chips.
图2为包括高功函数且高电导率的电极120的有机发光器件100的示意性横截面图。图2的有机发光器件100包括基底110、高功函数且高电导率的电极120、空穴传输层(HTL)130、发射层(EML)140、电子传输层(ETL)150、电子注入层(EIL)160、和第二电极170。当向有机发光器件100的高功函数且高电导率的电极120和第二电极170施加电压时,从高功函数且高电导率的电极120注入的空穴经由HTL 130移动到EML 140,且从第二电极170注入的电子经由ETL 150和EIL 160移动到EML 140。所述空穴和电子在EML 140中复合以产生激子。当所述激子从激发态落至基态时,发射光。基底110可设置在高功函数且高电导率的电极120下。高功函数且高电导率的电极120可用作阳极,和第二电极170可用作阴极。2 is a schematic cross-sectional view of an organic light emitting device 100 including an electrode 120 with a high work function and high conductivity. The organic light emitting device 100 of FIG. 2 includes a substrate 110, a high work function and high conductivity electrode 120, a hole transport layer (HTL) 130, an emission layer (EML) 140, an electron transport layer (ETL) 150, an electron injection layer ( EIL) 160, and a second electrode 170. When a voltage is applied to the high work function and high conductivity electrode 120 and the second electrode 170 of the organic light emitting device 100, holes injected from the high work function and high conductivity electrode 120 move to the EML 140 via the HTL 130, and Electrons injected from the second electrode 170 move to the EML 140 via the ETL 150 and the EIL 160 . The holes and electrons recombine in the EML 140 to generate excitons. When the excitons fall from an excited state to a ground state, light is emitted. The substrate 110 may be disposed under the electrode 120 having a high work function and high conductivity. The high work function and high conductivity electrode 120 may serve as an anode, and the second electrode 170 may serve as a cathode.
基底110可为上述基底。例如,基底110可为柔性基底,例如如上所述的聚合物基底。The substrate 110 may be the above-mentioned substrate. For example, substrate 110 may be a flexible substrate, such as a polymeric substrate as described above.
高功函数且高电导率的电极120如以上关于高功函数且高电导率的电极15所描述的那样限定。The high work function and high conductivity electrode 120 is defined as described above with respect to the high work function and high conductivity electrode 15 .
有机发光器件100可不包括空穴注入层(HIL)。The organic light emitting device 100 may not include a hole injection layer (HIL).
使用导电聚合物组合物如PEDOT:PSS和PANI:PSS形成的常规HIL的薄膜电导率在约10-6S/cm-约10-2S/cm范围内。例如,CLEVIOUSTMP VP AI4083的PEDOT:PSS(HeraeousGmbH,来自H.C.Starck GmbH)具有10-3S/cm的电导率,和CLEVIOUSTMP VP CH8000的PEDOT:PSS(Heraeous GmbH,来自H.C.Starck GmbH)具有10-6S/cm的电导率。但是,由于导电聚合物应具有0.1S/cm或更大的电导率以用于形成电极,因此不能使用通常用于形成常规HIL的PEDOT:PSS。另外,根据当前实施方式的具有0.1S/cm或更大的电导率的导电材料不能用于形成HIL,因为在有机发光器件的像素之间可发生串扰。因此,通常用于形成HIL的导电聚合物已选自具有10-2S/cm或更小的电导率和高于在本领域中通常使用的ITO的功函数的材料,由此促进空穴注入。The film conductivities of conventional HILs formed using conductive polymer compositions such as PEDOT:PSS and PANI:PSS range from about 10 −6 S/cm to about 10 −2 S/cm. For example, PEDOT:PSS of CLEVIOUS ™ P VP AI4083 (Heraeous GmbH from HC Starck GmbH) has a conductivity of 10 −3 S/cm, and PEDOT:PSS of CLEVIOUS ™ P VP CH8000 (Heraeous GmbH from HC Starck GmbH) has a conductivity of 10 − Conductivity of 6 S/cm. However, since a conductive polymer should have a conductivity of 0.1 S/cm or more for forming an electrode, PEDOT:PSS, which is generally used to form a conventional HIL, cannot be used. In addition, the conductive material having a conductivity of 0.1 S/cm or more according to the current embodiment cannot be used to form the HIL because crosstalk may occur between pixels of the organic light emitting device. Therefore, conductive polymers generally used to form HILs have been selected from materials having a conductivity of 10 −2 S/cm or less and a work function higher than that of ITO generally used in this field, thereby facilitating hole injection .
图3示意性地显示高功函数且高电导率的电极120和HTL 130的功函数。FIG. 3 schematically shows the work function of the high work function and high conductivity electrode 120 and the HTL 130 .
如图3中所示,高功函数且高电导率的电极120的功函数可为具有从高功函数且高电导率的电极120的第一表面120A至高功函数且高电导率的电极120的第二表面120B增加的梯度的变量。高功函数且高电导率的电极120的第一表面120A的功函数为Y1eV,和第二表面120B的功函数为Y2eV,其中Y1<Y2。因此,空穴可有效地从高功函数且高电导率的电极120移动到HTL 130,而无需在高功函数且高电导率的电极120和HTL 130之间的HIL。即,高功函数且高电导率的电极120起到阳极和HIL的作用。因此,包括高功函数且高电导率的电极120的有机发光器件100可具有优异的效率、高的亮度、和长的寿命,而无需形成HIL。结果,有机发光器件100的制造成本可降低。As shown in FIG. 3 , the work function of the high work function and high conductivity electrode 120 may have a range from the first surface 120A of the high work function and high conductivity electrode 120 to the high work function and high conductivity electrode 120. A variable in the gradient of the second surface 120B increase. The work function of the first surface 120A of the high work function and high conductivity electrode 120 is Y 1 eV, and the work function of the second surface 120B is Y 2 eV, where Y 1 <Y 2 . Therefore, holes can efficiently move from the high work function and high conductivity electrode 120 to the HTL 130 without the need for a HIL between the high work function and high conductivity electrode 120 and the HTL 130 . That is, the electrode 120 having a high work function and high conductivity functions as an anode and an HIL. Accordingly, the organic light emitting device 100 including the electrode 120 having a high work function and high conductivity may have excellent efficiency, high brightness, and long lifetime without forming an HIL. As a result, the manufacturing cost of the organic light emitting device 100 may be reduced.
HTL 130的功函数为ZeV,其中Z为5.4-5.6的实数,但是HTL 130的功函数不限于此。The work function of the HTL 130 is ZeV, where Z is a real number of 5.4-5.6, but the work function of the HTL 130 is not limited thereto.
高功函数且高电导率的电极120的第一表面120A的功函数Y1等于或大于所述导电材料的功函数。例如,功函数Y1可在4.6-5.2、例如4.7-4.9的范围内。高功函数且高电导率的电极120的第二表面120B的功函数Y2等于或小于所述低表面能材料的功函数。例如,Y2可在5.0-6.5、例如5.3-6.2的范围内,但不限于此。The work function Y 1 of the first surface 120A of the high work function and high conductivity electrode 120 is equal to or greater than the work function of the conductive material. For example, the work function Y 1 may be in the range of 4.6-5.2, such as 4.7-4.9. The work function Y 2 of the second surface 120B of the high work function and high conductivity electrode 120 is equal to or smaller than the work function of the low surface energy material. For example, Y2 may be in the range of 5.0-6.5, such as, but not limited to, 5.3-6.2.
由于有机发光器件100不包括HIL,因此高功函数且高电导率的电极120的第二表面120B可与HTL 130接触。Since the organic light emitting device 100 does not include the HIL, the second surface 120B of the high work function and high conductivity electrode 120 may be in contact with the HTL 130 .
