CN102841325A - Three-dimensional tunneling magnetic field sensor with bevel angle of 45 degrees and manufacturing method of sensor - Google Patents
Three-dimensional tunneling magnetic field sensor with bevel angle of 45 degrees and manufacturing method of sensor Download PDFInfo
- Publication number
- CN102841325A CN102841325A CN2012103260251A CN201210326025A CN102841325A CN 102841325 A CN102841325 A CN 102841325A CN 2012103260251 A CN2012103260251 A CN 2012103260251A CN 201210326025 A CN201210326025 A CN 201210326025A CN 102841325 A CN102841325 A CN 102841325A
- Authority
- CN
- China
- Prior art keywords
- module
- magnetic field
- tunnel giant
- giant magnetoresistance
- tunnel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Measuring Magnetic Variables (AREA)
- Hall/Mr Elements (AREA)
Abstract
本发明属于磁场探测技术领域,具体涉及一种使用45度斜角的三维隧穿磁场传感器及其制造方法。本发明将用于测量不同纬度的三个隧道巨磁阻模块置于一个使用45度斜角的凹槽或者凸台结构之上形成三维隧穿磁场传感器,使得三维磁场传感器的体积减小、用于测量不同维度磁场的磁阻传感模块更为集中,从而使得三维磁场传感器可以更加灵活地运用到导航系统、磁场测量系统以及测量各种基于磁场的其他物理量的设备中。
The invention belongs to the technical field of magnetic field detection, and in particular relates to a three-dimensional tunneling magnetic field sensor using a 45-degree oblique angle and a manufacturing method thereof. In the present invention, three tunnel giant magnetoresistance modules used for measuring different latitudes are placed on a groove or a boss structure with an inclination angle of 45 degrees to form a three-dimensional tunneling magnetic field sensor, so that the volume of the three-dimensional magnetic field sensor is reduced and the use The magnetoresistive sensing modules for measuring magnetic fields in different dimensions are more concentrated, so that the three-dimensional magnetic field sensors can be more flexibly used in navigation systems, magnetic field measurement systems, and devices for measuring various other physical quantities based on magnetic fields.
Description
技术领域 technical field
本发明属于磁场探测技术领域,具体涉及一种斜角的三维隧穿磁场传感器及其制造方法。 The invention belongs to the technical field of magnetic field detection, and in particular relates to an oblique-angle three-dimensional tunneling magnetic field sensor and a manufacturing method thereof.
背景技术 Background technique
1974年,Slonczewski提出在铁磁层/绝缘层/铁磁层结构中存在隧道巨磁阻效应,当两铁磁层磁化方向平行或反平行时,隧道结将有不同的电阻值。铁磁层/ 绝缘层/ 铁磁层三明治结构产生自旋隧穿效应的原理是:电子隧穿非磁性层的位垒而产生隧穿电流。当两铁磁层的磁化方向平行时, 一铁磁层中的多数自旋子带的电子将进入另一铁磁层的多数子带的空态, 同时少数自旋子带的电子也从一个铁磁层进入另一个铁磁层少数子带的空态, 此时, 隧穿几率大。当两铁磁层的磁化方向反平行时, 则一铁磁层中的多数自旋子带的电子的自旋与另一个铁磁层的少数自旋子带的电子的自旋平行, 这时, 一铁磁层中的多数自旋子带的电子将进入另一铁磁层的少数子带的空态, 及少数自旋子带的电子也从一个铁磁层进入另一个铁磁层多数子带的空态, 隧穿几率小。由此可见, 隧道电导与两铁磁层磁化矢量的相对方向有关。 In 1974, Slonczewski proposed that there is a tunnel giant magnetoresistance effect in the ferromagnetic layer/insulating layer/ferromagnetic layer structure. When the magnetization directions of the two ferromagnetic layers are parallel or antiparallel, the tunnel junction will have different resistance values. The principle of the spin tunneling effect produced by the ferromagnetic layer/insulating layer/ferromagnetic layer sandwich structure is that electrons tunnel through the potential barrier of the nonmagnetic layer to generate tunneling current. When the magnetization directions of the two ferromagnetic layers are parallel, the electrons of the majority spin subband in one ferromagnetic layer will enter the empty state of the majority subband of the other ferromagnetic layer, and the electrons of the minority spin subband will also go from one ferromagnetic layer to the empty state. The ferromagnetic layer enters the empty state of the minority subband of another ferromagnetic layer, and at this time, the probability of tunneling is high. When the magnetization directions of the two ferromagnetic layers are antiparallel, the spins of the electrons in the majority-spin subband in one ferromagnetic layer are parallel to the spins of the electrons in the minority-spin subband of the other ferromagnetic layer. , the electrons of the majority-spin subband in one ferromagnetic layer will enter the empty state of the minority sub-band of the other ferromagnetic layer, and the electrons of the minority-spin subband also enter the majority of the other ferromagnetic layer from one ferromagnetic layer In the empty state of the subband, the probability of tunneling is small. It can be seen that the tunnel conductance is related to the relative direction of the magnetization vectors of the two ferromagnetic layers.
目前,主要的三维磁场传感器通常是由一个一维磁场传感模块和一个二维磁场传感模块拼接而成,这种方法不仅成本高、稳定性和一致性差,而且会导致三维磁场传感器的体积比较大、所测到的不同纬度的磁场不能局限于较小的范围内,不利于测量设备向小型化、集约化的方向发展。 At present, the main three-dimensional magnetic field sensor is usually spliced by a one-dimensional magnetic field sensing module and a two-dimensional magnetic field sensing module. Relatively large, the measured magnetic fields at different latitudes cannot be limited to a small range, which is not conducive to the development of measuring equipment in the direction of miniaturization and intensification.
发明内容 Contents of the invention
本发明的目的在于提供一种基于隧道巨磁阻效应的,使用45度斜角的三维磁场传感器结构,可以减小三维磁场传感器的体积,以利于测量设备向小型化、集约化的方向发展。 The purpose of the present invention is to provide a three-dimensional magnetic field sensor structure based on the tunnel giant magnetoresistance effect and using a 45-degree oblique angle, which can reduce the volume of the three-dimensional magnetic field sensor, so as to facilitate the development of measuring equipment in the direction of miniaturization and intensification.
本发明提供的一种使用45度斜角的三维隧穿磁场传感器,主要为在半导体衬底内形成的,两个相对的侧壁均与所述半导体衬底表面成45度斜角的凹槽或者凸台结构; A three-dimensional tunneling magnetic field sensor using a 45-degree oblique angle provided by the present invention is mainly formed in a semiconductor substrate, and two opposite side walls are grooves with a 45-degree oblique angle to the surface of the semiconductor substrate. or boss structure;
在所述的凹槽或者凸台的第一个侧壁上设置第一隧道巨磁阻模块; A first tunnel giant magnetoresistive module is arranged on the first side wall of the groove or the boss;
在所述的凹槽或者凸台的第一个侧壁上设置第二隧道巨磁阻模块,如图2或图4所示;或者在所述的凹槽的底部或者凸台的顶部设置第二隧道巨磁阻模块,如图1或图3所示; Set the second tunnel giant magnetoresistive module on the first side wall of the groove or the boss, as shown in Figure 2 or Figure 4; or set the second tunnel at the bottom of the groove or the top of the boss Two tunnel giant magnetoresistance modules, as shown in Figure 1 or Figure 3;
在所述的凹槽或者凸台的第二个侧壁上设置第三隧道巨磁阻模块; A third tunnel giant magnetoresistive module is arranged on the second side wall of the groove or the boss;
所述的第二隧道巨磁阻模块所测磁场的方向垂直于所述的凹槽或者凸台的横截面; The direction of the magnetic field measured by the second tunnel giant magnetoresistance module is perpendicular to the cross section of the groove or boss;
所述的第一隧道巨磁阻模块、第三隧道巨磁阻模块所测磁场的方向均平行于各自所处的侧壁表面且均垂直于所述的第二隧道巨磁阻模块所测磁场的方向。 The directions of the magnetic field measured by the first tunnel giant magnetoresistance module and the third tunnel giant magnetoresistance module are parallel to the respective sidewall surfaces and are perpendicular to the magnetic field measured by the second tunnel giant magnetoresistance module direction.
所述的凹槽包括两个均与所述半导体衬底表面成45度斜角的侧壁以及一个连接所述的两个侧壁的、平行于半导体衬底的底壁;在所述的凹槽的第一个侧壁上形成有第一隧道巨磁阻模块,在所述的凹槽的底壁上形成有第二隧道巨磁阻模块,在所述的凹槽的第二个侧壁上形成有第三隧道巨磁阻模块。 The groove includes two sidewalls that are at an oblique angle of 45 degrees to the surface of the semiconductor substrate and a bottom wall that connects the two sidewalls and is parallel to the semiconductor substrate; A first tunnel giant magnetoresistance module is formed on the first side wall of the groove, a second tunnel giant magnetoresistance module is formed on the bottom wall of the groove, and a second tunnel giant magnetoresistance module is formed on the second sidewall of the groove A third tunnel giant magnetoresistance module is formed on it.
所述的凹槽由两个均与所述半导体衬底表面成45度斜角的侧壁构成;在所述的凹槽的第一个侧壁上形成有第一隧道巨磁阻模块和第二隧道巨磁阻模块,在所述的凹槽的第二个侧壁上形成有第三隧道巨磁阻模块。 The groove is composed of two sidewalls that are at an oblique angle of 45 degrees to the surface of the semiconductor substrate; a first tunnel giant magnetoresistance module and a second tunnel giant magnetoresistance module are formed on the first sidewall of the groove. Two tunnel giant magnetoresistance modules, a third tunnel giant magnetoresistance module is formed on the second side wall of the groove.
所述的凸台包括两个均与所述半导体衬底表面成45度斜角的侧壁以及一个连接所述的两个侧壁的顶壁;在所述的凸台的第一个侧壁上形成有第一隧道巨磁阻模块,在所述的凸台的顶壁上形成有第二隧道巨磁阻模块,在所述的凸台的第二个侧壁上形成有第三隧道巨磁阻模块。 The boss includes two sidewalls with an oblique angle of 45 degrees to the surface of the semiconductor substrate and a top wall connecting the two sidewalls; on the first sidewall of the boss A first tunnel giant magnetoresistance module is formed on the top wall of the boss, a second tunnel giant magnetoresistance module is formed on the top wall of the boss, and a third tunnel giant magnetoresistance module is formed on the second side wall of the boss. Magnetic resistance module.
所述的凸台由两个均与所述半导体衬底表面成45度斜角的侧壁构成;在所述的凸台的第一个侧壁上形成有第一隧道巨磁阻模块和第二隧道巨磁阻模块,在所述的凸台的第二个侧壁上形成有第三隧道巨磁阻模块。 The boss is composed of two sidewalls that are at an angle of 45 degrees to the surface of the semiconductor substrate; the first tunnel giant magnetoresistance module and the second tunnel giant magnetoresistance module are formed on the first sidewall of the boss. Two tunnel giant magnetoresistance modules, a third tunnel giant magnetoresistance module is formed on the second side wall of the boss.
本发明还提供了上述使用45度斜角的三维隧穿磁场传感器的制造方法,其具体步骤如下: The present invention also provides a method for manufacturing the above-mentioned three-dimensional tunneling magnetic field sensor using an oblique angle of 45 degrees. The specific steps are as follows:
采用湿法刻蚀的方法刻蚀半导体衬底形成具有两个均与所述半导体衬底表面成45度斜角的相对的侧壁的凹槽或者凸台结构; Etching the semiconductor substrate by a wet etching method to form a groove or a boss structure with two opposite sidewalls at an oblique angle of 45 degrees to the surface of the semiconductor substrate;
在外加磁场作用下淀积隧道巨磁阻材料并采用lift-off工艺在所形成的凹槽或者凸台的第一个侧壁上形成第一隧道巨磁阻模块; Depositing a tunnel giant magnetoresistance material under the action of an external magnetic field and using a lift-off process to form a first tunnel giant magnetoresistance module on the first side wall of the formed groove or boss;
在外加磁场作用下淀积隧道巨磁阻材料并采用lift-off工艺在所形成的凹槽或者凸台的第一个侧壁、或者在所形成凹槽的底部或者凸台的顶部形成第二隧道巨磁阻模块; Deposit the tunnel giant magnetoresistance material under the action of an external magnetic field, and use the lift-off process to form the second sidewall on the first side wall of the formed groove or the boss, or on the bottom of the formed groove or the top of the boss. Tunnel giant magnetoresistance module;
在外加磁场作用下淀积隧道巨磁阻材料并采用lift-off工艺在所形成的凹槽或者凸台的第二个侧壁上形成第三隧道巨磁阻模块。 The tunnel giant magnetoresistance material is deposited under the action of an external magnetic field, and a third tunnel giant magnetoresistance module is formed on the second side wall of the formed groove or boss by adopting a lift-off process.
其中, in,
所述凹槽结构所形成的两个侧壁由一个平行于半导体衬底的底壁连接;在外加磁场作用下淀积隧道巨磁阻材料并采用lift-off工艺在所形成的凹槽的第一个侧壁上形成第一隧道巨磁阻模块;在外加磁场作用下淀积隧道巨磁阻材料并采用lift-off工艺在所形成的凹槽的底壁上形成第二隧道巨磁阻模块;在外加磁场作用下淀积隧道巨磁阻材料并采用lift-off工艺在所形成的凹槽的第二个侧壁上形成第三隧道巨磁阻模块。 The two side walls formed by the groove structure are connected by a bottom wall parallel to the semiconductor substrate; under the action of an external magnetic field, a tunnel giant magnetoresistance material is deposited and a lift-off process is used on the first groove of the formed groove A first tunnel giant magnetoresistance module is formed on one side wall; a tunnel giant magnetoresistance material is deposited under the action of an external magnetic field, and a second tunnel giant magnetoresistance module is formed on the bottom wall of the formed groove by a lift-off process ; Deposit tunnel giant magnetoresistance material under the action of an external magnetic field and use a lift-off process to form a third tunnel giant magnetoresistance module on the second side wall of the formed groove.
所述凹槽结构;在外加磁场作用下淀积隧道巨磁阻材料并采用lift-off工艺在所形成的凹槽的第一个侧壁上形成第一隧道巨磁阻模块;在外加磁场作用下淀积隧道巨磁阻材料并采用lift-off工艺在所形成的凹槽的第一个侧壁上形成第二隧道巨磁阻模块;在外加磁场作用下淀积隧道巨磁阻材料并采用lift-off工艺在所形成的凹槽的第二个侧壁上形成第三隧道巨磁阻模块。 The groove structure; depositing tunnel giant magnetoresistance material under the action of an external magnetic field and adopting a lift-off process to form a first tunnel giant magnetoresistance module on the first side wall of the formed groove; under the action of an external magnetic field Deposit the tunnel giant magnetoresistance material and use the lift-off process to form the second tunnel giant magnetoresistance module on the first side wall of the formed groove; deposit the tunnel giant magnetoresistance material under the action of an external magnetic field and use The lift-off process forms the third tunnel giant magnetoresistance module on the second sidewall of the formed groove.
所述凸台结构所形成的两个侧壁由一个平行于半导体衬底的顶壁连接;在外加磁场作用下淀积隧道巨磁阻材料并采用lift-off工艺在所形成的凸台的第一个侧壁上形成第一隧道巨磁阻模块;在外加磁场作用下淀积隧道巨磁阻材料并采用lift-off工艺在所形成的凸台的顶壁上形成第二隧道巨磁阻模块;在外加磁场作用下淀积隧道巨磁阻材料并采用lift-off工艺在所形成的凸台的第二个侧壁上形成第三隧道巨磁阻模块。 The two side walls formed by the boss structure are connected by a top wall parallel to the semiconductor substrate; under the action of an external magnetic field, a tunnel giant magnetoresistive material is deposited, and a lift-off process is used on the first side of the formed boss. A first tunnel giant magnetoresistance module is formed on one side wall; a tunnel giant magnetoresistance material is deposited under the action of an external magnetic field, and a second tunnel giant magnetoresistance module is formed on the top wall of the formed boss by using a lift-off process ; Deposit tunnel giant magnetoresistance material under the action of an external magnetic field and use lift-off process to form a third tunnel giant magnetoresistance module on the second side wall of the formed boss.
所述凸台结构;在外加磁场作用下淀积隧道巨磁阻材料并采用lift-off工艺在所形成的凸台的第一个侧壁上形成第一隧道巨磁阻模块;在外加磁场作用下淀积隧道巨磁阻材料并采用lift-off工艺在所形成的凸台的第一个侧壁上形成第二隧道巨磁阻模块;在外加磁场作用下淀积隧道巨磁阻材料并采用lift-off工艺在所形成的凸台的第二个侧壁上形成第三隧道巨磁阻模块。 The boss structure; depositing tunnel giant magnetoresistance material under the action of an external magnetic field and adopting a lift-off process to form a first tunnel giant magnetoresistance module on the first side wall of the formed boss; under the action of an applied magnetic field Next, deposit tunnel giant magnetoresistance material and use lift-off process to form a second tunnel giant magnetoresistance module on the first side wall of the formed boss; deposit tunnel giant magnetoresistance material under the action of an external magnetic field and adopt The lift-off process forms the third tunnel giant magnetoresistance module on the second side wall of the formed boss.
本发明将用于测量不同纬度的三个隧道巨磁阻模块置于一个使用45度斜角的凹槽或者凸台结构之上形成三维隧穿磁场传感器,使得三维磁场传感器的体积减小、用于测量不同维度磁场的磁阻传感模块更为集中,从而使得三维磁场传感器可以更加灵活地运用到导航系统、磁场测量系统以及测量各种基于磁场的其他物理量的设备中。 In the present invention, three tunnel giant magnetoresistance modules used for measuring different latitudes are placed on a groove or a boss structure with an inclination angle of 45 degrees to form a three-dimensional tunneling magnetic field sensor, so that the volume of the three-dimensional magnetic field sensor is reduced and the use The magnetoresistive sensing modules for measuring magnetic fields in different dimensions are more concentrated, so that the three-dimensional magnetic field sensors can be more flexibly used in navigation systems, magnetic field measurement systems, and devices for measuring various other physical quantities based on magnetic fields.
附图说明 Description of drawings
图1a、2a、3a、4a为本发明所提供的使用45度斜角的三维隧穿磁场传感器的四个实施例的截面图,图中x-y-z坐标系为标准坐标系。 Figures 1a, 2a, 3a and 4a are cross-sectional views of four embodiments of the three-dimensional tunneling magnetic field sensor provided by the present invention using a 45-degree oblique angle, and the x-y-z coordinate system in the figure is a standard coordinate system.
图1b、2b、3b、4b分别为图1a、2a、3a、4a所示结构的俯视图。 Figures 1b, 2b, 3b, and 4b are top views of the structures shown in Figures 1a, 2a, 3a, and 4a, respectively.
图5至图12为本发明所公开的制备如图1a、2a、3a、4a所示的三维隧穿磁场传感器的实施例的工艺流程图。 FIGS. 5 to 12 are process flow charts of embodiments of preparing the three-dimensional tunneling magnetic field sensors shown in FIGS. 1a, 2a, 3a, and 4a disclosed in the present invention.
具体实施方式 Detailed ways
下面结合附图与具体实施方式对本发明作进一步详细的说明,在图中,为了方便说明,放大或缩小了层和区域的厚度,所示大小并不代表实际尺寸。尽管这些图并不能完全准确的反映出器件的实际尺寸,但是它们还是完整的反映了区域和组成结构之间的相互位置,特别是组成结构之间的上下和相邻关系。 The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. In the drawings, for the convenience of illustration, the thicknesses of layers and regions are enlarged or reduced, and the sizes shown do not represent actual sizes. Although these figures do not fully reflect the actual size of the device, they still completely reflect the mutual positions between the regions and the constituent structures, especially the upper-lower and adjacent relationships between the constituent structures.
图1a、2a、3a、4a为本发明所提供的使用45度斜角的三维隧穿磁场传感器结构的四个实施例的截面图,图1b、2b、3b、4b分别为图1a、2a、3a、4a所示的三维隧穿磁场传感器结构的俯视图。 Figures 1a, 2a, 3a, and 4a are cross-sectional views of four embodiments of the three-dimensional tunneling magnetic field sensor structure using a 45-degree oblique angle provided by the present invention, and Figures 1b, 2b, 3b, and 4b are Figures 1a, 2a, and 4b respectively. Top view of the 3D tunneling magnetic field sensor structure shown in 3a and 4a.
如图1a,半导体衬底12上形成有一个凹槽,凹槽包括两个均与所述半导体衬底表面成45度斜角的侧壁以及一个连接两个侧壁的底壁。第一隧道巨磁阻模块1和第三隧道巨磁阻模块3分别位于在半导体衬底12内形成的凹槽的两个侧壁上,第二隧道巨磁阻模块2位于凹槽的底壁。第二隧道巨磁阻模块2所测磁场的方向垂直于凹槽的横截面(图中与纸面平行的平面即为此横截面,以下同),第一隧道巨磁阻模块1和第三隧道巨磁阻模块3所测磁场的方向均平行于各自所处的侧壁表面且均垂直于第二隧道巨磁阻模块2所测磁场的方向。
As shown in Fig. 1a, a groove is formed on the
如图2a,半导体衬底12上形成有一个凹槽,凹槽由两个均与所述半导体衬底表面成45度斜角的侧壁构成。第一隧道巨磁阻模块1和第二隧道巨磁阻模块2位于在半导体衬底12内形成的凹槽的第一个侧壁上,第三隧道巨磁阻模块3位于凹槽的第二个侧壁上。第二隧道巨磁阻模块2所测磁场的方向垂直于凹槽的横截面,第一隧道巨磁阻模块1和第三隧道巨磁阻模块3所测磁场的方向均平行于各自所处的侧壁表面且均垂直于第二隧道巨磁阻模块2所测磁场的方向。
As shown in Fig. 2a, a groove is formed on the
如图3a,半导体衬底12上形成有一个凸台,凸台包括两个均与所述半导体衬底表面成45度斜角的侧壁以及一个连接两个侧壁的顶壁。第一隧道巨磁阻模块1和第三隧道巨磁阻模块3分别位于在半导体衬底12内形成的凸台的两个侧壁上,第二隧道巨磁阻模块2位于凸台的顶壁。第二隧道巨磁阻模块2所测磁场的方向垂直于凸台的横截面,第一隧道巨磁阻模块1和第三隧道巨磁阻模块3所测磁场的方向均平行于各自所处的侧壁表面且均垂直于第二隧道巨磁阻模块2所测磁场的方向。
As shown in FIG. 3 a , a boss is formed on the
如图4a,半导体衬底12上形成有一个凸台,凸台由两个均与所述半导体衬底表面成45度斜角的侧壁构成。第一隧道巨磁阻模块1和第二隧道巨磁阻模块2位于在半导体衬底12内形成的凸台的第一个侧壁上,第三隧道巨磁阻模块3位于凸台的第二个侧壁上。第二隧道巨磁阻模块2所测磁场的方向垂直于凸台的横截面,第一隧道巨磁阻模块1和第三隧道巨磁阻模块3所测磁场的方向均平行于各自所处的侧壁表面且均垂直于第二隧道巨磁阻模块2所测磁场的方向。
As shown in Fig. 4a, a raised platform is formed on the
如图1a、2a、3a、4a所示的三维隧穿磁场传感器的四个实施例中,在半导体衬底12内形成的凹槽或者凸台的两个侧壁与原有的半导体衬底的表面所成的夹角分别为α和β,在本发明中α=β=45°。
In the four embodiments of the three-dimensional tunneling magnetic field sensor shown in Figures 1a, 2a, 3a, and 4a, the two sidewalls of the groove or the boss formed in the
设定第一隧道巨磁阻模块1、第二隧道巨磁阻模块2和第三隧道巨磁阻模块3所测到的磁场值分别为X1、X2和X3。根据需要,再设定标准坐标系(分别在图1a、2a、3a、4a的右上角标识)的x轴、y轴和z轴,其中x轴和y轴平行于原有的半导体衬底的表面,且y轴垂直于纸面,z轴垂直于原有的半导体衬底的表面,然后设定x轴、y轴和z轴方向的磁场值分别为x、y和z,由此可以得到如下公式:
Set the magnetic field values measured by the first tunnel
y = X2; y = X2;
X3*cos β –X1*cosα = x; X3*cos β –X1*cosα = x;
X3*sin β + X1*sinα = z。 X3*sin β + X1*sin α = z.
因为α = β = 45°,所以有: Since α = β = 45°, we have:
y = x2; y = x2;
cos(45)* (X3 –X1) = x; cos(45)*(X3 –X1) = x;
sin(45)* (X3 + X1) = z。 sin(45)*(X3 + X1) = z.
本发明所提出的三维隧穿磁场传感器能够将所测到的不同纬度的磁场局限于较小的范围内。 The three-dimensional tunneling magnetic field sensor proposed by the present invention can limit the measured magnetic fields at different latitudes to a smaller range.
本发明所提出的三维隧穿磁场传感器可以通过很多方法制造,以下所叙述的是本发明所公开的如图1a、2a、3a、4a所示的三维隧穿磁场传感器结构的制造方法的实施例,图5-12描述了由本发明所公开的如图1a、2a、3a、4a所示结构所组成的集成电路中的一部分的工序。以硅衬底为例。 The three-dimensional tunneling magnetic field sensor proposed by the present invention can be manufactured by many methods, and what is described below is an embodiment of the manufacturing method of the three-dimensional tunneling magnetic field sensor structure as shown in Figures 1a, 2a, 3a, and 4a disclosed by the present invention , FIGS. 5-12 describe the process of a part of the integrated circuit composed of the structures shown in FIGS. 1a, 2a, 3a, and 4a disclosed by the present invention. Take silicon substrates as an example.
如图5,在提供的硅衬底200的表面氧化生长一层氧化硅薄膜201,然后在氧化硅薄膜201之上淀积一层光刻胶301。
As shown in FIG. 5 , a
接下来,掩膜、曝光、显影形成图形,并刻蚀掉没有没光刻胶保护的氧化硅薄膜201露出硅衬底200的表面,然后利用湿法刻蚀的方法刻蚀掉暴露出的硅衬底201形成所需要的凹槽或者凸台结构,之后剥除光刻胶301并刻蚀掉剩余氧化硅薄膜201。
Next, mask, expose, and develop to form patterns, and etch away the
通过对光刻胶图形的选择、以及对硅刻蚀条件的控制可以得到不同的结构: Different structures can be obtained through the selection of photoresist patterns and the control of silicon etching conditions:
图6a为在硅衬底内形成的用于形成如图1a所示的三维隧穿磁场传感器所需的凹槽结构。 Fig. 6a is a groove structure formed in a silicon substrate for forming the three-dimensional tunneling magnetic field sensor shown in Fig. 1a.
图6b为在硅衬底内形成的用于形成如图2a所示的三维隧穿磁场传感器所需的凹槽结构。 Fig. 6b is a groove structure formed in a silicon substrate for forming the three-dimensional tunneling magnetic field sensor shown in Fig. 2a.
图6c为在硅衬底内形成的用于形成如图3a所示的三维隧穿磁场传感器所需的凸台结构。 Fig. 6c is a boss structure formed in a silicon substrate for forming the three-dimensional tunneling magnetic field sensor shown in Fig. 3a.
图6d为在硅衬底内形成的用于形成如图4a所示的三维隧穿磁场传感器所需的凸台结构。 Fig. 6d shows the boss structure required for forming the three-dimensional tunneling magnetic field sensor shown in Fig. 4a formed in the silicon substrate.
图6a、6b、6c、6d所示的凹槽或者凸台的侧壁均为45度斜角的结构。 The sidewalls of the grooves or bosses shown in FIGS. 6a, 6b, 6c, and 6d are all beveled at 45 degrees.
接下来,在图6a、6b、6c、6d所示的结构之上淀积一层光刻胶302,并掩膜、曝光、显影定义出第一隧道巨磁阻模块的位置,如图7a、7b、7c、7d所示。
Next, deposit a layer of
接下来,在外加磁场作用下淀积隧道巨磁阻材料,并利用lift-off工艺(Lift-off工艺是首先在衬底上涂胶并光刻,然后再制备介质膜,在有光刻胶的地方,介质膜形成在光刻胶上,而没有光刻胶的地方,介质膜就直接形成在衬底上。当使用溶剂去除衬底上的光刻胶时,不需要的介质膜就随着光刻胶的溶解而脱落在溶剂中,而直接形成在衬底上的介质膜部分则保留下来形成图形。)形成第一隧道巨磁阻模块(以标号203示出),如图8a、8b、8c、8d所示。通过控制淀积隧道巨磁阻材料时外加磁场的方向来控制第一隧道巨磁阻模块203所测磁场的方向。
Next, deposit the tunnel giant magnetoresistance material under the action of an external magnetic field, and use the lift-off process (the Lift-off process is to first apply glue and photolithography on the substrate, and then prepare a dielectric film. Where there is a place, the dielectric film is formed on the photoresist, and where there is no photoresist, the dielectric film is directly formed on the substrate. When using a solvent to remove the photoresist on the substrate, the unnecessary dielectric film will be With the dissolution of the photoresist, it falls off in the solvent, and the part of the dielectric film directly formed on the substrate remains to form a pattern.) Form the first tunnel giant magnetoresistive module (shown by the symbol 203), as shown in Figure 8a, 8b, 8c, 8d. The direction of the magnetic field measured by the first tunnel
接下来,在图8a、8b、8c、8d所示的结构之上淀积一层光刻胶303,并掩膜、曝光、显影定义出第二隧道巨磁阻模块的位置,如图9a、9b、9c、9d所示。
Next, deposit a layer of
接下来,在外加磁场作用下淀积隧道巨磁阻材料,并利用lift-off工艺形成第二隧道巨磁阻模块(以标号204示出),如图10a、10b、10c、10d所示。通过控制淀积隧道巨磁阻材料时外加磁场的方向来控制第二隧道巨磁阻模块204所测磁场的方向。
Next, the tunnel giant magnetoresistance material is deposited under the action of an external magnetic field, and a second tunnel giant magnetoresistance module (shown by reference numeral 204 ) is formed by using a lift-off process, as shown in FIGS. 10 a , 10 b , 10 c , and 10 d. The direction of the magnetic field measured by the second tunnel
接下来,在图10a、10b、10c、10d所示的结构之上淀积一层光刻胶304,并掩膜、曝光、显影定义出第三隧道巨磁阻模块的位置,如图11a、11b、11c、11d所示。
Next, deposit a layer of
接下来,在外加磁场作用下淀积隧道巨磁阻材料,并利用lift-off工艺形成第三隧道巨磁阻模块(以标号205示出),如图12a、12b、12c、12d所示。通过控制淀积隧道巨磁阻材料时外加磁场的方向来控制隧道巨磁阻模块205所测磁场的方向。
Next, the tunnel giant magnetoresistance material is deposited under the action of an external magnetic field, and a third tunnel giant magnetoresistance module (shown by reference numeral 205 ) is formed by using a lift-off process, as shown in FIGS. 12a , 12b , 12c , and 12d . The direction of the magnetic field measured by the tunnel
如上所述,在不偏离本发明精神和范围的情况下,还可以构成许多有很大差别的实施例。应当理解,除了如所附的权利要求所限定的,本发明不限于在说明书中所述的具体实例。 As mentioned above, many widely different embodiments can be constructed without departing from the spirit and scope of the present invention. It should be understood that the invention is not limited to the specific examples described in the specification, except as defined in the appended claims.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2012103260251A CN102841325A (en) | 2012-09-05 | 2012-09-05 | Three-dimensional tunneling magnetic field sensor with bevel angle of 45 degrees and manufacturing method of sensor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2012103260251A CN102841325A (en) | 2012-09-05 | 2012-09-05 | Three-dimensional tunneling magnetic field sensor with bevel angle of 45 degrees and manufacturing method of sensor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN102841325A true CN102841325A (en) | 2012-12-26 |
Family
ID=47368863
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2012103260251A Pending CN102841325A (en) | 2012-09-05 | 2012-09-05 | Three-dimensional tunneling magnetic field sensor with bevel angle of 45 degrees and manufacturing method of sensor |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102841325A (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI463160B (en) * | 2013-01-28 | 2014-12-01 | meng huang Lai | Planarized 3 dimensional magnetic sensor chip |
| CN104218149A (en) * | 2013-05-31 | 2014-12-17 | 上海矽睿科技有限公司 | Fabrication method of magnetic sensor and magnetic sensor |
| WO2015158247A1 (en) * | 2014-04-18 | 2015-10-22 | 江苏多维科技有限公司 | Low-flying height in-plane magnetic image recognition sensor chip |
| CN105336847A (en) * | 2014-06-03 | 2016-02-17 | 中芯国际集成电路制造(上海)有限公司 | Manufacturing method of three-dimensional magnetic resistance sensor, and electronic device |
| CN106066460A (en) * | 2015-04-24 | 2016-11-02 | 阿尔卑斯电气株式会社 | Magnetic Sensor, the manufacture method of Magnetic Sensor and the method for designing of Magnetic Sensor |
| CN104218147B (en) * | 2013-05-31 | 2016-12-28 | 上海矽睿科技有限公司 | The preparation method of Magnetic Sensor and Magnetic Sensor |
| CN104218148B (en) * | 2013-05-31 | 2016-12-28 | 上海矽睿科技有限公司 | The preparation method of Magnetic Sensor and Magnetic Sensor |
| CN117630772A (en) * | 2023-10-12 | 2024-03-01 | 北京智芯微电子科技有限公司 | Three-dimensional tunnel magneto-resistance sensor and manufacturing method thereof |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009222650A (en) * | 2008-03-18 | 2009-10-01 | Ricoh Co Ltd | Magnetic sensor and personal digital assistant |
-
2012
- 2012-09-05 CN CN2012103260251A patent/CN102841325A/en active Pending
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009222650A (en) * | 2008-03-18 | 2009-10-01 | Ricoh Co Ltd | Magnetic sensor and personal digital assistant |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI463160B (en) * | 2013-01-28 | 2014-12-01 | meng huang Lai | Planarized 3 dimensional magnetic sensor chip |
| CN104218149A (en) * | 2013-05-31 | 2014-12-17 | 上海矽睿科技有限公司 | Fabrication method of magnetic sensor and magnetic sensor |
| CN104218149B (en) * | 2013-05-31 | 2016-10-05 | 上海矽睿科技有限公司 | The preparation method of Magnetic Sensor and Magnetic Sensor |
| CN104218147B (en) * | 2013-05-31 | 2016-12-28 | 上海矽睿科技有限公司 | The preparation method of Magnetic Sensor and Magnetic Sensor |
| CN104218148B (en) * | 2013-05-31 | 2016-12-28 | 上海矽睿科技有限公司 | The preparation method of Magnetic Sensor and Magnetic Sensor |
| WO2015158247A1 (en) * | 2014-04-18 | 2015-10-22 | 江苏多维科技有限公司 | Low-flying height in-plane magnetic image recognition sensor chip |
| US10168396B2 (en) | 2014-04-18 | 2019-01-01 | MultiDimension Technology Co., Ltd. | Low fly height in-plane magnetic image sensor chip |
| CN105336847A (en) * | 2014-06-03 | 2016-02-17 | 中芯国际集成电路制造(上海)有限公司 | Manufacturing method of three-dimensional magnetic resistance sensor, and electronic device |
| CN106066460A (en) * | 2015-04-24 | 2016-11-02 | 阿尔卑斯电气株式会社 | Magnetic Sensor, the manufacture method of Magnetic Sensor and the method for designing of Magnetic Sensor |
| CN117630772A (en) * | 2023-10-12 | 2024-03-01 | 北京智芯微电子科技有限公司 | Three-dimensional tunnel magneto-resistance sensor and manufacturing method thereof |
| CN117630772B (en) * | 2023-10-12 | 2025-08-01 | 北京智芯微电子科技有限公司 | Three-dimensional tunnel magneto-resistance sensor and manufacturing method thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11678584B2 (en) | Methods of manufacturing a magnetic field sensor | |
| CN102841325A (en) | Three-dimensional tunneling magnetic field sensor with bevel angle of 45 degrees and manufacturing method of sensor | |
| TWI497097B (en) | Triaxial magnetic field sensor | |
| US9255975B2 (en) | Magnetic-field sensing method | |
| CN102830372A (en) | Three-dimensional anisotropic magnetic field sensor employing 45-degree oblique angle and manufacturing method thereof | |
| JP2013518273A (en) | Integrated magnetometer and its manufacturing process | |
| CN102830373A (en) | Three-dimensional anisotropic magnetic field sensor employing 45-degree- oblique angle and manufacturing method thereof | |
| CN102830374A (en) | Three-dimensional tunnelling magnetic field sensor using angle of 45 degrees and manufacturing method thereof | |
| CN109273595A (en) | The method for forming tunnel magnetoresistive (TMR) element and TMR sensor element | |
| CN103887428A (en) | A kind of preparation technology of magnetic sensor device | |
| US9581661B2 (en) | XMR-sensor and method for manufacturing the XMR-sensor | |
| CN104155620B (en) | Magnetic sensing device and its inducing method, preparation technology |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C05 | Deemed withdrawal (patent law before 1993) | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20121226 |