CN102867843B - Isolated transistors and diodes and isolation and termination structures for semiconductor die - Google Patents
Isolated transistors and diodes and isolation and termination structures for semiconductor die Download PDFInfo
- Publication number
- CN102867843B CN102867843B CN201210359000.1A CN201210359000A CN102867843B CN 102867843 B CN102867843 B CN 102867843B CN 201210359000 A CN201210359000 A CN 201210359000A CN 102867843 B CN102867843 B CN 102867843B
- Authority
- CN
- China
- Prior art keywords
- region
- substrate
- trench
- isolation
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002955 isolation Methods 0.000 title claims abstract description 151
- 239000004065 semiconductor Substances 0.000 title claims description 9
- 239000000758 substrate Substances 0.000 claims abstract description 96
- 239000004020 conductor Substances 0.000 claims abstract description 32
- 239000003989 dielectric material Substances 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 abstract description 25
- 108091006146 Channels Proteins 0.000 description 16
- 230000015556 catabolic process Effects 0.000 description 15
- 238000009792 diffusion process Methods 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 230000005684 electric field Effects 0.000 description 11
- 239000007943 implant Substances 0.000 description 10
- 239000002019 doping agent Substances 0.000 description 8
- 210000000746 body region Anatomy 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 239000011810 insulating material Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 125000006850 spacer group Chemical group 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000002513 implantation Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003121 nonmonotonic effect Effects 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000003313 weakening effect Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- TVZRAEYQIKYCPH-UHFFFAOYSA-N 3-(trimethylsilyl)propane-1-sulfonic acid Chemical compound C[Si](C)(C)CCCS(O)(=O)=O TVZRAEYQIKYCPH-UHFFFAOYSA-N 0.000 description 1
- 241000293849 Cordylanthus Species 0.000 description 1
- 108090000699 N-Type Calcium Channels Proteins 0.000 description 1
- 102000004129 N-Type Calcium Channels Human genes 0.000 description 1
- 108010075750 P-Type Calcium Channels Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 210000003323 beak Anatomy 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/112—Constructional design considerations for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layers, e.g. by using channel stoppers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/65—Lateral DMOS [LDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/601—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs
- H10D30/603—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs having asymmetry in the channel direction, e.g. lateral high-voltage MISFETs having drain offset region or extended drain IGFETs [EDMOS]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/65—Lateral DMOS [LDMOS] FETs
- H10D30/657—Lateral DMOS [LDMOS] FETs having substrates comprising insulating layers, e.g. SOI-LDMOS transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/66—Vertical DMOS [VDMOS] FETs
- H10D30/663—Vertical DMOS [VDMOS] FETs having both source contacts and drain contacts on the same surface, i.e. up-drain VDMOS
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/66—Vertical DMOS [VDMOS] FETs
- H10D30/665—Vertical DMOS [VDMOS] FETs having edge termination structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/351—Substrate regions of field-effect devices
- H10D62/357—Substrate regions of field-effect devices of FETs
- H10D62/364—Substrate regions of field-effect devices of FETs of IGFETs
- H10D62/371—Inactive supplementary semiconductor regions, e.g. for preventing punch-through, improving capacity effect or leakage current
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/351—Substrate regions of field-effect devices
- H10D62/357—Substrate regions of field-effect devices of FETs
- H10D62/364—Substrate regions of field-effect devices of FETs of IGFETs
- H10D62/378—Contact regions to the substrate regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26586—Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/80—FETs having rectifying junction gate electrodes
- H10D30/83—FETs having PN junction gate electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/104—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices having particular shapes of the bodies at or near reverse-biased junctions, e.g. having bevels or moats
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
- H10D62/108—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] having localised breakdown regions, e.g. built-in avalanching regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
- H10D62/109—Reduced surface field [RESURF] PN junction structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/113—Isolations within a component, i.e. internal isolations
- H10D62/115—Dielectric isolations, e.g. air gaps
- H10D62/116—Dielectric isolations, e.g. air gaps adjoining the input or output regions of field-effect devices, e.g. adjoining source or drain regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/13—Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
- H10D62/149—Source or drain regions of field-effect devices
- H10D62/151—Source or drain regions of field-effect devices of IGFETs
- H10D62/152—Source regions of DMOS transistors
- H10D62/153—Impurity concentrations or distributions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/213—Channel regions of field-effect devices
- H10D62/221—Channel regions of field-effect devices of FETs
- H10D62/235—Channel regions of field-effect devices of FETs of IGFETs
- H10D62/299—Channel regions of field-effect devices of FETs of IGFETs having lateral doping variations
- H10D62/307—Channel regions of field-effect devices of FETs of IGFETs having lateral doping variations the doping variations being parallel to the channel lengths
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/213—Channel regions of field-effect devices
- H10D62/221—Channel regions of field-effect devices of FETs
- H10D62/235—Channel regions of field-effect devices of FETs of IGFETs
- H10D62/314—Channel regions of field-effect devices of FETs of IGFETs having vertical doping variations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/23—Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
- H10D64/251—Source or drain electrodes for field-effect devices
- H10D64/256—Source or drain electrodes for field-effect devices for lateral devices wherein the source or drain electrodes are recessed in semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/20—Breakdown diodes, e.g. avalanche diodes
- H10D8/25—Zener diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/422—PN diodes having the PN junctions in mesas
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Element Separation (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
各种集成电路器件,尤其是晶体管,形成在包括底隔离区域和从所述衬底的表面延伸到该底隔离区域的沟槽的隔离结构内部。该沟槽可由电介质材料填充或可以具有在中心部分的导电材料以及装衬该沟槽的壁的电介质材料。通过延伸该底隔离区域超出沟槽、采用保护环以及形成漂移区的用于终端所述隔离结构的各种技术被描述。
Various integrated circuit devices, especially transistors, are formed within an isolation structure comprising a bottom isolation region and a trench extending from the surface of the substrate to the bottom isolation region. The trench may be filled with a dielectric material or may have a conductive material in the center portion and a dielectric material lining the walls of the trench. Various techniques for terminating the isolation structure by extending the bottom isolation region beyond the trench, employing a guard ring, and forming a drift region are described.
Description
本申请是申请日为2009年2月25日且发明名称为“隔离的晶体管和二极管、用于半导体管芯的隔离和终端结构”的中国专利申请200980115026.8的分案申请。This application is a divisional application of Chinese patent application 200980115026.8 with a filing date of February 25, 2009 and an invention title of "isolated transistor and diode, isolation and termination structure for semiconductor die".
相关申请的交叉引用Cross References to Related Applications
本申请是于2008年2月14日提交的申请No.12/069,941的部分继续申请。This application is a continuation-in-part of Application No. 12/069,941 filed February 14,2008.
本申请是于2007年8月8日提交的申请No.11/890,993的部分继续申请。申请No.11/890,993是于2006年5月31日提交的申请No.11/444,102的继续申请,且是下述申请的部分继续申请:(a)于2004年8月14日提交的申请No.10/918,316,其是于2002年8月14日提交的、现在为美国专利No.6,900,091的申请No.10/218,668的分案申请;(b)于2005年8月15日提交的申请No.11/204,215,其是2002年8月14日提交的、现在为美国专利No.6,943,426的申请No.10/218,678的分案申请。上述每个申请和专利通过引用全部结合于此。This application is a continuation-in-part of Application No. 11/890,993, filed August 8,2007. Application No. 11/890,993 is a continuation of Application No. 11/444,102 filed May 31, 2006 and is a continuation-in-part of: (a) Application No. .10/918,316, which is a divisional application of Application No. 10/218,668, filed August 14, 2002, now U.S. Patent No. 6,900,091; (b) Application No. .11/204,215, which is a divisional application of Application No. 10/218,678, filed Aug. 14, 2002, now US Patent No. 6,943,426. Each of the aforementioned applications and patents is hereby incorporated by reference in its entirety.
背景技术 Background technique
在制造半导体集成电路(IC)芯片的过程中,经常需要使不同的器件与半导体衬底电隔离并使不同的器件彼此电隔离。提供器件之间的横向隔离的一种方法是公知的硅局部氧化(LOCOS,Local Oxidation Of Silicon)工艺,其中芯片的表面用相对硬的材料,诸如硅氮化物作为掩模,较厚的氧化层在掩模的开口中热生长。另一种方法是在硅中刻蚀沟槽,然后用诸如硅氧化物的电介质材料填充该沟槽,这也被称为沟槽隔离。尽管LOCOS和沟槽隔离两者能够防止之间不期望的表面导通,但它们并不便于完全的电隔离。During the manufacture of semiconductor integrated circuit (IC) chips, it is often necessary to electrically isolate different devices from a semiconductor substrate and from each other. One method of providing lateral isolation between devices is the well-known local oxidation of silicon (LOCOS, Local Oxidation Of Silicon) process, in which the surface of the chip is masked with a relatively hard material, such as silicon nitride, and a thicker oxide layer thermally grown in the openings of the mask. Another approach is to etch a trench in the silicon and then fill the trench with a dielectric material such as silicon oxide, also known as trench isolation. Although both LOCOS and trench isolation can prevent unwanted surface conduction between them, they do not facilitate complete electrical isolation.
需要完全的电隔离以集成某些类型的晶体管,包括双极结型晶体管和各种金属氧化物半导体(MOS)晶体管(包括功率DMOS晶体管)。还需要完全的隔离以允许在操作期间CMOS控制电路浮置到高于衬底电势很多的电势。完全的隔离在模拟、功率和混合信号集成电路的制造中也尤其重要。Complete galvanic isolation is required to integrate certain types of transistors, including bipolar junction transistors and various metal-oxide-semiconductor (MOS) transistors, including power DMOS transistors. Complete isolation is also required to allow the CMOS control circuitry to float to potentials well above the substrate potential during operation. Complete isolation is also especially important in the manufacture of analog, power and mixed-signal integrated circuits.
尽管常规的CMOS晶片制造提供了高密度的晶体管集成,但它不便于所制造的器件的完全电隔离。具体地,包含在制作于P型衬底中的常规CMOS晶体管对中的NMOS晶体管具有短路到衬底的P阱“体”或“背栅”,因此不能浮置在接地电势之上。该限制实质上妨碍了NMOS用作高压侧开关(high-side switch)、模拟传输晶体管(pass transistor)或用作双向开关。这也使得电流检测更加困难,并经常妨碍集成的源极-体短路的使用,需要该短路以使得NMOS更加雪崩强化(avalanche rugged)。此外,由于常规CMOS中的P型衬底通常被偏置到最负的芯片上电势(定义为“接地电势”),所以每个NMOS必然经受不期望的衬底噪声。Although conventional CMOS wafer fabrication provides high density transistor integration, it does not facilitate complete electrical isolation of the fabricated devices. In particular, NMOS transistors contained in a conventional CMOS transistor pair fabricated in a P-type substrate have a P-well "body" or "back gate" shorted to the substrate and therefore cannot float above ground potential. This limitation substantially prevents NMOS from being used as a high-side switch, as a pass transistor, or as a bidirectional switch. It also makes current sensing more difficult and often prevents the use of integrated source-body shorts, which are needed to make the NMOS more avalanche rugged. Furthermore, since the P-type substrate in conventional CMOS is typically biased to the most negative on-chip potential (defined as "ground potential"), each NMOS necessarily suffers from undesirable substrate noise.
集成器件的完全电隔离典型地采用三重扩散、外延结隔离或电介质隔离来实现。最普遍形式的完全电隔离是结隔离。尽管不像电介质隔离(其中氧化物围绕每个器件或电路)那样理想,但是结隔离已经在历史上提供了制造成本与隔离性能之间的最好折衷。Complete electrical isolation of integrated devices is typically achieved using triple diffusion, epitaxial junction isolation, or dielectric isolation. The most common form of complete galvanic isolation is junction isolation. Although not as ideal as dielectric isolation (where an oxide surrounds each device or circuit), junction isolation has historically provided the best compromise between manufacturing cost and isolation performance.
对于常规的结隔离,使CMOS电隔离需要一复杂结构,该复杂结构包括在P型衬底上生长N型外延层,该N型外延层被电连接到P型衬底的深P型隔离的环形环围绕,以形成完全被隔离的N型外延岛,该完全被隔离的N型外延岛在其下方和所有侧面上具有P型材料。外延层的生长较慢并且耗时,代表了半导体晶片制造过程中最昂贵的单个步骤。隔离扩散也比较昂贵,使用高温扩散来进行并且持续时间延长(达到18小时)。为了能够抑制寄生器件,在外延生长之前重掺杂的N型埋层(NBL)也必须被遮蔽并被选择性地引入。For conventional junction isolation, electrically isolating CMOS requires a complex structure that includes growing an N-type epitaxial layer on a P-type substrate, which is electrically connected to the P-type substrate by a deep P-type isolation. An annular ring surrounds to form a fully isolated N-type epitaxial island with P-type material underneath and on all sides. The growth of epitaxial layers is slow and time-consuming, representing the most expensive single step in the semiconductor wafer fabrication process. Isolated diffusion is also more expensive, is performed using high temperature diffusion and lasts longer (up to 18 hours). To be able to suppress parasitic devices, the heavily doped N-type buried layer (NBL) must also be masked and selectively introduced prior to epitaxial growth.
为了在外延生长和隔离扩散期间使向上扩散最小化,选择慢扩散剂诸如砷(As)或锑(Sb)来形成N型埋层(NBL)。然而,在外延生长之前,该NBL层必须扩散得足够深以减小其表面浓度,否则外延生长的浓度控制将被不利地影响。因为NBL包括慢扩散剂,所以该外延之前的扩散工艺将耗费十小时以上。只有在隔离完成之后,才能开始常规CMOS制造,从而与常规CMOS工艺相比为结隔离工艺的制造增加了相当可观的时间和复杂性。To minimize updiffusion during epitaxial growth and isolation diffusion, a slow diffusion agent such as arsenic (As) or antimony (Sb) is chosen to form the N-type buried layer (NBL). However, the NBL layer must be diffused deep enough to reduce its surface concentration prior to epitaxial growth, otherwise the concentration control of the epitaxial growth will be adversely affected. Since the NBL includes a slow diffusing agent, the diffusion process before the epitaxy will take more than ten hours. Only after isolation is complete, conventional CMOS fabrication can begin, adding considerable time and complexity to the fabrication of the junction isolation process compared to conventional CMOS processes.
结隔离制造方法依赖于高温工艺,以形成深扩散结并生长外延层。这些高温工艺昂贵且难以进行,且它们无法与大直径晶片制造兼容,在器件电性能上表现出了相当大的可变性并妨碍了高的晶体管集成密度。结隔离的另一缺点是,存在被隔离结构浪费掉而不能用于制造有源晶体管或电路的面积。作为进一步的复杂,通过结隔离,设计规则(和浪费面积的量)取决于被隔离器件的最大电压。显然,常规外延结隔离尽管其具有电学优点,但是在面积上过于浪费而不能为混合信号和功率集成电路保留可行的技术选择。Junction isolation fabrication methods rely on high temperature processes to form deeply diffused junctions and grow epitaxial layers. These high-temperature processes are expensive and difficult to perform, and they are not compatible with large-diameter wafer fabrication, exhibit considerable variability in device electrical performance and prevent high transistor integration densities. Another disadvantage of junction isolation is that there is area wasted by the isolation structure that cannot be used to fabricate active transistors or circuits. As a further complication, with junction isolation, the design rules (and the amount of wasted area) depend on the maximum voltage of the device being isolated. Clearly, conventional epitaxial junction isolation, despite its electrical advantages, is too wasteful in area to remain a viable technology option for mixed-signal and power integrated circuits.