HTL 130可通过使用选自真空沉积、旋涂、流延、郎缪尔-布罗杰特(LB)技术等的任何已知方法形成。当HTL 130通过使用真空沉积形成时,沉积条件可根据用于形成HTL 130的化合物、以及待形成的HTL 130的结构和热性质而改变。例如,真空沉积的条件可包括范围为100~500℃的沉积温度、范围为10-10~10-3。托的压力、和范围为/秒的沉积速度。同时,当HTL 130通过使用旋涂形成时,涂布条件可根据用于形成HTL 130的化合物、以及待形成的HTL 130的结构和热性质而改变。例如,旋涂条件可包括范围为2000~5000rpm的涂布速度、和范围为80~200℃的在涂布后用于除去溶剂的热处理温度。The HTL 130 may be formed by using any known method selected from vacuum deposition, spin coating, casting, Langmuir-Brodgett (LB) technique, and the like. When the HTL 130 is formed by using vacuum deposition, deposition conditions may vary depending on the compound used to form the HTL 130, and the structure and thermal properties of the HTL 130 to be formed. For example, the conditions of vacuum deposition may include a deposition temperature ranging from 100 to 500°C, a range from 10 −10 to 10 −3 . Torr pressure, and the range is /sec deposition rate. Meanwhile, when the HTL 130 is formed by using spin coating, coating conditions may vary depending on the compound used to form the HTL 130, and the structure and thermal properties of the HTL 130 to be formed. For example, spin coating conditions may include a coating speed ranging from 2000 to 5000 rpm, and a heat treatment temperature ranging from 80 to 200° C. for removing a solvent after coating.
用于形成HTL 130的材料可选自能够比注入空穴更有效地传输空穴的材料。用于形成HTL 130的材料可为任何已知的空穴传输材料。所述材料的实例包括具有芳族稠密环的胺衍生物例如N,N’-二(1-萘基)-N,N’-二苯基联苯胺(NPB)、N-苯基咔唑和N,N′-二(3-甲基苯基)-N,N′-二苯基-[1,1-联苯]-4,4′-二胺(TPD),和基于三苯基胺的材料例如4,4’,4”-三(N-咔唑基)三苯基胺(TCTA)。在这些材料中,TCTA可不仅传输空穴,而且抑制激子从EML 140扩散。The material used to form the HTL 130 may be selected from materials capable of transporting holes more efficiently than injecting holes. The material used to form HTL 130 can be any known hole transport material. Examples of the material include amine derivatives having aromatic dense rings such as N,N'-bis(1-naphthyl)-N,N'-diphenylbenzidine (NPB), N-phenylcarbazole and N,N'-bis(3-methylphenyl)-N,N'-diphenyl-[1,1-biphenyl]-4,4'-diamine (TPD), and based on triphenylamine materials such as 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA). Among these materials, TCTA can not only transport holes but also suppress the diffusion of excitons from the EML 140 .
HTL 130的厚度可在5~100nm、例如10~60nm的范围内。当HTL 130的厚度在该范围内时,HTL 130可具有优异的空穴传输性质,而无需提高驱动电压。The thickness of the HTL 130 may be in the range of 5-100 nm, for example, 10-60 nm. When the thickness of the HTL 130 is within this range, the HTL 130 may have excellent hole transport properties without increasing the driving voltage.
EML 140可通过使用选自真空沉积、旋涂、流延、LB技术等的任何已知方法形成。在这点上,沉积和涂布条件可与用于形成HTL 130的那些类似,尽管沉积和涂布条件可根据用于形成EML 140的化合物、以及待形成的EML 140的结构和热性质改变。The EML 140 may be formed by using any known method selected from vacuum deposition, spin coating, casting, LB techniques, and the like. In this regard, deposition and coating conditions may be similar to those used to form HTL 130, although deposition and coating conditions may vary depending on the compounds used to form EML 140, and the structural and thermal properties of EML 140 to be formed.
EML 140具有比通常的氧化铟锡例如未表面处理的氧化铟锡的功函数大0.3eV或更多的电离势。在这点上,使用相同的设备在相同的条件下测量氧化铟锡的功函数和EML140的电离势。The EML 140 has an ionization potential 0.3 eV or more greater than the work function of general indium tin oxide such as non-surface-treated indium tin oxide. In this regard, the work function of ITO and the ionization potential of EML140 were measured under the same conditions using the same equipment.
EML 140可由发射材料形成或者可包括主体和掺杂剂。The EML 140 may be formed of an emission material or may include a host and a dopant.
所述主体的实例包括Alq3、4,4′-N,N′-二咔唑-联苯(CBP)、9,10-二(萘-2-基)蒽(ADN)、TCTA、1,3,5-三(N-苯基苯并咪唑-2-基)苯(TPBI)、3-叔丁基-9,10-二(萘-2-基)蒽(TBADN)、E3(参见下式)和BeBq2(参见下式),但是不限于此。如果需要,作为用于形成HTL130的材料的NPB也可用作主体。Examples of such hosts include Alq 3 , 4,4'-N,N'-dicarbazole-biphenyl (CBP), 9,10-di(naphthalene-2-yl)anthracene (ADN), TCTA, 1, 3,5-tris(N-phenylbenzimidazol-2-yl)benzene (TPBI), 3-tert-butyl-9,10-bis(naphthalene-2-yl)anthracene (TBADN), E3 (see below formula) and BeBq 2 (see formula below), but not limited thereto. NPB, which is a material for forming the HTL 130, may also be used as a host if necessary.
同时,已知的红色掺杂剂的实例包括红荧烯(5,6,11,12-四苯基萘并萘)、(PtOEP)、Ir(piq)3、和Btp2Ir(acac),但是不限于此。Meanwhile, examples of known red dopants include rubrene (5,6,11,12-tetraphenylnaphthocene), (PtOEP), Ir(piq) 3 , and Btp 2 Ir(acac), But not limited to this.
已知的绿色掺杂剂的实例包括,但不限于Ir(ppy)3(ppy=苯基吡啶)、Ir(ppy)2(acac)、Ir(mpyp)3和10-(2-苯并噻唑基)-1,1,7,7-四甲基-2,3,6,7-四氢-1H,5H,11H-[1]苯并吡喃酮基[6,7-8-i,j]喹嗪-11-酮(C545T),参见下式。Examples of known green dopants include, but are not limited to, Ir(ppy) 3 (ppy=phenylpyridine), Ir(ppy) 2 (acac), Ir(mpyp) 3 and 10-(2-benzothiazole Base)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1]benzopyronyl[6,7-8-i, j] Quinazin-11-one (C545T), see formula below.
C545TC545T
同时,已知的蓝色掺杂剂的实例包括F2Irpic、(F2ppy)2Ir(tmd)、Ir(dfppz)3、三芴(ter-fluorene)、4,4’-二(4-二-对-甲苯基氨基苯乙烯基)联苯(DPAVBi)、和2,5,8,11-四叔丁基苝(TBP),但是不限于此。Meanwhile, examples of known blue dopants include F 2 Irpic, (F 2 ppy) 2 Ir(tmd), Ir(dfppz) 3 , ter-fluorene, 4,4'-bis(4 - Di-p-tolylaminostyryl)biphenyl (DPAVBi), and 2,5,8,11-tetra-tert-butylperylene (TBP), but not limited thereto.
EML 140的厚度可在10~100nm、例如10~60nm的范围内。当EML140的厚度在上述范围内时,EML 140可具有优异的发光特性,而无需提高驱动电压。The thickness of the EML 140 may be in the range of 10-100 nm, for example, 10-60 nm. When the thickness of the EML 140 is within the above range, the EML 140 may have excellent light emitting characteristics without increasing the driving voltage.
空穴阻挡层(HBL)(图2中未示出)防止EML 140的三线态激子或空穴(如果EML 140包括磷光化合物)扩散到第二电极170中。可通过使用任何已知方法例如真空沉积、旋涂、流延和LB技术在EML 140上形成HBL。在这点上,沉积和涂布条件可与用于形成HTL 130的那些类似,尽管沉积和涂布条件可根据用于形成HBL的化合物、以及待形成的HBL的结构和热性质改变。A hole blocking layer (HBL) (not shown in FIG. 2 ) prevents triplet excitons or holes of the EML 140 (if the EML 140 includes a phosphorescent compound) from diffusing into the second electrode 170 . The HBL may be formed on the EML 140 by using any known method such as vacuum deposition, spin coating, casting, and LB techniques. In this regard, deposition and coating conditions may be similar to those used to form HTL 130, although deposition and coating conditions may vary depending on the compounds used to form the HBL, as well as the structural and thermal properties of the HBL to be formed.
空穴阻挡材料可为任何已知的空穴阻挡材料。例如,噁二唑衍生物、三唑衍生物、和菲咯啉衍生物可用于形成HBL。The hole blocking material can be any known hole blocking material. For example, oxadiazole derivatives, triazole derivatives, and phenanthroline derivatives can be used to form HBL.
HBL的厚度可在约5nm~约100nm、例如约10nm~约30nm的范围内。当HBL的厚度在上述范围内时,HBL可具有优异的空穴阻挡性质,而无需提高驱动电压。The thickness of the HBL may be in the range of about 5 nm to about 100 nm, such as about 10 nm to about 30 nm. When the thickness of the HBL is within the above range, the HBL may have excellent hole blocking properties without increasing the driving voltage.
ETL 150可通过使用选自真空沉积、旋涂、流延、LB技术等的任何已知方法形成在EML 140或HBL上。在这点上,沉积和涂布条件可与用于形成HTL 130的那些类似,尽管沉积和涂布条件可根据用于形成ETL 150的化合物、以及待形成的ETL 150的结构和热性质改变。The ETL 150 may be formed on the EML 140 or the HBL by using any known method selected from vacuum deposition, spin coating, casting, LB techniques, and the like. In this regard, deposition and coating conditions may be similar to those used to form HTL 130, although deposition and coating conditions may vary depending on the compounds used to form ETL 150, and the structural and thermal properties of ETL 150 to be formed.
用于形成ETL 150的材料可为任何已知的电子传输材料,例如,三(8-羟基喹啉)铝(Alq3)、TAZ、4,7-二苯基-1,10-菲咯啉(Bphen)、BCP、BeBq2和BAlq。The material used to form the ETL 150 can be any known electron transport material, for example, tris(8-quinolinolato)aluminum (Alq 3 ), TAZ, 4,7-diphenyl-1,10-phenanthroline (Bphen), BCP, BeBq 2 and BAlq.
ETL 150的厚度可在约10~约100nm、例如约20~约50nm的范围内。当ETL 150的厚度在上述范围内时,ETL 150可具有优异的电子传输性质,而无需提高驱动电压。The thickness of the ETL 150 may be in the range of about 10 to about 100 nm, for example, about 20 to about 50 nm. When the thickness of the ETL 150 is within the above range, the ETL 150 may have excellent electron transport properties without increasing the driving voltage.
在ETL 150上可形成EIL 160。用于形成EIL 160的材料可为任何已知的电子注入材料例如LiF、NaCl、CsF、Li2O、BaO、BaF2、和羟基喹啉锂(Liq)。沉积条件可与用于形成HTL130的那些类似,尽管沉积条件可根据用于形成EIL 160的化合物改变。EIL 160 may be formed on ETL 150 . The material used to form the EIL 160 may be any known electron injection material such as LiF, NaCl, CsF, Li 2 O, BaO, BaF 2 , and lithium quinolate (Liq). Deposition conditions may be similar to those used to form HTL 130, although deposition conditions may vary depending on the compound used to form EIL 160.
EIL 160的厚度可在约0.1nm~约10nm范围内,例如在约0.5nm~约5nm范围内。当EIL 160的厚度在上述范围内时,EIL 160可具有令人满意的电子注入性质,而无需提高驱动电压。The thickness of the EIL 160 may range from about 0.1 nm to about 10 nm, for example, from about 0.5 nm to about 5 nm. When the thickness of the EIL 160 is within the above range, the EIL 160 may have satisfactory electron injection properties without increasing the driving voltage.
第二电极170可为阴极,其为电子注入电极。金属、合金、导电化合物、或者其任意组合可用于形成第二电极170。在这点上,第二电极170可由锂(Li)、镁(Mg)、铝(Al)、铝(Al)-锂(Li)、钙(Ca)、镁(Mg)-铟(In)、镁(Mg)-银(Ag)等形成。ITO、IZO等也可用于制备顶发射型发光二极管。The second electrode 170 may be a cathode, which is an electron injection electrode. Metals, alloys, conductive compounds, or any combination thereof may be used to form the second electrode 170 . In this regard, the second electrode 170 may be made of lithium (Li), magnesium (Mg), aluminum (Al), aluminum (Al)-lithium (Li), calcium (Ca), magnesium (Mg)-indium (In), Magnesium (Mg)-silver (Ag) etc. are formed. ITO, IZO, etc. can also be used to prepare top-emitting light-emitting diodes.
有机发光器件100可通过使用高功函数且高电导率的电极120作为阳极具有非常高的空穴注入能力,而无需HIL,且可通过防止电子经由HTL130注入到高功函数且高电导率的电极120中具有优异的电特性,并可通过使用柔性基底作为基底110而具有柔性。The organic light emitting device 100 can have a very high hole injection capability without HIL by using the high work function and high conductivity electrode 120 as an anode, and can prevent electrons from being injected into the high work function and high conductivity electrode through the HTL 130 The substrate 120 has excellent electrical characteristics, and can be flexible by using a flexible substrate as the substrate 110 .
图2的有机发光器件100具有其中HTL 130置于高功函数且高电导率的电极120和EML 140之间的结构。但是,高功函数且高电导率的电极120的第二表面120B可与EML 140接触,而无需形成HTL 130,且它的其它改变是可能的。The organic light emitting device 100 of FIG. 2 has a structure in which the HTL 130 is interposed between the high work function and high conductivity electrode 120 and the EML 140 . However, the second surface 120B of the high work function and high conductivity electrode 120 may be in contact with the EML 140 without forming the HTL 130, and other changes thereof are possible.
图4为根据本发明实施方式的包括高功函数且高电导率的电极220的有机太阳能电池200的示意性横截面图。4 is a schematic cross-sectional view of an organic solar cell 200 including a high work function and high conductivity electrode 220 according to an embodiment of the present invention.
图4的有机太阳能电池200包括基底210、高功函数且高电导率的电极220、光活性层230、电子接受层240、和第二电极250。到达有机太阳能电池200的光在光活性层230中分裂为空穴和电子。电子经由电子接受层240移动到第二电极250,且空穴移动到高功函数且高电导率的电极220。The organic solar cell 200 of FIG. 4 includes a substrate 210 , an electrode 220 with high work function and high conductivity, a photoactive layer 230 , an electron accepting layer 240 , and a second electrode 250 . Light reaching the organic solar cell 200 is split into holes and electrons in the photoactive layer 230 . Electrons move to the second electrode 250 through the electron accepting layer 240 , and holes move to the electrode 220 having a high work function and high conductivity.
基底210如以上关于基底110所述那样限定。同时,高功函数且高电导率的电极220如以上关于高功函数且高电导率的电极15所述那样限定。Substrate 210 is defined as described above with respect to substrate 110 . Meanwhile, the high work function and high conductivity electrode 220 is defined as described above with respect to the high work function and high conductivity electrode 15 .
光活性层230可包括能够将光分裂为空穴和电子的材料。例如,光活性层230可包括p-型有机半导体材料或者n-型有机半导体材料。例如,光活性层230可包括聚(3-己基噻吩)和苯基-C61-丁酸甲酯(PCMB),但是不限于此。The photoactive layer 230 may include a material capable of splitting light into holes and electrons. For example, the photoactive layer 230 may include a p-type organic semiconductor material or an n-type organic semiconductor material. For example, the photoactive layer 230 may include poly(3-hexylthiophene) and phenyl-C61-butyric acid methyl ester (PCMB), but is not limited thereto.
光活性层230具有比通常的氧化铟锡例如未表面处理的氧化铟锡的功函数大0.3eV或更多的电离势。在这点上,使用相同的设备在相同的条件下测量氧化铟锡的功函数和光活性层230的电离势。The photoactive layer 230 has an ionization potential 0.3 eV or more greater than the work function of general indium tin oxide such as non-surface-treated indium tin oxide. In this regard, the work function of indium tin oxide and the ionization potential of the photoactive layer 230 were measured under the same conditions using the same equipment.
电子接受层240可包括能够接受电子的材料,例如,如上所述的用于形成有机发光二极管100的EIL 160的材料。The electron accepting layer 240 may include a material capable of accepting electrons, for example, the material used to form the EIL 160 of the organic light emitting diode 100 as described above.
第二电极250可为阴极,其为电子注入电极。具有相对低功函的金属、合金、导电化合物、或者其任意组合可用于形成第二电极250。在这点上,第二电极250可由锂(Li)、镁(Mg)、铝(Al)、铝(Al)-锂(Li)、钙(Ca)、镁(Mg)-铟(In)、镁(Mg)-银(Ag)等形成。The second electrode 250 may be a cathode, which is an electron injection electrode. Metals, alloys, conductive compounds, or any combination thereof with a relatively low work function may be used to form the second electrode 250 . In this regard, the second electrode 250 may be made of lithium (Li), magnesium (Mg), aluminum (Al), aluminum (Al)-lithium (Li), calcium (Ca), magnesium (Mg)-indium (In), Magnesium (Mg)-silver (Ag) etc. are formed.
由于有机太阳能电池200包括高功函数且高电导率的电极220,在光活性层230中产生的空穴可有效地移动到高功函数且高电导率的电极220,而无需在高功函数且高电导率的电极220和光活性层230之间形成空穴提取层。因此,可得到优异的电特性。空穴提取层可包括常用在有机发光器件的HIL中的导电聚合物如PEDOT:PSS和PANI:PSS,且PEDOT:PSS薄膜和PANI:PSS薄膜的电导率可在10-6S/cm-10-2S/cm范围内。Since the organic solar cell 200 includes the electrode 220 with a high work function and high conductivity, the holes generated in the photoactive layer 230 can efficiently move to the electrode 220 with a high work function and high conductivity without the need for high work function and high conductivity. A hole extraction layer is formed between the high-conductivity electrode 220 and the photoactive layer 230 . Therefore, excellent electrical characteristics can be obtained. The hole extraction layer may include conductive polymers such as PEDOT:PSS and PANI:PSS commonly used in HILs of organic light-emitting devices, and the conductivity of the PEDOT:PSS film and the PANI:PSS film may be within 10 −6 S/cm-10 -2 S/cm range.
有机发光器件和有机太阳能电池已参照图2和4进行了描述,但不限于此。例如,图1的高功函数且高电导率的电极15也可用作有机发光器件100和/或有机太阳能电池200的阴极。如果高功函数且高电导率的电极15用作有机发光器件100和/或有机太阳能电池200的阴极,高功函数且高电导率的电极15的第二表面15B可设置为面对有机发光器件100的EML 140和/或有机太阳能电池200的光活性层230。例如,当图2的有机发光器件100的阴极170为高功函数且高电导率的电极15时,高功函数且高电导率的电极15的第二表面15B,即具有相对高的低表面能材料浓度的表面,可设置为面对设置在阴极170下的EIL 160,且它的其它改变是可能的。在这点上,用作阴极170的高功函数且高电导率的电极15可形成在基膜上并通过使用例如激光诱导热成像(LITI)法或转印法转移到EIL 160上。The organic light emitting device and the organic solar cell have been described with reference to FIGS. 2 and 4, but are not limited thereto. For example, the high work function and high conductivity electrode 15 of FIG. 1 may also be used as a cathode of the organic light emitting device 100 and/or the organic solar cell 200 . If the electrode 15 with high work function and high conductivity is used as the cathode of the organic light emitting device 100 and/or the organic solar cell 200, the second surface 15B of the electrode 15 with high work function and high conductivity may be arranged to face the organic light emitting device EML 140 of 100 and/or photoactive layer 230 of organic solar cell 200 . For example, when the cathode 170 of the organic light emitting device 100 in FIG. 2 is an electrode 15 with a high work function and high conductivity, the second surface 15B of the electrode 15 with a high work function and high conductivity has a relatively high low surface energy The surface of the material concentration may be arranged to face the EIL 160 arranged under the cathode 170, and other variations thereof are possible. In this regard, a high work function and high conductivity electrode 15 serving as the cathode 170 may be formed on the base film and transferred onto the EIL 160 by using, for example, a laser induced thermal imaging (LITI) method or a transfer method.
另外,当高功函数且高电导率的电极15用作阴极170时,第二表面15B可面对光活性层230的相反侧。In addition, when the electrode 15 with high work function and high conductivity is used as the cathode 170 , the second surface 15B may face the opposite side of the photoactive layer 230 .
另外,高功函数且高电导率的电极15可用于倒置型有机发光二极管(OLED)或有机光伏器件(OPV)。在倒置型OLED或OPV中,HIL(OLED)或空穴提取层(OPV)可设置在高功函数且高电导率的电极15下,且EIL或电子接受层可设置在形成在基底上的阳极上。In addition, the electrode 15 having a high work function and high conductivity may be used for an inverted organic light emitting diode (OLED) or an organic photovoltaic device (OPV). In an inverted OLED or OPV, a HIL (OLED) or a hole extraction layer (OPV) may be provided under a high work function and high conductivity electrode 15, and an EIL or an electron accepting layer may be provided on an anode formed on a substrate superior.
图5为包括高功函数且高电导率的电极的有机薄膜晶体管(TFT)300的示意性横截面图。5 is a schematic cross-sectional view of an organic thin film transistor (TFT) 300 including an electrode with a high work function and high conductivity.
图5的有机TFT 300包括基底311、栅电极312、绝缘层313、有机半导体层315、以及源电极和漏电极314a和314b。栅电极312以及源电极和漏电极314a和314b的至少一个可为如以上描述的高功函数且高电导率的电极15。The organic TFT 300 of FIG. 5 includes a substrate 311, a gate electrode 312, an insulating layer 313, an organic semiconductor layer 315, and source and drain electrodes 314a and 314b. The gate electrode 312 and at least one of the source and drain electrodes 314 a and 314 b may be the high work function and high conductivity electrode 15 as described above.
基底311如以上关于基底110所述那样限定。Base 311 is defined as described above with respect to base 110 .
在基底311上形成具有预定图案的栅电极312。栅电极312可为如上所述的高功函数且高电导率的电极15。或者,栅电极312可由金属例如金(Au)、银(Ag)、铜(Cu)、镍(Ni)、铂(Pt)、钯(Pd)、铝(Al)、和钼(Mo),或者金属合金例如Al:Nd和Mo:W形成,但是不限于此。A gate electrode 312 having a predetermined pattern is formed on the substrate 311 . The gate electrode 312 may be the high work function and high conductivity electrode 15 as described above. Alternatively, the gate electrode 312 may be made of a metal such as gold (Au), silver (Ag), copper (Cu), nickel (Ni), platinum (Pt), palladium (Pd), aluminum (Al), and molybdenum (Mo), or Metal alloys such as Al:Nd and Mo:W are formed, but are not limited thereto.
在栅电极312上形成绝缘层313以覆盖栅电极312。绝缘层313可包括无机材料例如金属氧化物或金属氮化物、有机材料例如柔性有机聚合物、或者各种其它材料。An insulating layer 313 is formed on the gate electrode 312 to cover the gate electrode 312 . The insulating layer 313 may include inorganic materials such as metal oxides or metal nitrides, organic materials such as flexible organic polymers, or various other materials.
在绝缘层313上形成有机半导体层315。有机半导体层315可包括并五苯、并四苯、蒽、萘、α-6-噻吩、α-4-噻吩、苝和其衍生物、红荧烯和其衍生物、晕苯和其衍生物、苝四羧酸二酰亚胺和其衍生物、苝四羧酸二酐和其衍生物、聚噻吩和其衍生物、聚(对-亚苯基亚乙烯基)和其衍生物、聚(对苯)和其衍生物、聚芴和其衍生物、聚噻吩亚乙烯基和其衍生物、聚噻吩-杂环芳族共聚物和其衍生物、萘的寡并苯(oligoacene)和其衍生物、α-5-噻吩的低聚噻吩和其衍生物、含或不含金属的酞菁和其衍生物、均苯四甲酸二酐和其衍生物、或均苯四甲酸二酰亚胺和其衍生物,但是有机半导体层315不限于此。The organic semiconductor layer 315 is formed on the insulating layer 313 . The organic semiconductor layer 315 may include pentacene, tetracene, anthracene, naphthalene, α-6-thiophene, α-4-thiophene, perylene and its derivatives, rubrene and its derivatives, coronene and its derivatives , perylene tetracarboxylic acid diimide and its derivatives, perylene tetracarboxylic dianhydride and its derivatives, polythiophene and its derivatives, poly(p-phenylene vinylene) and its derivatives, poly( p-phenylene) and its derivatives, polyfluorene and its derivatives, polythiophene vinylidene and its derivatives, polythiophene-heterocyclic aromatic copolymer and its derivatives, naphthalene oligoacene (oligoacene) and its derivatives α-5-thiophene oligothiophene and its derivatives, metal-containing or non-metallic phthalocyanine and its derivatives, pyromellitic dianhydride and its derivatives, or pyromellitic diimide and derivatives thereof, but the organic semiconductor layer 315 is not limited thereto.
在有机半导体层315上分别形成源电极和漏电极314a和314b。如图5中所示,源电极和漏电极314a和314b可与栅电极312的一部分重叠,但是不限于此。源电极和漏电极314a和314b可为如上所述的高功函数且高电导率的电极15。或者,考虑到用于形成有机半导体层315的材料的功函数,源电极和漏电极314a和314b可包括具有5.0eV或更大的功函数的贵金属,例如金(Au)、钯(Pd)、铂(Pt)、镍(Ni)、铑(Rh)、钌(Ru)、铱(Ir)、锇(Os)、或者其至少两种的组合。Source and drain electrodes 314a and 314b are formed on the organic semiconductor layer 315, respectively. As shown in FIG. 5, the source and drain electrodes 314a and 314b may overlap a portion of the gate electrode 312, but are not limited thereto. The source and drain electrodes 314a and 314b may be the high work function and high conductivity electrodes 15 as described above. Alternatively, in consideration of the work function of the material used to form the organic semiconductor layer 315, the source and drain electrodes 314a and 314b may include a noble metal having a work function of 5.0 eV or more, such as gold (Au), palladium (Pd), Platinum (Pt), nickel (Ni), rhodium (Rh), ruthenium (Ru), iridium (Ir), osmium (Os), or a combination of at least two thereof.
所述电子器件已经在上面参照图2~5进行了描述,但是不限于此。The electronic device has been described above with reference to FIGS. 2 to 5 , but is not limited thereto.
实施例Example
实施例1:高功函数且高电导率的电极(I)的制备Embodiment 1: the preparation of the electrode (I) of high work function and high conductivity
制备用于形成电极的组合物(100重量%),其包括具有0.3S/cm电导率的高度导电的聚(3,4-亚乙基二氧噻吩):聚(磺苯乙烯)(PEDOT:PSS)溶液(由H.C.Starck GmbH制造的PH500,其中每1重量份PEDOT的PSS的含量为2.5重量份)、聚合物100溶液(通过将由下式表示的聚合物100分散在水和醇(水:醇=4.5:5.5(v/v))的混合物中至5重量%制备,AldrichCo.)和5重量%二甲亚砜(DMSO)。在这点上,调节PEDOT:PSS溶液和聚合物100溶液之比,使得每1重量份PEDOT的聚合物100的含量(固含量)为1.0重量份。具有100nm厚度的且使用所述用于形成电极的组合物形成的薄膜具有125S/cm的电导率。A composition (100% by weight) for forming an electrode was prepared comprising highly conductive poly(3,4-ethylenedioxythiophene):poly(sulfostyrene) (PEDOT: PSS) solution (PH500 manufactured by H.C. Starck GmbH, wherein the content of PSS per 1 part by weight of PEDOT is 2.5 parts by weight), polymer 100 solution (by dispersing polymer 100 represented by the following formula in water and alcohol (water: Alcohol = 4.5:5.5 (v/v)) to 5% by weight in a mixture of Aldrich Co.) and 5% by weight dimethyl sulfoxide (DMSO). In this regard, the ratio of the PEDOT:PSS solution and the polymer 100 solution was adjusted so that the content (solid content) of the polymer 100 was 1.0 parts by weight per 1 part by weight of PEDOT. A thin film having a thickness of 100 nm and formed using the composition for forming an electrode had an electrical conductivity of 125 S/cm.
聚合物100Polymer 100
在聚合物100中,x=1300,y=200和z=1。In polymer 100, x=1300, y=200 and z=1.
将所述用于形成电极的组合物旋涂在聚对苯二甲酸乙二醇酯(PET)基底上并在150℃下热处理30分钟以形成具有100nm厚度的电极1。The composition for forming an electrode was spin-coated on a polyethylene terephthalate (PET) substrate and heat-treated at 150° C. for 30 minutes to form an electrode 1 having a thickness of 100 nm.
然后,以与电极1的制备中相同的方式在PET基底上制备电极2、3和4,除了分别调节PEDOT:PSS溶液和聚合物100溶液之比,使得每1重量份PEDOT的聚合物100的含量分别为2.3重量份、4.9重量份和11.2重量份,其中与PET基底接触的电极1-4的表面为第一表面,和其相反表面为第二表面。Then, electrodes 2, 3 and 4 were prepared on the PET substrate in the same manner as in the preparation of electrode 1, except that the ratios of PEDOT:PSS solution and polymer 100 solution were adjusted so that the ratio of polymer 100 per 1 part by weight of PEDOT The contents were 2.3 parts by weight, 4.9 parts by weight and 11.2 parts by weight, respectively, wherein the surface of the electrodes 1-4 in contact with the PET substrate was the first surface, and the opposite surface thereof was the second surface.
使用4点探针测量的电极1、2、3和4的电导率分别为125、75、61和50S/cm。The conductivities of electrodes 1, 2, 3 and 4 measured using a 4-point probe were 125, 75, 61 and 50 S/cm, respectively.
对比例AComparative example A
以与电极1的制备中相同的方式制备电极A,除了使用包括PEDOT:PSS溶液和5重量%DMSO但不包括聚合物100溶液的组合物。Electrode A was prepared in the same manner as in the preparation of Electrode 1, except that a composition comprising a PEDOT:PSS solution and 5 wt% DMSO but not Polymer 100 solution was used.
评价实施例1:电极(I)的评价Evaluation Example 1: Evaluation of Electrode (I)
<相对于电极深度的分子浓度的评价><Evaluation of molecular concentration with respect to electrode depth>
通过使用X射线光电子能谱法(XPS,由VG Scientific制造,型号ESCALAB 200iXL)评价在电极1-4和A的表面中的分子浓度,且结果示于表1中。图6显示相对于电极4的溅射时间即深度的电极4的XPS能谱。通过分析PEDOT的峰(164.5eV)、PSS和PSSH的峰(S2p)(168.4和168.9eV)和聚合物100的峰(CF2,F1s)评价各部分的浓度。The molecular concentrations in the surfaces of electrodes 1-4 and A were evaluated by using X-ray photoelectron spectroscopy (XPS, manufactured by VG Scientific, model ESCALAB 200iXL), and the results are shown in Table 1. FIG. 6 shows the XPS spectrum of the electrode 4 with respect to the sputtering time of the electrode 4, ie the depth. The concentration of each fraction was evaluated by analyzing the peaks of PEDOT (164.5 eV), PSS and PSSH (S2p) (168.4 and 168.9 eV) and polymer 100 ( CF2 , F1s).
参照图6,在从电极4的第二表面(溅射时间=0秒)到电极4的第一表面的方向上,指示聚合物100的浓度的CF2部分的浓度显著降低,但PEDOT的浓度显著增加。因此,电极4中的PEDOT:PSS和聚合物100的浓度具有根据电极4的深度的浓度梯度。Referring to Fig. 6, in the direction from the second surface of electrode 4 (sputtering time = 0 seconds) to the first surface of electrode 4 , the concentration of CF moiety indicating the concentration of polymer 100 decreases significantly, but the concentration of PEDOT A significant increase. Therefore, the concentrations of PEDOT:PSS and the polymer 100 in the electrode 4 have a concentration gradient according to the depth of the electrode 4 .
在表1中,列出了由电极1-4的第二表面的PSS峰(S2p)和氟峰(F1s)计算的氟/PSS之比。参照表1,随着聚合物100的量增加,在电极1-4的表面即第二表面上的聚合物100的含量增加。In Table 1, the fluorine/PSS ratio calculated from the PSS peak (S2p) and the fluorine peak (F1s) of the second surface of the electrodes 1-4 are listed. Referring to Table 1, as the amount of the polymer 100 increases, the content of the polymer 100 on the surface of the electrodes 1-4, that is, the second surface increases.
表1Table 1
<功函数和电导率的评价><Evaluation of Work Function and Conductivity>
使用紫外光电子能谱法在空气中(由Niken Keiki制造,型号AC2)测量电极1-4和A的功函数,且结果示于表2中。The work functions of the electrodes 1-4 and A were measured in air (manufactured by Niken Keiki, model AC2) using ultraviolet photoelectron spectroscopy, and the results are shown in Table 2.
表2Table 2
由于对于在PET基底上形成的电极1-4和A评价功函数,因此表2中所示的功函数可被认为是电极1-4各自的第二表面的功函数。Since the work functions were evaluated for the electrodes 1-4 and A formed on the PET substrate, the work functions shown in Table 2 can be regarded as the work functions of the respective second surfaces of the electrodes 1-4.
<光学透射率的评价><Evaluation of Optical Transmittance>
使用UV分光计(SCINCO(S-3100))评价电极1-4和A的光学透射率,且结果示于图7中。为了比较,还显示具有100nm厚度的ITO的光学透射率。参照图7,电极1-4具有优异的光学透射率,例如优异的可见光透射率,特别是优异的蓝色可见光透射率。The optical transmittances of electrodes 1-4 and A were evaluated using a UV spectrometer (SCINCO (S-3100)), and the results are shown in FIG. 7 . For comparison, the optical transmittance of ITO having a thickness of 100 nm is also shown. Referring to FIG. 7, the electrodes 1-4 have excellent optical transmittance, such as excellent visible light transmittance, especially excellent blue visible light transmittance.
<表面特性的评价><Evaluation of Surface Properties>
使用原子力显微镜法评价电极1-4和A的表面即第二表面的表面粗糙度,且结果示于表3中。The surface roughness of the surfaces of electrodes 1-4 and A, that is, the second surface was evaluated using an atomic force microscope, and the results are shown in Table 3.
表3table 3
参照表3,电极1-4具有比电极A低的表面粗糙度。电极1-4的表面通过向其添加聚合物100而变得平坦。Referring to Table 3, electrodes 1-4 have lower surface roughness than electrode A. The surfaces of electrodes 1-4 are flattened by adding polymer 100 thereto.
<空穴迁移率和空穴注入效率的评价><Evaluation of Hole Mobility and Hole Injection Efficiency>
评价电极1-4的空穴迁移率和空穴注入效率,且结果分别示于图8和9中。当测量空穴迁移率和空穴注入效率时,使用暗注入(dark injection)空间电荷限制电流(DI SCLC)瞬变(transients)。制备具有电极(电极1、2、3或4)/NPB层(约2.6μm)/Al结构的仅空穴(hole-only)器件,并进行DI SCLC瞬变。在进行DI SCLC瞬变的同时,使用脉冲发生器(HP214B)和数字示波器(Agilent Infiniium 54832B)。参照图8和9,电极1-4具有优异的空穴迁移率和空穴注入效率。Electrodes 1-4 were evaluated for hole mobility and hole injection efficiency, and the results are shown in FIGS. 8 and 9, respectively. When measuring hole mobility and hole injection efficiency, dark injection space charge limited current (DI SCLC) transients are used. Hole-only devices with electrode (electrode 1, 2, 3 or 4)/NPB layer (about 2.6 μm)/Al structure were fabricated and subjected to DI SCLC transients. While performing DI SCLC transients, a pulse generator (HP214B) and a digital oscilloscope (Agilent Infiniium 54832B) were used. 8 and 9, electrodes 1-4 have excellent hole mobility and hole injection efficiency.
实施例2:OLED的制备Embodiment 2: the preparation of OLED
根据实施例1在PET基底上形成电极1作为阳极,然后通过真空沉积在电极1的第二表面上顺序形成具有20nm厚度的NPB HTL、具有30nm厚度的Bebq2:C545T EML(其中C545T的含量为1.5重量%)、具有20nm厚度的Bebq2ETL、具有1nm厚度的Liq ETL和具有130nm厚度的Al阴极以制备OLED 1。分别使用电极2-4代替电极1以与OLED 1的制备中相同的方式制备OLED 2-4。Form electrode 1 on PET substrate according to embodiment 1 as anode, then form NPB HTL with 20nm thickness, Bebq 2 :C545T EML with 30nm thickness (wherein the content of C545T is 1.5% by weight), Bebq 2 ETL with a thickness of 20 nm, Liq ETL with a thickness of 1 nm, and an Al cathode with a thickness of 130 nm to prepare OLED 1 . OLEDs 2-4 were prepared in the same manner as in the preparation of OLED 1, using electrodes 2-4, respectively, instead of electrode 1.
对比例1Comparative example 1
以与实施例2中相同的方式制备OLED A,除了使用根据对比例A制备的电极A代替电极1。OLED A was prepared in the same manner as in Example 2, except that Electrode A prepared according to Comparative Example A was used instead of Electrode 1 .
对比例2Comparative example 2
使用Corning 15Ω/cm2 ITO玻璃基底代替其上形成电极1的PET基底。即,与实施例2相比,使用玻璃基底代替PET基底,且使用ITO电极代替电极1。将PEDOT:PSS溶液(CLEVIOSTMP VP AI4083)(其中每1重量份PEDOT的PSS的含量为6重量份)旋涂在ITO电极上,并在150℃下烘焙30分钟以形成具有50nm厚度的PEDOT:PSS HIL。通过真空沉积在HIL上顺序形成具有20nm厚度的NPB HTL、具有30nm厚度的Bebq2:C545TEML(其中C545T的含量为1.5重量%)、具有20nm厚度的Bebq2ETL、具有1nm厚度的Liq ETL和具有130nm厚度的Al阴极以制备OLED B。Use Corning 15Ω/cm 2 An ITO glass substrate was substituted for the PET substrate on which the electrode 1 was formed. That is, compared with Example 2, a glass substrate was used instead of the PET substrate, and an ITO electrode was used instead of the electrode 1 . A PEDOT:PSS solution (CLEVIOS ™ P VP AI4083) in which the content of PSS per 1 wt. part of PEDOT is 6 wt. :PSS HIL. NPB HTL with a thickness of 20 nm, Bebq 2 :C545TEML with a thickness of 30 nm (wherein the content of C545T is 1.5% by weight), Bebq 2 ETL with a thickness of 20 nm, Liq ETL with a thickness of 1 nm, and Liq ETL with a thickness of 1 nm were sequentially formed on the HIL by vacuum deposition. 130nm thick Al cathode to prepare OLED B.
对比例3Comparative example 3
以与对比例2中相同的方式制备OLED C,除了在ITO电极上沉积2TNATA以形成具有50nm厚度的2TNATA HIL代替PEDOT:PSS HIL。OLED C was prepared in the same manner as in Comparative Example 2, except that 2TNATA was deposited on the ITO electrode to form 2TNATA HIL with a thickness of 50 nm instead of PEDOT:PSS HIL.
OLED 1-4和A-C的结构和柔性示于下表4中。The structure and flexibility of OLEDs 1-4 and A-C are shown in Table 4 below.
表4Table 4
O:非常高(在使OLED在0.75cm的半径曲率和1.25%的应变下弯曲100次之后,OLED不是脆的(brittle))O: very high (OLEDs are not brittle after bending them 100 times at a radius curvature of 0.75 cm and a strain of 1.25%)
X:低(在使OLED在0.75cm的半径曲率和1.25%的应变下弯曲100次之后,OLED是脆的)X: Low (OLED is brittle after bending it 100 times at a radius curvature of 0.75 cm and a strain of 1.25%)
评价实施例2:OLED的评价Evaluation Example 2: Evaluation of OLEDs
使用Keithley 236源测量装置和Minolta CS 2000分光辐射谱仪评价OLED 1-4和A-C的效率、亮度和寿命,且结果示于图10-12中。OLEDs 1-4 and A-C were evaluated for efficiency, brightness and lifetime using a Keithley 236 source measure unit and a Minolta CS 2000 spectroradiometer, and the results are shown in Figures 10-12.
参照图10-12,确定OLED 1-4具有与OLED A-C相比更好的效率、更高的亮度和更长的寿命。Referring to Figures 10-12, it was determined that OLEDs 1-4 had better efficiency, higher brightness and longer lifetime than OLEDs A-C.
实施例3:高功函数且高电导率的电极(II)的制备Embodiment 3: the preparation of the electrode (II) of high work function and high conductivity
制备用于形成电极的组合物(100重量%),其包括具有0.3S/cm的电导率的高度导电的聚(3,4-亚乙基二氧噻吩):聚(磺苯乙烯)(PEDOT:PSS)溶液(由Heraeus GmbH.&Co (以前的H.C.Starck GmbH)制造的CLEVIOSTMPH500,其中每1重量份PEDOT的PSS的含量为2.5重量份)、2重量%的作为氟化低聚物的3,3,3,-三氟丙基)三氯硅烷(CF3CH2CH2SiCl3)(由Aldrich Co.制造)和5重量%二甲亚砜(DMSO)。将所述用于形成电极的组合物旋涂在PET基底上并在150℃下热处理30分钟以形成具有100nm厚度的电极5。电极5具有350S/cm的电导率和5.25eV的功函数。A composition (100% by weight) for forming an electrode was prepared comprising a highly conductive poly(3,4-ethylenedioxythiophene): poly(sulfonylstyrene) (PEDOT :PSS) solution (CLEVIOS ™ PH500 manufactured by Heraeus GmbH.&Co (formerly HC Starck GmbH), wherein the content of PSS per 1 part by weight of PEDOT is 2.5 parts by weight), 2% by weight of 3 as a fluorinated oligomer ,3,3,-trifluoropropyl)trichlorosilane (CF 3 CH 2 CH 2 SiCl 3 ) (manufactured by Aldrich Co.) and 5% by weight of dimethyl sulfoxide (DMSO). The composition for forming an electrode was spin-coated on a PET substrate and heat-treated at 150° C. for 30 minutes to form an electrode 5 having a thickness of 100 nm. Electrode 5 has a conductivity of 350 S/cm and a work function of 5.25 eV.
实施例4:高功函数且高电导率的电极(II)的制备Embodiment 4: the preparation of the electrode (II) of high work function and high conductivity
制备实施例1的用于形成电极4的组合物,其中调节PEDOT:PSS溶液和聚合物100溶液之比,使得每1重量份PEDOT的聚合物100的含量为11.2重量份。然后,向100重量%所述组合物添加5重量%银纳米线(型号ST 164,长度:7.2μm,直径:52nm,Seashell Technology,LLC)。The composition for forming the electrode 4 of Example 1 was prepared, wherein the ratio of the PEDOT:PSS solution and the polymer 100 solution was adjusted so that the content of the polymer 100 was 11.2 parts by weight per 1 part by weight of PEDOT. Then, 5% by weight of silver nanowires (type ST 164, length: 7.2 μm, diameter: 52 nm, Seashell Technology, LLC) were added to 100% by weight of the composition.
将所述包括银纳米线的组合物旋涂在PET基底上并在150℃下热处理30分钟以形成具有100nm厚度的电极6。电极6具有5.8eV的功函数和85S/cm的电导率。The composition including silver nanowires was spin-coated on a PET substrate and heat-treated at 150° C. for 30 minutes to form an electrode 6 having a thickness of 100 nm. Electrode 6 has a work function of 5.8 eV and a conductivity of 85 S/cm.
如上所述,根据本发明的以上实施方式的一个或多个,所述高功函数且高电导率的电极可用作多种电子器件、特别是有机发光器件和有机太阳能电池的阳极。在这点上,由于所述高功函数且高电导率的电极具有高功函数,不需要与EML或光活性层一起的用于控制功函数的HIL和/或HTL、或者空穴提取层。因此,通过使用所述高功函数且高电导率的电极可简化电子器件,且从而可降低其制造成本。而且,由于所述高功函数且高电导率的电极为基于聚合物的电极,其可有效地应用于柔性电子器件以及平板电子器件。As described above, according to one or more of the above embodiments of the present invention, the high work function and high conductivity electrode may be used as an anode of various electronic devices, especially organic light emitting devices and organic solar cells. In this regard, since the high work function and high conductivity electrode has a high work function, there is no need for HIL and/or HTL for controlling work function, or a hole extraction layer together with the EML or photoactive layer. Therefore, electronic devices can be simplified by using the high work function and high conductivity electrodes, and thus their manufacturing costs can be reduced. Also, since the high work function and high conductivity electrode is a polymer-based electrode, it can be effectively applied to flexible electronic devices as well as flat electronic devices.
尽管已参照其示例性实施方式具体显示和描述了本发明,但是本领域普通技术人员将理解,在不脱离如所附权利要求限定的本发明的精神和范围的情况下,可在其中进行形式和细节上的多种变化。While the invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those skilled in the art that forms may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. and variations in details.
Claims (18)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020110050845A KR101302786B1 (en) | 2011-05-27 | 2011-05-27 | Simplified organic electronic devices employing polymeric anode with high work function |
| KR10-2011-0050845 | 2011-05-27 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102800809A CN102800809A (en) | 2012-11-28 |
| CN102800809B true CN102800809B (en) | 2016-08-17 |
Family
ID=47140550
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210165809.0A Expired - Fee Related CN102800809B (en) | 2011-05-27 | 2012-05-25 | Use the organic electronic device of the simplification of the polymeric anode with high work function |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US8999527B2 (en) |
| JP (2) | JP2012248843A (en) |
| KR (1) | KR101302786B1 (en) |
| CN (1) | CN102800809B (en) |
| DE (1) | DE102012104440A1 (en) |
Families Citing this family (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101237351B1 (en) * | 2011-05-27 | 2013-03-04 | 포항공과대학교 산학협력단 | Electrode and electronic device comprising the same |
| JP5760913B2 (en) * | 2011-09-30 | 2015-08-12 | 三菱マテリアル株式会社 | Organic electroluminescence device and method for producing the same |
| JP5760912B2 (en) * | 2011-09-30 | 2015-08-12 | 三菱マテリアル株式会社 | Organic electroluminescence device and method for producing the same |
| JP5836866B2 (en) * | 2012-03-30 | 2015-12-24 | 株式会社東芝 | Carbon electrode, method for producing the same, and photoelectric conversion element using the same |
| CN103928632A (en) * | 2013-01-16 | 2014-07-16 | 海洋王照明科技股份有限公司 | Anode, preparation method thereof, organic electroluminescence device and preparation method of organic electroluminescence device |
| KR101523135B1 (en) * | 2013-02-28 | 2015-05-27 | 포항공과대학교 산학협력단 | Hybrid thin film having a high work function and conductivity and organic light emitting diode comprising the same |
| KR101449249B1 (en) * | 2013-02-28 | 2014-10-10 | 포항공과대학교 산학협력단 | Electronic device including hybrid electrode having a high work function and conductivity |
| KR101458691B1 (en) * | 2013-02-28 | 2014-11-05 | 포항공과대학교 산학협력단 | Organic solar cell including hybrid conductive thin film having a high work function and conductivity |
| WO2014133373A1 (en) * | 2013-02-28 | 2014-09-04 | 포항공과대학교 산학협력단 | Electronic element employing hybrid electrode having high work function and conductivity |
| KR101563048B1 (en) * | 2013-05-10 | 2015-10-30 | 주식회사 엘지화학 | Active layer, organic photovoltaic cell comprising the same and manufacturing method thereof |
| US9865380B2 (en) | 2013-06-24 | 2018-01-09 | Abb Schweiz Ag | Material comprising reduced graphene oxide, a device comprising the material and a method of producing the material |
| KR101582264B1 (en) | 2013-06-27 | 2016-01-04 | 삼성전자 주식회사 | Composition for organic thin film and organic thin film and electronic device including the organic thin film |
| DK3013485T3 (en) * | 2013-06-28 | 2021-11-08 | Solarwindow Tech Inc | COVERINGS FOR AIR WINDOW SURFACES TO PRODUCE ELECTRICITY FOR MISSION-CRITICAL SYSTEMS ON MILITARY AIRCRAFT |
| JP6264090B2 (en) * | 2013-07-31 | 2018-01-24 | 株式会社リコー | FIELD EFFECT TRANSISTOR AND METHOD FOR MANUFACTURING FIELD EFFECT TRANSISTOR |
| CN103594481B (en) * | 2013-11-08 | 2016-10-12 | 武汉工程大学 | Memory device based on sulfonated graphene/poly-(3,4-Ethylenedioxy Thiophene)-poly-(styrene sulfonic acid) composite and preparation method thereof |
| JP6140626B2 (en) * | 2014-03-03 | 2017-05-31 | 富士フイルム株式会社 | Organic thin film transistor and manufacturing method thereof |
| JP6746573B2 (en) * | 2014-07-23 | 2020-08-26 | デイヴィッド ハイランド | System and method for collecting and distributing space-based solar energy |
| WO2016072810A1 (en) | 2014-11-06 | 2016-05-12 | 포항공과대학교 산학협력단 | Perovskite light emitting device containing exciton buffer layer and method for manufacturing same |
| KR101703451B1 (en) * | 2014-11-06 | 2017-02-09 | 포항공과대학교 산학협력단 | Perovskite light emitting device including exciton buffer layer and manufacturing method thereof |
| CN104393194A (en) | 2014-12-10 | 2015-03-04 | 京东方科技集团股份有限公司 | Flexible electrode, fabrication method of flexible electrode, electronic skin and flexible display device |
| JP6864879B2 (en) * | 2015-04-15 | 2021-04-28 | 国立大学法人山梨大学 | Conductive polymer composite, method for producing conductive polymer composite, conductive polymer composite composition and thin film |
| JP6538630B2 (en) * | 2015-11-09 | 2019-07-03 | 信越化学工業株式会社 | Conductive material and substrate |
| JP6600286B2 (en) * | 2015-11-09 | 2019-10-30 | 信越化学工業株式会社 | Conductive material and substrate |
| CN105826484B (en) * | 2016-05-18 | 2019-03-08 | Tcl集团股份有限公司 | A kind of OLED and preparation method thereof |
| CN106229393A (en) * | 2016-09-14 | 2016-12-14 | Tcl集团股份有限公司 | A kind of light emitting diode and preparation method thereof |
| KR102405260B1 (en) * | 2017-11-21 | 2022-06-02 | 삼성전자주식회사 | Quantum dot device and electronic device |
| CN109935727B (en) * | 2017-12-15 | 2020-06-09 | 京东方科技集团股份有限公司 | Substrate, display device and preparation method of conductive film |
| CN110112310A (en) * | 2019-05-06 | 2019-08-09 | 杭州师范大学 | A kind of preparation method of high work function composite material |
| CN111293085A (en) * | 2020-02-07 | 2020-06-16 | 复旦大学 | Three-dimensional CMOS (complementary metal oxide semiconductor) based on two-dimensional transition metal chalcogenide and tellurium and preparation method thereof |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101020818A (en) * | 2006-02-13 | 2007-08-22 | 三星Sdi株式会社 | Organic light emitting device |
| CN101379162A (en) * | 2006-02-03 | 2009-03-04 | E.I.内穆尔杜邦公司 | Transparent composite conductor with high work function |
| JP2010514904A (en) * | 2006-12-29 | 2010-05-06 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | High work function and high conductivity composition of conductive polymer |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6916553B2 (en) | 2001-03-29 | 2005-07-12 | Agfa-Gevaert | Stable electroluminescent devices |
| KR100426344B1 (en) * | 2001-03-21 | 2004-04-06 | 이석현 | Soluble Self-orienting Materials and Conductive Polymer Composites having the same |
| CA2500304A1 (en) * | 2002-09-24 | 2004-04-08 | E. I. Du Pont De Nemours And Company | Electrically conducting organic polymer/nanoparticle composites and methods for use thereof |
| US7569158B2 (en) | 2004-10-13 | 2009-08-04 | Air Products And Chemicals, Inc. | Aqueous dispersions of polythienothiophenes with fluorinated ion exchange polymers as dopants |
| KR101356296B1 (en) * | 2005-06-28 | 2014-02-06 | 이 아이 듀폰 디 네모아 앤드 캄파니 | High Work Function Transparent Conductors |
| US7728098B2 (en) | 2006-07-27 | 2010-06-01 | 3M Innovative Properties Company | Fluorochemical composition comprising fluorinated oligomeric silane |
| JP2009065011A (en) * | 2007-09-07 | 2009-03-26 | Konica Minolta Holdings Inc | Method for producing organic thin film transistor |
| KR101508800B1 (en) * | 2007-10-24 | 2015-04-06 | 메르크 파텐트 게엠베하 | Optoelectronic device |
| EP2415833A4 (en) * | 2009-03-30 | 2014-06-18 | Udc Ireland Ltd | CONDUCTIVE POLYMER COMPOSITION, CONDUCTIVE CURED FILM, AND ORGANIC ELECTROLUMINESCENT ELEMENT |
| JP5499617B2 (en) * | 2009-10-15 | 2014-05-21 | コニカミノルタ株式会社 | Transparent electrode and organic electroluminescence device |
| KR101140352B1 (en) | 2009-11-09 | 2012-05-03 | 한국기계연구원 | Manufacturing method of pre-sintered porous Si granules for porous reaction-bonded silicon nitride, pre-sintered porous granules therefrom |
-
2011
- 2011-05-27 KR KR1020110050845A patent/KR101302786B1/en not_active Expired - Fee Related
-
2012
- 2012-05-23 DE DE102012104440A patent/DE102012104440A1/en not_active Ceased
- 2012-05-24 JP JP2012118704A patent/JP2012248843A/en active Pending
- 2012-05-25 US US13/481,472 patent/US8999527B2/en not_active Expired - Fee Related
- 2012-05-25 CN CN201210165809.0A patent/CN102800809B/en not_active Expired - Fee Related
-
2014
- 2014-10-03 JP JP2014204894A patent/JP6073845B2/en not_active Expired - Fee Related
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101379162A (en) * | 2006-02-03 | 2009-03-04 | E.I.内穆尔杜邦公司 | Transparent composite conductor with high work function |
| CN101020818A (en) * | 2006-02-13 | 2007-08-22 | 三星Sdi株式会社 | Organic light emitting device |
| JP2010514904A (en) * | 2006-12-29 | 2010-05-06 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | High work function and high conductivity composition of conductive polymer |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2015046611A (en) | 2015-03-12 |
| US20120298974A1 (en) | 2012-11-29 |
| JP2012248843A (en) | 2012-12-13 |
| JP6073845B2 (en) | 2017-02-01 |
| KR20120132656A (en) | 2012-12-07 |
| CN102800809A (en) | 2012-11-28 |
| DE102012104440A1 (en) | 2012-11-29 |
| US8999527B2 (en) | 2015-04-07 |
| KR101302786B1 (en) | 2013-09-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102800809B (en) | Use the organic electronic device of the simplification of the polymeric anode with high work function | |
| CN102800810B (en) | Electrode and the electronic device including it | |
| JP5420825B2 (en) | Organic light emitting device | |
| CN103875088B (en) | The organic discharger simplified and manufacture method thereof | |
| JP5068558B2 (en) | Organic light emitting device | |
| CN101085857B (en) | Conducting polymer composition, conductive film formed using the conducting polymer composition, and electronic device including the conductive film | |
| US20160020420A1 (en) | Electronic element employing hybrid electrode having high work function and conductivity | |
| US20170369727A1 (en) | Compositions containing hole carrier materials and fluoropolymers, and uses thereof | |
| US9583725B2 (en) | Conductive thin film, method for producing same, and electronic element comprising same | |
| KR101397256B1 (en) | Conductive thin films and electronic devices comprising the same | |
| KR101523135B1 (en) | Hybrid thin film having a high work function and conductivity and organic light emitting diode comprising the same | |
| KR101458691B1 (en) | Organic solar cell including hybrid conductive thin film having a high work function and conductivity | |
| KR101449249B1 (en) | Electronic device including hybrid electrode having a high work function and conductivity | |
| Zhang et al. | Phosphonate-functionalized polyfluorene and its application in organic optoelectronic devices | |
| KR101458690B1 (en) | Conductive thin layer and electronic device comprising the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160817 Termination date: 20180525 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |