CN102867988B - A B3+, Al3+, Ti4+, Y3+, F- co-doped solid electrolyte Li7La3Zr2O12 - Google Patents
A B3+, Al3+, Ti4+, Y3+, F- co-doped solid electrolyte Li7La3Zr2O12 Download PDFInfo
- Publication number
- CN102867988B CN102867988B CN201210350354.XA CN201210350354A CN102867988B CN 102867988 B CN102867988 B CN 102867988B CN 201210350354 A CN201210350354 A CN 201210350354A CN 102867988 B CN102867988 B CN 102867988B
- Authority
- CN
- China
- Prior art keywords
- solid electrolyte
- lithium
- hours
- lithium ion
- ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 36
- 229910002984 Li7La3Zr2O12 Inorganic materials 0.000 title 1
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 56
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 53
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims abstract description 8
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims abstract description 8
- 229910010413 TiO 2 Inorganic materials 0.000 claims abstract description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- 238000000498 ball milling Methods 0.000 abstract description 3
- 238000003825 pressing Methods 0.000 abstract 1
- 238000005245 sintering Methods 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 18
- 150000002500 ions Chemical class 0.000 description 12
- 238000013508 migration Methods 0.000 description 10
- 230000005012 migration Effects 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- 229910052744 lithium Inorganic materials 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000004570 mortar (masonry) Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 239000011244 liquid electrolyte Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000005279 LLTO - Lithium Lanthanum Titanium Oxide Substances 0.000 description 2
- 229910007746 Zr—O Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- MOWNZPNSYMGTMD-UHFFFAOYSA-N oxidoboron Chemical group O=[B] MOWNZPNSYMGTMD-UHFFFAOYSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 239000002228 NASICON Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 229910001251 solid state electrolyte alloy Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Conductive Materials (AREA)
- Secondary Cells (AREA)
Abstract
一种B3+,Al3+,Ti4+,Y3+,F-共掺杂的锂离子固体电解质Li7La3Zr2O12,其特征在于化学计量式为Li7+y1+y2-mYxLa3-xBy1Aly2Tiy3Zr2-y1-y2-y3O12-mFm其中:x=0.1-0.3;y1=0.1-0.2;y2=0.1-0.2;y3=0.1-0.2;m=0.1-0.3;将Li2CO3∶Y2O3∶La2O3∶B2O3∶Al2O3∶TiO2∶ZrO2∶Li2F为3.15-3.55∶0.05-0.15∶1.35-1.45∶0.05-0.1∶0.05-0.1∶0.1-0.2∶1.4-1.7∶0.1-0.3(摩尔比)的比例均匀混合,经过球磨、压制、烧结而成;能够获得大于5×10-4S/cm的室温锂离子电导率。
A B 3+ , Al 3+ , Ti 4+ , Y 3+ , F - co-doped lithium ion solid electrolyte Li 7 La 3 Zr 2 O 12 , characterized in that the stoichiometric formula is Li 7+y1+y2 -m Y x La 3-x B y1 Al y2 Ti y3 Zr 2-y1-y2-y3 O 12-m F m where: x=0.1-0.3; y1=0.1-0.2; y2=0.1-0.2; y3= 0.1-0.2; m=0.1-0.3; Li 2 CO 3 : Y 2 O 3 : La 2 O 3 : B 2 O 3 : Al 2 O 3 : TiO 2 : ZrO 2 : Li 2 F is 3.15-3.55: 0.05-0.15: 1.35-1.45: 0.05-0.1: 0.05-0.1: 0.1-0.2: 1.4-1.7: 0.1-0.3 (molar ratio) uniformly mixed in the ratio, after ball milling, pressing, sintering; can obtain more than 5× Li-ion conductivity at room temperature of 10 -4 S/cm.
Description
技术领域 technical field
本发明涉及一种固体锂离子电解质制造领域。 The invention relates to the field of manufacturing a solid lithium ion electrolyte.
背景技术 Background technique
锂离子电池具有体积、重量能量比高、电压高、自放电率低、无记忆效应、循环寿命长、功率密度高等绝对优点,在全球移动电源市场拥有逾300亿美元/年份额并远超过其他电池的市场占有率,是最具有市场发展前景的化学电源[吴宇平,万春荣,姜长印,锂离子二次电池,北京:化学工业出版社,2002.]。目前国内外锂离子二次电池大部分采用的是液态电解质,液态锂离子电池具有一些不利因素,如:液态有机电解质可能泄露,在过高的温度下发生爆炸从而造成安全事故,无法应用在一些对安全性要求高的场合;液态电解质锂离子电池普遍存在循环容量衰减问题,使用一段时间后由于电极活性物质在电解质中的溶解、反应而逐步失效[Z.R.Zhang,Z.L.Gong,and Y.Yang,J.Phys.Chem.B,108,2004,17546.]。而全固态电池安全性高、基本没有循环容量衰减,固体电解质还起到了隔膜的作用,简化了电池的结构;此外,由于无需隔绝空气,也简化了生产过程中对设备的要求,电池的外形设计也更加方便、灵活[温兆银,朱修剑,许晓雄等,全固态二次电池的研究,第十二届中国固态离子学学术会议论文集,2004。]。 Lithium-ion batteries have absolute advantages such as high volume, high weight-to-energy ratio, high voltage, low self-discharge rate, no memory effect, long cycle life, and high power density. They have an annual share of more than 30 billion US dollars in the global mobile power market and far exceed other The market share of the battery is the most promising chemical power source [Wu Yuping, Wan Chunrong, Jiang Changyin, Lithium-ion secondary battery, Beijing: Chemical Industry Press, 2002.]. At present, most lithium-ion secondary batteries at home and abroad use liquid electrolytes. Liquid lithium-ion batteries have some unfavorable factors, such as: liquid organic electrolytes may leak, and may explode at too high a temperature, causing safety accidents, and cannot be used in some applications. Occasions with high safety requirements; liquid electrolyte lithium-ion batteries generally have the problem of cycle capacity fading, and gradually fail due to the dissolution and reaction of electrode active materials in the electrolyte after a period of use [Z.R.Zhang, Z.L.Gong, and Y.Yang, J.Phys.Chem.B, 108, 2004, 17546.]. The all-solid-state battery has high safety and basically no cycle capacity decay. The solid electrolyte also acts as a diaphragm, which simplifies the structure of the battery. In addition, because there is no need to isolate the air, it also simplifies the requirements for equipment in the production process. The appearance of the battery The design is also more convenient and flexible [Wen Zhaoyin, Zhu Xiujian, Xu Xiaoxiong, etc., Research on All-Solid Secondary Batteries, Proceedings of the Twelfth Chinese Academic Conference on Solid State Ionics, 2004. ].
全固态锂离子电池中,载流子在固态电解质中的迁移速率往往远远小于电极表面的电荷转移及正极材料中的离子扩散速率而成为整个电极反应动力学中的速率控制步骤,因此研制具有较高锂离子电导率的无机固态电解质是构建高性能锂离子电池的核心关键所在。另外要研发具有实用意义的固体锂离子电解质,同时要求其能够在环境中具有良好的稳定性(对二氧化碳和水分稳定),为了使组成的全固态电池能够使用金属锂作为负极而具有高的能量密度,也希望固态电解质能对金属锂稳定并具有较高的分解电压。从目前已有报导的锂离子固态电解质来看:LLTO(Li,La)TiO3固态电解质具有很高的晶内电导率(在10-3S/cm左右)及比较高的常温总电导率(10-4S/cm-10-5S/cm),但是LLTO分解电压低,无法构成放电电压3.7V以上全固态电池并且对金属锂负极不稳定;具有NASICON型多晶的LiM2(PO4)3(M=Ti,Ge,Zr)是由四面体PO4和八面体MO6共同组成的网架结构,产生了结构上的空穴及可填充的配位,使得可以调控大量的Li离子,是一种很有前途的高锂离子电导率固态电解质。通过异价离子的取代,在结构中引入空穴或填隙锂离子可进一步提高离子导电性[Xiaoxiong Xu,Zhaoyin Wen,ZhonghuaGu,et al.,Solid State Ionics,171,2004,207-212.]。如林祖纕、李世椿等[林祖纕,李世椿,硅酸盐学报,9(3),1981,253-257.]发现的Li1+xTi2-xGaxP3O12,Li1+2xTi2-xMgxP3O12, Li1+xGe2-xCrxP3O12,Li1+xGe2-xAlxP3O12,Li1+xTi2-xInxP3O12等体系或其他如Li1+2x+2yAlxMgyTi2-x-ySixP3-xO12,Li1+x+yAlxTi2-xSiyP3-yO12,Li1+xAlxTi2-xP3O12等体系均具有较高的锂离子电导率。但这些体系的常温锂离子电导率通常在10-4S/cm-10-6S/cm之间,还不能很好满足非薄膜锂离子电池对电解质电导率的要求。另外NASICON体系同样对金属锂负极不稳定。Ramaswamy Murugan等于2007年在德国应用化学期刊上报导了一种新型的锂离子固态电解质Li7La3Zr2O12其在常温下的锂离子电导率超过1×10-4S.cm-1,分解电压超过5.5V,能使用金属锂作为负极,对空气和水分稳定,是一种很有应用潜力的锂快离子固体电解质材料(Ramaswamy Murugan,Venkataraman Thangadurai,Werner Weppner,(2007).″Fast lithium ion conduction in garnet-type Li7La3Zr2O12.″Angewandte Chemie-International Edition 46(41):7778-7781.)。然而在对电流要求较高的场合电导率往往要达到5.0×10-4S/cm左右才可以满足电池正常工作的需要,另外该固态电解质合成温度在1350℃左右,温度高,能耗大。 In all-solid-state lithium-ion batteries, the mobility of carriers in the solid-state electrolyte is often much lower than the charge transfer on the electrode surface and the ion diffusion rate in the positive electrode material, which becomes the rate-controlling step in the entire electrode reaction kinetics. Therefore, the development of Inorganic solid-state electrolytes with high lithium-ion conductivity are the core key to constructing high-performance lithium-ion batteries. In addition, it is necessary to develop a solid lithium-ion electrolyte with practical significance, and it is required to have good stability in the environment (stable to carbon dioxide and moisture), in order to enable the composition of the all-solid-state battery to use metal lithium as the negative electrode. Density, it is also hoped that the solid electrolyte can be stable to metal lithium and have a high decomposition voltage. Judging from the lithium-ion solid electrolytes that have been reported so far: LLTO (Li, La) TiO 3 solid electrolytes have very high intragranular conductivity (about 10 -3 S/cm) and relatively high total conductivity at room temperature ( 10 -4 S/cm-10 -5 S/cm), but the LLTO decomposition voltage is low, unable to form an all-solid-state battery with a discharge voltage above 3.7V and unstable to metallic lithium anodes; LiM 2 (PO 4 ) 3 (M=Ti, Ge, Zr) is a network structure composed of tetrahedral PO 4 and octahedral MO 6 , which produces structural holes and fillable coordination, making it possible to control a large number of Li ions , is a promising solid-state electrolyte with high Li-ion conductivity. The ionic conductivity can be further improved by introducing holes or interstitial lithium ions into the structure through the substitution of aliovalent ions [Xiaoxiong Xu, Zhaoyin Wen, ZhonghuaGu, et al., Solid State Ionics, 171, 2004, 207-212.] . Li 1+x Ti 2-x Ga x P 3 O 12 , Li 1+2x Ti 2 -x MgxP 3 O 12 , Li 1+x Ge 2-x CrxP 3 O 12 , Li 1+x Ge 2-x Al x P 3 O 12 , Li 1+x Ti 2-x In x P 3 O 12 etc. system or others such as Li 1+2x+2y Al x Mg y Ti 2-xy Si x P 3-x O 12 , Li 1+x+y Al x Ti 2-x Si y P 3-y O 12 , Li 1 Systems such as +x Al x Ti 2-x P 3 O 12 have high lithium ion conductivity. However, the normal temperature lithium ion conductivity of these systems is usually between 10 -4 S/cm-10 -6 S/cm, which cannot well meet the requirements of non-thin film lithium ion batteries for electrolyte conductivity. In addition, the NASICON system is also unstable to metallic lithium anodes. In 2007, Ramaswamy Murugan et al. reported a new type of lithium ion solid electrolyte Li 7 La 3 Zr 2 O 12 in the German Journal of Applied Chemistry. Its lithium ion conductivity at room temperature exceeds 1×10 -4 S.cm -1 , Decomposition voltage exceeds 5.5V, can use metal lithium as negative electrode, stable to air and moisture, is a kind of lithium fast ion solid electrolyte material (Ramaswamy Murugan, Venkataraman Thangadurai, Werner Weppner, (2007). "Fast lithium ion conduction in garnet-type Li 7 La 3 Zr 2 O 12 . "Angewandte Chemie-International Edition 46(41): 7778-7781.). However, in the case of high current requirements, the conductivity often needs to reach about 5.0×10 -4 S/cm to meet the needs of the normal operation of the battery. In addition, the synthesis temperature of the solid electrolyte is about 1350°C, which is high temperature and consumes a lot of energy.
离子掺杂是提高固态锂离子电解质电导率一种非常有效的方式,但是掺杂离子与基体的相互作用非常复杂,掺杂离子的大小、电子结构、电负性等特性都对母体的离子导电能力有很大影响,而且不同的掺杂离子之间会有互相作用,是促进锂离子迁移还是抑制锂离子迁移以及促进和抑制的程度都会随着掺入的离子种类及浓度有非常大的差异。原则上掺杂离子的选择应尽量满足传输瓶颈与Li+半径大小匹配,Li+与骨架离子键合力弱、空位浓度与Li+浓度的比例适中三个条件。该固体电解质的锂离子迁移机理也尚未完全被研究人员弄清楚。另外,离子掺杂如能形成低共熔固溶体,则在一定程度上能降低合成温度。因此进一步研究掺杂离子的种类及含量对开发高锂离子电导率的固态电解质有着很重要的意义。 Ion doping is a very effective way to improve the conductivity of solid-state lithium-ion electrolytes, but the interaction between doped ions and the matrix is very complicated, and the size, electronic structure, and electronegativity of the doped ions all affect the ionic conductivity of the matrix. The ability has a great influence, and there will be interaction between different dopant ions, whether to promote lithium ion migration or inhibit lithium ion migration and the degree of promotion and inhibition will vary greatly with the type and concentration of doped ions . In principle, the selection of dopant ions should meet the three conditions of matching the transport bottleneck with the size of the Li + radius, weak bonding between Li + and the framework ions, and a moderate ratio of vacancy concentration to Li + concentration. The lithium ion migration mechanism of this solid electrolyte has not yet been fully understood by researchers. In addition, if ion doping can form a eutectic solid solution, it can reduce the synthesis temperature to a certain extent. Therefore, further research on the type and content of dopant ions is of great significance for the development of solid electrolytes with high lithium ion conductivity.
发明内容 Contents of the invention
本发明所要解决的技术问题是针对现有背景技术而提供的一种B3+,Al3+,Ti4+,Y3+,F-离子共掺杂的锂离子固体电解质Li7La3Zr2O12。Y3+部分取代La3+,两者有相似的电子结构,但Y3+半径较小,同样半径较小的Ti4+部分取代Zr4+,半径较小的Al3+部分取代Zr4+以及半径较小的B3+部分取代Zr4+使得La-O八面体和Zr-O八面体产生一定的收缩畸变,迁移通道大小与锂离子半径更匹配而提高锂离子电导率;而低价B3+和Al3+部分取代Zr4+产生额外的填隙锂离子,增加晶格中迁移锂离子的数量而提高锂离子电导率;F-部分取代O2-,F-与O2-半径接近,但电负性强,晶格收缩,进一步增大锂离子迁移通道截面,提高锂离子迁移速率;这些因素的协同作用使得该固体电解质的常温离子电导率超过5.0×10-4S/cm,更加接近液态电解质的离子电导率。同时,硼氧化物与其他组份形成固溶体,能降低该固态电解质合成温度100-150℃。 The technical problem to be solved by the present invention is to provide a B 3+ , Al 3+ , Ti 4+ , Y 3+ , F - ion co-doped lithium ion solid electrolyte Li 7 La 3 Zr for the existing background technology 2 O 12 . Y 3+ partially replaces La 3+ , the two have similar electronic structures, but Y 3+ has a smaller radius, Ti 4+ with a smaller radius also partially replaces Zr 4+ , and Al 3+ with a smaller radius partially replaces Zr 4 + and the partial substitution of Zr 4+ by B 3+ with a smaller radius makes La-O octahedron and Zr-O octahedron produce certain shrinkage distortion, and the size of the migration channel is more matched with the radius of lithium ions to improve the conductivity of lithium ions; while low Valence B 3+ and Al 3+ partially replace Zr 4+ to generate additional interstitial lithium ions, increase the number of lithium ion migration in the lattice and improve lithium ion conductivity; F - partially replaces O 2- , F - and O 2 -The radius is close, but the electronegativity is strong, and the crystal lattice shrinks, which further increases the lithium ion migration channel cross section and increases the lithium ion migration rate; the synergistic effect of these factors makes the normal temperature ionic conductivity of the solid electrolyte exceed 5.0×10 -4 S /cm, which is closer to the ionic conductivity of the liquid electrolyte. At the same time, the boron oxide forms a solid solution with other components, which can reduce the synthesis temperature of the solid electrolyte by 100-150°C.
本发明通过如下的技术方案达到,该技术方案提供一种锂离子电导率超过5.0×10-4S/cm的锂离子固体电解质,其化学计量式为Li7+y1+y2-mYxLa3-xBy1Aly2Tiy3Zr2-y1-y2-y3O12-mFm其中: x=0.1-0.3;y1=0.1-0.2;y2=0.1-0.2;y3=0.1-0.2;m=0.1-0.3。 The present invention is achieved through the following technical solution, which provides a lithium ion solid electrolyte with a lithium ion conductivity exceeding 5.0×10 -4 S/cm, and its stoichiometric formula is Li 7+y1+y2-m Y x La 3-x By 1Al y2 Ti y3 Zr 2-y1-y2-y3 O 12-m F m where: x=0.1-0.3; y1=0.1-0.2; y2=0.1-0.2; y3=0.1-0.2; m = 0.1-0.3.
在该技术方案中,将Li2CO3∶Y2O3∶La2O3∶B2O3∶Al2O3∶TiO2∶ZrO2∶Li2F为3.15-3.55∶0.05-0.15∶1.35-1.45∶0.05-0.1∶0.05-0.1∶0.1-0.2∶1.4-1.7∶0.1-0.3(摩尔比)的比例均匀混合,加入2%-6%的95%乙醇,在球磨机中以200-400转/分钟的转速球磨10-30小时,球磨结束后在60℃-80℃真空烘箱(真空度在10Pa-100Pa)中干燥10-20小时,取出后在玛瑙碾钵中重新研磨10-30分钟,研磨后的粉体以5-10℃/分钟的速率升温到750-900℃保温5-10小时,而后以2-10℃/分钟的速率升温到1150-1250℃保温10-30小时制成固态电解质粉体。该粉体混合1-5wt%为结合剂(该结合剂为PVC或PVA)在压力机下以300-500MPa的压强下保持压力2-6分钟形成薄片,该薄片在空气气氛下以10-20℃/分钟的速率升温到1200-1300℃保温10-20小时制成锂离子固体电解质薄片。如图1是组成为Li7.1Y0.1La2.9B0.1Al0.1Ti0.1Zr1.7O11.9F0.1固态电解质薄片在电化学工作站下交流阻抗图,从图中计算出电导率为8.5×10-4S/cm。 In this technical scheme, Li 2 CO 3 : Y 2 O 3 : La 2 O 3 : B 2 O 3 : Al 2 O 3 : TiO 2 : ZrO 2 : Li 2 F is 3.15-3.55: 0.05-0.15: 1.35-1.45: 0.05-0.1: 0.05-0.1: 0.1-0.2: 1.4-1.7: 0.1-0.3 (molar ratio) ratio uniform mixing, add 2% -6% of 95% ethanol, in the ball mill with 200-400 Ball mill for 10-30 hours at a speed of revolution per minute. After ball milling, dry in a vacuum oven at 60°C-80°C (vacuum degree 10Pa-100Pa) for 10-20 hours. Take it out and re-grind it in an agate mortar for 10-30 minutes. The ground powder is heated to 750-900°C at a rate of 5-10°C/min and kept for 5-10 hours, and then heated to 1150-1250°C at a rate of 2-10°C/min and kept for 10-30 hours. Solid electrolyte powder. The powder is mixed with 1-5wt% as a binding agent (the binding agent is PVC or PVA) and kept under a pressure of 300-500MPa under a press for 2-6 minutes to form a thin sheet. Raise the temperature at a rate of °C/min to 1200-1300 °C for 10-20 hours to prepare a lithium-ion solid electrolyte sheet. As shown in Figure 1, the AC impedance diagram of the solid electrolyte sheet with the composition of Li 7.1 Y 0.1 La 2.9 B 0.1 Al 0.1 Ti 0.1 Zr 1.7 O 11.9 F 0.1 under the electrochemical workstation is calculated from the figure. The conductivity is 8.5×10 -4 S /cm.
与现有技术相比,本发明的优点在于:采用B3+,Al3+,Ti4+,Y3+,F-离子共掺杂的锂离子固体电解质Li7La3Zr2O12。通过半径较小的Y3+部分取代La3+,半径较小的Ti4+部分取代Zr4+,半径较小的Al3+部分取代Zr4+以及半径较小的B3+部分取代Zr4+使得La-O八面体和Zr-O八面体产生一定的收缩畸变,迁移通道大小与锂离子半径更匹配而提高锂离子电导率;低价B3+和Al3+部分取代Zr4+产生额外的填隙锂离子,增加晶格中迁移锂离子的数量而提高锂离子电导率;F-部分取代O2-,F-与O2-半径接近,但电负性强,晶格收缩,进一步增大锂离子迁移通道截面,提高锂离子迁移速率;这些因素的协同作用使得该固体电解质的常温离子电导率超过5.0×10-4S/cm。同时,硼氧化物与其他组份形成固溶体,能降低该固态电解质合成温度100-150℃。 Compared with the prior art, the present invention has the advantage of adopting B 3+ , Al 3+ , Ti 4+ , Y 3+ , F - ion co-doped lithium ion solid electrolyte Li 7 La 3 Zr 2 O 12 . Partial replacement of La 3+ by smaller radius Y 3+ , smaller radius Ti 4+ partial replacement of Zr 4+ , smaller radius Al 3+ partial replacement of Zr 4+ and smaller radius B 3+ partial replacement of Zr 4+ causes La-O octahedron and Zr-O octahedron to produce a certain shrinkage distortion, and the size of the migration channel better matches the radius of lithium ions to improve the conductivity of lithium ions; low-priced B 3+ and Al 3+ partially replace Zr 4+ Generate additional interstitial lithium ions, increase the number of lithium ions migrating in the lattice and improve the conductivity of lithium ions; F - partially replaces O 2- , F - has a radius close to O 2- , but has strong electronegativity and lattice shrinkage , to further increase the lithium ion migration channel cross section and increase the lithium ion migration rate; the synergistic effect of these factors makes the normal temperature ionic conductivity of the solid electrolyte exceed 5.0×10 -4 S/cm. At the same time, the boron oxide forms a solid solution with other components, which can reduce the synthesis temperature of the solid electrolyte by 100-150°C.
附图说明 Description of drawings
图1为锂离子固体电解质薄片在电化学工作站下的交流阻抗图、频率-阻抗及频率-相位图。 Figure 1 is the AC impedance diagram, frequency-impedance and frequency-phase diagram of the lithium-ion solid electrolyte sheet under the electrochemical workstation.
具体实施方式 Detailed ways
以下结合实施实例对本发明作进一步详细描述。 The present invention will be described in further detail below in conjunction with the implementation examples.
实施例1:将Li2CO3∶Y2O3∶La2O3∶B2O3∶Al2O3∶TiO2∶ZrO2∶Li2F为3.45∶0.05∶1.45∶0.05∶0.05∶0.1∶1.7∶0.1(摩尔比)的比例均匀混合,加入2%的95%乙醇,在球磨机中以250转/分钟的转速球磨12小时,球磨结束后在60℃真空烘箱(真空度20Pa)中干燥10小时,取出后在玛瑙碾钵中重新研磨30分钟,研磨后的粉体以5℃/分钟的速率升温到850℃保温6 小时,而后以8℃/分钟的速率升温到1150℃保温22小时制成固态电解质粉体。该粉体混合2wt%结合剂PVC在压力机下以300MPa的压强下保持压力5分钟形成薄片,该薄片在空气气氛下以12℃/分钟的速率升温到1220℃保温20小时制成锂离子固体电解质薄片。 Example 1: Li 2 CO 3 : Y 2 O 3 : La 2 O 3 : B 2 O 3 : Al 2 O 3 : TiO 2 : ZrO 2 : Li 2 F is 3.45: 0.05: 1.45: 0.05: 0.05: The ratio of 0.1: 1.7: 0.1 (molar ratio) is evenly mixed, and 2% of 95% ethanol is added, and ball milled at a speed of 250 rpm in a ball mill for 12 hours, and after the ball milling is finished, place in a vacuum oven (vacuum degree 20Pa) at 60°C Dry for 10 hours, take it out and re-grind in an agate mortar for 30 minutes, heat the ground powder to 850°C at a rate of 5°C/min and keep it for 6 hours, then raise the temperature to 1150°C at a rate of 8°C/min and keep it for 22 hours to make solid electrolyte powder. The powder is mixed with 2wt% binder PVC and kept under a pressure of 300MPa under a press for 5 minutes to form a thin sheet. The thin sheet is heated to 1220°C at a rate of 12°C/min and kept for 20 hours in an air atmosphere to make a lithium ion solid Electrolyte sheets.
实施例2:将Li2CO3∶Y2O3∶La2O3∶B2O3∶Al2O3∶TiO2∶ZrO2∶Li2F为3.25∶0.15∶1.35∶0.1∶0.1∶0.2∶1.4∶0.3(摩尔比)的比例均匀混合,加入6%的95%乙醇,在球磨机中以380转/分钟的转速球磨15小时,球磨结束后在80℃真空烘箱(真空度80Pa)中干燥15小时,取出后在玛瑙碾钵中重新研磨20分钟,研磨后的粉体以6℃/分钟的速率升温到780℃保温10小时,而后以6℃/分钟的速率升温到1200℃保温15小时制成固态电解质粉体。该粉体混合5wt%结合剂PVC在压力机下以450MPa的压强下保持压力2分钟形成薄片,该薄片空气气氛下以15℃/分钟的速率升温到1280℃保温10小时制成锂离子固体电解质薄片。 Example 2: Li 2 CO 3 : Y 2 O 3 : La 2 O 3 : B 2 O 3 : Al 2 O 3 : TiO 2 : ZrO 2 : Li 2 F is 3.25: 0.15: 1.35: 0.1: 0.1: The ratio of 0.2: 1.4: 0.3 (molar ratio) is evenly mixed, and 6% of 95% ethanol is added, and ball milled for 15 hours at a speed of 380 rpm in a ball mill. Dry for 15 hours, take it out and re-grind in an agate mortar for 20 minutes, heat the ground powder to 780°C at a rate of 6°C/min and keep it for 10 hours, then heat it up to 1200°C at a rate of 6°C/min and keep it for 15 minutes hours to make solid electrolyte powder. The powder is mixed with 5wt% binder PVC and kept under a pressure of 450MPa under a press for 2 minutes to form a thin sheet. The thin sheet is heated to 1280°C at a rate of 15°C/min and kept for 10 hours in an air atmosphere to make a lithium-ion solid electrolyte. Flakes.
实施例3:将Li2CO3∶Y2O3∶La2O3∶B2O3∶Al2O3∶TiO2∶ZrO2∶Li2F为3.35∶0.1∶1.4∶0.075∶0.075∶0.15∶1.55∶0.2(摩尔比)的比例均匀混合,加入3%的95%乙醇,在球磨机中以300转/分钟的转速球磨20小时,球磨结束后在70℃真空烘箱(真空度50Pa)中干燥20小时,取出后在玛瑙碾钵中重新研磨10分钟,研磨后的粉体以9℃/分钟的速率升温到800℃保温7小时,而后以2℃/分钟的速率升温到1250℃保温11小时制成固态电解质粉体。该粉体混合1wt%结合剂PVA在压力机下以300MPa的压强下保持压力6分钟形成薄片,该薄片在空气气氛下以15℃/分钟的速率升温到1300℃保温18小时制成锂离子固体电解质薄片。 Example 3: Li 2 CO 3 : Y 2 O 3 : La 2 O 3 : B 2 O 3 : Al 2 O 3 : TiO 2 : ZrO 2 : Li 2 F is 3.35: 0.1: 1.4: 0.075: 0.075: The ratio of 0.15: 1.55: 0.2 (molar ratio) is evenly mixed, and 3% of 95% ethanol is added, and ball milled for 20 hours at a speed of 300 revolutions per minute in a ball mill. Dry for 20 hours, take it out and re-grind in an agate mortar for 10 minutes, heat the ground powder to 800°C at a rate of 9°C/min and keep it for 7 hours, then heat it up to 1250°C at a rate of 2°C/min and keep it for 11 hours to make solid electrolyte powder. The powder is mixed with 1wt% binder PVA and kept under a pressure of 300MPa under a press for 6 minutes to form a thin sheet, which is heated to 1300°C at a rate of 15°C/min and kept for 18 hours in an air atmosphere to make a lithium ion solid Electrolyte sheets.
实施例4:将Li2CO3∶Y2O3∶La2O3∶B2O3∶Al2O3∶TiO2∶ZrO2∶Li2F为3.2∶0.07∶1.43∶0.06∶0.09∶0.12∶1.58∶0.3(摩尔比)的比例均匀混合,加入5.5%的95%乙醇,在球磨机中以200转/分钟的转速球磨29小时,球磨结束后在75℃真空烘箱(真空度100Pa)中干燥10小时,取出后在玛瑙碾钵中重新研磨20分钟,研磨后的粉体以5℃/分钟的速率升温到900℃保温5小时,而后以9℃/分钟的速率升温到1230℃保温20小时制成固态电解质粉体。该粉体混合2.8wt%结合剂PVA在压力机下以400MPa的压强下保持压力4分钟形成薄片,该薄片在空气气氛下以20℃/分钟的速率升温到1250℃保温12小时制成锂离子固体电解质薄片。 Example 4: Li 2 CO 3 : Y 2 O 3 : La 2 O 3 : B 2 O 3 : Al 2 O 3 : TiO 2 : ZrO 2 : Li 2 F is 3.2: 0.07: 1.43: 0.06: 0.09: The ratio of 0.12: 1.58: 0.3 (molar ratio) is evenly mixed, and 5.5% of 95% ethanol is added, and ball milled for 29 hours at a speed of 200 rpm in a ball mill. Dry for 10 hours, take it out and re-grind in an agate mortar for 20 minutes, heat the ground powder to 900°C at a rate of 5°C/min and keep it for 5 hours, then heat it up to 1230°C at a rate of 9°C/min and keep it for 20 minutes hours to make solid electrolyte powder. The powder is mixed with 2.8wt% binder PVA and kept under a pressure of 400MPa under a press for 4 minutes to form a thin sheet. The thin sheet is heated to 1250°C at a rate of 20°C/min and kept for 12 hours in an air atmosphere to produce lithium ion. Solid Electrolyte Sheets.
实施例5:将Li2CO3∶Y2O3∶La2O3∶B2O3∶Al2O3∶TiO2∶ZrO2∶Li2F为3.36∶0.11∶1.39∶0.08∶0.08∶0.1∶1.58∶0.2(摩尔比)的比例均匀混合,加入4%的95%乙醇,在球磨机中以210转/分钟的转速球磨10小时,球磨结束后在65℃真空烘箱(真空度10Pa)中干燥18小时,取出后在玛瑙碾钵中重新研磨30分钟,研磨后的粉体以10℃/分钟的速率升温到760℃保温10小时,而后以7℃/分钟的速率升温到1170℃保温28小时制成固态电解质粉体。该粉体混合4.6wt%结合剂PVC在压力机下以500MPa的压强下保持压力2分钟形成薄片,该薄片在空气气氛下以10℃/分钟的速率升温到1200℃保温15小时制成锂离子固体电解质薄片。 Example 5: Li 2 CO 3 : Y 2 O 3 : La 2 O 3 : B 2 O 3 : Al 2 O 3 : TiO 2 : ZrO 2 : Li 2 F is 3.36: 0.11: 1.39: 0.08: 0.08: The ratio of 0.1: 1.58: 0.2 (molar ratio) is evenly mixed, and 4% of 95% ethanol is added, and ball milled at a speed of 210 rpm for 10 hours in a ball mill. Dry for 18 hours, take it out and re-grind in an agate mortar for 30 minutes, heat the ground powder to 760°C at a rate of 10°C/min and keep it for 10 hours, then heat it up to 1170°C at a rate of 7°C/min and keep it for 28 hours to make solid electrolyte powder. The powder is mixed with 4.6wt% binder PVC and kept under a pressure of 500MPa under a press for 2 minutes to form a thin sheet. The thin sheet is heated to 1200°C at a rate of 10°C/min and kept for 15 hours in an air atmosphere to form a lithium ion Solid Electrolyte Sheets.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210350354.XA CN102867988B (en) | 2012-09-04 | 2012-09-04 | A B3+, Al3+, Ti4+, Y3+, F- co-doped solid electrolyte Li7La3Zr2O12 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210350354.XA CN102867988B (en) | 2012-09-04 | 2012-09-04 | A B3+, Al3+, Ti4+, Y3+, F- co-doped solid electrolyte Li7La3Zr2O12 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102867988A CN102867988A (en) | 2013-01-09 |
| CN102867988B true CN102867988B (en) | 2015-05-27 |
Family
ID=47446689
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210350354.XA Expired - Fee Related CN102867988B (en) | 2012-09-04 | 2012-09-04 | A B3+, Al3+, Ti4+, Y3+, F- co-doped solid electrolyte Li7La3Zr2O12 |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102867988B (en) |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104591231B (en) * | 2013-10-31 | 2019-04-16 | 中国科学院上海硅酸盐研究所 | Fluorine-containing garnet structure lithium ion oxide ceramics |
| CN105070944A (en) * | 2015-07-30 | 2015-11-18 | 中国科学院西安光学精密机械研究所 | F-And Y3+NASICON type lithium ion solid electrolyte doped with ions in synergy manner and preparation method thereof |
| CN105428705A (en) * | 2015-10-30 | 2016-03-23 | 中南大学 | Method for preparing Li7La3Zr2O12 solid electrolyte based on low-temperature rapid sintering |
| CN108695551A (en) * | 2018-04-08 | 2018-10-23 | 湖北工业大学 | A kind of molten-salt growth method preparation garnet-type solid electrolyte Li7La3Zr2O12The method of block |
| WO2021024785A1 (en) * | 2019-08-07 | 2021-02-11 | Tdk株式会社 | Solid electrolyte, solid electrolyte layer, and solid electrolyte cell |
| CN110474098B (en) * | 2019-09-04 | 2020-12-15 | 天津巴莫科技有限责任公司 | Garnet-type solid electrolyte material, composite material coated therewith, and preparation method and application |
| CN113130976A (en) * | 2019-12-30 | 2021-07-16 | 天津国安盟固利新材料科技股份有限公司 | Garnet type solid electrolyte and preparation method thereof |
| WO2021186809A1 (en) * | 2020-03-18 | 2021-09-23 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and cell using same |
| CN115244750B (en) * | 2020-03-18 | 2025-06-10 | 松下知识产权经营株式会社 | Solid electrolyte material and battery using the same |
| EP4123747A4 (en) * | 2020-03-18 | 2023-11-08 | Panasonic Intellectual Property Management Co., Ltd. | SOLID ELECTROLYTE MATERIAL AND BATTERY THEREOF |
| JP7171826B1 (en) | 2021-06-02 | 2022-11-15 | 住友化学株式会社 | Method for producing lithium-containing oxide and solid electrolyte |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100047696A1 (en) * | 2008-08-21 | 2010-02-25 | Ngk Insulators, Ltd. | Ceramic material and process for producing the same |
| CN102308425A (en) * | 2009-02-04 | 2012-01-04 | 株式会社丰田中央研究所 | Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same |
-
2012
- 2012-09-04 CN CN201210350354.XA patent/CN102867988B/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100047696A1 (en) * | 2008-08-21 | 2010-02-25 | Ngk Insulators, Ltd. | Ceramic material and process for producing the same |
| CN102308425A (en) * | 2009-02-04 | 2012-01-04 | 株式会社丰田中央研究所 | Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same |
Non-Patent Citations (1)
| Title |
|---|
| High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet;Ramaswamy Murugan et al;《Electrochemistry Communications》;20111130;第13卷(第12期);全文 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102867988A (en) | 2013-01-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102867988B (en) | A B3+, Al3+, Ti4+, Y3+, F- co-doped solid electrolyte Li7La3Zr2O12 | |
| CN102780031B (en) | A kind of Mg 2+, Al 3+, Zr 4+, F -ion co-doped garnet-type solid electrolyte | |
| CN102867987B (en) | A B3+, al3+, mg2+, Y3+, F- codoped solid electrolyte Li7La3Zr2O12 | |
| CN102780028B (en) | Four-component iron co-doped garnet type solid electrolyte | |
| CN102456918B (en) | A NASICON solid Li-ion electrolyte co-doped with F-, Zn2+, B3+ ions | |
| CN102456919B (en) | A NASICON solid Li-ion electrolyte co-doped with Zn2+ and B3+ ions | |
| CN102769147B (en) | A Mg2+, Al3+, Zr4+, S2- ion co-doped garnet-type solid electrolyte | |
| CN102867985B (en) | A B3+, Al3+, Mg2+, Y3+, S2- co-doped solid electrolyte Li7La3Zr2O12 | |
| CN102780029B (en) | A kind of three component cation codope carbuncle type solid lithium-ion electrolytes | |
| CN102867986B (en) | A B3+, Al3+, Ti4+, Y3+ four-component cation co-doped solid electrolyte Li7La3Zr2O12 | |
| CN102856584B (en) | A B3+, Al3+, Ti4+, Y3+, S2- co-doped solid electrolyte Li7La3Zr2O12 | |
| CN110372350A (en) | A kind of B3+、Al3+The K of ion collaboration doping6Si2O7Potassium fast-ionic conductor and preparation method | |
| CN102780030B (en) | Four-component cation and anion co-doped garnet-type solid electrolyte | |
| CN102456917B (en) | A NASICON-type solid lithium-ion electrolyte co-doped with F- and Zn2+ ions | |
| CN110526697B (en) | Liquid phase synthesis K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7Potassium fast ion conductor and preparation method thereof | |
| CN110372357A (en) | A kind of P5+、Al3+、B3+The K of ion collaboration doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof | |
| CN110265706A (en) | A K6Si2O7 Potassium Fast Ion Conductor Co-doped with P5+, Al3+, B3+ Ions Co-doped by Electric Field Induced Crystallization and Its Preparation Method | |
| CN110372348A (en) | A kind of electric field induction crystallization K6.15Zn0.05B0.2Al0.1P0.05Zr0.05Si1.6O7Potassium fast-ionic conductor and preparation method | |
| CN110372351A (en) | A kind of P5+、Al3+The K of ion collaboration doping6Si2O7Potassium fast-ionic conductor and preparation method thereof | |
| CN110371997A (en) | A kind of P5+、Al3+、Be2+The K of ion collaboration doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof | |
| CN110350250A (en) | A kind of P5+、Al3+、B3+The K of ion collaboration doping6Si2O7Potassium fast-ionic conductor and preparation method thereof | |
| CN110371996A (en) | A kind of Al3+、B3+The K of ion collaboration doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof | |
| CN110357599A (en) | A kind of P5+、Al3+、Be2+、Zn2+The K of ion collaboration doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof | |
| CN110371995A (en) | A kind of electric field induction crystallization P5+、Al3+、Be2+Cooperate with the K of doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof | |
| CN110372352A (en) | A kind of liquid phase synthesis multiple ion doping potassium fast-ionic conductor and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150527 Termination date: 20170904 |