用于使集成电路器件隔离的备选方法在美国专利No.6,855,985中公开,其通过引用结合于此。其中公开的用于集成充分被隔离的CMOS、双极晶体管和DMOS(BCD)晶体管的模块工艺可以不需要高温扩散或外延而实现。该模块BCD工艺使用通过具有特定轮廓形状的氧化物的高能(MeV)离子注入,以制造自形成的隔离结构,从而实质上不需要高温处理。该低热预算工艺将受益于“原位注入(as-implanted)”的掺杂剂轮廓,由于没有使用高温工艺,所以该掺杂分布经历很少的掺杂剂再扩散或者不经历掺杂剂再扩散。An alternative method for isolating integrated circuit devices is disclosed in US Patent No. 6,855,985, which is incorporated herein by reference. The module process disclosed therein for the integration of fully isolated CMOS, bipolar and DMOS (BCD) transistors can be achieved without the need for high temperature diffusion or epitaxy. The modular BCD process uses high-energy (MeV) ion implantation through oxides with specific profile shapes to fabricate self-forming isolation structures, virtually eliminating the need for high-temperature processing. This low thermal budget process will benefit from an "as-implanted" dopant profile that undergoes little or no dopant re-diffusion since no high-temperature process is used. diffusion.
通过LOCOS场氧化物注入的掺杂剂形成共形的(conformal)隔离结构,其继而被用于围绕多电压的CMOS、双极晶体管和其它器件并使它们与公共的P型衬底隔离。该相同的工艺能用于集成的双极晶体管以及各种双结DMOS功率器件,它们都被不同剂量和能量的共形的链式离子注入(chainedion implantation)调整。Dopants implanted through the LOCOS field oxide form conformal isolation structures, which in turn are used to surround and isolate multi-voltage CMOS, bipolar transistors, and other devices from a common P-type substrate. This same process can be used for integrated bipolar transistors as well as various dual-junction DMOS power devices, all tuned by conformal chainedion implantation of different doses and energies.
尽管该“无外延的(epi-less)”低热预算的技术与非隔离工艺及外延结隔离工艺相比具有许多优点,但是在某些情况下,其对LOCOS的依赖会限制其按比例缩小到更小的尺寸并获得更高的晶体管密度的能力。在LOCOS基模块BCD工艺中共形离子注入的原理是:通过注入通过较厚的氧化物层,掺杂剂原子将在靠近硅表面的位置;通过注入通过较薄的氧化物层,注入的原子将位于硅中较深的位置而远离表面。Although this "epi-less" low thermal budget technology has many advantages over non-isolated and epitaxial junction-isolated processes, in some cases its reliance on LOCOS limits its scaling to Smaller dimensions and the ability to achieve higher transistor densities. The principle of conformal ion implantation in the LOCOS-based module BCD process is: by implanting through a thicker oxide layer, the dopant atoms will be located close to the silicon surface; by implanting through a thinner oxide layer, the implanted atoms will be Located deep in the silicon away from the surface.
正如所描述的,具有被LOCOS轮廓化的注入并使用基于0.35微米的技术而易于实现的完全隔离BCD工艺可能在按比例缩小到较小的尺寸并获得更紧密的线宽时遇到问题。为了提高CMOS晶体管的集成密度,优选地可以将场氧化物层的鸟嘴锥减小为更垂直的结构,使得器件能够被更密集地放置,以实现更高的封装密度。然而,狭窄的LOCOS鸟嘴会使得隔离侧壁的宽度变窄并且会牺牲隔离质量。As described, a fully isolated BCD process with implants profiled by LOCOS and readily achievable using 0.35 micron based technology may have problems scaling to smaller dimensions and achieving tighter linewidths. In order to improve the integration density of CMOS transistors, preferably, the bird's beak cone of the field oxide layer can be reduced to a more vertical structure, so that devices can be placed more densely to achieve higher packaging density. However, the narrow LOCOS beak narrows the width of the isolation sidewall and sacrifices isolation quality.
在这些问题显著的情形下,将期望具有使集成电路器件(尤其是高压器件)完全隔离的新策略,其使用低热预算的无外延集成电路工艺,但消除了上述窄侧壁问题以允许更密集的隔离结构。In situations where these issues are significant, it would be desirable to have new strategies for fully isolating integrated circuit devices, especially high voltage devices, using epitaxial-free integrated circuit processes with low thermal budgets, but eliminating the aforementioned narrow sidewall issues to allow denser isolation structure.
发明内容 Contents of the invention
根据发明的实施例大体上形成在不包括外延层的第一导电类型的半导体衬底中。隔离的横向DMOS晶体管(LDMOS)的实施例包括第二导电类型的底隔离区域和从衬底的表面延伸到该底隔离区域的电介质填充的沟槽,该沟槽与该底隔离区域形成衬底的隔离袋。该LDMOS包括在隔离袋中的第一导电类型的阱,该阱作为LDMOS的体部,该阱包括浅部和深部,该浅部位于衬底的表面附近,该深部位于浅部下方,该浅部具有第一掺杂浓度,而该深部具有第二掺杂浓度,该第二掺杂浓度高于该第一掺杂浓度。Embodiments according to the invention are generally formed in a semiconductor substrate of a first conductivity type that does not include an epitaxial layer. An embodiment of an isolated lateral DMOS transistor (LDMOS) includes a bottom isolation region of a second conductivity type and a dielectric-filled trench extending from a surface of a substrate to the bottom isolation region, the trench forming a substrate with the bottom isolation region isolation bag. The LDMOS includes a well of the first conductivity type in an isolated pocket, the well serving as the body of the LDMOS, the well comprising a shallow portion located near the surface of the substrate, the deep portion located below the shallow portion, and the shallow portion The deep portion has a first doping concentration, and the deep portion has a second doping concentration higher than the first doping concentration.
在隔离的LDMOS的第二实施例中,沟槽包括在中心部分的导电材料且该沟槽的壁被装衬电介质材料。隔离袋包括邻近漏极区域的第二导电类型的漂移区和隔离袋中邻近衬底表面的浅沟槽隔离(STI)结构,且STI结构被漂移区从侧部及底部围绕。隔离袋可包括位于源极区域和/或漏极区域之下的埋设的第一导电类型的骤回控制区域。In a second embodiment of isolated LDMOS, the trench comprises a conductive material in a central portion and the walls of the trench are lined with a dielectric material. The isolation bag includes a drift region of the second conductivity type adjacent to the drain region and a shallow trench isolation (STI) structure in the isolation bag adjacent to the substrate surface, and the STI structure is surrounded by the drift region from sides and bottom. The isolation pocket may include a buried snapback control region of the first conductivity type under the source region and/or the drain region.
在根据本发明的隔离的准垂直DMOS(QVDMOS)中,沟槽包括在中心部分的导电材料且沟槽的壁装衬有电介质材料。隔离袋包括在衬底表面的第二导电类型的源极区域。电流从源极区域水平通过在栅极之下的沟道区,然后垂直流到底隔离区域,该底隔离区域包括在QVDMOS的漏极中。In an isolated quasi-vertical DMOS (QVDMOS) according to the invention, the trench comprises a conductive material in the central part and the walls of the trench are lined with a dielectric material. The isolation pocket includes a source region of the second conductivity type at the surface of the substrate. Current flows horizontally from the source region through the channel region under the gate, and then vertically flows to the bottom isolation region included in the drain of the QVDMOS.
在根据本发明的隔离的结场效应晶体管(JFET)中,沟槽包括在中心部分的导电材料且该沟槽的壁装衬有电介质材料。隔离袋在衬底的表面包括第一导电类型的源极区域和漏极区域以及第二导电类型的顶栅极区域。第一导电类型的沟道区位于顶栅极区域的底部与底隔离区域之间。In an isolated junction field effect transistor (JFET) according to the invention, the trench comprises a conductive material in a central portion and the walls of the trench are lined with a dielectric material. The isolation pocket includes source and drain regions of the first conductivity type and a top gate region of the second conductivity type on the surface of the substrate. A channel region of the first conductivity type is located between the bottom of the top gate region and the bottom isolation region.
在隔离的结场效应晶体管(JFET)的第二个实施例中,隔离袋包括第二导电类型的源极区域和漏极区域、衬底表面的第一导电类型的顶栅极区域以及埋设在衬底中的第一导电类型的底栅极区域。第二导电类型的沟道区位于顶栅极区域的底部和底栅极区域的上边界之间。In a second embodiment of an isolated junction field effect transistor (JFET), the isolated pocket includes source and drain regions of the second conductivity type, a top gate region of the first conductivity type at the substrate surface, and a buried A bottom gate region of the first conductivity type in the substrate. A channel region of the second conductivity type is located between the bottom of the top gate region and the upper boundary of the bottom gate region.
在根据本发明的耗尽型MOSFET中,沟槽包括在中心部分的导电材料且该沟槽的壁装衬有电介质材料。该隔离袋包括第二导电类型的源极区域和漏极区域且栅极下方的沟道区的掺杂浓度实质上等于衬底的背景掺杂浓度。为了降低碰撞电离以及抑制骤回,第一导电类型的埋设区域可以至少部分形成在栅极下方。In a depletion mode MOSFET according to the invention, the trench comprises a conductive material in the central part and the walls of the trench are lined with a dielectric material. The isolation bag includes a source region and a drain region of the second conductivity type, and the doping concentration of the channel region under the gate is substantially equal to the background doping concentration of the substrate. In order to reduce impact ionization and suppress snapback, a buried region of the first conductivity type may be at least partially formed under the gate.
在根据本发明的隔离的二极管中,隔离袋包括第一导电类型的阳极区域。底隔离区域用作二极管的阴极并通过沟槽中的导电材料被接触。In the isolated diode according to the invention, the isolated pocket comprises an anode region of the first conductivity type. The bottom isolation region serves as the cathode of the diode and is contacted by the conductive material in the trench.
本发明也包括在隔离袋之外、用于作为沟槽的边界的区域的终端结构。第一导电类型的保护环可以在隔离袋之外形成在衬底的表面处,且底隔离区域可以横向延伸超出沟槽的外边缘。第一导电类型的埋设区域可以形成在保护环下方。第二导电类型的漂移区可以形成为邻近衬底的表面以及隔离袋之外的沟槽。包括电介质材料的一个或更多额外的沟槽可以形成在漂移区内或者在沟槽和保护环之间的衬底中。The invention also includes termination structures for areas outside the isolation pockets that border the trenches. A guard ring of the first conductivity type may be formed at the surface of the substrate outside the isolation pocket, and the bottom isolation region may extend laterally beyond an outer edge of the trench. A buried region of the first conductivity type may be formed under the guard ring. A drift region of the second conductivity type may be formed adjacent to the surface of the substrate and the trench outside the isolated pocket. One or more additional trenches comprising a dielectric material may be formed within the drift region or in the substrate between the trench and the guard ring.
附图说明 Description of drawings
图1示出完全隔离的N沟道横向DMOS(LDMOS)的截面图;Figure 1 shows a cross-sectional view of a fully isolated N-channel lateral DMOS (LDMOS);
图2示出隔离的N沟道LDMOS的备选实施例的截面图;Figure 2 shows a cross-sectional view of an alternative embodiment of an isolated N-channel LDMOS;
图3示出隔离的N沟道准垂直DMOS的截面图;Figure 3 shows a cross-sectional view of an isolated N-channel quasi-vertical DMOS;
图4示出隔离的P沟道JFET的截面图;Figure 4 shows a cross-sectional view of an isolated P-channel JFET;
图5示出隔离的N沟道JFET的截面图;Figure 5 shows a cross-sectional view of an isolated N-channel JFET;
图6示出N沟道耗尽型MOSFET的截面图。Fig. 6 shows a cross-sectional view of an N-channel depletion MOSFET.
图7示出隔离的二极管的截面图;Figure 7 shows a cross-sectional view of an isolated diode;
图8示出隔离的齐纳二极管的截面图;Figure 8 shows a cross-sectional view of an isolated Zener diode;
图9A-9D示出用于控制表面电场且用于减少充电及依赖于时间的表面相关现象的终端结构的截面图。9A-9D show cross-sectional views of termination structures for controlling surface electric fields and for reducing charging and time-dependent surface-related phenomena.
具体实施方式 Detailed ways
图1示意性地示出根据本发明制造的完全被隔离的N沟道横向DMOS(LDMOS)400的截面图,该N沟道横向DMOS不需要外延沉积或高温扩散而被制造。LDMOS 400制造在隔离的P型区464中。P型区464及在P型区464内制造的横向DMOS 400通过高能注入的N型底隔离区域(floorisolation region)462及填充有电介质的沟槽463A和463B与P型衬底461隔离。Figure 1 schematically shows a cross-sectional view of a fully isolated N-channel lateral DMOS (LDMOS) 400 fabricated in accordance with the present invention that does not require epitaxial deposition or high temperature diffusion to be fabricated. LDMOS 400 is fabricated in isolated P-type region 464. The P-type region 464 and the lateral DMOS 400 fabricated in the P-type region 464 are isolated from the P-type substrate 461 by a high-energy implanted N-type bottom isolation region (floorisolation region) 462 and trenches 463A and 463B filled with dielectric.
N沟道LDMOS 400包括:N+漏极区域468B,由注入的N型轻掺杂漏极区域(LDD)469与栅极474隔开,且由LDD 476区域与沟槽463B隔开;栅极474,优选包含多晶硅和/或硅化物;栅极氧化物层472;N+源极区域468A;以及P+体接触区467,接触包括LDMOS 400的体区域的P型阱465。P型阱465可以至少包括上部465A及下部465B或任意数量的包括不同能量和剂量的注入的区域。P型阱465的较深部465B优选可以包括高于P型阱465的上部465A的掺杂浓度。N-channel LDMOS 400 includes: N+ drain region 468B, separated from gate 474 by implanted N-type lightly doped drain region (LDD) 469, and separated from trench 463B by LDD 476 region; gate 474 , preferably comprising polysilicon and/or silicide; gate oxide layer 472; N+ source region 468A; and P+ body contact region 467, contacting P-type well 465 comprising the body region of LDMOS 400. The P-type well 465 may include at least an upper portion 465A and a lower portion 465B or any number of regions including implants of different energies and doses. The deeper portion 465B of the P-type well 465 may preferably include a higher doping concentration than the upper portion 465A of the P-type well 465 .
侧壁间隔物473及轻掺杂源极延伸471是CMOS制造中的人为产物(artifact),对于LDMOS 400的正常运行其不是有益地被需要。由于其相对高的掺杂浓度,所以源极延伸471对LDMOS 400的影响可以忽略。Sidewall spacers 473 and lightly doped source extensions 471 are artifacts of CMOS fabrication that are not beneficially required for proper operation of LDMOS 400 . Due to its relatively high doping concentration, the effect of source extension 471 on LDMOS 400 is negligible.
底隔离区域462经由N型阱466及N+接触区468D电接触衬底461的表面。阱466所在的区域以沟槽463A和463C为界。显然,沟槽463B和463C可以是呈闭合图形形状的单个沟槽的一部分,且沟槽463A可将衬底461的由沟槽463B和463C围绕的部分分为包括源极区域468A、漏极区域468B和P型阱465的第一部分以及包括阱466的第二部分。The bottom isolation region 462 electrically contacts the surface of the substrate 461 through the N-type well 466 and the N+ contact region 468D. The region where well 466 is located is bounded by trenches 463A and 463C. Obviously, the trenches 463B and 463C may be part of a single trench in the shape of a closed figure, and the trench 463A may divide the portion of the substrate 461 surrounded by the trenches 463B and 463C into regions including the source region 468A, the drain region 468B and a first portion of P-type well 465 and a second portion including well 466 .
DN底隔离区域462可被电偏置到DMOS漏极区域468B、P型阱464、衬底461的电势,或其他固定或可变的电势。底隔离区域462和漏极区域468B之间的最大电压差被限制为底隔离区域462与漏极区域468B之间的N-I-N穿通击穿(punch-through breakdown)电压,而底隔离区域462和P型阱465之间的最大电压差由底隔离区域462和P型阱465之间的P-I-N透过击穿(reach-through breakdown)电压设定。在一个实施例中,底隔离区域462和漏极区域468B被电短接,消除了N-I-N穿通击穿的可能性,且将LDMOS400的BVDSS限制为P型阱465和DN底隔离区域462之间的P-I-N雪崩击穿电压。在另一实施例中,底隔离区域462和衬底461被电短接,使得P型阱465可被偏置到接地电势以下,即比衬底461更负的电势。另一备选是“浮置”底隔离区域462,其中底隔离区域462的电势可以改变直到到N+漏极区域468B的N-I-N穿通现象发生,这样底隔离区域462的电势将跟随漏极区域468B的电势。DN bottom isolation region 462 may be electrically biased to the potential of DMOS drain region 468B, P-type well 464, substrate 461, or other fixed or variable potential. The maximum voltage difference between the bottom isolation region 462 and the drain region 468B is limited to the NIN punch-through breakdown voltage between the bottom isolation region 462 and the drain region 468B, while the bottom isolation region 462 and the P-type The maximum voltage difference between wells 465 is set by the PIN reach-through breakdown voltage between bottom isolation region 462 and P-type well 465 . In one embodiment, bottom isolation region 462 and drain region 468B are electrically shorted, eliminating the possibility of NIN punch-through and limiting the BV DSS of LDMOS 400 to between P-type well 465 and DN bottom isolation region 462 The pin avalanche breakdown voltage. In another embodiment, the bottom isolation region 462 and the substrate 461 are electrically shorted such that the P-type well 465 can be biased below ground potential, ie a more negative potential than the substrate 461 . Another alternative is to "float" bottom isolation region 462, where the potential of bottom isolation region 462 can change until NIN punch-through to N+ drain region 468B occurs, such that the potential of bottom isolation region 462 will follow that of drain region 468B. electric potential.
尽管隔离的N沟道LDMOS 400是不对称的,但它也可以被对称地构建,在中心处具有N+漏极区域468B。备选地,LDMOS 400可以以P型阱465为中心而构建。Although isolated N-channel LDMOS 400 is asymmetrical, it can also be constructed symmetrically, with N+ drain region 468B in the center. Alternatively, LDMOS 400 can be built centered on P-type well 465.
尽管LDMOS 400的外边缘可以与沟槽463B和463C一致,但在备选实施例中,被偏置为漏极区域468B的电势的N型终端区域478可围绕沟槽463C,且增加了LDMOS 400相对于衬底461的击穿电压。如果沟槽463B和463C都呈闭合图形的形状,则终端区域478可相邻于沟槽463B和463C的整个外周边而设置。LDMOS 400也可被P+衬底接触区474和/或深注入P型区475围绕。While the outer edges of LDMOS 400 may coincide with trenches 463B and 463C, in an alternative embodiment N-type termination region 478 biased to the potential of drain region 468B may surround trench 463C and add LDMOS 400 With respect to the breakdown voltage of the substrate 461 . If the trenches 463B and 463C are both in the shape of a closed figure, the termination region 478 may be disposed adjacent to the entire outer periphery of the trenches 463B and 463C. LDMOS 400 may also be surrounded by P+ substrate contact region 474 and/or deeply implanted P-type region 475.
图2示出隔离的N沟道横向DMOS 300的示意图,该DMOS 300制造在P型区341B中,该P型区341B通过深注入N型底隔离区域360和填充沟槽361与P型衬底341A隔离。在优选实施例中,填充沟槽361围绕着LDMOS 300以提供横向隔离,而底隔离区域360提供垂直隔离。沟槽361包括由绝缘侧壁364横向围绕且隔离的导电中心部分363。导电中心部分363提供底隔离区域360和衬底341A的表面之间的电接触,以便于互连。2 shows a schematic diagram of an isolated N-channel lateral DMOS 300, which is manufactured in a P-type region 341B, which is connected to a P-type substrate by deep implanting an N-type bottom isolation region 360 and filling trenches 361. 341A isolation. In a preferred embodiment, filled trenches 361 surround LDMOS 300 to provide lateral isolation, while bottom isolation regions 360 provide vertical isolation. Trench 361 includes a conductive central portion 363 laterally surrounded and isolated by insulating sidewalls 364 . Conductive central portion 363 provides electrical contact between bottom isolation region 360 and the surface of substrate 341A to facilitate interconnection.
LDMOS 300包括中心N+漏极区域348B及N型漂移区342,该N型漂移区342被设置在栅极电介质层362顶部的栅极355限制。在优选实施例中,专用注入被用于形成漂移区342,从而调整其掺杂分布,用于优化LDMOS300的性能。在另一实施例中,此专用漂移区342可以被与其他CMOS器件共享的N型阱替代,这在降低生产成本的同时而兼顾了LDMOS 300的性能。LDMOS 300 includes a central N+ drain region 348B and an N-type drift region 342 bounded by a gate 355 disposed on top of a gate dielectric layer 362 . In a preferred embodiment, a dedicated implant is used to form drift region 342 to tune its doping profile for optimized LDMOS 300 performance. In another embodiment, the dedicated drift region 342 can be replaced by an N-type well shared with other CMOS devices, which reduces the production cost while taking into account the performance of the LDMOS 300 .
栅极355交叠漂移区342的一部分,并被N+源极区域348A和P+体接触区347围绕。P型阱343,优选包含具有非高斯或非单调掺杂浓度轮廓的硼链式注入区域,局部位于栅极355之下并形成LDMOS 300的体区域。P型阱343可包括非单调掺杂分布,其包括至少上部343A和下部343B或者任意数量的包括不同能量和剂量的注入的区域。P型阱343的下部343B优选包括比P型阱343的上部343A高的掺杂浓度。在图2所示的实施例中,P型阱343的末端与漂移区342横向间隔开。结果,LDMOS 300的沟道具有两种掺杂浓度,P型阱343的较重浓度设定了LDMOS 300的阈值电压并防止了穿通击穿,区域341B的较低浓度决定了LDMOS 300的雪崩击穿电压和碰撞电离。在另一实施例中,P型阱343毗邻漂移区342,其中LDMOS300的沟道具有单一掺杂浓度,其等于P型阱343的掺杂浓度。Gate 355 overlaps a portion of drift region 342 and is surrounded by N+ source region 348A and P+ body contact region 347 . P-type well 343 , preferably comprising a boron chain implant region with a non-Gaussian or non-monotonic doping concentration profile, is located locally under gate 355 and forms the body region of LDMOS 300 . P-type well 343 may include a non-monotonic doping profile including at least upper portion 343A and lower portion 343B or any number of regions including implants of different energies and doses. The lower portion 343B of the P-type well 343 preferably includes a higher doping concentration than the upper portion 343A of the P-type well 343 . In the embodiment shown in FIG. 2 , the ends of the P-type well 343 are spaced laterally from the drift region 342 . As a result, the channel of LDMOS 300 has two doping concentrations, the heavier concentration of P-type well 343 sets the threshold voltage of LDMOS 300 and prevents punch-through breakdown, and the lower concentration of region 341B determines the avalanche breakdown of LDMOS 300 Breakthrough voltage and impact ionization. In another embodiment, the P-type well 343 is adjacent to the drift region 342 , wherein the channel of the LDMOS 300 has a single doping concentration which is equal to the doping concentration of the P-type well 343 .
漂移区342部分位于浅沟槽隔离(STI)结构346,即,由硅氧化物填充的浅沟槽之下。在漂移区342上方包括STI 346的一个好处在于:位于STI 346下方的漂移区342的净积分电荷因为沟槽形成期间掺杂剂被去除而减少。漂移区342的净积分电荷,以atoms/cm2为单位,是从在STI 346底部的硅氧化物界面到漂移区342底部的漂移区342的掺杂剂浓度的积分,也就是The drift region 342 is partially under a shallow trench isolation (STI) structure 346 , ie, a shallow trench filled with silicon oxide. One benefit of including STI 346 above drift region 342 is that the net integrated charge of drift region 342 located below STI 346 is reduced due to the removal of dopants during trench formation. The net integrated charge of drift region 342, in atoms/cm 2 , is the integral of the dopant concentration in drift region 342 from the silicon oxide interface at the bottom of STI 346 to the bottom of drift region 342, i.e.
变量α代表在STI 346形成之后保留在漂移区342中的注入标准电荷的百分比,即,在刻蚀保持STI 346的沟槽时未被移除的掺杂剂。电荷的减少导致栅极355下方的表面电场的减弱,且与栅极355的场板效应结合,减少了碰撞电离且降低了热载流子损害的风险。The variable α represents the percentage of the injected standard charge that remains in the drift region 342 after the formation of the STI 346, ie, the dopant that was not removed when the trench holding the STI 346 was etched. The reduction in charge results in a weakening of the surface electric field beneath the gate 355, and combined with the field plate effect of the gate 355, reduces impact ionization and reduces the risk of hot carrier damage.
在制造可靠且耐用的高压和功率LDMOS器件时,控制击穿的位置和碰撞电离的数量是重要的考虑。在LDMOS 300中包括体区域343有助于防止穿通击穿并通过限制出现在LDMOS 300中的寄生横向NPN双极晶体管的增益而降低LDMOS 300对双极注入和骤回(snapback)的敏感度,该寄生横向NPN双极晶体管包括由源极区域348A代表的发射极、由体区域343和区域341B代表的基极以及由漏极区域348B和漂移区342代表的集电极。然而,LDMOS 300的体部不能防止由漂移区342中的局部碰撞电离导致的背景掺杂浓度的调制而引发的骤回。Controlling the location of breakdown and the amount of impact ionization are important considerations in fabricating reliable and robust high voltage and power LDMOS devices. Including body region 343 in LDMOS 300 helps prevent punch-through breakdown and reduces the sensitivity of LDMOS 300 to bipolar injection and snapback by limiting the gain of parasitic lateral NPN bipolar transistors present in LDMOS 300, The parasitic lateral NPN bipolar transistor includes an emitter represented by source region 348A, a base represented by body region 343 and region 341B, and a collector represented by drain region 348B and drift region 342 . However, the bulk of LDMOS 300 is not immune to snapback induced by modulation of the background doping concentration caused by localized impact ionization in drift region 342 .
根据本发明,采用两种方法来控制骤回。第一种方法,再次参考图2,注入的深P型区365设置在源极区域348A之下,被用来抑制栅极下方的电场并使高电场的位置向远离高电流密度的区域移动。这种方法在此被称作“表面下屏蔽(subsurface shielding)”,而深P型区365可被称作表面下屏蔽区域。第二种方法是将LDMOS 300的最大漏电压钳位为在骤回发生以下的电压,使得骤回现象不发生。这种方法这里被称作“漏极钳位(drainclamping)”,并可以通过在漏极区域348B下方引入DP区域366来实现。DP区域366将漏极区域348B下方的垂直电场集中以迫使体,即,非表面,雪崩击穿远离对热载流子敏感的栅极电介质层362。DP区域366也可被称作漏极钳位区域。According to the invention, two methods are used to control snapback. In the first approach, referring again to FIG. 2 , implanted deep P-type region 365 is placed under source region 348A and is used to suppress the electric field under the gate and move the location of high electric field away from the high current density region. This approach is referred to herein as "subsurface shielding," and the deep P-type region 365 may be referred to as a subsurface shielding region. The second method is to clamp the maximum drain voltage of the LDMOS 300 to a voltage below which the snapback occurs so that the snapback phenomenon does not occur. This approach is referred to herein as "drain clamping" and may be implemented by introducing DP region 366 below drain region 348B. DP region 366 concentrates the vertical electric field under drain region 348B to force bulk, ie, non-surface, avalanche breakdown away from hot carrier sensitive gate dielectric layer 362 . DP region 366 may also be referred to as a drain clamp region.
横向DMOS晶体管的备选者是准垂直DMOS晶体管。在横向DMOS中,电流通过其的轻掺杂漂移区横向流动,即,平行于晶片表面流动。在准垂直DMOS中,电流既横向流动也垂直(即,基本垂直于晶片表面)流动。电流从器件的DMOS表面沟道区流下进入在其中横向流动的重掺杂表面下层,且然后垂直流回到漏极接触,因此得名“准垂直”。An alternative to the lateral DMOS transistor is the quasi-vertical DMOS transistor. In a lateral DMOS, the lightly doped drift region through which current flows laterally, ie, parallel to the wafer surface. In quasi-vertical DMOS, current flows both laterally and vertically (ie, substantially perpendicular to the wafer surface). Current flows from the device's DMOS surface channel region down into the heavily doped subsurface where it flows laterally, and then flows vertically back to the drain contact, hence the name "quasi-vertical".
图3示出了N沟道准垂直DMOS(QVDMOS)晶体管500的截面示意图。该器件包括:栅极510,优选形成为一系列的条纹或闭合的几何形状;N+源极区域506;P型体区域504;以及P+体接触区域505。P体区域形成在N型阱502内部,该N型阱502包括QVDMOS 500的漂移区并交叠在N型底隔离区域501上,该底隔离区域501埋设在P型衬底511中并被包括在QVDMOS 500的漏极中。FIG. 3 shows a schematic cross-sectional view of an N-channel quasi-vertical DMOS (QVDMOS) transistor 500 . The device comprises: a gate 510 , preferably formed as a series of stripes or a closed geometry; an N+ source region 506 ; a P-type body region 504 ; and a P+ body contact region 505 . The P body region is formed inside the N-type well 502, the N-type well 502 includes the drift region of the QVDMOS 500 and overlaps on the N-type bottom isolation region 501, and the bottom isolation region 501 is buried in the P-type substrate 511 and is included In the drain of the QVDMOS 500.
填充沟槽507横向围绕QVMDOS 500,提供与制造在衬底500中的其他器件的隔离。填充沟槽507的中心部分是从衬底500的表面向下延伸到底隔离区域501的导电材料508。导电材料508被绝缘材料509横向围绕,该绝缘材料509装衬沟槽507的侧壁,使得导电材料508与N-阱502以及衬底511电隔离。当QVDMOS 500处在导通状态时,电子流从N+源极区域506、横向通过形成在P体区域504的表面处的沟道、垂直向下通过N-阱502、横向通过底隔离区域501并且垂直向上通过填充沟槽507中的导电材料508。从而,可以容易地实现从衬底511的表面到源极区域506和漏极(底隔离区域501)的接触。Filled trench 507 laterally surrounds QVMDOS 500, providing isolation from other devices fabricated in substrate 500. Filling the central portion of the trench 507 is a conductive material 508 extending down from the surface of the substrate 500 to the bottom isolation region 501 . Conductive material 508 is laterally surrounded by insulating material 509 that lines the sidewalls of trench 507 such that conductive material 508 is electrically isolated from N-well 502 and substrate 511 . When the QVDMOS 500 is in the conduction state, the electron flow passes from the N+ source region 506, laterally through the channel formed at the surface of the P body region 504, vertically downward through the N- well 502, laterally through the bottom isolation region 501 and Vertically up through the conductive material 508 filling the trench 507 . Thus, contacts from the surface of the substrate 511 to the source region 506 and the drain (bottom isolation region 501 ) can be easily achieved.
在P体区域504将不与栅极510自对准的情况下,P体区域504可在栅极510形成之前被注入。备选地,P体区域504可以在栅极510形成之后通过大倾斜角注入被注入,结果P体区域504与栅极510的边缘自对准。大倾斜角注入容许形成P体区域504与栅极510的相当大的交叠,而不需要高温扩散。In cases where the P-body region 504 will not be self-aligned with the gate 510, the P-body region 504 may be implanted before the gate 510 is formed. Alternatively, the P-body region 504 may be implanted after the gate 510 is formed by a high tilt angle implant, so that the P-body region 504 is self-aligned to the edge of the gate 510 . The high tilt angle implantation allows the formation of a substantial overlap of the P-body region 504 with the gate 510 without requiring high temperature diffusion.
在QVMDOS的另一实施列(未图示)中,侧壁间隔物和N型轻掺杂源极区域缘会作为采用同一栅极层的CMOS制造的人为产物而形成在栅极505的每个边缘。如图3所示,如果采用专用栅极层形成栅极505,则器件内将不出现侧壁间隔物。否则,在N+源极区域与栅极510自对准的情况下,N+源极区域与侧壁间隔物自对准而N-源极延伸将与栅极自对准。In another embodiment of QVMDOS (not shown), sidewall spacers and N-type lightly doped source region edges are formed on each gate 505 as artifacts of CMOS fabrication using the same gate layer. edge. As shown in FIG. 3, if a dedicated gate layer is used to form the gate 505, no sidewall spacers will be present within the device. Otherwise, where the N+ source region is self-aligned with the gate 510, the N+ source region is self-aligned with the sidewall spacers and the N- source extension will be self-aligned with the gate.
如上所述的表面下屏蔽和漏极钳位技术可以与根据本发明制成的漏极和漏极延伸结构的任何变型结合。The subsurface shielding and drain clamping techniques described above may be combined with any variation of the drain and drain extension structures made in accordance with the present invention.
JFET和耗尽型MOSFETJFETs and Depletion Mode MOSFETs
不像传统的为“常关”器件的增强型MOSFET,JFET和耗尽型MOSFET即使在它们的栅极被偏置到其源电势时仍然传导漏电流,即,他们在VGS=0时仍然传导电流。此类器件在形成用于起动电路的电流源时是方便的,因为该晶体管是常“开”的,而其他的晶体管还没有处于操作状态。Unlike conventional enhancement-mode MOSFETs which are "normally-off" devices , JFETs and depletion-mode MOSFETs still conduct leakage current even when their gates are biased to their source potential, i.e., they still conduct current. Such devices are convenient in forming a current source for starting a circuit because the transistor is normally "on" while the other transistors are not yet in operation.
在耗尽型N沟道场效应晶体管中,阀值电压必须小于0伏特,使得即使在0伏特或者更大的栅极偏压条件VGS≥0时,该器件仍处于传导状态。虽然JFET的阀值电压被称作其“夹断”电压或Vpn,但N沟道JFET在0伏特栅极驱动时也为“on”。N沟道耗尽型器件和JFET只有通过偏置其栅极至负电势时才能被截止。相反的,正的栅极偏压增加N沟道器件的漏极偏压。然而,N沟道JFET的最大栅极驱动被限制为栅极-到-源极P-N二极管的正向偏置电压。P沟道JFET也在0伏特栅极驱动时工作,但需要通过正的栅极驱动,即,栅极被偏置到高于源极的电势来关闭。In a depletion-mode N-channel FET, the threshold voltage must be less than 0 volts so that the device remains in a conducting state even at a gate bias condition of 0 volts or greater, V GS ≥ 0. While a JFET's threshold voltage is referred to as its "pinch-off" voltage, or Vpn , an N-channel JFET is also "on" with a 0 volt gate drive. N-channel depletion-mode devices and JFETs can only be turned off by biasing their gates to a negative potential. Conversely, a positive gate bias increases the drain bias of an N-channel device. However, the maximum gate drive of an N-channel JFET is limited to the forward bias voltage of the gate-to-source PN diode. P-channel JFETs also operate with a 0 volt gate drive, but need to be turned off with a positive gate drive, ie, the gate is biased to a higher potential than the source.
图4示意性地示出隔离的P沟道JFET 100的截面。P沟道JFET 100包括P+漏极区域107、P型沟道区111、包括N+区域106和可选的N型区域108的N型顶栅、包括N型底隔离区域102的底栅以及P+源极区域105。N型栅极的长度LG优选为1微米到20微米,且由顶栅-N+区域106或N型区域108中较长的长度定义。FIG. 4 schematically shows a cross-section of an isolated P-channel JFET 100 . P-channel JFET 100 includes P+ drain region 107, P-type channel region 111, N-type top gate including N+ region 106 and optional N-type region 108, bottom gate including N-type bottom isolation region 102, and P+ source polar region 105 . The length L G of the N-type gate is preferably 1 μm to 20 μm, and is defined by the longer length of the top gate-N+ region 106 or the N-type region 108 .
JFET 100通过底隔离区域102与P型衬底101垂直地隔离,而由填充沟槽104与P型衬底101横向隔离。底隔离区域102用作JFET 100的底栅。与衬底101的表面的电接触由填充沟槽104的中心的导电材料112提供。绝缘材料113横向围绕导电材料112,以将导电材料112与衬底101和P沟道区111绝缘。底栅(底隔离区域102)被电偏置到电势“BG”,且该底栅偏压BG可与顶栅(N+区域和N型区域108)电势“TG”成比例地改变,或者BG可被设定为一固定电势。The JFET 100 is vertically isolated from the P-type substrate 101 by the bottom isolation region 102, and is laterally isolated from the P-type substrate 101 by the filled trench 104. Bottom isolation region 102 serves as the bottom gate of JFET 100. Electrical contact to the surface of the substrate 101 is provided by a conductive material 112 filling the center of the trench 104 . Insulating material 113 laterally surrounds conductive material 112 to insulate conductive material 112 from substrate 101 and P-channel region 111 . The bottom gate (bottom isolation region 102) is electrically biased to potential "BG", and this bottom gate bias BG can be changed in proportion to the top gate (N+ region and N-type region 108) potential "TG", or BG can be is set to a fixed potential.
JFET 100的夹断电压由沟道区111的掺杂浓度和沟道区111在NB区域108与底隔离区域102之间的垂直尺寸决定。在一个实施例中,区域111的掺杂浓度与衬底101的掺杂浓度基本相同。在另一实施例中,通过注入追加的掺杂剂提高了区域111的掺杂浓度,以调整JFET 100的夹断电压。The pinch-off voltage of the JFET 100 is determined by the doping concentration of the channel region 111 and the vertical dimension of the channel region 111 between the NB region 108 and the bottom isolation region 102 . In one embodiment, the doping concentration of the region 111 is substantially the same as the doping concentration of the substrate 101 . In another embodiment, the doping concentration of the region 111 is increased by implanting additional dopants to adjust the pinch-off voltage of the JFET 100.
浅沟槽110可设置在N型区108周围,以将N型区108与源极105和漏极107隔离。在优选实施例中,沟槽110比沟槽104浅且窄,因为沟槽110不应接触底隔离区域102。优选,沟槽107完全由电介质材料填充。The shallow trench 110 can be disposed around the N-type region 108 to isolate the N-type region 108 from the source 105 and the drain 107 . In a preferred embodiment, trench 110 is shallower and narrower than trench 104 because trench 110 should not contact bottom isolation region 102 . Preferably, the trench 107 is completely filled with a dielectric material.
图5示意性地示出隔离的N沟道JFET 200的截面。JFET 200包括N+漏极区域203、N型沟道区204、P型顶栅、底栅以及P+源极区域209,其中P型顶栅包括P+区205和可选的P型区206,底栅包括隔离的P型袋207和可选的深注入P型区208。底栅通过P型阱210和P+底栅接触区211电偏置到电势“BG”。底栅偏压BG可与顶栅的电势“TG”成比例地改变,或者BG可以被设定为一固定电势。JFET 200的夹断电压由N沟道区204的掺杂浓度和厚度决定。FIG. 5 schematically shows a cross-section of an isolated N-channel JFET 200. JFET 200 includes N+ drain region 203, N-type channel region 204, P-type top gate, bottom gate and P+ source region 209, wherein P-type top gate includes P+ region 205 and optional P-type region 206, bottom gate An isolated P-type pocket 207 and an optional deep implanted P-type region 208 are included. The bottom gate is electrically biased to the potential "BG" through the P-type well 210 and the P+ bottom gate contact region 211 . The bottom gate bias BG may be changed in proportion to the potential "TG" of the top gate, or BG may be set to a fixed potential. The pinch-off voltage of JFET 200 is determined by the doping concentration and thickness of N-channel region 204.
JFET 200通过N型底隔离区域202与P型衬底201垂直地隔离,而通过填充沟槽214与P型衬底201横向地隔离。与衬底表面的电接触由填充沟槽214中心部分的导电材料212提供。绝缘材料213横向围绕导电材料212,以将其与衬底201和P型区210、208及207绝缘。The JFET 200 is vertically isolated from the P-type substrate 201 by the N-type bottom isolation region 202, and is laterally isolated from the P-type substrate 201 by filling the trench 214. Electrical contact to the substrate surface is provided by conductive material 212 filling a central portion of trench 214 . Insulating material 213 laterally surrounds conductive material 212 to insulate it from substrate 201 and P-type regions 210 , 208 , and 207 .
浅沟槽210可设置在P型区206周围,以将顶栅206与源极区域209及漏极区域203隔离。此外,浅沟槽215可以用来将P+底栅接触区211与沟道区204、源极区域209和漏极区域203横向隔离。在优选实施例中,沟槽210和215比沟槽214浅且窄,因为沟槽210和215不应接触底隔离区域202。优选用电介质材料完全填充沟槽210及215。A shallow trench 210 may be disposed around the P-type region 206 to isolate the top gate 206 from the source region 209 and the drain region 203 . In addition, shallow trenches 215 may be used to laterally isolate the P+ bottom gate contact region 211 from the channel region 204 , source region 209 and drain region 203 . In a preferred embodiment, trenches 210 and 215 are shallower and narrower than trench 214 because trenches 210 and 215 should not contact bottom isolation region 202 . Preferably, trenches 210 and 215 are completely filled with a dielectric material.
在另一实施例中,可去除底隔离区域202,使得N沟道JFET 200的底栅包括P型衬底201和/或可选的深P型区208。In another embodiment, bottom isolation region 202 may be removed such that the bottom gate of N-channel JFET 200 includes P-type substrate 201 and/or optional deep P-type region 208.
图6示意性地示出N沟道耗尽型MOSFET 600的截面。MOSFET 600被构造为与图1所示的隔离的N沟道横向DMOS晶体管400类似,除了隔离袋区664中不存在与P型阱465相当的阱之外。在隔离袋区664中没有P型阱,MOSFET 600的阀值电压由栅极氧化物层672的厚度以及隔离P型袋664的掺杂浓度设定,该隔离P型袋664的掺杂浓度基本等于衬底661的背景掺杂浓度。这个阀值电压可以在大约-0.3V到+0.3V之间变动。即使在阀值电压稍微为正时,MOSFET 600仍然能在VGS=0时传导足够的电流,以用在起动电路中。FIG. 6 schematically shows a cross-section of an N-channel depletion MOSFET 600 . MOSFET 600 is constructed similar to isolated N-channel lateral DMOS transistor 400 shown in FIG. 1 , except that there is no well equivalent to P-type well 465 in isolation pocket region 664 . There is no P-type well in the isolation pocket region 664, and the threshold voltage of the MOSFET 600 is set by the thickness of the gate oxide layer 672 and the doping concentration of the isolation P-type pocket 664, which is substantially equal to the background doping concentration of the substrate 661. This threshold voltage can vary from approximately -0.3V to +0.3V. Even when the threshold voltage is slightly positive, MOSFET 600 can still conduct enough current at V GS =0 to be used in the start-up circuit.
耗尽型N沟道MOSFET的骤回效应类似于增强型MOSFET的骤回效应。防止图2所示的LDMOS 300中的骤回的结构可以以任何组合应用于耗尽型器件。The snapback effect of a depletion-mode N-channel MOSFET is similar to that of an enhancement-mode MOSFET. The structures that prevent snapback in LDMOS 300 shown in FIG. 2 can be applied to depletion mode devices in any combination.
图6的耗尽型MOSFET 600包括N+漏极区域668B,具有栅极674与漏极区域668B之间的N型LDD漂移区669。栅极674位于栅极电介质层672之上。LDD区678从漏极区域668B延伸到填充沟槽663。轻掺杂源(LDS)区域671,作为CMOS工艺的人为产物,存在于侧壁间隔物673A之下。N+源极区域668A与侧壁间隔物673A自对准。The depletion mode MOSFET 600 of FIG. 6 includes an N+ drain region 668B with an N-type LDD drift region 669 between the gate 674 and the drain region 668B. Gate 674 is located over gate dielectric layer 672 . LDD region 678 extends from drain region 668B to fill trench 663 . Lightly doped source (LDS) regions 671, as an artifact of the CMOS process, exist under sidewall spacers 673A. N+ source regions 668A are self-aligned with sidewall spacers 673A.
深P型区675设置在至少部分栅极674之下,并可横向延伸超出栅极674,以部分交叠LDD漂移区669,以降低碰撞电离并抑制骤回(snapback)。深P型区675通过P+体接触区667电连接到衬底661的表面。The deep P-type region 675 is disposed under at least part of the gate 674 and may extend laterally beyond the gate 674 to partially overlap the LDD drift region 669 to reduce impact ionization and suppress snapback. Deep P-type region 675 is electrically connected to the surface of substrate 661 through P+ body contact region 667 .
栅极674之下的沟道区676中的P-型袋664的浓度基本与P型衬底661的浓度相同。在优选实施例中,DP区675的上部足够深,以避免掺杂沟道区676,从而使MOSFET 600的阀值电压最小化。在其他实施例中,深P型区675的掺杂和深度可被调节,以容许其掺杂分布补充沟道区676中的掺杂,从而使阀值电压增加到期望值。The concentration of the P-type pocket 664 in the channel region 676 under the gate 674 is substantially the same as that of the P-type substrate 661 . In a preferred embodiment, the upper portion of DP region 675 is deep enough to avoid doping of channel region 676, thereby minimizing the threshold voltage of MOSFET 600. In other embodiments, the doping and depth of the deep P-type region 675 can be adjusted to allow its doping profile to complement the doping in the channel region 676 to increase the threshold voltage to a desired value.
图6的耗尽型MOSFET和P型衬底661之间在垂直上被N型底隔离区域602隔离,在横向上被横向围绕隔离袋664的填充沟槽663间隔。从衬底661的表面到底隔离区域662的电接触由在填充沟槽663的中心部分的导电材料680提供。绝缘材料681横向围绕导电材料680,以使导电材料与衬底661及隔离袋664绝缘。The depletion MOSFET in FIG. 6 and the P-type substrate 661 are vertically isolated by the N-type bottom isolation region 602 and laterally separated by the filled trench 663 surrounding the isolation pocket 664 . Electrical contact from the surface of the substrate 661 to the bottom isolation region 662 is provided by the conductive material 680 filling the central portion of the trench 663 . Insulating material 681 laterally surrounds conductive material 680 to insulate the conductive material from substrate 661 and isolation pocket 664 .
耗尽型MOSFET的其他实施例可以与图2的LDMOS 300类似地实现,但没有P体区域343,从而阀值电压较低且由隔离袋341B的掺杂设定,且可能由深P型区365的上部的掺杂确定。Other embodiments of depletion-mode MOSFETs can be implemented similarly to LDMOS 300 of FIG. 2 , but without the P-body region 343, so that the threshold voltage is lower and set by the doping of the isolated pocket 341B, and possibly by the deep P-type region The doping of the upper part of 365 is determined.
隔离的二极管isolated diode
在很多功率应用中,例如,期望隔离的高压整流二极管,以在切换变流器时在先开后合间隔期间再循环电感电流。In many power applications, for example, an isolated high voltage rectifier diode is desired to recirculate the inductor current during the break-before-make interval when switching the converter.
图7示出隔离的二极管700的一个实施例,该隔离的二极管700包括:N型埋区702,用作二极管700的阴极;以及一个或更多P+接触区707,围绕在隔离的P-型区706内部,用作二极管700的阳极。填充沟槽705横向围绕二极管700,其提供横向隔离,而N型埋区702提供二极管700与P型衬底701的垂直隔离。从衬底701的表面到N型埋区702的电接触由填充沟槽705的中心部分的导电材料712提供。绝缘材料713横向围绕导电材料712,以使导电材料与衬底701及P型区706绝缘。电介质层715形成在衬底701的表面上且被图案化,以形成用于阳极接触716和阴极接触717的开口。Figure 7 shows an embodiment of an isolated diode 700 comprising: an N-type buried region 702 serving as the cathode of the diode 700; and one or more P+ contact regions 707 surrounding the isolated P-type Inside region 706 , serves as the anode of diode 700 . Filled trench 705 laterally surrounds diode 700 , which provides lateral isolation, while N-type buried region 702 provides vertical isolation of diode 700 from P-type substrate 701 . Electrical contact from the surface of the substrate 701 to the N-type buried region 702 is provided by a conductive material 712 filling the central portion of the trench 705 . The insulating material 713 laterally surrounds the conductive material 712 to insulate the conductive material from the substrate 701 and the P-type region 706 . A dielectric layer 715 is formed on the surface of substrate 701 and patterned to form openings for anode contacts 716 and cathode contacts 717 .
额外的填充沟槽708可以被包括,以将二极管分成较小的P型区且提供与埋区702的较低阻抗的接触。在优选实施例中,隔离的P型区706可以具有与P型衬底701基本相同的掺杂浓度。这在阴极-阳极结处提供了最低可能的掺杂,而容许最高的击穿电压BV。备选地,可以引入额外的P型阱注入以增加区域706中的掺杂浓度,这提供了阳极区域中降低的阻抗并提供了将BV调节至较低值的能力。An additional filled trench 708 may be included to divide the diode into smaller P-type regions and provide a lower resistance contact to buried region 702 . In a preferred embodiment, the isolated P-type region 706 may have substantially the same doping concentration as the P-type substrate 701 . This provides the lowest possible doping at the cathode-anode junction, while allowing the highest breakdown voltage BV. Alternatively, an additional P-type well implant can be introduced to increase the doping concentration in region 706, which provides reduced impedance in the anode region and provides the ability to tune BV to lower values.
在一个实施例中,额外的P型阱706具有非单调掺杂分布,其至少包括上部706A和下部706B,且优选利用不同能量和剂量的硼链式注入形成。在一个实施例中,下部706B相对于上部706A具有更高的掺杂浓度。In one embodiment, the additional P-type well 706 has a non-monotonic doping profile comprising at least an upper portion 706A and a lower portion 706B, and is preferably formed using boron chain implants of different energies and doses. In one embodiment, the lower portion 706B has a higher doping concentration than the upper portion 706A.
在功率集成电路中,经常需要形成齐纳钳压电路,即,旨在在反向偏压中正常工作的P-N二极管,且经常处于雪崩击穿模式,以钳制电路电压到最大值。为了提供适当的保护,齐纳二极管的击穿电压必须被很好地控制在6V到20V之间,而这需要采用具有相对较高的掺杂浓度的P-N结,以产生如此低的BV。表面结,诸如通过交叠浅N+区和P+区形成的结,不能制成可靠的齐纳二极管钳位,因为他们的截面区域太小,且雪崩击穿发生在硅氧化物界面附近。因此,优选利用埋入的P-N结形成齐纳二极管钳位以实现表面下雪崩击穿。In power integrated circuits, it is often necessary to form a Zener clamp, ie, a P-N diode intended to operate normally in reverse bias, and often in an avalanche breakdown mode, to clamp the circuit voltage to a maximum value. To provide proper protection, the breakdown voltage of the Zener diode must be well controlled between 6V and 20V, which requires a P-N junction with a relatively high doping concentration to produce such a low BV. Surface junctions, such as those formed by overlapping shallow N+ and P+ regions, cannot be made reliable Zener diode clamps because their cross-sectional area is too small and avalanche breakdown occurs near the silicon-oxide interface. Therefore, it is preferred to utilize a buried P-N junction to form a Zener diode clamp to achieve subsurface avalanche breakdown.
图8示出隔离的齐纳二极管800,其包括了重掺杂的埋入N型阴极区802和重掺杂P型阳极区803。P型阳极区803优选由高剂量、高能量注入形成。从衬底801的表面到阳极区803的接触由P+接触区805和可选的P阱804提供。如果P阱804未被引入,则此区域中的掺杂将与衬底801的掺杂基本相同。从衬底的表面到阴极区802的电接触由填充沟槽806的中心部分的导电材料812提供。绝缘材料813横向围绕导电材料812,以使导电材料与衬底801及P型区803和804绝缘。电介质层815形成在衬底801的表面上且被图案化,以形成用于阳极接触816和阴极接触817的开口。FIG. 8 shows an isolated Zener diode 800 comprising a heavily doped buried N-type cathode region 802 and a heavily doped P-type anode region 803 . The P-type anode region 803 is preferably formed by high-dose, high-energy implantation. Contact from the surface of the substrate 801 to the anode region 803 is provided by a P+ contact region 805 and an optional P-well 804 . If no P-well 804 had been introduced, the doping in this region would be substantially the same as that of the substrate 801 . Electrical contact from the surface of the substrate to cathode region 802 is provided by conductive material 812 filling the central portion of trench 806 . The insulating material 813 laterally surrounds the conductive material 812 to insulate the conductive material from the substrate 801 and the P-type regions 803 and 804 . A dielectric layer 815 is formed on the surface of substrate 801 and patterned to form openings for anode contacts 816 and cathode contacts 817 .
额外的填充沟槽807可以被包括,以将二极管800分成较小的阳极区803且提供与阴极区802的更低阻抗的接触。Additional filled trenches 807 may be included to divide diode 800 into smaller anode regions 803 and provide lower resistance contacts to cathode regions 802 .
在典型运行中,阴极区802被偏置到等于或高于接地衬底801的电势的电势。阳极区803可相对于阴极反向偏置,达到通过在阳极-阴极结的每侧掺杂而设定的击穿电压。此BV可通过优选用于形成埋入的阳极区和阴极区的高能注入的深度和剂量来调节。举例来说,埋入的阳极区可通过剂量范围为从1E13cm-2到1E14cm-2、能量为从2000到3000keV的磷注入来形成,而阴极区可通过剂量范围为从1E13cm-2到1E14cm-2、能量范围为从400到2000keV的硼注入来形成。In typical operation, cathode region 802 is biased to a potential equal to or higher than that of grounded substrate 801 . The anode region 803 can be reverse biased with respect to the cathode to achieve a breakdown voltage set by doping on each side of the anode-cathode junction. This BV can be tuned by the depth and dose of the high energy implants preferably used to form the buried anode and cathode regions. For example, the buried anode region can be formed by phosphorus implantation with a dose ranging from 1E13cm -2 to 1E14cm -2 at an energy from 2000 to 3000keV, while the cathode region can be formed by a dose ranging from 1E13cm -2 to 1E14cm - 2 2. Formed by boron implantation with an energy range from 400 to 2000keV.
类型I的隔离器件的高压终端High voltage terminals of type I isolation devices
功率集成电路中另一个期望特征是容许隔离器件“浮置”到衬底电势以上的高压的能力。浮置的器件或隔离袋的最高电压不取决于隔离袋内部是什么,而是取决于袋被终端的方式,即,什么特征作为沟槽隔离侧壁的外部的边界。Another desirable feature in power integrated circuits is the ability to allow isolation devices to "float" to high voltages above the substrate potential. The highest voltage for a floating device or isolated pocket does not depend on what is inside the isolated pocket, but on how the pocket is terminated, ie, what features border the outside of the trench isolation sidewalls.
贯穿该公开所描述的一个方法是用填充沟槽来终端隔离区以及将底隔离区域的横向延伸限制到沟槽的外边缘。如前所述,这些沟槽可完全由电介质材料填充,或者这些沟槽可包括在中心的导电材料以及横向围绕导电材料的电介质材料。虽然该方法能够支持高电压,但它不控制表面电场且可以经历充电和其他的依赖于时间的表面相关现象。One approach described throughout this publication is to terminate the isolation region with a filled trench and limit the lateral extension of the bottom isolation region to the outer edge of the trench. As previously mentioned, the trenches may be completely filled with dielectric material, or the trenches may include conductive material in the center and dielectric material surrounding the conductive material laterally. Although this method is capable of supporting high voltages, it does not control the surface electric field and can undergo charging and other time-dependent surface-related phenomena.
另一方法是用都包括高压“终端”的一个或更多的注入结、场释放区(field reliefregion)和沟道截断(channel stop)围绕侧壁隔离沟槽的外部或作为侧壁隔离沟槽的外部的边界,如图9A-9D所示的一系列截面图所示。在每个图中,P型袋通过填充沟槽与围绕的衬底横向隔离,并通过注入的底隔离区域被垂直地隔离。尽管填充沟槽示出为在其中心包括导电材料,但在其他实施例中也可以采用完全电介质化的填充沟槽。Another approach is to surround the outside of the sidewall isolation trench or act as a sidewall isolation trench with one or more implant junctions, field relief regions, and channel stops, all including high voltage "terminations" The outer boundaries of , are shown in the series of cross-sectional views shown in Figures 9A-9D. In each figure, the P-type pocket is isolated laterally from the surrounding substrate by the filled trench and vertically by the implanted bottom isolation region. Although the filled trenches are shown as including conductive material in their centers, fully dielectric filled trenches may be used in other embodiments.
图9A-9D的截面所示的隔离P型袋可包含CMOS、DMOS晶体管、JFET和耗尽型MOSFET、NPN和PNP双级晶体管、齐纳和整流二极管,或者甚至是诸如电阻和电容的无源部件的任何组合,所有这些都是根据本发明构建和制成的。每幅图包括“CL”中心线标记,表示旋转轴,从而P型袋在四周由具有环形或闭合几何形状的隔离沟槽围绕。The isolated P-pockets shown in cross-section in Figures 9A-9D can contain CMOS, DMOS transistors, JFETs and depletion-mode MOSFETs, NPN and PNP bi-level transistors, Zener and rectifier diodes, or even passive components such as resistors and capacitors. Any combination of components, all of which are constructed and made in accordance with the invention. Each figure includes a "CL" centerline marking, denoting the axis of rotation, whereby the P-pocket is surrounded on all four sides by isolation grooves having an annular or closed geometry.
在每个例子中,DN底隔离区域示出为延伸超出沟槽距离LDN,该距离的大小会在0和数十微米之间在长度上参量地改变。当LDN为0时,DN底隔离区域的横向边缘和沟槽的外边缘重合。DN底隔离区域被假定通过接触交叠的N型阱(比如,如图1所示)或者通过填充沟槽中的导电材料来电偏置。终端的外边缘由P+保护环识别,以防止表面反转且用作沟道截断。尺寸参照沟槽的外边缘以及P+保护环的内边缘。P+保护环可包括位于其下方的可选的深P型DP层,以横向容纳少数载流子,且也可包括作为保护环结构一部分的介入P型阱。In each example, the DN bottom isolation region is shown extending beyond the trench by a distance L DN , the magnitude of which can vary parametrically in length between 0 and tens of microns. When L DN is 0, the lateral edge of the DN bottom isolation region coincides with the outer edge of the trench. The DN floor isolation regions are assumed to be electrically biased by contacting overlapping N-type wells (eg, as shown in Figure 1) or by filling the trench with conductive material. The outer edge of the termination is identified by a P+ guard ring to prevent surface inversion and serve as a channel stop. Dimensions refer to the outer edge of the trench and the inner edge of the P+ guard ring. The P+ guard ring may include an optional deep P-type DP layer beneath it to accommodate minority carriers laterally, and may also include intervening P-type wells as part of the guard ring structure.
图9A示出包括N型底隔离区域902和填充沟槽904的边缘终端结构,它们一起隔离P型袋903以及任何其所包含的器件与P型衬底901。底隔离区域902延伸超出沟槽904距离LDN。当底隔离区域902被偏置到比衬底901更正的电势时,耗尽区分布进入衬底901在底隔离区域902的延伸部分之上的部分,该耗尽区降低了硅表面的电场。底隔离区域902的边缘与P+保护环905及底层埋设的P型区906的边缘之间的横向距离由尺寸LSUB标出,且其范围为从1微米到数十微米之间。FIG. 9A shows an edge termination structure including an N-type bottom isolation region 902 and a filled trench 904 which together isolate a P-type pocket 903 and any devices it contains from a P-type substrate 901 . Bottom isolation region 902 extends beyond trench 904 by a distance L DN . When the bottom isolation region 902 is biased to a more positive potential than the substrate 901, a depletion region is distributed into the portion of the substrate 901 above the extension of the bottom isolation region 902, which depletion region lowers the electric field at the silicon surface. The lateral distance between the edge of the bottom isolation region 902 and the edge of the P+ guard ring 905 and the underlying buried P-type region 906 is indicated by the dimension L SUB and ranges from 1 micron to tens of microns.
图9B示出包括底隔离区域912和填充沟槽914的边缘终端结构,它们一起隔离P型袋913以及任何其所包含的器件与P型衬底911。底隔离区域912延伸超出沟槽914长度LDN。长度为LD3的深注入N型漂移区917接触N+区918。漂移区917可被偏置到与底隔离区域912相同的电势,或可以偏置到固定的电势。漂移区917的外边缘与P+保护环915及底层的深P型区916间隔距离LSUB。FIG. 9B shows an edge termination structure including bottom isolation region 912 and filled trench 914 , which together isolate P-type pocket 913 and any devices it contains from P-type substrate 911 . The bottom isolation region 912 extends beyond the trench 914 by a length L DN . A deep implanted N-type drift region 917 of length L D3 contacts the N+ region 918 . The drift region 917 may be biased to the same potential as the bottom isolation region 912, or may be biased to a fixed potential. The outer edge of the drift region 917 is separated from the P+ guard ring 915 and the underlying deep P-type region 916 by a distance L SUB .
漂移区917的作用是通过展示二维耗尽扩散效应来抑制表面电场。假设漂移区917具有充分低的积分电荷QD,典型地在从1×1012cm-2到5×1012cm-2的范围内,增加施加到由漂移区917和P型衬底911形成的P-N结的电压导致耗尽扩散进入漂移区917并最终完全耗尽漂移区917。在这种情况下,漂移区917和本征材料在P-I-N二极管中的行为相似,而表面电场根据众所周知的二维电感生的P-I-N结的REFURF原理而实质上下降。此外,漂移区917在底隔离区域912上方的垂直交叠增强了在区域917和912之间的介入区域内的p型衬底911的耗尽,进一步减弱了终端内的表面电场。The role of the drift region 917 is to suppress the surface electric field by exhibiting a two-dimensional depletion diffusion effect. Assuming that the drift region 917 has a sufficiently low integrated charge Q D , typically in the range from 1×10 12 cm −2 to 5×10 12 cm −2 , increasing the charge applied to the formed by the drift region 917 and the P-type substrate 911 The voltage of the PN junction causes depletion to diffuse into the drift region 917 and eventually deplete the drift region 917 completely. In this case, the drift region 917 and the intrinsic material behave similarly in a PIN diode, while the surface electric field drops substantially according to the well-known REFURF principle of a two-dimensional inductively induced PIN junction. Furthermore, the vertical overlap of drift region 917 over bottom isolation region 912 enhances the depletion of p-type substrate 911 in the intervening region between regions 917 and 912, further weakening the surface electric field within the termination.
图9C示出包括底隔离区域922和填充沟槽924的边缘终端结构,它们一起隔离P型袋923以及任何其所包含的器件与P型衬底921。底隔离区域922延伸超出沟槽924距离LDN,且与沟槽927隔开距离LSUB。在此实施例中,底隔离区域922和沟槽927之间的间隙,即,尺寸为LSUB的间隙,控制在沟槽924和927之间,即,标识为928的区域的表面区域中的P型衬底921的电势。当底隔离区域922和沟槽927之间的间隙变成完全耗尽时,P型区域928的电势变为浮置。P+保护环925围绕该器件且可以包括底层的深P型区926。FIG. 9C shows an edge termination structure including bottom isolation region 922 and filled trench 924 , which together isolate P-type pocket 923 and any devices it contains from P-type substrate 921 . Bottom isolation region 922 extends beyond trench 924 by a distance L DN and is spaced apart from trench 927 by a distance L SUB . In this embodiment, the gap between bottom isolation region 922 and trench 927, i.e., a gap of dimension L SUB , is controlled within the surface area between trenches 924 and 927, i.e., the region identified as 928 The potential of the P-type substrate 921 . When the gap between the bottom isolation region 922 and the trench 927 becomes fully depleted, the potential of the P-type region 928 becomes floating. A P+ guard ring 925 surrounds the device and may include an underlying deep P-type region 926 .
图9D示出包括底隔离区域932和填充沟槽934的边缘终端结构,它们一起隔离P型袋933以及任何其所包含的器件与P型衬底931。底隔离区域932延伸超出沟槽934。深注入N型漂移区937接触N+区938。漂移区937可被偏置到与底隔离区域932相同的电势,或者可以偏置到固定的电势。在漂移区937内,形成一个或更多填充沟槽939。每个沟槽939降低了漂移区937中的局部掺杂浓度,这容许漂移区937的相邻部分更容易被耗尽,从而进一步减弱了局部电场。在优选实施例中,沟槽939较沟槽934更窄且浅,并完全由电介质材料填充。在一个实施例中,器件被设计为使得沟槽939的表面面积占漂移区937的表面面积的比例随着距沟槽934的横向距离的增加而增加。这使得漂移区937的距隔离袋933最远的部分比更靠近隔离袋933的部分更容易耗尽,从而提供了与渐次变化(graded)的结终端相似的效果,这对最小化支持给定的BV所需要的横向距离是有效的。漂移区937的外边缘与P+保护环935以及底层的深P型区936间隔距离LSUB。FIG. 9D shows an edge termination structure including bottom isolation region 932 and filled trench 934 which together isolate P-type pocket 933 and any devices it contains from P-type substrate 931 . Bottom isolation region 932 extends beyond trench 934 . Deeply implanted N-type drift region 937 contacts N+ region 938 . The drift region 937 may be biased to the same potential as the bottom isolation region 932, or may be biased to a fixed potential. Within the drift region 937, one or more filled trenches 939 are formed. Each trench 939 reduces the local doping concentration in the drift region 937, which allows adjacent portions of the drift region 937 to be more easily depleted, thereby further weakening the local electric field. In a preferred embodiment, trench 939 is narrower and shallower than trench 934 and is completely filled with a dielectric material. In one embodiment, the device is designed such that the ratio of the surface area of trench 939 to the surface area of drift region 937 increases with increasing lateral distance from trench 934 . This allows the part of the drift region 937 farthest from the isolation pocket 933 to be more easily depleted than the part closer to the isolation pocket 933, providing a similar effect to a graded junction termination, which is essential for minimizing support given The lateral distance required for the BV to be effective. The outer edge of the drift region 937 is separated from the P+ guard ring 935 and the underlying deep P-type region 936 by a distance L SUB .
这里所描述的实施例旨在是示意性的而不是限制。根据这里的描述,在本发明的广阔范围内的许多备选实施例对本领域的技术人员而言是明显的。The embodiments described here are intended to be illustrative and not limiting. Many alternative embodiments within the broad scope of the invention will be apparent to those skilled in the art from the description herein.
Claims (8)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/072,615 US7667268B2 (en) | 2002-08-14 | 2008-02-27 | Isolated transistor |
| US12/072,615 | 2008-02-27 |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN200980115026.8A Division CN102037562B (en) | 2008-02-27 | 2009-02-25 | Isolated transistors and diodes, isolation and termination structures for semiconductor die |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102867843A CN102867843A (en) | 2013-01-09 |
| CN102867843B true CN102867843B (en) | 2015-05-20 |
Family
ID=41016649
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210359000.1A Expired - Fee Related CN102867843B (en) | 2008-02-27 | 2009-02-25 | Isolated transistors and diodes and isolation and termination structures for semiconductor die |
| CN200980115026.8A Expired - Fee Related CN102037562B (en) | 2008-02-27 | 2009-02-25 | Isolated transistors and diodes, isolation and termination structures for semiconductor die |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN200980115026.8A Expired - Fee Related CN102037562B (en) | 2008-02-27 | 2009-02-25 | Isolated transistors and diodes, isolation and termination structures for semiconductor die |
Country Status (7)
| Country | Link |
|---|---|
| US (3) | US7667268B2 (en) |
| EP (1) | EP2248162A4 (en) |
| JP (1) | JP5449203B2 (en) |
| KR (4) | KR101483404B1 (en) |
| CN (2) | CN102867843B (en) |
| TW (1) | TWI415262B (en) |
| WO (1) | WO2009108311A2 (en) |
Families Citing this family (113)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7825488B2 (en) | 2006-05-31 | 2010-11-02 | Advanced Analogic Technologies, Inc. | Isolation structures for integrated circuits and modular methods of forming the same |
| US7812403B2 (en) * | 2002-08-14 | 2010-10-12 | Advanced Analogic Technologies, Inc. | Isolation structures for integrated circuit devices |
| US20080197408A1 (en) * | 2002-08-14 | 2008-08-21 | Advanced Analogic Technologies, Inc. | Isolated quasi-vertical DMOS transistor |
| US7667268B2 (en) | 2002-08-14 | 2010-02-23 | Advanced Analogic Technologies, Inc. | Isolated transistor |
| US7939420B2 (en) * | 2002-08-14 | 2011-05-10 | Advanced Analogic Technologies, Inc. | Processes for forming isolation structures for integrated circuit devices |
| US7956391B2 (en) | 2002-08-14 | 2011-06-07 | Advanced Analogic Technologies, Inc. | Isolated junction field-effect transistor |
| US7834421B2 (en) * | 2002-08-14 | 2010-11-16 | Advanced Analogic Technologies, Inc. | Isolated diode |
| US8089129B2 (en) * | 2002-08-14 | 2012-01-03 | Advanced Analogic Technologies, Inc. | Isolated CMOS transistors |
| US8513087B2 (en) * | 2002-08-14 | 2013-08-20 | Advanced Analogic Technologies, Incorporated | Processes for forming isolation structures for integrated circuit devices |
| US7902630B2 (en) * | 2002-08-14 | 2011-03-08 | Advanced Analogic Technologies, Inc. | Isolated bipolar transistor |
| KR100867977B1 (en) | 2006-10-11 | 2008-11-10 | 한국과학기술원 | Tissue perfusion analysis apparatus using indocyanine green blood concentration dynamics and tissue perfusion analysis method using the same |
| US7737526B2 (en) * | 2007-03-28 | 2010-06-15 | Advanced Analogic Technologies, Inc. | Isolated trench MOSFET in epi-less semiconductor sustrate |
| US7795681B2 (en) * | 2007-03-28 | 2010-09-14 | Advanced Analogic Technologies, Inc. | Isolated lateral MOSFET in epi-less substrate |
| KR101035596B1 (en) * | 2007-12-28 | 2011-05-19 | 매그나칩 반도체 유한회사 | Semiconductor device with deep trench structure |
| US8298889B2 (en) | 2008-12-10 | 2012-10-30 | Semiconductor Components Industries, Llc | Process of forming an electronic device including a trench and a conductive structure therein |
| JP5537814B2 (en) * | 2009-01-06 | 2014-07-02 | ラピスセミコンダクタ株式会社 | Semiconductor device and manufacturing method thereof |
| US7943445B2 (en) | 2009-02-19 | 2011-05-17 | International Business Machines Corporation | Asymmetric junction field effect transistor |
| CN101521203B (en) * | 2009-04-07 | 2010-08-04 | 电子科技大学 | A semiconductor lateral device and a high voltage device |
| TWI405332B (en) | 2010-03-10 | 2013-08-11 | Macronix Int Co Ltd | Junction field effect transistor component |
| US9293577B2 (en) * | 2010-03-30 | 2016-03-22 | Volterra Semiconductor LLC | LDMOS with no reverse recovery |
| CN102270580A (en) * | 2010-06-04 | 2011-12-07 | 和舰科技(苏州)有限公司 | Method for manufacturing high voltage N-channel metal oxide semiconductor (NMOS) tube |
| JP5834200B2 (en) * | 2010-06-07 | 2015-12-16 | パナソニックIpマネジメント株式会社 | Semiconductor device |
| US8462477B2 (en) * | 2010-09-13 | 2013-06-11 | Analog Devices, Inc. | Junction field effect transistor for voltage protection |
| JP5581977B2 (en) * | 2010-11-03 | 2014-09-03 | 株式会社デンソー | Manufacturing method of semiconductor device |
| US8629026B2 (en) | 2010-11-12 | 2014-01-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Source tip optimization for high voltage transistor devices |
| JP5504187B2 (en) * | 2011-01-26 | 2014-05-28 | 株式会社東芝 | Semiconductor device and manufacturing method thereof |
| US8618583B2 (en) * | 2011-05-16 | 2013-12-31 | International Business Machines Corporation | Junction gate field effect transistor structure having n-channel |
| JP5743831B2 (en) * | 2011-09-29 | 2015-07-01 | 株式会社東芝 | Semiconductor device |
| US8518764B2 (en) * | 2011-10-24 | 2013-08-27 | Freescale Semiconductor, Inc. | Semiconductor structure having a through substrate via (TSV) and method for forming |
| JP5739826B2 (en) * | 2012-01-23 | 2015-06-24 | 株式会社東芝 | Semiconductor device |
| JP5964091B2 (en) * | 2012-03-12 | 2016-08-03 | ルネサスエレクトロニクス株式会社 | Semiconductor device and manufacturing method thereof |
| JP6001309B2 (en) * | 2012-04-17 | 2016-10-05 | エスアイアイ・セミコンダクタ株式会社 | Semiconductor device |
| US9236472B2 (en) * | 2012-04-17 | 2016-01-12 | Freescale Semiconductor, Inc. | Semiconductor device with integrated breakdown protection |
| US8853780B2 (en) * | 2012-05-07 | 2014-10-07 | Freescale Semiconductor, Inc. | Semiconductor device with drain-end drift diminution |
| WO2013176950A1 (en) * | 2012-05-25 | 2013-11-28 | Microsemi Soc Corp. | Tid hardened mos transistors and fabrication process |
| US9093517B2 (en) | 2012-05-25 | 2015-07-28 | Microsemi SoC Corporation | TID hardened and single event transient single event latchup resistant MOS transistors and fabrication process |
| US9231083B2 (en) | 2012-06-29 | 2016-01-05 | Freescal Semiconductor Inc. | High breakdown voltage LDMOS device |
| US8921934B2 (en) | 2012-07-11 | 2014-12-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET with trench field plate |
| JP6132539B2 (en) * | 2012-12-13 | 2017-05-24 | ルネサスエレクトロニクス株式会社 | Semiconductor device |
| US9378958B2 (en) * | 2012-12-28 | 2016-06-28 | United Microelectronics Corporation | Electrostatic discharge protection structure and fabricating method thereof |
| US8890250B2 (en) * | 2012-12-28 | 2014-11-18 | United Microelectronics Corporation | Electrostatic discharge protection structure |
| CN103050541B (en) * | 2013-01-06 | 2015-08-19 | 上海华虹宏力半导体制造有限公司 | A kind of radio frequency LDMOS device and manufacture method thereof |
| US9490322B2 (en) | 2013-01-23 | 2016-11-08 | Freescale Semiconductor, Inc. | Semiconductor device with enhanced 3D resurf |
| JP2014170831A (en) | 2013-03-04 | 2014-09-18 | Seiko Epson Corp | Circuit device and electronic apparatus |
| JP2014203851A (en) * | 2013-04-01 | 2014-10-27 | 株式会社東芝 | Semiconductor device and manufacturing method of the same |
| CN104241354B (en) * | 2013-06-09 | 2018-03-06 | 中芯国际集成电路制造(上海)有限公司 | Ldmos transistor and forming method thereof |
| JP6295444B2 (en) * | 2013-07-16 | 2018-03-20 | パナソニックIpマネジメント株式会社 | Semiconductor device |
| US9076863B2 (en) * | 2013-07-17 | 2015-07-07 | Texas Instruments Incorporated | Semiconductor structure with a doped region between two deep trench isolation structures |
| US9059278B2 (en) * | 2013-08-06 | 2015-06-16 | International Business Machines Corporation | High voltage lateral double-diffused metal oxide semiconductor field effect transistor (LDMOSFET) having a deep fully depleted drain drift region |
| CN104425344B (en) * | 2013-08-28 | 2017-06-13 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
| US9006825B1 (en) * | 2013-09-27 | 2015-04-14 | Mediatek Inc. | MOS device with isolated drain and method for fabricating the same |
| US9177952B2 (en) * | 2013-10-15 | 2015-11-03 | Freescale Semiconductor, Inc. | ESD protection with asymmetrical bipolar-based device |
| CN104638003B (en) * | 2013-11-14 | 2019-04-09 | 上海华虹宏力半导体制造有限公司 | RF LDMOS device and process method |
| WO2015077361A1 (en) | 2013-11-21 | 2015-05-28 | Microsemi SoC Corporation | High voltage device fabricated using low-voltage processes |
| CN104701365B (en) * | 2013-12-05 | 2018-02-16 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor devices and forming method thereof |
| US9543379B2 (en) | 2014-03-18 | 2017-01-10 | Nxp Usa, Inc. | Semiconductor device with peripheral breakdown protection |
| JP2016001671A (en) * | 2014-06-12 | 2016-01-07 | サンケン電気株式会社 | Semiconductor device |
| TWI578537B (en) * | 2014-08-01 | 2017-04-11 | 旺宏電子股份有限公司 | High voltage semiconductor device |
| US9425304B2 (en) * | 2014-08-21 | 2016-08-23 | Vishay-Siliconix | Transistor structure with improved unclamped inductive switching immunity |
| JP6355481B2 (en) * | 2014-08-25 | 2018-07-11 | ルネサスエレクトロニクス株式会社 | Semiconductor device |
| US10121889B2 (en) | 2014-08-29 | 2018-11-06 | Macronix International Co., Ltd. | High voltage semiconductor device |
| KR102143520B1 (en) * | 2014-09-17 | 2020-08-11 | 삼성전자 주식회사 | Pumping capacitor |
| CN105720098B (en) * | 2014-12-02 | 2019-01-29 | 中芯国际集成电路制造(上海)有限公司 | NLDMOS and preparation method thereof |
| CN105810583B (en) * | 2014-12-30 | 2019-03-15 | 无锡华润上华科技有限公司 | Manufacturing method of lateral insulated gate bipolar transistor |
| KR102354463B1 (en) | 2015-01-09 | 2022-01-24 | 삼성전자주식회사 | Semiconducor devices having retrograde channels and methods for fabricating the same |
| US9806148B2 (en) | 2015-04-07 | 2017-10-31 | Texas Instruments Incorporated | Device isolator with reduced parasitic capacitance |
| CN106298768B (en) * | 2015-06-10 | 2019-03-19 | 联华电子股份有限公司 | Semiconductor device and method for operating semiconductor device |
| KR101692625B1 (en) * | 2015-06-18 | 2017-01-03 | 주식회사 동부하이텍 | Semiconductor device and radio frequency module formed on high resistivity substrate |
| KR101666753B1 (en) * | 2015-06-18 | 2016-10-14 | 주식회사 동부하이텍 | Semiconductor device and radio frequency module formed on high resistivity substrate |
| JP2017045884A (en) * | 2015-08-27 | 2017-03-02 | ルネサスエレクトロニクス株式会社 | Semiconductor device and manufacturing method of semiconductor device |
| US10217860B2 (en) * | 2015-09-11 | 2019-02-26 | Nxp Usa, Inc. | Partially biased isolation in semiconductor devices |
| US9722097B2 (en) | 2015-09-16 | 2017-08-01 | Vanguard International Semiconductor Corporation | Semiconductor device and method for manufacturing the same |
| US10446695B2 (en) * | 2015-10-21 | 2019-10-15 | United Silicone Carbide, Inc. | Planar multi-implanted JFET |
| TWI594334B (en) * | 2015-11-12 | 2017-08-01 | 世界先進積體電路股份有限公司 | Semiconductor device and method of manufacturing the same |
| CN107026082B (en) * | 2016-02-02 | 2019-11-19 | 璟茂科技股份有限公司 | Manufacturing method of power rectifier diode |
| JP6591312B2 (en) | 2016-02-25 | 2019-10-16 | ルネサスエレクトロニクス株式会社 | Semiconductor device |
| US9871135B2 (en) | 2016-06-02 | 2018-01-16 | Nxp Usa, Inc. | Semiconductor device and method of making |
| TWI693713B (en) * | 2016-07-22 | 2020-05-11 | 立積電子股份有限公司 | Semiconductor structure |
| CN107785366B (en) * | 2016-08-31 | 2020-04-14 | 无锡华润上华科技有限公司 | Device with integrated junction field effect transistor and method of making the same |
| US10032766B2 (en) * | 2016-09-16 | 2018-07-24 | Globalfoundries Singapore Pte. Ltd. | VDMOS transistors, BCD devices including VDMOS transistors, and methods for fabricating integrated circuits with such devices |
| US10347621B2 (en) * | 2016-10-12 | 2019-07-09 | Texas Instruments Incorporated | Electrostatic discharge guard ring with snapback protection |
| US9905687B1 (en) | 2017-02-17 | 2018-02-27 | Nxp Usa, Inc. | Semiconductor device and method of making |
| JP6416969B2 (en) * | 2017-04-13 | 2018-10-31 | ルネサスエレクトロニクス株式会社 | Semiconductor device and manufacturing method thereof |
| CN107359208A (en) * | 2017-04-24 | 2017-11-17 | 杭州立昂微电子股份有限公司 | A kind of Schottky-barrier diode and its manufacture method |
| US10043826B1 (en) * | 2017-07-26 | 2018-08-07 | Qualcomm Incorporated | Fully depleted silicon on insulator integration |
| CN108039361A (en) * | 2017-12-08 | 2018-05-15 | 深圳市晶特智造科技有限公司 | The terminal structure and preparation method thereof of semiconductor power device, semiconductor power device |
| TWI667788B (en) * | 2018-03-23 | 2019-08-01 | 世界先進積體電路股份有限公司 | Semiconductor structures and fabrication method thereof |
| CN110350018B (en) * | 2018-04-02 | 2023-05-26 | 世界先进积体电路股份有限公司 | Semiconductor structure and manufacturing method thereof |
| US10607880B2 (en) * | 2018-08-30 | 2020-03-31 | Nxp Usa, Inc. | Die with buried doped isolation region |
| US11069804B2 (en) * | 2018-08-31 | 2021-07-20 | Alpha And Omega Semiconductor (Cayman) Ltd. | Integration of HVLDMOS with shared isolation region |
| JP6937281B2 (en) * | 2018-09-14 | 2021-09-22 | 株式会社東芝 | Semiconductor device |
| CN109616518B (en) * | 2018-12-13 | 2022-08-23 | 中国科学院微电子研究所 | MOS grid-controlled thyristor |
| US11502667B2 (en) | 2019-01-14 | 2022-11-15 | Qorvo Us, Inc. | Top electrodes with step arrangements for bulk acoustic wave resonators |
| JP7195167B2 (en) * | 2019-02-08 | 2022-12-23 | ルネサスエレクトロニクス株式会社 | Semiconductor device and method for manufacturing semiconductor device |
| TWI732182B (en) * | 2019-02-23 | 2021-07-01 | 世界先進積體電路股份有限公司 | Semiconductor devices and methods for forming the same |
| JP7239699B2 (en) | 2019-02-28 | 2023-03-14 | 長江存儲科技有限責任公司 | High voltage semiconductor device with increased breakdown voltage and method for manufacturing the same |
| US10892320B2 (en) | 2019-04-30 | 2021-01-12 | Vanguard International Semiconductor Corporation | Semiconductor devices having stacked trench gate electrodes overlapping a well region |
| JP7227110B2 (en) * | 2019-09-18 | 2023-02-21 | 株式会社東芝 | semiconductor equipment |
| CN112864150B (en) * | 2019-11-27 | 2022-04-15 | 苏州东微半导体股份有限公司 | Super junction power device |
| US11552190B2 (en) * | 2019-12-12 | 2023-01-10 | Analog Devices International Unlimited Company | High voltage double-diffused metal oxide semiconductor transistor with isolated parasitic bipolar junction transistor region |
| US11049957B1 (en) * | 2020-04-16 | 2021-06-29 | Monolithic Power Systems, Inc. | LDMOS device with sinker link |
| TWI730814B (en) * | 2020-06-16 | 2021-06-11 | 力晶積成電子製造股份有限公司 | Insulated gate bipolar transistor structure and manufacturing method thereof |
| TWI773254B (en) * | 2021-04-19 | 2022-08-01 | 立錡科技股份有限公司 | High voltage device and manufacturing method thereof |
| CN115241289B (en) * | 2021-04-23 | 2025-08-01 | 立锜科技股份有限公司 | High-voltage element and method for manufacturing same |
| TWI809643B (en) * | 2021-10-26 | 2023-07-21 | 南亞科技股份有限公司 | Semiconductor device structure |
| CN120500106A (en) * | 2022-02-25 | 2025-08-15 | 亚德诺半导体国际无限责任公司 | Monolithically integrated field effect devices and bipolar devices having a co-fabricated structure |
| CN114883391A (en) * | 2022-04-08 | 2022-08-09 | 华东师范大学 | Fully-isolated N-type LDMOS device and preparation method thereof |
| TWI808781B (en) * | 2022-06-08 | 2023-07-11 | 力晶積成電子製造股份有限公司 | Electrostatic discharge protection device |
| CN114744049B (en) * | 2022-06-13 | 2022-09-27 | 瑞能半导体科技股份有限公司 | Silicon carbide MOSFET semiconductor device and manufacturing method |
| CN115188832B (en) * | 2022-07-11 | 2023-04-14 | 东莞市金誉半导体有限公司 | A kind of high voltage JFET device and preparation method thereof |
| CN114975601A (en) * | 2022-07-28 | 2022-08-30 | 合肥晶合集成电路股份有限公司 | Semiconductor device and manufacturing method thereof |
| CN118472028A (en) * | 2023-02-07 | 2024-08-09 | 无锡华润上华科技有限公司 | Semiconductor device with isolation structure and manufacturing method thereof |
| TWI866763B (en) * | 2024-01-30 | 2024-12-11 | 力晶積成電子製造股份有限公司 | Semiconductor device and method for forming the same |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0747969A1 (en) * | 1995-06-07 | 1996-12-11 | Harris Corporation | Pilot transistor for quasivertical DMOS device |
| JPH09266248A (en) * | 1996-03-28 | 1997-10-07 | Toshiba Corp | Semiconductor device |
| CN2821868Y (en) * | 2005-05-19 | 2006-09-27 | 崇贸科技股份有限公司 | MOS Field Effect Transistor with Isolation Structure |
Family Cites Families (113)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4269636A (en) | 1978-12-29 | 1981-05-26 | Harris Corporation | Method of fabricating self-aligned bipolar transistor process and device utilizing etching and self-aligned masking |
| JPS5824018B2 (en) | 1979-12-21 | 1983-05-18 | 富士通株式会社 | Bipolar IC manufacturing method |
| FR2498812A1 (en) * | 1981-01-27 | 1982-07-30 | Thomson Csf | STRUCTURE OF TRANSISTORS IN AN INTEGRATED CIRCUIT AND METHOD OF MANUFACTURING THE SAME |
| US4454647A (en) | 1981-08-27 | 1984-06-19 | International Business Machines Corporation | Isolation for high density integrated circuits |
| JPS58100441A (en) | 1981-12-10 | 1983-06-15 | Toshiba Corp | Manufacture of semiconductor device |
| US4655875A (en) | 1985-03-04 | 1987-04-07 | Hitachi, Ltd. | Ion implantation process |
| US6740958B2 (en) | 1985-09-25 | 2004-05-25 | Renesas Technology Corp. | Semiconductor memory device |
| US4819052A (en) | 1986-12-22 | 1989-04-04 | Texas Instruments Incorporated | Merged bipolar/CMOS technology using electrically active trench |
| US4980747A (en) | 1986-12-22 | 1990-12-25 | Texas Instruments Inc. | Deep trench isolation with surface contact to substrate |
| JPS63173360A (en) * | 1987-01-13 | 1988-07-16 | Nec Corp | Semiconductor storage device |
| US5156989A (en) | 1988-11-08 | 1992-10-20 | Siliconix, Incorporated | Complementary, isolated DMOS IC technology |
| US5410175A (en) | 1989-08-31 | 1995-04-25 | Hamamatsu Photonics K.K. | Monolithic IC having pin photodiode and an electrically active element accommodated on the same semi-conductor substrate |
| JP2662446B2 (en) | 1989-12-11 | 1997-10-15 | キヤノン株式会社 | Printhead and printhead element substrate |
| JP3093771B2 (en) | 1990-03-22 | 2000-10-03 | 沖電気工業株式会社 | Semiconductor storage device |
| US5386136A (en) | 1991-05-06 | 1995-01-31 | Siliconix Incorporated | Lightly-doped drain MOSFET with improved breakdown characteristics |
| WO1993006622A1 (en) | 1991-09-27 | 1993-04-01 | Harris Corporation | Complementary bipolar transistors having high early voltage, high frequency performance and high breakdown voltage characteristics and method of making same |
| EP0537684B1 (en) * | 1991-10-15 | 1998-05-20 | Texas Instruments Incorporated | Improved performance lateral double-diffused MOS transistor and method of fabrication thereof |
| JPH05109886A (en) | 1991-10-17 | 1993-04-30 | N M B Semiconductor:Kk | Semiconductor device of field shield isolation structure and its manufacture |
| US5856695A (en) | 1991-10-30 | 1999-01-05 | Harris Corporation | BiCMOS devices |
| US5422508A (en) | 1992-09-21 | 1995-06-06 | Siliconix Incorporated | BiCDMOS structure |
| US5324973A (en) | 1993-05-03 | 1994-06-28 | Motorola Inc. | Semiconductor SRAM with trench transistors |
| US5420061A (en) | 1993-08-13 | 1995-05-30 | Micron Semiconductor, Inc. | Method for improving latchup immunity in a dual-polysilicon gate process |
| US5892264A (en) * | 1993-10-04 | 1999-04-06 | Harris Corporation | High frequency analog transistors, method of fabrication and circuit implementation |
| JP3252569B2 (en) | 1993-11-09 | 2002-02-04 | 株式会社デンソー | Insulating separation substrate, semiconductor device using the same, and method of manufacturing the same |
| US5498554A (en) * | 1994-04-08 | 1996-03-12 | Texas Instruments Incorporated | Method of making extended drain resurf lateral DMOS devices |
| US5438005A (en) | 1994-04-13 | 1995-08-01 | Winbond Electronics Corp. | Deep collection guard ring |
| US5506431A (en) | 1994-05-16 | 1996-04-09 | Thomas; Mammen | Double poly trenched channel accelerated tunneling electron (DPT-CATE) cell, for memory applications |
| EP0788660B1 (en) * | 1995-07-19 | 2001-10-17 | Koninklijke Philips Electronics N.V. | Semiconductor device of hv-ldmost type |
| FR2744285B1 (en) | 1996-01-25 | 1998-03-06 | Commissariat Energie Atomique | METHOD FOR TRANSFERRING A THIN FILM FROM AN INITIAL SUBSTRATE TO A FINAL SUBSTRATE |
| JPH09252049A (en) * | 1996-03-15 | 1997-09-22 | Mitsubishi Electric Corp | Multi-layer buried trench isolation |
| US5807783A (en) | 1996-10-07 | 1998-09-15 | Harris Corporation | Surface mount die by handle replacement |
| KR100205609B1 (en) | 1997-01-06 | 1999-07-01 | 윤종용 | Electrostatic protection device |
| US6163052A (en) * | 1997-04-04 | 2000-12-19 | Advanced Micro Devices, Inc. | Trench-gated vertical combination JFET and MOSFET devices |
| US6011297A (en) | 1997-07-18 | 2000-01-04 | Advanced Micro Devices,Inc. | Use of multiple slots surrounding base region of a bipolar junction transistor to increase cumulative breakdown voltage |
| US6171982B1 (en) | 1997-12-26 | 2001-01-09 | Canon Kabushiki Kaisha | Method and apparatus for heat-treating an SOI substrate and method of preparing an SOI substrate by using the same |
| US5914523A (en) | 1998-02-17 | 1999-06-22 | National Semiconductor Corp. | Semiconductor device trench isolation structure with polysilicon bias voltage contact |
| KR100282710B1 (en) | 1998-03-12 | 2001-02-15 | 윤종용 | Method for manufacturing bipolar transistor and its structure |
| US6331456B1 (en) | 1998-05-04 | 2001-12-18 | Texas Instruments - Acer Incorporated | Fipos method of forming SOI CMOS structure |
| US6013936A (en) | 1998-08-06 | 2000-01-11 | International Business Machines Corporation | Double silicon-on-insulator device and method therefor |
| US20010013636A1 (en) | 1999-01-22 | 2001-08-16 | James S. Dunn | A self-aligned, sub-minimum isolation ring |
| US6316336B1 (en) | 1999-03-01 | 2001-11-13 | Richard A. Blanchard | Method for forming buried layers with top-side contacts and the resulting structure |
| US6225674B1 (en) | 1999-04-02 | 2001-05-01 | Motorola, Inc. | Semiconductor structure and method of manufacture |
| EP1043775B1 (en) | 1999-04-06 | 2006-06-14 | STMicroelectronics S.r.l. | Power integrated circuit with vertical current flow and related manufacturing process |
| US6225181B1 (en) | 1999-04-19 | 2001-05-01 | National Semiconductor Corp. | Trench isolated bipolar transistor structure integrated with CMOS technology |
| US6144086A (en) | 1999-04-30 | 2000-11-07 | International Business Machines Corporation | Structure for improved latch-up using dual depth STI with impurity implant |
| KR100300069B1 (en) | 1999-05-10 | 2001-09-26 | 김영환 | Semiconductor device and fabrication method of thereof |
| US6798024B1 (en) | 1999-07-01 | 2004-09-28 | Intersil Americas Inc. | BiCMOS process with low temperature coefficient resistor (TCRL) |
| JP2001135719A (en) * | 1999-11-01 | 2001-05-18 | Denso Corp | Element isolation structure of semiconductor device |
| US6448124B1 (en) | 1999-11-12 | 2002-09-10 | International Business Machines Corporation | Method for epitaxial bipolar BiCMOS |
| US6489653B2 (en) | 1999-12-27 | 2002-12-03 | Kabushiki Kaisha Toshiba | Lateral high-breakdown-voltage transistor |
| US6835627B1 (en) * | 2000-01-10 | 2004-12-28 | Analog Devices, Inc. | Method for forming a DMOS device and a DMOS device |
| US6399990B1 (en) | 2000-03-21 | 2002-06-04 | International Business Machines Corporation | Isolated well ESD device |
| IT1316871B1 (en) | 2000-03-31 | 2003-05-12 | St Microelectronics Srl | MONOLITHICALLY INTEGRATED ELECTRONIC DEVICE AND RELATED MANUFACTURING PROCESS |
| IT1317516B1 (en) | 2000-05-11 | 2003-07-09 | St Microelectronics Srl | INTEGRATED DEVICE WITH TRENCH INSULATION STRUCTURE AND RELATIVE PROCESS OF REALIZATION. |
| US6663167B2 (en) * | 2000-05-15 | 2003-12-16 | Jeffrey O. Phillips | Collapsible shelter/camper/storage unit with a suspended floor |
| JP4984345B2 (en) * | 2000-06-21 | 2012-07-25 | 富士電機株式会社 | Semiconductor device |
| SE518797C2 (en) * | 2000-07-19 | 2002-11-19 | Ericsson Telefon Ab L M | Power LDMOS transistor comprising a plurality of parallel-connected transistor segments with different threshold voltages |
| JP2002094063A (en) * | 2000-09-11 | 2002-03-29 | Toshiba Corp | Semiconductor device |
| US6849871B2 (en) | 2000-10-20 | 2005-02-01 | International Business Machines Corporation | Fully-depleted-collector silicon-on-insulator (SOI) bipolar transistor useful alone or in SOI BiCMOS |
| JP2002198436A (en) | 2000-12-25 | 2002-07-12 | Sanyo Electric Co Ltd | Semiconductor integrated circuit device and method of manufacturing the same |
| JP2002198439A (en) | 2000-12-26 | 2002-07-12 | Sharp Corp | Semiconductor devices and portable electronic devices |
| US6600199B2 (en) | 2000-12-29 | 2003-07-29 | International Business Machines Corporation | Deep trench-buried layer array and integrated device structures for noise isolation and latch up immunity |
| EP1220323A3 (en) * | 2000-12-31 | 2007-08-15 | Texas Instruments Incorporated | LDMOS with improved safe operating area |
| JP2002237575A (en) * | 2001-02-08 | 2002-08-23 | Sharp Corp | Semiconductor device and manufacturing method thereof |
| US20020117714A1 (en) * | 2001-02-28 | 2002-08-29 | Linear Technology Corporation | High voltage MOS transistor |
| TW475250B (en) | 2001-03-14 | 2002-02-01 | Taiwan Semiconductor Mfg | ESD protection circuit to be used in high-frequency input/output port with low capacitance load |
| JP4811895B2 (en) | 2001-05-02 | 2011-11-09 | ルネサスエレクトロニクス株式会社 | Semiconductor device and manufacturing method thereof |
| JP2003100862A (en) | 2001-09-21 | 2003-04-04 | Mitsubishi Electric Corp | Semiconductor device and method of manufacturing the same |
| US6563181B1 (en) | 2001-11-02 | 2003-05-13 | Motorola, Inc. | High frequency signal isolation in a semiconductor device |
| KR100456691B1 (en) | 2002-03-05 | 2004-11-10 | 삼성전자주식회사 | Semiconductor device having dual isolation structure and method of fabricating the same |
| JP2004039866A (en) | 2002-07-03 | 2004-02-05 | Toshiba Corp | Semiconductor device and manufacturing method thereof |
| US7179691B1 (en) | 2002-07-29 | 2007-02-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for four direction low capacitance ESD protection |
| US6867462B2 (en) | 2002-08-09 | 2005-03-15 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device using an SOI substrate and having a trench isolation and method for fabricating the same |
| US7834421B2 (en) | 2002-08-14 | 2010-11-16 | Advanced Analogic Technologies, Inc. | Isolated diode |
| US20080197408A1 (en) | 2002-08-14 | 2008-08-21 | Advanced Analogic Technologies, Inc. | Isolated quasi-vertical DMOS transistor |
| US8089129B2 (en) | 2002-08-14 | 2012-01-03 | Advanced Analogic Technologies, Inc. | Isolated CMOS transistors |
| US7741661B2 (en) | 2002-08-14 | 2010-06-22 | Advanced Analogic Technologies, Inc. | Isolation and termination structures for semiconductor die |
| US7956391B2 (en) | 2002-08-14 | 2011-06-07 | Advanced Analogic Technologies, Inc. | Isolated junction field-effect transistor |
| US6943426B2 (en) | 2002-08-14 | 2005-09-13 | Advanced Analogic Technologies, Inc. | Complementary analog bipolar transistors with trench-constrained isolation diffusion |
| US7825488B2 (en) | 2006-05-31 | 2010-11-02 | Advanced Analogic Technologies, Inc. | Isolation structures for integrated circuits and modular methods of forming the same |
| US7902630B2 (en) | 2002-08-14 | 2011-03-08 | Advanced Analogic Technologies, Inc. | Isolated bipolar transistor |
| US6900091B2 (en) | 2002-08-14 | 2005-05-31 | Advanced Analogic Technologies, Inc. | Isolated complementary MOS devices in epi-less substrate |
| US7667268B2 (en) | 2002-08-14 | 2010-02-23 | Advanced Analogic Technologies, Inc. | Isolated transistor |
| US7939420B2 (en) | 2002-08-14 | 2011-05-10 | Advanced Analogic Technologies, Inc. | Processes for forming isolation structures for integrated circuit devices |
| US7719054B2 (en) * | 2006-05-31 | 2010-05-18 | Advanced Analogic Technologies, Inc. | High-voltage lateral DMOS device |
| US6855985B2 (en) | 2002-09-29 | 2005-02-15 | Advanced Analogic Technologies, Inc. | Modular bipolar-CMOS-DMOS analog integrated circuit & power transistor technology |
| US7576388B1 (en) | 2002-10-03 | 2009-08-18 | Fairchild Semiconductor Corporation | Trench-gate LDMOS structures |
| SE0303099D0 (en) * | 2003-11-21 | 2003-11-21 | Infineon Technologies Ag | Method in the fabrication of a monolithically integrated high frequency circuit |
| US7205584B2 (en) | 2003-12-22 | 2007-04-17 | Micron Technology, Inc. | Image sensor for reduced dark current |
| US20050179111A1 (en) | 2004-02-12 | 2005-08-18 | Iwen Chao | Semiconductor device with low resistive path barrier |
| US7304354B2 (en) | 2004-02-17 | 2007-12-04 | Silicon Space Technology Corp. | Buried guard ring and radiation hardened isolation structures and fabrication methods |
| WO2005078801A1 (en) | 2004-02-17 | 2005-08-25 | Nanyang Technological University | Method and device for wavelength-sensitive photo-sensing |
| JP4429036B2 (en) | 2004-02-27 | 2010-03-10 | 富士通マイクロエレクトロニクス株式会社 | Manufacturing method of semiconductor device |
| TWI231986B (en) | 2004-03-22 | 2005-05-01 | Sunplus Technology Co Ltd | ESD protection device for high voltage and negative voltage tolerance |
| TWI256676B (en) * | 2004-03-26 | 2006-06-11 | Siliconix Inc | Termination for trench MIS device having implanted drain-drift region |
| US7009271B1 (en) | 2004-04-13 | 2006-03-07 | Advanced Micro Devices, Inc. | Memory device with an alternating Vss interconnection |
| US7183610B2 (en) * | 2004-04-30 | 2007-02-27 | Siliconix Incorporated | Super trench MOSFET including buried source electrode and method of fabricating the same |
| JP4592340B2 (en) | 2004-06-29 | 2010-12-01 | 三洋電機株式会社 | Manufacturing method of semiconductor device |
| JP2006074012A (en) * | 2004-08-06 | 2006-03-16 | Renesas Technology Corp | Bidirectional type electrostatic discharge protection element |
| US7335948B2 (en) | 2004-08-23 | 2008-02-26 | Enpirion, Inc. | Integrated circuit incorporating higher voltage devices and low voltage devices therein |
| US20060076629A1 (en) | 2004-10-07 | 2006-04-13 | Hamza Yilmaz | Semiconductor devices with isolation and sinker regions containing trenches filled with conductive material |
| JP4959140B2 (en) | 2005-02-04 | 2012-06-20 | 株式会社日立超エル・エス・アイ・システムズ | Semiconductor device |
| JP4519716B2 (en) | 2005-06-02 | 2010-08-04 | 富士通セミコンダクター株式会社 | Semiconductor device having diode for rectifier circuit |
| US7719080B2 (en) | 2005-06-20 | 2010-05-18 | Teledyne Scientific & Imaging, Llc | Semiconductor device with a conduction enhancement layer |
| TWI256673B (en) * | 2005-09-05 | 2006-06-11 | United Microelectronics Corp | High voltage metal oxide semiconductor and fabricating method thereof |
| US20070132056A1 (en) | 2005-12-09 | 2007-06-14 | Advanced Analogic Technologies, Inc. | Isolation structures for semiconductor integrated circuit substrates and methods of forming the same |
| US20070158779A1 (en) | 2006-01-12 | 2007-07-12 | International Business Machines Corporation | Methods and semiconductor structures for latch-up suppression using a buried damage layer |
| US7718481B2 (en) | 2006-04-17 | 2010-05-18 | International Business Machines Corporation | Semiconductor structure and method of manufacture |
| US7626243B2 (en) | 2006-08-04 | 2009-12-01 | Advanced Analogic Technologies, Inc. | ESD protection for bipolar-CMOS-DMOS integrated circuit devices |
| US7795681B2 (en) | 2007-03-28 | 2010-09-14 | Advanced Analogic Technologies, Inc. | Isolated lateral MOSFET in epi-less substrate |
| US7737526B2 (en) | 2007-03-28 | 2010-06-15 | Advanced Analogic Technologies, Inc. | Isolated trench MOSFET in epi-less semiconductor sustrate |
| US7541247B2 (en) | 2007-07-16 | 2009-06-02 | International Business Machines Corporation | Guard ring structures for high voltage CMOS/low voltage CMOS technology using LDMOS (lateral double-diffused metal oxide semiconductor) device fabrication |
| US7683427B2 (en) * | 2007-09-18 | 2010-03-23 | United Microelectronics Corp. | Laterally diffused metal-oxide-semiconductor device and method of making the same |
-
2008
- 2008-02-27 US US12/072,615 patent/US7667268B2/en not_active Expired - Fee Related
-
2009
- 2009-02-25 JP JP2010548708A patent/JP5449203B2/en not_active Expired - Fee Related
- 2009-02-25 KR KR1020147013019A patent/KR101483404B1/en not_active Expired - Fee Related
- 2009-02-25 EP EP09716068.3A patent/EP2248162A4/en not_active Withdrawn
- 2009-02-25 KR KR1020137023583A patent/KR101456408B1/en not_active Expired - Fee Related
- 2009-02-25 WO PCT/US2009/001187 patent/WO2009108311A2/en active Application Filing
- 2009-02-25 KR KR1020127025876A patent/KR101363663B1/en not_active Expired - Fee Related
- 2009-02-25 KR KR1020107021292A patent/KR101303405B1/en not_active Expired - Fee Related
- 2009-02-25 CN CN201210359000.1A patent/CN102867843B/en not_active Expired - Fee Related
- 2009-02-25 CN CN200980115026.8A patent/CN102037562B/en not_active Expired - Fee Related
- 2009-02-27 TW TW098106510A patent/TWI415262B/en not_active IP Right Cessation
-
2010
- 2010-02-01 US US12/658,020 patent/US8659116B2/en not_active Expired - Fee Related
-
2011
- 2011-06-30 US US13/174,775 patent/US8664715B2/en not_active Expired - Fee Related
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0747969A1 (en) * | 1995-06-07 | 1996-12-11 | Harris Corporation | Pilot transistor for quasivertical DMOS device |
| JPH09266248A (en) * | 1996-03-28 | 1997-10-07 | Toshiba Corp | Semiconductor device |
| CN2821868Y (en) * | 2005-05-19 | 2006-09-27 | 崇贸科技股份有限公司 | MOS Field Effect Transistor with Isolation Structure |
Also Published As
| Publication number | Publication date |
|---|---|
| TW200945589A (en) | 2009-11-01 |
| CN102867843A (en) | 2013-01-09 |
| KR101483404B1 (en) | 2015-01-15 |
| US8659116B2 (en) | 2014-02-25 |
| KR20140065485A (en) | 2014-05-29 |
| US7667268B2 (en) | 2010-02-23 |
| CN102037562A (en) | 2011-04-27 |
| KR20110007109A (en) | 2011-01-21 |
| US20100133611A1 (en) | 2010-06-03 |
| KR101303405B1 (en) | 2013-09-05 |
| KR20130103640A (en) | 2013-09-23 |
| TWI415262B (en) | 2013-11-11 |
| US20080191277A1 (en) | 2008-08-14 |
| JP5449203B2 (en) | 2014-03-19 |
| WO2009108311A2 (en) | 2009-09-03 |
| KR101363663B1 (en) | 2014-02-14 |
| JP2011514675A (en) | 2011-05-06 |
| CN102037562B (en) | 2014-11-26 |
| EP2248162A2 (en) | 2010-11-10 |
| KR20120115600A (en) | 2012-10-18 |
| US8664715B2 (en) | 2014-03-04 |
| KR101456408B1 (en) | 2014-11-04 |
| US20110260246A1 (en) | 2011-10-27 |
| WO2009108311A3 (en) | 2009-10-22 |
| EP2248162A4 (en) | 2015-08-12 |
| HK1176462A1 (en) | 2013-07-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102867843B (en) | Isolated transistors and diodes and isolation and termination structures for semiconductor die | |
| US7741661B2 (en) | Isolation and termination structures for semiconductor die | |
| US7956391B2 (en) | Isolated junction field-effect transistor | |
| US7834421B2 (en) | Isolated diode | |
| US20080197408A1 (en) | Isolated quasi-vertical DMOS transistor | |
| CN110998842B (en) | Integrated circuit, LDMOS and fabrication method with ladder JFET, bottom gate and ballast drift | |
| US7649225B2 (en) | Asymmetric hetero-doped high-voltage MOSFET (AH2MOS) | |
| US7812393B2 (en) | High-voltage extended drain MOSFET | |
| US20060011974A1 (en) | Drain-extended MOS transistors with diode clamp and methods for making the same | |
| EP2421040A1 (en) | A modular bipolar-CMOS-DMOS analog integrated circuit and power transistor technology | |
| HK1176462B (en) | Isolated transistors and diodes and isolation and termination structures for semiconductor die |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1176462 Country of ref document: HK |
|
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1176462 Country of ref document: HK |
|
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150520 Termination date: 20190225 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |