CN102878842A - Novel initiative jet cooling device - Google Patents
Novel initiative jet cooling device Download PDFInfo
- Publication number
- CN102878842A CN102878842A CN2012104095726A CN201210409572A CN102878842A CN 102878842 A CN102878842 A CN 102878842A CN 2012104095726 A CN2012104095726 A CN 2012104095726A CN 201210409572 A CN201210409572 A CN 201210409572A CN 102878842 A CN102878842 A CN 102878842A
- Authority
- CN
- China
- Prior art keywords
- heat transfer
- storage
- liquid
- shaped
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 title abstract description 11
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- 230000010349 pulsation Effects 0.000 claims description 2
- 238000005336 cracking Methods 0.000 claims 1
- 239000000463 material Substances 0.000 claims 1
- 239000007788 liquid Substances 0.000 abstract description 42
- 230000001066 destructive effect Effects 0.000 abstract description 10
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 abstract description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 4
- 239000007921 spray Substances 0.000 abstract description 4
- 230000007774 longterm Effects 0.000 abstract description 3
- 239000001307 helium Substances 0.000 abstract description 2
- 229910052734 helium Inorganic materials 0.000 abstract description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 abstract description 2
- 239000001257 hydrogen Substances 0.000 abstract description 2
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract description 2
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 15
- 239000012530 fluid Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000003380 propellant Substances 0.000 description 5
- 238000005057 refrigeration Methods 0.000 description 5
- 230000006872 improvement Effects 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000003949 liquefied natural gas Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000010921 in-depth analysis Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
一种新型的主动喷射冷却装置,属于低温液体长期无损储运领域。包括外壳和传热管、翅片以及强制喷射泵;所述的传热管冷端外侧加装翅片,所述传热管为水滴形对称异型管;所述翅片的横截面形状与所述传热管的异型管横截面形状相同。本发明解决了常规低温液体主动储运系统的效率低下的问题,对于深冷低温液体(液氢、液氧、液氮、液氦)的长寿命无损储运具有重要的现实意义,尤其是适用于低温液体的空间储存,有效地解决了空间能源匮乏的问题,并提高了系统性能,延长了低温存储系统的有效工作周期。
A novel active spray cooling device belongs to the field of long-term non-destructive storage and transportation of cryogenic liquids. It includes a shell, heat transfer tubes, fins and a forced jet pump; fins are added to the outside of the cold end of the heat transfer tubes, and the heat transfer tubes are drop-shaped symmetrical special-shaped tubes; the cross-sectional shape of the fins is consistent with the The cross-sectional shapes of the special-shaped tubes of the heat transfer tubes are the same. The invention solves the problem of low efficiency of the conventional low-temperature liquid active storage and transportation system, and has important practical significance for the long-life and non-destructive storage and transportation of cryogenic liquids (liquid hydrogen, liquid oxygen, liquid nitrogen, liquid helium), especially for The space storage of low-temperature liquid effectively solves the problem of space energy shortage, improves system performance, and prolongs the effective working cycle of the low-temperature storage system.
Description
技术领域 technical field
本发明涉及一种新型的主动喷射冷却装置,属于低温液体长期无损储运领域,尤其是适用于低温液体的空间储存。 The invention relates to a novel active jet cooling device, which belongs to the field of long-term non-destructive storage and transportation of cryogenic liquids, and is especially suitable for space storage of cryogenic liquids.
背景技术 Background technique
随着低温液体在工业领域的大规模应用,对于低温液体的长寿命无损储运的要求越来越高。由于低温液体的获得必须耗费大量的能源,因此,低温液体的长寿命储运也是实现节能的重要途径。众所周知,只有低于环境温度的液体才称为低温液体,通常该温度为零下150℃以下,因此,来自环境的多种外部漏热势必导致低温液体的吸热相变,从而造成低温储箱的压力提升,进而影响到储箱的安全使用。为避免低温贮箱超压引起的机械破坏,需将蒸发的气态物质及时地排出箱外,这势必造成了低温液体和能源的浪费。 With the large-scale application of cryogenic liquids in the industrial field, the requirements for long-life and non-destructive storage and transportation of cryogenic liquids are getting higher and higher. Since the acquisition of cryogenic liquid must consume a lot of energy, the long-life storage and transportation of cryogenic liquid is also an important way to achieve energy saving. As we all know, only the liquid below the ambient temperature is called cryogenic liquid, usually the temperature is below minus 150°C. Therefore, various external heat leakage from the environment will inevitably lead to the endothermic phase transition of the cryogenic liquid, resulting in the failure of the cryogenic storage tank. The pressure increases, which in turn affects the safe use of the tank. In order to avoid the mechanical damage caused by the overpressure of the low-temperature storage tank, the vaporized gaseous substances must be discharged out of the tank in time, which will inevitably result in waste of low-temperature liquid and energy.
目前,低温储箱根据使用场所不同,分为地面和空间两类。对于地面低温液体储箱,由于能源相对比较充沛和易获取,所以,在不考虑能源浪费的前提下,尚可采用定压排空的方式。但对于空间能源极其匮乏和较难获取的现实问题,采用定压排放不仅仅浪费能源和降低低温液体的有效效能,并且增加了空间发射成本;同时由于空间飞行的特殊性,排气还会干扰飞行姿态,增加控制难度。 At present, cryogenic storage tanks are divided into ground and space according to different places of use. For ground cryogenic liquid storage tanks, since the energy is relatively abundant and easy to obtain, the method of constant pressure emptying can still be adopted without considering energy waste. However, for the reality that space energy is extremely scarce and difficult to obtain, the use of constant pressure discharge not only wastes energy and reduces the effective performance of cryogenic liquids, but also increases the cost of space launches; at the same time, due to the particularity of space flight, the exhaust will interfere The flight attitude increases the difficulty of control.
因此,实现低温液体的长寿命无损储运对于提高低温液体的效能发挥和实现节能具有重要意义。低温液体长寿命无损储运技术是指借助先进的低温制冷和低温绝热等技术平衡低温液体储槽的漏热损失,从而使得储槽内低温液体的蒸发率显著降低,甚至降低为零,并保持低温液体储槽内部压力恒定的一种储存方法。2005年,NASA提出了一种无损储存系统,该结构采用传统的圆柱形热管和侧面混合器强制对流的方式强化换热,提高了换热效率,但是这种结构阻力较大,强化换热效果较差。美国专利US 2007/0193282 A1提出了一种低温液体的低温储存方法和系统,该方案利用液氧和液化天然气的工作温度差异,利用液化天然气来冷却液氧储箱的外壁,从而降低外部漏热,同时利用内部制冷系统冷却液氧,降低液氧的平均存储温度,从而实现低温液体的无损储存,但该方案采用两类低温液体,结构复杂,控制较困难。 Therefore, it is of great significance to realize the long-life and non-destructive storage and transportation of cryogenic liquids for improving the performance of cryogenic liquids and realizing energy saving. The long-life and non-destructive storage and transportation technology of cryogenic liquid refers to the use of advanced low-temperature refrigeration and low-temperature insulation technologies to balance the leakage heat loss of the cryogenic liquid storage tank, so that the evaporation rate of the cryogenic liquid in the storage tank is significantly reduced, or even reduced to zero, and maintained A storage method in which the internal pressure of a cryogenic liquid storage tank is constant. In 2005, NASA proposed a non-destructive storage system. This structure uses traditional cylindrical heat pipes and side mixers to enhance heat transfer and improve heat transfer efficiency. However, this structure has greater resistance and enhances heat transfer effects. poor. U.S. Patent US 2007/0193282 A1 proposes a low-temperature storage method and system for cryogenic liquids. This solution utilizes the difference in working temperature between liquid oxygen and liquefied natural gas, and uses liquefied natural gas to cool the outer wall of the liquid oxygen storage tank, thereby reducing external heat leakage At the same time, the internal refrigeration system is used to cool the liquid oxygen and reduce the average storage temperature of the liquid oxygen, so as to realize the non-destructive storage of the cryogenic liquid. However, this scheme uses two types of cryogenic liquids, the structure is complex, and the control is difficult.
发明内容 Contents of the invention
为此,本发明的目的在于解决现有技术中传统圆形导热管和翅片的流动死区传热不理想的问题,通过采用对称异型管的结构提高空间低温液体储箱换热元件的换热效率,减少背风侧的低速区,降低流阻,提高强制喷射泵的效率,从而实现系统性能的整体提升。 For this reason, the purpose of the present invention is to solve the problem of unsatisfactory heat transfer in the flow dead zone of traditional circular heat pipes and fins in the prior art, and to improve the heat exchange of the space cryogenic liquid storage tank heat exchange elements by adopting the structure of symmetrical special-shaped tubes. Thermal efficiency, reducing the low-speed zone on the leeward side, reducing flow resistance, and improving the efficiency of the forced jet pump, thereby achieving an overall improvement in system performance.
为达到上述目的,本发明采用的技术方案是:一种新型的主动喷射冷却装置,包括外壳和传热管、翅片以及强制喷射泵;所述的传热管冷端外侧加装翅片,所述传热管为对称异型管;所述翅片的横截面形状与所述传热管的异型管横截面形状相同。 In order to achieve the above object, the technical solution adopted by the present invention is: a novel active spray cooling device, including a shell, a heat transfer tube, fins and a forced jet pump; fins are added to the outside of the cold end of the heat transfer tube, The heat transfer tube is a symmetrical special-shaped tube; the cross-sectional shape of the fin is the same as the cross-sectional shape of the special-shaped tube of the heat transfer tube.
所述传热管和翅片的对称轴和强制喷射泵出口的中线垂直。 The axis of symmetry of the heat transfer tubes and fins is perpendicular to the centerline of the outlet of the forced jet pump.
所述强制喷射泵采用脉动或变频模式喷射。 The forced injection pump uses pulse or variable frequency mode injection.
所述翅片为开缝翅或百叶窗或波纹翅。 The fins are slotted fins, shutters or corrugated fins.
所述外壳外表面包裹多层隔热材料。 The outer surface of the shell is wrapped with multiple layers of heat insulating material.
本发明从两个方面提高了低温液体储箱的能效:(1)、通过水滴形对称异型传热管的设计,降低了低温液体的流阻,提高了传热表面的传热特性,节省了泵工;(2)、通过传热管冷端加装翅片,增加换热面积,尤其是采用相应的对称异型管结构形式,进一步消除了背风侧的死滞区,提升了换热特性,有助于系统能效的提升。 The present invention improves the energy efficiency of the low-temperature liquid storage tank from two aspects: (1), through the design of the drop-shaped symmetrical heat transfer tube, the flow resistance of the low-temperature liquid is reduced, the heat transfer characteristics of the heat transfer surface are improved, and the (2) Add fins to the cold end of the heat transfer tube to increase the heat transfer area, especially the corresponding symmetrical special-shaped tube structure, which further eliminates the dead zone on the leeward side and improves the heat transfer characteristics. Contribute to the improvement of system energy efficiency.
本发明解决了常规低温液体主动储运系统效率低下的问题,对于深冷低温液体(液氢、液氧、液氮、液氦)的长寿命无损储运具有重要的现实意义,尤其是适用于低温液体的空间储存,有效地解决了空间能源匮乏的问题,并提高了系统性能,延长了低温存储系统的有效工作周期。 The invention solves the problem of low efficiency of conventional low-temperature liquid active storage and transportation systems, and has important practical significance for the long-life and non-destructive storage and transportation of cryogenic liquids (liquid hydrogen, liquid oxygen, liquid nitrogen, liquid helium), especially for The space storage of cryogenic liquid effectively solves the problem of space energy shortage, improves system performance, and prolongs the effective working period of the cryogenic storage system.
本发明的结构紧凑、简单、高效,适用于各种类型低温液体长期无损储运需求。 The structure of the invention is compact, simple and efficient, and is suitable for long-term non-destructive storage and transportation requirements of various types of cryogenic liquids.
附图说明 Description of drawings
图1为本发明的结构示意图; Fig. 1 is a structural representation of the present invention;
图2为图1的俯视图; Fig. 2 is the top view of Fig. 1;
图3为距热管冷端8mm处流体流速分布比较图; Fig. 3 is a comparative diagram of fluid flow velocity distribution at 8 mm from the cold end of the heat pipe;
图4为距热管冷端8mm处流体温度分布比较图; Fig. 4 is a comparison diagram of fluid temperature distribution at 8 mm from the cold end of the heat pipe;
图5为储箱外壁面的温度分布曲线; Fig. 5 is the temperature distribution curve of the outer wall of the storage tank;
图6为 储箱内平均速度的效果比较图; Fig. 6 is the comparison diagram of the effect of the average velocity in the storage tank;
图7 为储箱内平均温度的效果比较图。 Figure 7 is a comparison diagram of the effect of the average temperature in the storage tank.
具体实施方式 Detailed ways
下面结合附图对本发明及其有益效果作进一步详细的说明。 The present invention and its beneficial effects will be further described in detail below in conjunction with the accompanying drawings.
参照图1和图2,一种新型的主动喷射冷却装置,包括顶部和底部为椭球体的柱形储箱外壳1和置于外壳1内部的水滴形对称异型传热管2,该水滴形对称异型传热管2的冷端3位于外壳1的中部,该冷端3外侧加装翅片4用以增加热管的换热面积且该翅片4的横截面形状与所述传热管2的异型管横截面形状相同。在外壳1中部设有强制喷射泵5,出口正对传热管冷端3,对传热管冷端3和周围热流体的换热进行强化。在储箱外壳1外部有冷却系统对传热管的热端进行冷却。
Referring to Figures 1 and 2, a new type of active spray cooling device includes a
所述强制喷射泵5可以通过改变其工作频率实现脉动或变频喷射,从而实现传热管冷端和低温液体的扰动传热,有助于削减边界层,提高传热能力,进一步达到节能的效果。
The forced
所述翅片4可以采用各类强化翅结构,例如,开缝翅、百叶窗、波纹翅,进一步提高翅片侧的换热特性,以达到节能效果
The
所述外壳1外表面包裹多层隔热材料以降低外界空间向储箱内部的漏热量。
The outer surface of the
本发明不仅在强制喷射泵5出口流速较高时取得良好的效果,当强制喷射泵5的出口流速较低时效果依然十分明显。图3和图4为圆形传热管和水滴形异型传热管的流动和换热效果对比图,在相同的强制喷射泵5出口流速、储箱壁漏热量和相同的传热面积的前提下,在距离传热管冷端8mm处(曲线L)的流体速度和温度分布曲线。据图3可知,水滴形异型传热管附近的流体流速高于圆型传热管附近的流体流速,这就保证了水滴形异型传热管冷端具有较高的对流换热系数和更高的换热效率。据图4可知,水滴形异型传热管附近的流体温度更低,这是由于传热管冷端附近较高的流体流速所产生的更好的换热效果的结果。图5为水滴形对称异型和圆型传热管的在相同漏热、相同强制喷射泵5出口速度和相同的传热面积的前提下,储箱外壁面(曲线H)的温度分布曲线。图中采用水滴形对称异型传热管的储箱外壁的温度低于采用传统圆型传热管的储箱外壁温度,这说明水滴形异型传热管优于传统的圆型传热管的换热效果,可以在相同的漏热的情况下,维持低温液体的较低温度,实现了在空间能源极其匮乏的情况下,降低了功耗,提高了能源的利用率。图6和图7分别为整个储箱内部流体的平均速度和平均温度的柱状图。据图6可知,水滴形异型传热管的平均速度(V=0.00392m/s)比柱型传热管的平均速度(V=0.00366m/s)要高6.6%。据图7可知,水滴形异型传热管的平均温度(T=31.75K)比柱型传热管的平均温度(T=33.17K)要低4.3%。这表明在相同的泵功下,水滴形异型传热管能够取得更好的混合效果和冷却效果,也就是说要取得相同的混合效果和冷却效果,使用异型传热管可以节省泵功。
The present invention not only achieves a good effect when the flow rate at the outlet of the forced
另外,通过对流场和温度场的深入分析,我们可以得到水滴形异型传热管低温液体储箱性能好的原因。在流体从强制喷射泵出口喷向热管冷端的时候,流体形成绕流,在圆型传热管的背风侧有一个大面积的低速区,由于流速过低,不能及时的从背风侧脱离便形成了死滞区,造成换热效果变差,而水滴形异型传热管的流线型设计有效的减少了低速区的面积,提高了传热管附近的平均流速,因而换热效率有明显的提高。另外,高温来流在绕流圆管时,流体较早与圆管脱离,而异型传热管却能很好的保持流体的贴壁流动,这对传热管冷端换热效率的提高有重要的意义,也是水滴形异型传热管储箱换热效率提高的重要原因。 In addition, through the in-depth analysis of the flow field and temperature field, we can get the reasons for the good performance of the cryogenic liquid storage tank with drop-shaped special-shaped heat transfer tubes. When the fluid is sprayed from the outlet of the forced jet pump to the cold end of the heat pipe, the fluid forms a bypass flow, and there is a large area of low-velocity zone on the leeward side of the circular heat transfer tube. Because the flow velocity is too low, it cannot be separated from the leeward side in time to form The dead stagnation zone is eliminated, resulting in poor heat transfer effect, and the streamlined design of the drop-shaped special-shaped heat transfer tube effectively reduces the area of the low-velocity zone and increases the average flow rate near the heat transfer tube, thus significantly improving the heat transfer efficiency. In addition, when the high-temperature incoming flow flows around the round tube, the fluid will separate from the round tube earlier, but the special-shaped heat transfer tube can well keep the fluid flowing against the wall, which is helpful for improving the heat transfer efficiency of the cold end of the heat transfer tube. The important significance is also an important reason for the improvement of the heat exchange efficiency of the drop-shaped special-shaped heat transfer tube storage tank.
本发明工作过程如下: The working process of the present invention is as follows:
以空间低温液体储箱为例:在空间中由于飞行器由于受到太阳辐射、地球红外辐射、行星反照、冷黑背景等空间热环境的影响,推进剂储箱不断有热量漏入。储箱的初始状态为初始温度20K,初始压力2atm,此时储箱外部冷却系统未启动,传热管处于不工作状态,随着热量的漏入,储箱内部推进剂的温度和压力开始升高,经过一段时间储箱内部的推进剂温度达到推进剂的饱和温度,此时储箱内部的压力开始迅速升高,当压力达到的设定值,开启储箱外部的冷却系统,此时,热管开始工作,不断将热量从储箱内部中移出,与此同时,强制喷射泵开启,对着传热管的冷端喷射,提高了冷端的换热效率,并将使整个箱体内部的流体得到和充分的混合,但由于壁面存在局部死滞区,也不可避免的存在一定范围的局部高温区域。当储箱内部的推进剂温度和压力随着热量的排出降低到初始值的时候,关闭制冷系统和强制喷射泵。当储箱内部的温度和压力再次达到设定值的时候,再次开启冷却系统和强制混合泵,如此形成一个循环。通过这样的设计制冷系统和喷射泵只需要间歇的工作就可以达到维持储箱内部压力并实现零蒸发的目的,不仅可以降低能耗,而且还可以延长制冷系统和强制喷射泵的使用寿命。 Take the space cryogenic liquid storage tank as an example: in space, due to the influence of the space thermal environment such as solar radiation, earth infrared radiation, planetary albedo, cold black background, etc., the propellant storage tank continuously leaks heat into the aircraft. The initial state of the storage tank is an initial temperature of 20K and an initial pressure of 2 atm. At this time, the external cooling system of the storage tank is not activated, and the heat transfer tube is not working. With the leakage of heat, the temperature and pressure of the propellant inside the storage tank begin to rise. After a period of time, the temperature of the propellant inside the tank reaches the saturation temperature of the propellant. At this time, the pressure inside the tank begins to rise rapidly. When the pressure reaches the set value, the cooling system outside the tank is turned on. At this time, The heat pipe starts to work and continuously removes heat from the inside of the storage tank. At the same time, the forced injection pump is turned on and sprays against the cold end of the heat transfer tube, which improves the heat exchange efficiency of the cold end and makes the fluid in the entire tank However, due to the existence of local dead zones on the wall, there is inevitably a certain range of local high-temperature regions. When the temperature and pressure of the propellant inside the tank drop to the initial value with the removal of heat, the refrigeration system and the forced injection pump are turned off. When the temperature and pressure inside the storage tank reach the set value again, the cooling system and the forced mixing pump are turned on again, thus forming a cycle. Through this design, the refrigeration system and jet pump only need to work intermittently to maintain the internal pressure of the tank and achieve zero evaporation, which not only reduces energy consumption, but also prolongs the service life of the refrigeration system and forced jet pump.
以上所述仅为本发明最佳的具体实施例,但本发明的结构特征并不局限于此,任何本领域的技术人员在本发明的领域内,所作的变化或修饰皆涵盖在本发明的专利范围之中。 The above description is only the best specific embodiment of the present invention, but the structural features of the present invention are not limited thereto, and any changes or modifications made by those skilled in the art within the scope of the present invention are covered by the present invention. within the scope of the patent.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2012104095726A CN102878842A (en) | 2012-10-24 | 2012-10-24 | Novel initiative jet cooling device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2012104095726A CN102878842A (en) | 2012-10-24 | 2012-10-24 | Novel initiative jet cooling device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN102878842A true CN102878842A (en) | 2013-01-16 |
Family
ID=47480266
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2012104095726A Pending CN102878842A (en) | 2012-10-24 | 2012-10-24 | Novel initiative jet cooling device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102878842A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108302322A (en) * | 2018-01-23 | 2018-07-20 | 北京东方通捷燃气有限责任公司 | The combustion gas output channel of liquefied natural gas storage tank |
| CN111571965A (en) * | 2020-06-09 | 2020-08-25 | 河北国千增材科技有限公司 | An injection mold cooling pipeline structure suitable for SLM forming |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN2149598Y (en) * | 1992-07-11 | 1993-12-15 | 青岛化工学院 | Drop-cross-section tubular heat exchanger |
| US20070193282A1 (en) * | 2006-02-22 | 2007-08-23 | The Boeing Company | Thermally coupled liquid oxygen and liquid methane storage vessel |
| CN201145504Y (en) * | 2007-12-25 | 2008-11-05 | 重庆天瑞化工设备股份有限公司 | Heat exchange tube with special cross-section |
-
2012
- 2012-10-24 CN CN2012104095726A patent/CN102878842A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN2149598Y (en) * | 1992-07-11 | 1993-12-15 | 青岛化工学院 | Drop-cross-section tubular heat exchanger |
| US20070193282A1 (en) * | 2006-02-22 | 2007-08-23 | The Boeing Company | Thermally coupled liquid oxygen and liquid methane storage vessel |
| CN201145504Y (en) * | 2007-12-25 | 2008-11-05 | 重庆天瑞化工设备股份有限公司 | Heat exchange tube with special cross-section |
Non-Patent Citations (1)
| Title |
|---|
| 冶文莲等: "微重力下低温贮箱压力控制技术进展", 《低温与超导》 * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108302322A (en) * | 2018-01-23 | 2018-07-20 | 北京东方通捷燃气有限责任公司 | The combustion gas output channel of liquefied natural gas storage tank |
| CN108302322B (en) * | 2018-01-23 | 2020-02-07 | 北京东方通捷燃气有限责任公司 | Gas output pipeline of liquefied natural gas storage tank |
| CN111571965A (en) * | 2020-06-09 | 2020-08-25 | 河北国千增材科技有限公司 | An injection mold cooling pipeline structure suitable for SLM forming |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108150822A (en) | A kind of low temperature liquid hydrogen storage tank with exhaust cold energy use | |
| CN201032254Y (en) | Energy-saving cold, hot water heater | |
| CN103486760B (en) | Solar heat collection-radiation refrigeration integration device | |
| CN204592845U (en) | Solid hydrogen storage device | |
| CN104454232A (en) | Fuel gas generator set waste heat utilization device | |
| CN106288452B (en) | A kind of tapered divergent nozzle formula heat pipe solar energy water heater | |
| CN105387634B (en) | A kind of jet-flow efficient heat exchange solar energy heat absorbing device | |
| CN102878842A (en) | Novel initiative jet cooling device | |
| CN206131483U (en) | Convergent flaring spray tube formula heat pipe solar water heater | |
| CN201697512U (en) | Coupling pulsating heat pipe heat exchanger | |
| CN101408353A (en) | Hot pipe type solar heat collector | |
| CN205373077U (en) | High -efficient heat transfer solar energy heat sink of efflux | |
| CN101865620B (en) | Excitation coupling-type pulsating heat pipe heat exchanger | |
| CN104634152A (en) | Energy storage apparatus | |
| CN106849755A (en) | A kind of vehicle exhaust temperature difference electricity generation device of application porous material | |
| CN217155069U (en) | Mosquito-repellent incense type integrated efficient heat exchanger capable of effectively preserving heat and preventing leakage | |
| CN204923933U (en) | Evaporative condenser | |
| CN115946877A (en) | Thermodynamic exhaust system and control method thereof | |
| CN103234114B (en) | A kind of with spraying active cooling device | |
| CN103095184A (en) | Waste heat utilization thermoelectric power generation pipeline device | |
| CN203374354U (en) | Active type heat pipe cooling device for Stirling engine cooler | |
| CN207180443U (en) | Heat conduction profit finned tube set of heat exchange tubes and energy storage device | |
| CN207438898U (en) | Scale protective type air-source water heater | |
| CN217330838U (en) | Separated heat pipe cooling system | |
| CN203131421U (en) | Spray type active cooling device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C12 | Rejection of a patent application after its publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20130116 |