CN102916188B - Preparation method of hierarchical porous carbon/organo polysulfide/polyaniline composite material - Google Patents
Preparation method of hierarchical porous carbon/organo polysulfide/polyaniline composite material Download PDFInfo
- Publication number
- CN102916188B CN102916188B CN201210371264.9A CN201210371264A CN102916188B CN 102916188 B CN102916188 B CN 102916188B CN 201210371264 A CN201210371264 A CN 201210371264A CN 102916188 B CN102916188 B CN 102916188B
- Authority
- CN
- China
- Prior art keywords
- porous carbon
- hierarchical porous
- ethanol
- composite material
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 82
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 81
- 239000002131 composite material Substances 0.000 title claims abstract description 58
- 229920000767 polyaniline Polymers 0.000 title claims abstract description 40
- 238000002360 preparation method Methods 0.000 title claims abstract description 36
- 229920001021 polysulfide Polymers 0.000 title claims abstract description 20
- 239000005077 polysulfide Substances 0.000 title claims abstract description 20
- 150000008117 polysulfides Polymers 0.000 title claims abstract description 20
- 125000000962 organic group Chemical group 0.000 title abstract 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 105
- 239000000243 solution Substances 0.000 claims description 49
- BIGYLAKFCGVRAN-UHFFFAOYSA-N 1,3,4-thiadiazolidine-2,5-dithione Chemical compound S=C1NNC(=S)S1 BIGYLAKFCGVRAN-UHFFFAOYSA-N 0.000 claims description 47
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Substances [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 33
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 33
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims description 30
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 24
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 24
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 24
- 238000003756 stirring Methods 0.000 claims description 20
- 239000006185 dispersion Substances 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 18
- 239000008367 deionised water Substances 0.000 claims description 14
- 229910021641 deionized water Inorganic materials 0.000 claims description 14
- 239000000843 powder Substances 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 13
- 239000005011 phenolic resin Substances 0.000 claims description 13
- 229920001568 phenolic resin Polymers 0.000 claims description 13
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 12
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 claims description 12
- 238000001035 drying Methods 0.000 claims description 8
- 238000001914 filtration Methods 0.000 claims description 8
- 238000005406 washing Methods 0.000 claims description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 6
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 6
- 239000000292 calcium oxide Substances 0.000 claims description 6
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 6
- 238000003760 magnetic stirring Methods 0.000 claims description 6
- 230000007935 neutral effect Effects 0.000 claims description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 4
- 239000011259 mixed solution Substances 0.000 claims description 4
- 239000002149 hierarchical pore Substances 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 239000012298 atmosphere Substances 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- JLAMDELLBBZOOX-UHFFFAOYSA-N 3h-1,3,4-thiadiazole-2-thione Chemical compound SC1=NN=CS1 JLAMDELLBBZOOX-UHFFFAOYSA-N 0.000 claims 1
- 230000001476 alcoholic effect Effects 0.000 claims 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 19
- 229910052744 lithium Inorganic materials 0.000 abstract description 19
- 238000000034 method Methods 0.000 abstract description 15
- 238000006116 polymerization reaction Methods 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 4
- 239000002994 raw material Substances 0.000 abstract description 3
- 239000010406 cathode material Substances 0.000 abstract description 2
- 238000011065 in-situ storage Methods 0.000 abstract description 2
- 238000009776 industrial production Methods 0.000 abstract description 2
- 230000001590 oxidative effect Effects 0.000 abstract description 2
- 238000000151 deposition Methods 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 31
- 239000007774 positive electrode material Substances 0.000 description 14
- 239000011148 porous material Substances 0.000 description 5
- 239000011149 active material Substances 0.000 description 4
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 4
- 239000011206 ternary composite Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 239000012300 argon atmosphere Substances 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000000349 field-emission scanning electron micrograph Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000024241 parasitism Effects 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- -1 sulfur mercapto compound Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical group [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 150000004662 dithiols Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910021392 nanocarbon Inorganic materials 0.000 description 1
- 150000008427 organic disulfides Chemical class 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域 technical field
本发明涉及新能源材料技术领域,涉及一种用于二次锂电池的正极材料的制备方法,具体地说,是一种分级孔碳/聚有机多硫化物/聚苯胺复合材料的制备方法。 The invention relates to the technical field of new energy materials, and relates to a method for preparing a positive electrode material for a secondary lithium battery, in particular to a method for preparing a hierarchical porous carbon/polyorganic polysulfide/polyaniline composite material.
背景技术 Background technique
新型储能材料聚有机多硫化物因其在理论上具有容量高、环境友好的特点,具有作为锂电池正极材料的潜在的应用价值。1988年,美国国家能源研究中心(Lawrence Berkeley)首次报道了金属钠/聚有机二硫化物电池 [J. Electrochem. Soc., Vol. 135, 2905, (1999)]。二十世纪90年代初,日本研究人员提出,将聚有机多硫化物作为电池的正极材料,其中,对聚2,5-二巯基-1,3,4-噻二唑的研究最多。然而聚2,5-二巯基-1,3,4-噻二唑在室温下电化学反应速率缓慢,而且放电时产生的小分子硫巯基化合物易溶于有机电解液中,导致材料的循环稳定性较差。 Polyorganic polysulfides, a new type of energy storage material, have potential application value as cathode materials for lithium batteries due to their theoretically high capacity and environmental friendliness. In 1988, the National Energy Research Center of the United States (Lawrence Berkeley) reported the metal sodium/polyorganodisulfide battery for the first time [ J. Electrochem. Soc. , Vol. 135, 2905, (1999)]. In the early 1990s, Japanese researchers proposed to use polyorganic polysulfides as positive electrode materials for batteries, among which poly2,5-dimercapto-1,3,4-thiadiazole was the most researched. However, the electrochemical reaction rate of poly 2,5-dimercapto-1,3,4-thiadiazole is slow at room temperature, and the small molecular sulfur mercapto compound generated during discharge is easily soluble in the organic electrolyte, resulting in a stable cycle of the material. Sex is poor.
为了提高2,5-二巯基-1,3,4-噻二唑的电化学活性及其稳定性,近年来,人们采用导电高分子、金属纳米粒子、层状化合物和纳米碳材料对其进行复合改性。在这方面,N. Oyama等人制备了二硫醇-聚苯胺复合材料,它显著提高了二硫醇的氧化反应速率和比容量[Nature, Vol. 373, 598, (1995)]。中国专利ZL97109622.8公开了“一种有机二硫化物与铜离子配位络合的复合材料”,该复合材料具有高的能量密度、充放电效率以及良好的循环稳定性。中国专利ZL200910200630.2公开了“一种石墨烯/聚2,5-二巯基-1,3,4-噻二唑复合材料”,该复合材料与单独的聚2,5-二巯基-1,3,4-噻二唑相比具有更好的导电性,其循环稳定性得到了一定程度的改善。然而,上述改性方法得到的聚有机多硫化物复合材料的电化学循环性能离实际应用仍有一定差距。 In order to improve the electrochemical activity and stability of 2,5-dimercapto-1,3,4-thiadiazole, in recent years, people have used conductive polymers, metal nanoparticles, layered compounds and nano-carbon materials to conduct research on it. compound modification. In this regard, N. Oyama et al. prepared dithiol-polyaniline composites, which significantly increased the oxidation reaction rate and specific capacity of dithiol [ Nature , Vol. 373, 598, (1995)]. Chinese patent ZL97109622.8 discloses "a composite material of coordination and complexation of organic disulfide and copper ions". The composite material has high energy density, charge and discharge efficiency and good cycle stability. Chinese patent ZL200910200630.2 discloses "a graphene/poly-2,5-dimercapto-1,3,4-thiadiazole composite material", which is combined with a single poly-2,5-dimercapto-1, Compared with 3,4-thiadiazole, it has better conductivity, and its cycle stability has been improved to a certain extent. However, the electrochemical cycling performance of the polyorganopolysulfide composites obtained by the above modification method is still far from practical application.
发明内容 Contents of the invention
本发明的目的在于克服现有技术的不足,提供一种分级孔碳/聚有机多硫化物/聚苯胺复合材料的制备方法,它具有工艺简单、可控性强、环境友好、成本低的优点,以该方法制备的复合材料具有较高的比容量和良好的循环性能,能满足二次锂离子电池正极材料的要求。 The purpose of the present invention is to overcome the deficiencies of the prior art and provide a preparation method of hierarchical porous carbon/polyorganic polysulfide/polyaniline composite material, which has the advantages of simple process, strong controllability, environmental friendliness and low cost , the composite material prepared by this method has high specific capacity and good cycle performance, and can meet the requirements of the positive electrode material of the secondary lithium ion battery.
本发明的思路为: Thinking of the present invention is:
(1)选用纳米碳酸钙水分散液代替纳米碳酸钙粉末作为二次成孔剂,以克服纳米碳酸钙粉末易团聚、难分散的缺陷;选用酚醛树脂为碳源,经炭化煅烧和刻蚀工艺获得孔径均匀且相互贯穿的分级孔碳;以分级孔碳为载体,通过原位化学氧化聚合将聚2,5-二巯基-1,3,4-噻二唑和聚苯胺沉积到分级孔碳的纳米孔内及表面,制得分级孔碳/聚2,5-二巯基-1,3,4-噻二唑/聚苯胺三元复合材料。 (1) Nano-calcium carbonate aqueous dispersion is used instead of nano-calcium carbonate powder as the secondary pore-forming agent to overcome the defects that nano-calcium carbonate powder is easy to agglomerate and difficult to disperse; phenolic resin is used as the carbon source, and it is carbonized, calcined and etched Obtain hierarchically porous carbon with uniform pore size and interpenetration; using hierarchically porous carbon as a support, poly 2,5-dimercapto-1,3,4-thiadiazole and polyaniline are deposited on hierarchically porous carbon by in-situ chemical oxidative polymerization The inner and surface of the nanopores, and the hierarchical porous carbon/poly 2,5-dimercapto-1,3,4-thiadiazole/polyaniline ternary composite material was prepared.
(2)在所述三元复合材料中引入聚苯胺,使其拥有较高的电导率,并且能够与2,5-二巯基-1,3,4-噻二唑形成电荷转移复合物。这对于提高2,5-二巯基-1,3,4-噻二唑的电化学反应速率是有利的,改善了2,5-二巯基-1,3,4-噻二唑的电化学性能。 (2) Introducing polyaniline into the ternary composite material, so that it has high electrical conductivity and can form a charge transfer complex with 2,5-dimercapto-1,3,4-thiadiazole. This is beneficial to increase the electrochemical reaction rate of 2,5-dimercapto-1,3,4-thiadiazole and improve the electrochemical performance of 2,5-dimercapto-1,3,4-thiadiazole .
(3)选用分级孔碳为载体,利用了分级孔碳具有比表面积大、电导率高、吸附能力强和稳定性好的特点,以利于活性物质的寄生和电解液的扩散,提高电荷传输性能,从而提高三元复合材料的循环稳定性。赋予三元复合材料较高的比容量和良好的循环稳定性。 (3) Hierarchical porous carbon is selected as the carrier, and the hierarchical porous carbon has the characteristics of large specific surface area, high electrical conductivity, strong adsorption capacity and good stability, so as to facilitate the parasitism of active substances and the diffusion of electrolyte, and improve the charge transport performance , thereby improving the cycle stability of the ternary composite. It endows the ternary composite with high specific capacity and good cycle stability.
为实现以上发明目的,本发明采取了以下技术方案。 In order to realize the purpose of the above invention, the present invention adopts the following technical solutions.
一种分级孔碳/聚有机多硫化物/聚苯胺复合材料的制备方法,其特征是,包括以下步骤: A preparation method of hierarchical porous carbon/polyorganic polysulfide/polyaniline composite material is characterized in that it comprises the following steps:
(1)制备分级孔碳 (1) Preparation of hierarchical porous carbon
① 将纳米碳酸钙水分散液经过滤、无水乙醇洗涤后,再超声处理2~6小时,将所述纳米碳酸钙均匀分散在乙醇中,得到纳米碳酸钙的乙醇分散液; ① After filtering the nano-calcium carbonate aqueous dispersion, washing with absolute ethanol, and then ultrasonically treating it for 2 to 6 hours, the nano-calcium carbonate is evenly dispersed in ethanol to obtain an ethanol dispersion of nano-calcium carbonate;
② 将酚醛树脂配成10~30wt%的乙醇溶液,再与步骤(1)①得到的纳米碳酸钙的乙醇分散液通过磁力搅拌混合均匀,控制酚醛树脂与纳米碳酸钙的质量比为1∶0.3~2,得到混合液; ② Mix the phenolic resin into 10-30wt% ethanol solution, and then mix it with the ethanol dispersion of nano-calcium carbonate obtained in step (1) ① by magnetic stirring, and control the mass ratio of phenolic resin to nano-calcium carbonate to 1:0.3 ~2, get the mixed solution;
③ 将步骤(1)②得到的混合液中的乙醇挥发掉,得到浅黄色粉末; ③ Volatilize the ethanol in the mixture obtained in step (1)② to obtain light yellow powder;
④ 将步骤(1)③得到的浅黄色粉末在惰性气氛围中于管式炉中进行炭化煅烧处理:从室温逐渐升至850℃,控制升温速率为2~5℃/分钟,并在300℃、700℃和850℃时分别保温90分钟、60分钟和60分钟,得到煅烧产物; ④ The light yellow powder obtained in step (1) ③ is carbonized and calcined in a tube furnace in an inert gas atmosphere: gradually rise from room temperature to 850°C, control the heating rate at 2-5°C/min, and heat at 300°C , 700°C, and 850°C for 90 minutes, 60 minutes, and 60 minutes, respectively, to obtain calcined products;
⑤ 将步骤(1)④得到的煅烧产物中的氧化钙用0.5~3mol/L的盐酸去除,再用去离子水洗至中性,干燥后得到分级孔碳; ⑤ Remove the calcium oxide in the calcined product obtained in step (1) ④ with 0.5-3mol/L hydrochloric acid, then wash with deionized water until neutral, and obtain hierarchical porous carbon after drying;
(2)制备复合材料 (2) Preparation of composite materials
① 将步骤(1)得到的分级孔碳抽真空0.5~2小时; ① Vacuumize the graded porous carbon obtained in step (1) for 0.5 to 2 hours;
② 在真空状态下加入2,5-二巯基-1,3,4-噻二唑的醇类溶液和苯胺的0.5~2mol/L质子酸溶液,控制分级孔碳的浓度为0.5~3mg/mL,搅拌4~24小时,在搅拌状态下加入过硫酸铵的质子酸溶液,并在25~60℃条件下搅拌反应12~48小时; ② Add 2,5-dimercapto-1,3,4-thiadiazole alcohol solution and aniline 0.5-2mol/L protonic acid solution under vacuum, and control the concentration of hierarchical pore carbon to 0.5-3mg/mL , stirring for 4 to 24 hours, adding a protonic acid solution of ammonium persulfate under stirring, and stirring and reacting at 25 to 60°C for 12 to 48 hours;
③ 进行过滤、洗涤,再干燥后得到目标产物——分级孔碳/聚有机多硫化物/聚苯胺复合材料。 ③ Filtration, washing, and drying to obtain the target product——hierarchical porous carbon/polyorganic polysulfide/polyaniline composite material.
进一步,步骤(1)④所述的惰性气为氩气或氮气中的一种。 Further, the inert gas described in step (1)④ is one of argon or nitrogen.
进一步,步骤(2)②所述的醇类溶液为乙醇或异丙醇中的一种。 Further, the alcohol solution described in step (2) ② is one of ethanol or isopropanol.
进一步,步骤(2)②所述的质子酸为硫酸、盐酸或高氯酸中的一种。 Further, the protonic acid described in step (2)② is one of sulfuric acid, hydrochloric acid or perchloric acid.
进一步,在步骤(2)②中,所述2,5-二巯基-1,3,4-噻二唑与苯胺的摩尔比为1∶0.2~2。 Further, in step (2)②, the molar ratio of 2,5-dimercapto-1,3,4-thiadiazole to aniline is 1:0.2-2.
进一步,在步骤(2)②中,所述分级孔碳与2,5-二巯基-1,3,4-噻二唑和苯胺总量的质量比为1∶1~5。 Further, in step (2)②, the mass ratio of the hierarchical pore carbon to the total amount of 2,5-dimercapto-1,3,4-thiadiazole and aniline is 1:1-5.
进一步,在步骤(2)②中,所述过硫酸铵与2,5-二巯基-1,3,4-噻二唑和苯胺总量的摩尔比为1∶0.8~1.5。 Further, in step (2)②, the molar ratio of the ammonium persulfate to the total amount of 2,5-dimercapto-1,3,4-thiadiazole and aniline is 1:0.8-1.5.
本发明的积极效果是: The positive effect of the present invention is:
(1)本发明的方法具有工艺简单、可控性强、原料廉价易得的优点,制备过程对环境的影响较小,易于工业化生产。 (1) The method of the present invention has the advantages of simple process, strong controllability, cheap and easy-to-obtain raw materials, less impact on the environment during the preparation process, and easy industrial production.
(2)用本发明的方法制得的分级孔碳/聚有机多硫化物/聚苯胺复合材料具有较高的放电比容量和良好的充放电循环性能,可用于二次锂电池正极材料。 (2) The hierarchical porous carbon/polyorganopolysulfide/polyaniline composite material prepared by the method of the present invention has high discharge specific capacity and good charge-discharge cycle performance, and can be used as anode material for secondary lithium batteries.
附图说明 Description of drawings
附图1为本发明实施例1的分级孔碳扫描电镜照片。 Accompanying drawing 1 is the scanning electron micrograph of the graded hole carbon of the embodiment 1 of the present invention.
附图2为本发明实施例1的场发射扫描电镜照片。 Accompanying drawing 2 is the field emission scanning electron microscope photograph of embodiment 1 of the present invention.
附图3为本发明比较例1的场发射扫描电镜照片。 Accompanying drawing 3 is the field emission scanning electron micrograph of comparative example 1 of the present invention.
附图4为本发明比较例2的场发射扫描电镜照片。 Accompanying drawing 4 is the field emission scanning electron micrograph of comparative example 2 of the present invention.
附图5为用实施例1(a)、比较例2(b)和比较例1(c)正极材料制成的纽扣锂电池在20mA/g电流密度下的放电容量-电压的关系曲线图。 Accompanying drawing 5 is the discharge capacity-voltage relation graph of the button lithium battery made of positive electrode materials of Example 1 (a), Comparative Example 2 (b) and Comparative Example 1 (c) at a current density of 20mA/g.
附图6为用实施例1(a)、比较例2(b)和比较例1(c)正极材料制成的纽扣锂电池的充放电循环性能图。 Accompanying drawing 6 is the charge-discharge cycle performance diagram of the button lithium battery made of positive electrode materials of Example 1 (a), Comparative Example 2 (b) and Comparative Example 1 (c).
具体实施方式 Detailed ways
以下结合附图进一步介绍本发明分级孔碳/聚有机多硫化物/聚苯胺复合材料的制备方法的具体实施方式,提供6个实施例和2个比较例。但是,本发明的实施不限于以下的实施方式。 The specific implementation of the preparation method of the hierarchical porous carbon/polyorganic polysulfide/polyaniline composite material of the present invention will be further introduced below in conjunction with the accompanying drawings, providing 6 examples and 2 comparative examples. However, implementation of the present invention is not limited to the following embodiments.
实施例1Example 1
一种分级孔碳/聚有机多硫化物/聚苯胺复合材料的制备方法,包括以下步骤: A preparation method of hierarchical porous carbon/polyorganopolysulfide/polyaniline composite material, comprising the following steps:
(1)制备分级孔碳 (1) Preparation of hierarchical porous carbon
① 将纳米碳酸钙水分散液经过滤、无水乙醇洗涤后,再超声处理6小时,将所述纳米碳酸钙均匀分散在乙醇中,得到纳米碳酸钙的乙醇分散液。 ① After filtering the aqueous dispersion of nano-calcium carbonate, washing with absolute ethanol, and then ultrasonically treating it for 6 hours, the nano-calcium carbonate was evenly dispersed in ethanol to obtain an ethanol dispersion of nano-calcium carbonate.
② 将酚醛树脂配成25wt%的乙醇溶液,再与步骤(1)①得到的纳米碳酸钙的乙醇分散液通过磁力搅拌混合均匀,控制酚醛树脂与纳米碳酸钙的质量比为1∶1.5,得到混合液。 ② The phenolic resin is made into 25wt% ethanol solution, and then mixed evenly with the ethanol dispersion of nano-calcium carbonate obtained in step (1) ① by magnetic stirring, and the mass ratio of phenolic resin and nano-calcium carbonate is controlled to be 1: 1.5 to obtain Mixture.
③ 将步骤(1)②得到的混合液中的乙醇挥发掉,得到浅黄色粉末。 ③ Volatilize the ethanol in the mixture obtained in step (1) ② to obtain light yellow powder.
④ 将步骤(1)③得到的浅黄色粉末在氩气氛围中于管式炉中进行炭化煅烧处理:从室温以2℃/min的速率升温到300℃,在300℃保温90分钟;再以5℃/min的速率从300℃升温到700℃,在700℃保温60分钟;再以5℃/min的速率从700℃升温到850℃,在850℃保温60分钟,得到煅烧产物。 ④ The light yellow powder obtained in step (1) ③ is carbonized and calcined in a tube furnace in an argon atmosphere: from room temperature to 300°C at a rate of 2°C/min, and kept at 300°C for 90 minutes; then The temperature was raised from 300°C to 700°C at a rate of 5°C/min, and kept at 700°C for 60 minutes; then the temperature was raised from 700°C to 850°C at a rate of 5°C/min, and kept at 850°C for 60 minutes to obtain a calcined product.
⑤ 将步骤(1)④得到的煅烧产物中的氧化钙用用2mol/L的盐酸溶液去除,再用去离子水洗至中性,干燥后得到的产物即为分级孔碳。 ⑤ The calcium oxide in the calcined product obtained in step (1) ④ is removed with 2mol/L hydrochloric acid solution, then washed with deionized water until neutral, and the product obtained after drying is hierarchical porous carbon.
(2)制备复合材料 (2) Preparation of composite materials
① 将0.5g步骤(1)得到的分级孔碳抽真空1小时。 ① Vacuumize 0.5g of the hierarchical porous carbon obtained in step (1) for 1 hour.
② 在真空状态下加入溶有0.75g 2,5-二巯基-1,3,4-噻二唑的200mL乙醇溶液和溶有0.47g苯胺的100mL 2mol/L硫酸溶液,搅拌12小时;在搅拌状态下将50mL溶有2.28g过硫酸铵的2mol/L硫酸溶液加入到上述溶液中,在40℃下搅拌反应24小时。 ② Add 0.75g of 2,5-dimercapto-1,3,4-thiadiazole in 200mL ethanol solution and 0.47g of aniline in 100mL 2mol/L sulfuric acid solution under vacuum, and stir for 12 hours; 50 mL of 2.28 g of ammonium persulfate dissolved in 2 mol/L sulfuric acid solution was added to the above solution, and stirred at 40°C for 24 hours.
③ 将产物进行过滤,用去离子水和乙醇洗涤,再经干燥后得到目标产物——分级孔碳/聚有机多硫化物(2,5-二巯基-1,3,4-噻二唑)/聚苯胺复合材料。 ③ Filter the product, wash with deionized water and ethanol, and then dry to obtain the target product——hierarchical porous carbon/polyorganic polysulfide (2,5-dimercapto-1,3,4-thiadiazole) / Polyaniline composite.
实施例1的产物分析:The product analysis of embodiment 1:
使用四探针测试仪测得,实施例1制备的分级孔碳/聚有机多硫化物/聚苯胺复合材料的电导率为0.6S/cm。 The electrical conductivity of the hierarchically porous carbon/polyorganopolysulfide/polyaniline composite material prepared in Example 1 was measured by a four-probe tester at 0.6 S/cm.
场发射扫描电镜(FESEM)照片显示,实施例1制备的分级孔碳的孔径均匀且相互贯穿(参见附图1);实施例1制备的分级孔碳/聚有机多硫化物/聚苯胺导电复合材料中,部分聚2,5-二巯基-1,3,4-噻二唑/聚苯胺以纤维状结构与分级孔碳形成互穿网络结构,且分级孔碳的部分孔洞也被聚合产物占据(参见附图2),这是由于苯胺和2,5-二巯基-1,3,4-噻二唑在分级孔碳的孔内外均发生聚合的缘故。这种结构不仅有利于活性物质的寄生和电解液的扩散,而且能提高电荷传输性能,对改善聚2,5-二巯基-1,3,4-噻二唑/聚苯胺的循环稳定性有积极作用。 Field emission scanning electron microscopy (FESEM) photos show that the pore size of the hierarchically porous carbon prepared in Example 1 is uniform and interpenetrating (see Figure 1); the hierarchically porous carbon/polyorganic polysulfide/polyaniline conductive composite prepared in Example 1 In the material, part of poly-2,5-dimercapto-1,3,4-thiadiazole/polyaniline forms an interpenetrating network structure with hierarchical porous carbon in a fibrous structure, and some pores of hierarchical porous carbon are also occupied by polymerization products (See Figure 2) This is due to the polymerization of aniline and 2,5-dimercapto-1,3,4-thiadiazole both inside and outside the pores of the hierarchically porous carbon. This structure is not only beneficial to the parasitism of the active material and the diffusion of the electrolyte, but also improves the charge transport performance, which is helpful for improving the cycle stability of poly-2,5-dimercapto-1,3,4-thiadiazole/polyaniline. positive effects.
放电容量与电压关系图表明(参见附图5曲线a),用实施例1制备的分级孔碳/聚有机多硫化物/聚苯胺复合材料作为正极材料制成的纽扣锂电池首次放电比容量为330.4mAh/g。 The graph showing the relationship between discharge capacity and voltage (see accompanying drawing 5, curve a), uses the hierarchical porous carbon/polyorganic polysulfide/polyaniline composite material prepared in Example 1 as the positive electrode material to make the lithium button battery for the first time. The discharge specific capacity is 330.4mAh/g.
电池充放电循环性能图显示(参见附图6曲线a),用实施例1制备的分级孔碳/聚有机多硫化物/聚苯胺复合材料作为正极材料制成的纽扣锂电池在循环20次之后(电压范围:1.8~3.8V;电流密度:20mA/g;室温),放电容量仍能保持近50%。 The battery charge and discharge cycle performance graph shows (see Figure 6 curve a), the button lithium battery made of the hierarchical porous carbon/polyorganic polysulfide/polyaniline composite material prepared in Example 1 as the positive electrode material after 20 cycles (Voltage range: 1.8~3.8V; current density: 20mA/g; room temperature), the discharge capacity can still maintain nearly 50%.
比较例1——为与实施例1的比较例 Comparative example 1--- be the comparative example with embodiment 1
一种聚2,5-二巯基-1,3,4-噻二唑的制备方法: A kind of preparation method of poly 2,5-dimercapto-1,3,4-thiadiazole:
将 1.5g 2,5-二巯基-1,3,4-噻二唑单体溶解在300mL乙醇和2mol/L硫酸的混合溶液中(乙醇与硫酸的体积比为2∶1),在搅拌状态下将50mL溶有2.28g过硫酸铵的 2mol/L硫酸溶液加入到上述溶液中,在40℃下搅拌反应24小时,产物经过滤、去离子水和乙醇洗涤,再经干燥后得到聚有机多硫化物(聚2,5-二巯基-1,3,4-噻二唑)。 Dissolve 1.5g of 2,5-dimercapto-1,3,4-thiadiazole monomer in a mixed solution of 300mL ethanol and 2mol/L sulfuric acid (the volume ratio of ethanol to sulfuric acid is 2:1), and stir Add 50mL of 2mol/L sulfuric acid solution dissolved with 2.28g of ammonium persulfate into the above solution, stir and react at 40°C for 24 hours, the product is filtered, washed with deionized water and ethanol, and dried to obtain polyorganopoly Sulfide (poly-2,5-dimercapto-1,3,4-thiadiazole).
比较例1的产物分析:The product analysis of comparative example 1:
场发射扫描电镜照片(参见附图3)显示:比较例1制备的聚有机多硫化物(聚2,5-二巯基-1,3,4-噻二唑)呈棒状结构,这表明:聚2,5-二巯基-1,3,4-噻二唑在聚合生长过程中有取向性。 Field emission scanning electron microscope photos (see accompanying drawing 3) show: the polyorganopolysulfide (poly 2,5-dimercapto-1,3,4-thiadiazole) prepared in Comparative Example 1 has a rod-like structure, which indicates that: poly 2,5-Dimercapto-1,3,4-thiadiazole is oriented during polymerization growth.
经测试,比较例1制备的聚2,5-二巯基-1,3,4-噻二唑的电导率小于10-8S/cm。 After testing, the electrical conductivity of the poly 2,5-dimercapto-1,3,4-thiadiazole prepared in Comparative Example 1 was less than 10 -8 S/cm.
以比较例1制备的聚2,5-二巯基-1,3,4-噻二唑作活性材料,将聚2,5-二巯基-1,3,4-噻二唑、导电碳黑和聚偏氟乙烯粘结剂按质量比80∶10∶10的比例混合,制备二次锂电池的正极材料。将以该聚2,5-二巯基-1,3,4-噻二唑为正极材料的纽扣锂电池在LAND CT2001A电池测试仪进行充放电循环试验(参见附图5曲线c),发现首次放电比容量为240mAh/g,第2次放电比容量仅为49mAh/g(参见附图6曲线c)。这表明:比较例1制备的聚2,5-二巯基-1,3,4-噻二唑的循环性能非常差。 With the poly 2,5-dimercapto-1,3,4-thiadiazole prepared in comparative example 1 as active material, poly 2,5-dimercapto-1,3,4-thiadiazole, conductive carbon black and The polyvinylidene fluoride binder is mixed in a mass ratio of 80:10:10 to prepare the positive electrode material of the secondary lithium battery. The button lithium battery with the poly 2,5-dimercapto-1,3,4-thiadiazole as the positive electrode material was subjected to a charge-discharge cycle test on the LAND CT2001A battery tester (see Figure 5 curve c), and it was found that the first discharge The specific capacity is 240mAh/g, and the second discharge specific capacity is only 49mAh/g (see Figure 6 curve c). This shows that the cycle performance of the poly 2,5-dimercapto-1,3,4-thiadiazole prepared in Comparative Example 1 is very poor.
比较例2——为与实施例1的比较例 Comparative example 2--- be the comparative example with embodiment 1
一种分级孔碳/聚2,5-二巯基-1,3,4-噻二唑复合材料的制备方法,包括以下步骤: A method for preparing a hierarchical porous carbon/poly 2,5-dimercapto-1,3,4-thiadiazole composite material, comprising the following steps:
(1)制备分级孔碳 (具体内容同实施例1)。 (1) Prepare hierarchical porous carbon (the specific content is the same as that in Example 1).
(2)制备复合材料 (2) Preparation of composite materials
① 将0.5g步骤(1)得到的分级孔碳抽真空1小时。 ① Vacuumize 0.5g of the hierarchical porous carbon obtained in step (1) for 1 hour.
② 在真空状态下快速加入溶有1.5g 2,5-二巯基-1,3,4-噻二唑的300mL乙醇和2mol/L硫酸的混合溶液(乙醇与硫酸的体积比为2∶1,),搅拌12小时;在搅拌状态下将50mL溶有2.28g过硫酸铵的2mol/L硫酸溶液加入到上述溶液中,在40℃下搅拌反应24小时。 ② Quickly add a mixed solution of 1.5g of 2,5-dimercapto-1,3,4-thiadiazole dissolved in 300mL of ethanol and 2mol/L of sulfuric acid in a vacuum state (the volume ratio of ethanol to sulfuric acid is 2:1, ), stirred for 12 hours; under stirring, 50 mL of 2.28 g of ammonium persulfate dissolved in 2 mol/L sulfuric acid solution was added to the above solution, and stirred at 40°C for 24 hours.
③ 将产物进行过滤,用去离子水和乙醇洗涤,再经干燥后得到目标产物——分级孔碳/聚2,5-二巯基-1,3,4-噻二唑复合材料。 ③ The product was filtered, washed with deionized water and ethanol, and then dried to obtain the target product—hierarchical porous carbon/poly-2,5-dimercapto-1,3,4-thiadiazole composite material.
比较例2的产物分析:The product analysis of comparative example 2:
使用四探针测试仪测得,比较例2制备的分级孔碳/聚2,5-二巯基-1,3,4-噻二唑复合材料的电导率为0.18S/cm,与比较例1相比,其电导率有明显改善。 Measured using a four-probe tester, the electrical conductivity of the hierarchically porous carbon/poly 2,5-dimercapto-1,3,4-thiadiazole composite material prepared in Comparative Example 2 was 0.18 S/cm, which was the same as that in Comparative Example 1. Compared with that, its conductivity has been significantly improved.
场发射扫描电镜(FESEM)照片(参见附图4)显示:比较例2制备的分级孔碳/聚2,5-二巯基-1,3,4-噻二唑复合材料也呈多孔结构,但部分纳米孔表面和孔内被聚2,5-二巯基-1,3,4-噻二唑所填充。 Field emission scanning electron microscopy (FESEM) photos (see accompanying drawing 4) show that: the hierarchical porous carbon/poly 2,5-dimercapto-1,3,4-thiadiazole composite material prepared in Comparative Example 2 also has a porous structure, but Some nanopore surfaces and pores are filled with poly-2,5-dimercapto-1,3,4-thiadiazole.
放电容量与电压关系图表明(参见附图5曲线b),用比较例2的正极材料制成的纽扣锂电池首次放电比容量为291.2mAh/g,与比较例1相比,其比容量有明显提高。 The graph showing the relationship between discharge capacity and voltage (see Figure 5 curve b) shows that the first discharge specific capacity of the button lithium battery made of the positive electrode material of Comparative Example 2 is 291.2mAh/g, compared with Comparative Example 1, its specific capacity has Significantly improved.
电池充放电循环性能图显示(参见附图6曲线b),用比较例2的正极材料制成的纽扣锂电池在循环20次之后,放电容量在前5圈下降较快,之后相对稳定,放电容量基本保持在33.3%,与比较例1相比,稳定性有一定的提高。 The charge-discharge cycle performance diagram of the battery shows (see the curve b in Figure 6) that after 20 cycles of the button lithium battery made of the positive electrode material of Comparative Example 2, the discharge capacity drops rapidly in the first 5 cycles, and then it is relatively stable. The capacity is basically maintained at 33.3%, and compared with Comparative Example 1, the stability has been improved to a certain extent.
实施例1与比较例1和比较例2的比较结果The comparison result of embodiment 1 and comparative example 1 and comparative example 2
将实施例1制备的分级孔碳/聚有机多硫化物(聚2,5-二巯基-1,3,4-噻二唑)/聚苯胺复合材料与比较例1制备的聚2,5-二巯基-1,3,4-噻二唑、比较例2制备的分级孔碳/聚2,5-二巯基-1,3,4-噻二唑复合材料进行比较的结果如下。 The hierarchical porous carbon/polyorganopolysulfide (poly2,5-dimercapto-1,3,4-thiadiazole)/polyaniline composite material prepared in Example 1 was compared with the poly2,5- The comparison results of dimercapto-1,3,4-thiadiazole and the hierarchical porous carbon/poly 2,5-dimercapto-1,3,4-thiadiazole composite material prepared in Comparative Example 2 are as follows.
用实施例1制备的分级孔碳/聚有机多硫化物/聚苯胺复合材料作为正极材料制成的纽扣锂电池首次放电比容量为330.4mAh/g,明显高于比较例1(240mAh/g)和比较例2(291.2mAh/g)。 Using the hierarchical porous carbon/polyorganic polysulfide/polyaniline composite material prepared in Example 1 as the positive electrode material, the first discharge specific capacity of the button lithium battery is 330.4mAh/g, which is significantly higher than that of Comparative Example 1 (240mAh/g). and Comparative Example 2 (291.2mAh/g).
用实施例1制备的分级孔碳/聚有机多硫化物/聚苯胺复合材料作为正极材料制成的纽扣锂电池在循环20次之后,放电容量仍能保持近50%,明显高于比较例1和比较例2(33.3%),这能使纽扣锂电池的充放电循环性能得到明显的改善。 The button lithium battery made of the hierarchical porous carbon/polyorganic polysulfide/polyaniline composite material prepared in Example 1 as the positive electrode material can still maintain nearly 50% of the discharge capacity after 20 cycles, which is significantly higher than that of Comparative Example 1 Compared with Comparative Example 2 (33.3%), this can significantly improve the charge-discharge cycle performance of the button lithium battery.
实施例2Example 2
一种分级孔碳/聚有机多硫化物/聚苯胺复合材料的制备方法,包括以下步骤: A preparation method of hierarchical porous carbon/polyorganopolysulfide/polyaniline composite material, comprising the following steps:
(1)制备分级孔碳 (1) Preparation of hierarchical porous carbon
① 将纳米碳酸钙水分散液经过滤、无水乙醇洗涤后,再超声处理4小时,将所述纳米碳酸钙均匀分散在乙醇中,得到纳米碳酸钙的乙醇分散液。 ① After filtering the aqueous dispersion of nano-calcium carbonate, washing with absolute ethanol, and then ultrasonically treating it for 4 hours, the nano-calcium carbonate is evenly dispersed in ethanol to obtain an ethanol dispersion of nano-calcium carbonate.
② 将酚醛树脂配成10wt%的乙醇溶液,再与步骤(1)①得到的纳米碳酸钙的乙醇分散液通过磁力搅拌混合均匀,控制酚醛树脂与纳米碳酸钙的质量比为1∶2,得到混合液。 ② Make the phenolic resin into 10wt% ethanol solution, and then mix it evenly with the ethanol dispersion of nano-calcium carbonate obtained in step (1) ① by magnetic stirring, and control the mass ratio of phenolic resin to nano-calcium carbonate to be 1: 2 to obtain Mixture.
③ 将步骤(1)②得到的混合液中的乙醇挥发掉,得到浅黄色粉末。 ③ Volatilize the ethanol in the mixture obtained in step (1) ② to obtain light yellow powder.
④ 将步骤(1)③得到的浅黄色粉末在氮气氛围中于管式炉中进行炭化煅烧处理:从室温以3℃/min的速率升温到300℃,在300℃保温90分钟;再以3℃/min的速率从300℃升温到700℃,在700℃保温60分钟;再以5℃/min的速率从700℃升温到850℃,在850℃保温60分钟,得到煅烧产物。 ④ The light yellow powder obtained in step (1) ③ is carbonized and calcined in a tube furnace in a nitrogen atmosphere: from room temperature to 300°C at a rate of 3°C/min, and kept at 300°C for 90 minutes; The temperature was raised from 300°C to 700°C at a rate of ℃/min, and kept at 700°C for 60 minutes; then the temperature was raised from 700°C to 850°C at a rate of 5°C/min, and kept at 850°C for 60 minutes to obtain a calcined product.
⑤ 将步骤(1)④得到的煅烧产物中的氧化钙用用3mol/L的盐酸溶液去除,再用去离子水洗至中性,干燥后得到的产物即为分级孔碳。 ⑤ Remove the calcium oxide in the calcined product obtained in step (1) ④ with 3mol/L hydrochloric acid solution, then wash with deionized water until neutral, and the product obtained after drying is hierarchical porous carbon.
(2)制备复合材料 (2) Preparation of composite materials
① 将0.18g步骤(1)得到的分级孔碳抽真空0.5小时。 ① Vacuumize 0.18g of the hierarchical porous carbon obtained in step (1) for 0.5 hours.
② 在真空状态下加入溶有0.24g 2,5-二巯基-1,3,4-噻二唑的200mL乙醇溶液和溶有0.03g苯胺的100mL 0.5mol/L盐酸溶液,搅拌4小时;在搅拌状态下将50mL溶有0.30g过硫酸铵的0.5mol/L盐酸溶液加入到上述溶液中,在25℃下搅拌反应12小时。 ② Add 200mL ethanol solution with 0.24g of 2,5-dimercapto-1,3,4-thiadiazole and 100mL of 0.5mol/L hydrochloric acid solution with 0.03g of aniline under vacuum, and stir for 4 hours; Under stirring state, 50 mL of 0.5 mol/L hydrochloric acid solution dissolved with 0.30 g of ammonium persulfate was added to the above solution, and stirred and reacted at 25° C. for 12 hours.
③ 将产物进行过滤,用去离子水和乙醇洗涤,再经干燥后得到目标产物——分级孔碳/2,5-二巯基-1,3,4-噻二唑/聚苯胺复合材料。 ③ The product was filtered, washed with deionized water and ethanol, and then dried to obtain the target product—hierarchical porous carbon/2,5-dimercapto-1,3,4-thiadiazole/polyaniline composite material.
实施例3Example 3
一种分级孔碳/聚有机多硫化物/聚苯胺复合材料的制备方法,包括以下步骤: A preparation method of hierarchical porous carbon/polyorganopolysulfide/polyaniline composite material, comprising the following steps:
(1)制备分级孔碳 (1) Preparation of hierarchical porous carbon
① 将纳米碳酸钙水分散液经过滤、无水乙醇洗涤后,再超声处理2小时,将所述纳米碳酸钙均匀分散在乙醇中,得到纳米碳酸钙的乙醇分散液。 ① After filtering the aqueous dispersion of nano-calcium carbonate, washing with absolute ethanol, and then ultrasonically treating it for 2 hours, the nano-calcium carbonate is evenly dispersed in ethanol to obtain an ethanol dispersion of nano-calcium carbonate.
② 将酚醛树脂配成30wt%的乙醇溶液,再与步骤(1)①得到的纳米碳酸钙的乙醇分散液通过磁力搅拌混合均匀,控制酚醛树脂与纳米碳酸钙的质量比为1∶0.3,得到混合液。 ② Make the phenolic resin into 30wt% ethanol solution, and then mix with the ethanol dispersion of nano-calcium carbonate obtained in step (1) ① by magnetic stirring, and control the mass ratio of phenolic resin to nano-calcium carbonate to be 1: 0.3 to obtain Mixture.
③ 将步骤(1)②得到的混合液中的乙醇挥发掉,得到浅黄色粉末。 ③ Volatilize the ethanol in the mixture obtained in step (1) ② to obtain light yellow powder.
④ 将步骤(1)③得到的浅黄色粉末在氩气氛围中于管式炉中进行炭化煅烧处理:从室温以5℃/min的速率升温到300℃,在300℃保温90分钟;再以2℃/min的速率从300℃升温到700℃,在700℃保温60分钟;再以5℃/min的速率从700℃升温到850℃,在850℃保温60分钟,得到煅烧产物。 ④ The light yellow powder obtained in step (1) ③ is carbonized and calcined in a tube furnace in an argon atmosphere: from room temperature to 300°C at a rate of 5°C/min, and kept at 300°C for 90 minutes; The temperature was raised from 300°C to 700°C at a rate of 2°C/min, and kept at 700°C for 60 minutes; then the temperature was raised from 700°C to 850°C at a rate of 5°C/min, and kept at 850°C for 60 minutes to obtain a calcined product.
⑤ 将步骤(1)④得到的煅烧产物中的氧化钙用用0.5mol/L的盐酸溶液去除,再用去离子水洗至中性,干燥后得到的产物即为分级孔碳。 ⑤ The calcium oxide in the calcined product obtained in step (1) ④ is removed with 0.5mol/L hydrochloric acid solution, then washed with deionized water until neutral, and the product obtained after drying is hierarchical porous carbon.
(2)制备复合材料 (2) Preparation of composite materials
① 将0.8g步骤(1)得到的分级孔碳抽真空0.5小时。 ① Vacuumize 0.8g of the hierarchical porous carbon obtained in step (1) for 0.5 hours.
② 在真空状态下加入溶有1.5g 2,5-二巯基-1,3,4-噻二唑的200mL乙醇溶液和溶有0.46g苯胺的100mL 0.5mol/L硫酸溶液,搅拌12小时;在搅拌状态下将50mL溶有3.42g过硫酸铵的0.5mol/L硫酸溶液加入到上述溶液中,在25℃下搅拌反应48小时。 ② Add 1.5g of 2,5-dimercapto-1,3,4-thiadiazole in 200mL of ethanol solution and 0.46g of aniline in 100mL of 0.5mol/L sulfuric acid solution under vacuum, and stir for 12 hours; 50 mL of 0.5 mol/L sulfuric acid solution dissolved with 3.42 g of ammonium persulfate was added to the above solution under stirring state, and stirred and reacted at 25° C. for 48 hours.
③ 将产物进行过滤,用去离子水和乙醇洗涤,再经干燥后得到目标产物——分级孔碳/2,5-二巯基-1,3,4-噻二唑/聚苯胺复合材料。 ③ The product was filtered, washed with deionized water and ethanol, and then dried to obtain the target product—hierarchical porous carbon/2,5-dimercapto-1,3,4-thiadiazole/polyaniline composite material.
实施例4Example 4
一种分级孔碳/聚有机多硫化物/聚苯胺复合材料的制备方法,包括以下步骤: A preparation method of hierarchical porous carbon/polyorganopolysulfide/polyaniline composite material, comprising the following steps:
(1)制备分级孔碳 (1) Preparation of hierarchical porous carbon
① 将纳米碳酸钙水分散液经过滤、无水乙醇洗涤后,再超声处理4小时,将所述纳米碳酸钙均匀分散在乙醇中,得到纳米碳酸钙的乙醇分散液。 ① After filtering the aqueous dispersion of nano-calcium carbonate, washing with absolute ethanol, and then ultrasonically treating it for 4 hours, the nano-calcium carbonate is evenly dispersed in ethanol to obtain an ethanol dispersion of nano-calcium carbonate.
② 将酚醛树脂配成20wt%的乙醇溶液,再与步骤(1)①得到的纳米碳酸钙的乙醇分散液通过磁力搅拌混合均匀,控制酚醛树脂与纳米碳酸钙的质量比为1∶2,得到混合液。 ② Make the phenolic resin into 20wt% ethanol solution, and then mix evenly with the ethanol dispersion of nano-calcium carbonate obtained in step (1) ① by magnetic stirring, and control the mass ratio of phenolic resin to nano-calcium carbonate to be 1: 2 to obtain Mixture.
③ 将步骤(1)②得到的混合液中的乙醇挥发掉,得到浅黄色粉末。 ③ Volatilize the ethanol in the mixture obtained in step (1) ② to obtain light yellow powder.
④ 将步骤(1)③得到的浅黄色粉末在氮气氛围中于管式炉中进行炭化煅烧处理:从室温以2℃/min的速率升温到300℃,在300℃保温90分钟;再以3℃/min的速率从300℃升温到700℃,在700℃保温60分钟;再以5℃/min的速率从700℃升温到850℃,在850℃保温60分钟,得到煅烧产物。 ④ The light yellow powder obtained in step (1) ③ is carbonized and calcined in a tube furnace in a nitrogen atmosphere: from room temperature to 300°C at a rate of 2°C/min, and kept at 300°C for 90 minutes; The temperature was raised from 300°C to 700°C at a rate of ℃/min, and kept at 700°C for 60 minutes; then the temperature was raised from 700°C to 850°C at a rate of 5°C/min, and kept at 850°C for 60 minutes to obtain a calcined product.
⑤ 将步骤(1)④得到的煅烧产物中的氧化钙用1mol/L的盐酸溶液去除,再用去离子水洗至中性,干燥后得到的产物即为分级孔碳。 ⑤ Remove the calcium oxide in the calcined product obtained in step (1) ④ with 1mol/L hydrochloric acid solution, then wash with deionized water until neutral, and the product obtained after drying is hierarchical porous carbon.
(2)制备复合材料 (2) Preparation of composite materials
① 将1g步骤(1)得到的分级孔碳抽真空2小时。 ① Vacuumize 1g of the hierarchical porous carbon obtained in step (1) for 2 hours.
② 在真空状态下加入溶有0.75g 2,5-二巯基-1,3,4-噻二唑的200mL异丙醇溶液和溶有0.47g苯胺的100mL 0.5mol/L高氯酸溶液,搅拌24小时;在搅拌状态下将50mL溶有1.82g过硫酸铵的1mol/L高氯酸溶液加入到上述溶液中,在60℃下搅拌反应48小时。 ② Add 200mL isopropanol solution containing 0.75g of 2,5-dimercapto-1,3,4-thiadiazole and 100mL of 0.5mol/L perchloric acid solution containing 0.47g of aniline under vacuum, and stir 24 hours; 50 mL of 1 mol/L perchloric acid solution dissolved with 1.82 g of ammonium persulfate was added to the above solution under stirring, and stirred and reacted at 60° C. for 48 hours.
③ 将产物进行过滤,用去离子水和乙醇洗涤,再经干燥后得到目标产物——分级孔碳/2,5-二巯基-1,3,4-噻二唑/聚苯胺复合材料。 ③ The product was filtered, washed with deionized water and ethanol, and then dried to obtain the target product—hierarchical porous carbon/2,5-dimercapto-1,3,4-thiadiazole/polyaniline composite material.
实施例5 Example 5
一种分级孔碳/聚有机多硫化物/聚苯胺复合材料的制备方法,包括以下步骤: A preparation method of hierarchical porous carbon/polyorganopolysulfide/polyaniline composite material, comprising the following steps:
(1)制备分级孔碳 (1) Preparation of hierarchical porous carbon
(同实施例的步骤内容)。 (the same as the step content of the embodiment).
(2)制备复合材料 (2) Preparation of composite materials
① 将0.5g步骤(1)得到的分级孔碳抽真空2小时。 ① Vacuumize 0.5g of the hierarchical porous carbon obtained in step (1) for 2 hours.
② 在真空状态下加入溶有0.9g 2,5-二巯基-1,3,4-噻二唑的200mL乙醇溶液和溶有1.16g苯胺的100mL 2mol/L高氯酸溶液,搅拌12小时;在搅拌状态下将50mL溶有4.1g过硫酸铵的2mol/L高氯酸溶液加入到上述溶液中,在60℃下搅拌反应36小时。 ② Add 0.9g of 2,5-dimercapto-1,3,4-thiadiazole in 200mL ethanol solution and 1.16g of aniline in 100mL 2mol/L perchloric acid solution under vacuum, and stir for 12 hours; 50 mL of 2 mol/L perchloric acid solution dissolved with 4.1 g of ammonium persulfate was added to the above solution under stirring state, and stirred and reacted at 60° C. for 36 hours.
③ 将产物进行过滤,用去离子水和乙醇洗涤,再经干燥后得到目标产物——分级孔碳/2,5-二巯基-1,3,4-噻二唑/聚苯胺复合材料。 ③ The product was filtered, washed with deionized water and ethanol, and dried to obtain the target product—hierarchical porous carbon/2,5-dimercapto-1,3,4-thiadiazole/polyaniline composite material.
实施例6Example 6
一种分级孔碳/聚有机多硫化物/聚苯胺复合材料的制备方法,包括以下步骤: A preparation method of hierarchical porous carbon/polyorganopolysulfide/polyaniline composite material, comprising the following steps:
(1)制备分级孔碳 (1) Preparation of hierarchical porous carbon
(同实施例的步骤内容)。 (the same as the step content of the embodiment).
(2)制备复合材料 (2) Preparation of composite materials
① 将0.5g步骤(1)得到的分级孔碳抽真空1小时。 ① Vacuumize 0.5g of the hierarchical porous carbon obtained in step (1) for 1 hour.
② 在真空状态下加入溶有0.30g 2,5-二巯基-1,3,4-噻二唑的200mL异丙醇溶液和溶有0.37g苯胺的100mL 1mol/L盐酸溶液,搅拌12小时;在搅拌状态下将50mL溶有1.37g过硫酸铵的1mol/L盐酸溶液加入到上述溶液中,在30℃下搅拌反应12小时。 ② Add 0.30g of 2,5-dimercapto-1,3,4-thiadiazole in 200mL of isopropanol solution and 0.37g of aniline in 100mL of 1mol/L hydrochloric acid solution under vacuum, and stir for 12 hours; 50 mL of 1 mol/L hydrochloric acid solution dissolved with 1.37 g of ammonium persulfate was added to the above solution under stirring state, and stirred and reacted at 30° C. for 12 hours.
③ 将产物进行过滤,用去离子水和乙醇洗涤,再经干燥后得到目标产物——分级孔碳/2,5-二巯基-1,3,4-噻二唑/聚苯胺复合材料。 ③ The product was filtered, washed with deionized water and ethanol, and dried to obtain the target product—hierarchical porous carbon/2,5-dimercapto-1,3,4-thiadiazole/polyaniline composite material.
采用本发明的方法获得的分级孔碳/聚有机多硫化物/聚苯胺复合材料可用作二次锂电池的正极材料,该电极与金属锂组装成电池后,对其电化学性能的测试如下: The hierarchical porous carbon/polyorganic polysulfide/polyaniline composite material obtained by the method of the present invention can be used as the positive electrode material of a secondary lithium battery. After the electrode is assembled into a battery with metal lithium, the electrochemical performance is tested as follows :
(1)复合电极的制备:分别以分级孔碳/聚有机多硫化物/聚苯胺导电复合材料和聚有机多硫化物为活性材料,将所述活性材料与导电碳黑及聚偏氟乙烯粘结剂按质量比80:10:10的比例混合,将上述混合物调匀后涂覆在铝箔上,然后置于70℃真空下干燥48小时,得到复合电极。 (1) Preparation of composite electrodes: using hierarchical porous carbon/polyorganopolysulfide/polyaniline conductive composite material and polyorganopolysulfide as active materials, the active materials were bonded with conductive carbon black and polyvinylidene fluoride. The binder was mixed in a mass ratio of 80:10:10, the above mixture was evenly mixed, coated on an aluminum foil, and then dried under vacuum at 70°C for 48 hours to obtain a composite electrode.
(2)电池组装:用上述方法制备的复合电极为正极,以金属锂片为负极,以聚乙烯多孔膜为隔膜,以1mol/L六氟磷锂溶液(为碳酸二甲酯、碳酸乙酯与碳酸甲乙酯的体积比为1∶1∶1的溶液)为电解液,在氩气气氛手套箱内组装纽扣电池。 (2) Battery assembly: the composite electrode prepared by the above method is used as the positive electrode, the metal lithium sheet is used as the negative electrode, the polyethylene porous film is used as the diaphragm, and the 1mol/L lithium hexafluorophosphorus solution (dimethyl carbonate, ethyl carbonate, etc.) A solution with a volume ratio of 1:1:1 to ethyl methyl carbonate) was used as the electrolyte, and a button cell was assembled in an argon atmosphere glove box.
(3)电池性能测试:所述纽扣电池在20mA/g的电流密度下进行充放电测试,充放电电压范围为1.8~3.8V。 (3) Battery performance test: the button battery was charged and discharged at a current density of 20mA/g, and the charge and discharge voltage range was 1.8-3.8V.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210371264.9A CN102916188B (en) | 2012-09-29 | 2012-09-29 | Preparation method of hierarchical porous carbon/organo polysulfide/polyaniline composite material |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210371264.9A CN102916188B (en) | 2012-09-29 | 2012-09-29 | Preparation method of hierarchical porous carbon/organo polysulfide/polyaniline composite material |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102916188A CN102916188A (en) | 2013-02-06 |
| CN102916188B true CN102916188B (en) | 2015-04-15 |
Family
ID=47614485
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210371264.9A Expired - Fee Related CN102916188B (en) | 2012-09-29 | 2012-09-29 | Preparation method of hierarchical porous carbon/organo polysulfide/polyaniline composite material |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102916188B (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104409705A (en) * | 2014-12-20 | 2015-03-11 | 宫香娥 | Preparation method of carbon-coated germanium-doped lithium manganate composite cathode material |
| CN110247034B (en) * | 2019-05-29 | 2020-12-22 | 嘉兴学院 | Organic sulfur electrode material and preparation method thereof |
| WO2024180819A1 (en) * | 2023-03-01 | 2024-09-06 | 国立大学法人東北大学 | Composite material for electrode, electric power storage device, and method for manufacturing composite material for electrode |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101585527A (en) * | 2008-05-23 | 2009-11-25 | 中国人民解放军63971部队 | In a kind of being rich in, the charcoal preparation methods of macropore |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100399053B1 (en) * | 2000-12-14 | 2003-09-26 | 한국전자통신연구원 | Organic-inorganic composite as positive electrode for rechargeable lithium battery and the preparation thereof |
-
2012
- 2012-09-29 CN CN201210371264.9A patent/CN102916188B/en not_active Expired - Fee Related
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101585527A (en) * | 2008-05-23 | 2009-11-25 | 中国人民解放军63971部队 | In a kind of being rich in, the charcoal preparation methods of macropore |
Non-Patent Citations (2)
| Title |
|---|
| Dimercaptan-polyaniline composite electrodes for lithium batteries with high energy density;N. Oyama等;《nature》;19950216;第373卷;第598-600页 * |
| 磺化碳纳米管改性聚苯胺复合材料的合成与超级电容特性;孙敏强等;《高分子学报》;20110630(第6期);第639-644页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102916188A (en) | 2013-02-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104157860B (en) | sodium-selenium cell and preparation method thereof | |
| CN111403658A (en) | A kind of preparation method of separator with electrocatalytic function and its application in lithium-sulfur battery | |
| CN107256956A (en) | A kind of nitrogen-doped carbon cladding vanadium nitride electrode material and preparation method and application | |
| CN103579590A (en) | Preparation method for coating anode material of lithium battery | |
| CN103199224B (en) | The preparation method of a kind of lithium sulfur battery anode material and using method thereof | |
| CN101728534A (en) | Method for preparing poly organic polysulfide/sulfonated graphene conductive composite material | |
| CN103178246A (en) | Selenium-mesoporous carrier compound, as well as preparation method and application thereof | |
| JP2017528401A (en) | Applications of tungsten-containing materials | |
| CN106356555B (en) | The preparation method of the sulphur composite positive pole of the dual modification of carbon nano tube/conducting polymer | |
| CN103474658B (en) | Flexible lithium ion secondary battery negative pole of a kind of lithium niobate composite carbon nanometer tube and preparation method thereof and application | |
| CN103280586A (en) | High-energy-density Li-air battery air electrode, and battery and making method thereof | |
| CN112952047B (en) | A kind of preparation method of carbon-supported potassium vanadate and its application in potassium ion battery | |
| CN108172406A (en) | A kind of sodium ion capacitor using FeS2-xSex material as negative electrode material | |
| CN115050938A (en) | Preparation method of heteroatom-doped hollow carbon material and application of heteroatom-doped hollow carbon material in lithium-sulfur battery | |
| CN111943259B (en) | A carbon-coated mesoporous dual-phase titanium dioxide and its preparation method and energy storage application | |
| CN107978741A (en) | A kind of preparation method of lithium-sulfur cell anode composite material | |
| CN111320761B (en) | A kind of metal organic framework nanocomposite material and its preparation method and application | |
| CN107732171A (en) | One-dimensional porous carbon coating manganese monoxide combination electrode material and preparation method | |
| CN113871792A (en) | Folded molybdenum disulfide composite diaphragm for lithium-sulfur battery and preparation method thereof | |
| CN102916188B (en) | Preparation method of hierarchical porous carbon/organo polysulfide/polyaniline composite material | |
| CN111192997A (en) | Separator for activated carbon-supported tin oxide lithium-sulfur battery and its preparation method and application | |
| CN114335471A (en) | A kind of preparation method of manganese oxide composite material for aqueous zinc ion battery | |
| CN111092206B (en) | CeO (CeO) 2 Preparation method of lithium-sulfur battery made of TpBD/S material | |
| CN107425199B (en) | Conductive lithium-conducting dual-functional graphene oxide material, preparation method thereof and application of conductive lithium-conducting dual-functional graphene oxide material in lithium-sulfur or lithium-air battery | |
| CN114664570B (en) | Preparation method of nitrogen, phosphorus and sulfur co-doped biomass-based porous carbon for zinc ion hybrid capacitor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150415 Termination date: 20180929 |