[go: up one dir, main page]

CN102931585A - External-cavity-beam-combination semiconductor laser fiber coupling module - Google Patents

External-cavity-beam-combination semiconductor laser fiber coupling module Download PDF

Info

Publication number
CN102931585A
CN102931585A CN2012104274406A CN201210427440A CN102931585A CN 102931585 A CN102931585 A CN 102931585A CN 2012104274406 A CN2012104274406 A CN 2012104274406A CN 201210427440 A CN201210427440 A CN 201210427440A CN 102931585 A CN102931585 A CN 102931585A
Authority
CN
China
Prior art keywords
external cavity
semiconductor laser
coupling module
diffraction grating
fiber coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012104274406A
Other languages
Chinese (zh)
Inventor
朱洪波
郝明明
秦莉
张志军
王立军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN2012104274406A priority Critical patent/CN102931585A/en
Publication of CN102931585A publication Critical patent/CN102931585A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

本发明涉及一种外腔合束半导体激光光纤耦合模块,包括多个同一波长的单管半导体激光器;每个所述单管半导体激光器固定在弧形热沉上;多个单管半导体激光器发出的多路光束经过不同倾角入射到衍射光栅上,光斑在衍射光栅上发生重叠,通过衍射光栅的分光作用和外腔镜的反馈作用下,每只单管半导体激光器发出的光束在由激光器的后腔面和外腔镜构成的谐振腔内实现外腔反馈和波长锁定,并由衍射光栅将多路光束合成一束从而实现外腔合束,最后通过聚焦镜耦合进入多模光纤。本发明将多只单管半导体激光器发出的光束进行合束并以单只激光器的光束质量输出,可以实现光纤耦合模块的细芯径、大功率、高光束质量激光输出。

Figure 201210427440

The invention relates to an external cavity combined semiconductor laser fiber coupling module, which includes a plurality of single-tube semiconductor lasers of the same wavelength; each of the single-tube semiconductor lasers is fixed on an arc-shaped heat sink; Multiple beams are incident on the diffraction grating through different inclination angles, and the spots overlap on the diffraction grating. Under the light splitting effect of the diffraction grating and the feedback of the external cavity mirror, the beam emitted by each single-tube semiconductor laser is transmitted by the back cavity of the laser. The external cavity feedback and wavelength locking are realized in the resonant cavity formed by the external cavity surface and the external cavity mirror, and the multi-path beams are combined into one beam by the diffraction grating to realize the external cavity beam combination, and finally coupled into the multimode fiber through the focusing mirror. The invention combines the beams emitted by multiple single-tube semiconductor lasers and outputs them with the beam quality of a single laser, and can realize the laser output with fine core diameter, high power and high beam quality of the fiber coupling module.

Figure 201210427440

Description

一种外腔合束半导体激光光纤耦合模块A semiconductor laser fiber coupling module for external cavity beam combining

技术领域 technical field

本发明涉及单管半导体激光器技术领域,特别涉及一种外腔合束半导体激光光纤耦合模块。The invention relates to the technical field of single-tube semiconductor lasers, in particular to an external cavity combining semiconductor laser fiber coupling module.

背景技术 Background technique

由于单管半导体激光器具有高光束质量,散热特性好,寿命长等优点,因此采用单管合束技术制成的光纤耦合模块在激光医疗、光纤激光器泵浦、激光监控、激光加工等方面都有着广泛的应用。但是近年来随着半导体激光器技术应用的发展,实际应用中对光纤耦合模块的输出功率和光束质量都有了更高的要求。国际上大多数对单管半导体激光器合束都采用传统的空间合束的方法,由于空间合束只是使光束在空间上将多个一维或者二维阵列以边对边形式紧密叠加起来,增加功率的同时也使光束质量变差。这里将多个单管半导体激光器通过弧形的排列,利用衍射光栅实现外腔合束,并以单只激光器的光束质量输出,光束质量相对于普通的空间合束制成的光纤耦合模块有大幅度的提高。Because the single-tube semiconductor laser has the advantages of high beam quality, good heat dissipation, and long life, the fiber-coupled module made of single-tube beam combining technology has great advantages in laser medical treatment, fiber laser pumping, laser monitoring, and laser processing. Wide range of applications. However, with the development of semiconductor laser technology application in recent years, there are higher requirements for the output power and beam quality of fiber-coupled modules in practical applications. Most of the beam combining of single-tube semiconductor lasers in the world adopts the traditional spatial beam combining method, because the spatial beam combining is only to make the beams closely superimpose multiple one-dimensional or two-dimensional arrays side-to-side in space, increasing the The power also degrades the beam quality. Here, multiple single-tube semiconductor lasers are arranged in an arc, and the diffraction grating is used to realize beam combining in the external cavity, and the beam quality of a single laser is output. Compared with the fiber coupling module made of ordinary space beam combining, the beam quality is much better increase in magnitude.

图4是一种采用空间合束方法进行单管合束的光纤耦合模块的示意图,这是现在国际上主要的单管合束技术(100 W / 100 μm passively cooled, fiber coupled diode laser at 976 nm based on multiple 100 μm single emitters,Marcel Werner, Christian Wessling, Stefan Hengesbach, Proc. of SPIE Vol. 7198 71980P-1)。图4所示的装置是将多个单管半导体激光器11固定在阶梯形金属热沉12的每一个台阶上,每一个阶梯台阶形状都一致。每个激光器发出的光通过快轴准直镜13和慢轴准直镜14进行光束准直,然后通过反射镜15使光束反射,所有激光器发出的光反射后在快轴方向进行空间合束,然后通过聚焦镜16进行聚焦。合束后的光斑如图5所示,这种空间合束的方法是在功率增大的同时也使得整个合束的光斑变大,光束质量变差,难以获得高光束质量的激光输出。Figure 4 is a schematic diagram of a fiber-coupled module that uses a spatial beam combining method for single-tube beam combining, which is currently the main single-tube beam combining technology in the world (100 W / 100 μm passively cooled, fiber coupled diode laser at 976 nm based on multiple 100 μm single emitters, Marcel Werner, Christian Wessling, Stefan Hengesbach, Proc. of SPIE Vol. 7198 71980P-1). The device shown in FIG. 4 fixes a plurality of single-tube semiconductor lasers 11 on each step of a stepped metal heat sink 12 , and each step has the same shape. The light emitted by each laser is collimated by the fast-axis collimating mirror 13 and the slow-axis collimating mirror 14, and then the beam is reflected by the reflector 15, and the light emitted by all lasers is reflected in the fast-axis direction for spatial beam combining. Focusing is then performed by a focusing mirror 16 . The beam spot after beam combining is shown in Figure 5. This method of spatial beam combining increases the power and at the same time increases the spot size of the entire beam, deteriorating the beam quality and making it difficult to obtain laser output with high beam quality.

发明内容 Contents of the invention

为了解决现有单管半导体激光器合束技术中的合束模块输出亮度低,光束质量差等问题,本发明提供一种可以实现高亮度、高光束质量输出的外腔合束半导体激光光纤耦合模块。In order to solve the problems of low output brightness and poor beam quality of the beam combining module in the existing single-tube semiconductor laser beam combining technology, the present invention provides an external cavity beam combining semiconductor laser fiber coupling module that can achieve high brightness and high beam quality output .

为了解决上述技术问题,本发明的技术方案具体如下:In order to solve the problems of the technologies described above, the technical solution of the present invention is specifically as follows:

一种外腔合束半导体激光光纤耦合模块,包括多个同一波长的单管半导体激光器;每个所述单管半导体激光器固定在过渡热沉上,所述过渡热沉固定在弧形热沉上;多个单管半导体激光器发出的多条光束经过不同倾角入射到衍射光栅上,光斑在衍射光栅上发生重叠,然后以相同的衍射角衍射至外腔镜;多条光束被外腔镜反馈后沿原光路返回,使每个单管半导体激光器收到自身的输出反馈;经过输出反馈的多列光束经过衍射光栅后合成为一束,通过聚焦镜耦合进入多模光纤。An external cavity combined semiconductor laser fiber coupling module, including a plurality of single-tube semiconductor lasers of the same wavelength; each of the single-tube semiconductor lasers is fixed on a transitional heat sink, and the transitional heat sink is fixed on an arc-shaped heat sink ; Multiple beams emitted by multiple single-tube semiconductor lasers are incident on the diffraction grating through different inclination angles, and the spots overlap on the diffraction grating, and then diffracted to the external cavity mirror at the same diffraction angle; after the multiple beams are fed back by the external cavity mirror Return along the original optical path, so that each single-tube semiconductor laser receives its own output feedback; the multi-column beams after the output feedback are combined into one beam after passing through the diffraction grating, and coupled into the multimode fiber through the focusing mirror.

在上述技术方案中,每个所述的单管半导体激光器(2)前腔面镀有透过率在99%以上的增透膜。In the above technical solution, the front cavity surface of each single-tube semiconductor laser (2) is coated with an anti-reflection film with a transmittance above 99%.

在上述技术方案中,每个所述单管半导体激光器前还分别安装有用来减小激光器快慢轴发散角的快轴准直镜和慢轴准直镜;所述快轴准直镜为柱面微透镜或球面微透镜;所述慢轴准直镜为柱面微透镜或球面微透镜。In the above technical solution, a fast-axis collimator and a slow-axis collimator for reducing the divergence angle of the fast and slow axes of the laser are respectively installed in front of each single-tube semiconductor laser; the fast-axis collimator is a cylinder A microlens or a spherical microlens; the slow axis collimator is a cylindrical microlens or a spherical microlens.

在上述技术方案中,所述弧形热沉上的所述单管半导体激光器的数目为至少两个。In the above technical solution, the number of the single-tube semiconductor lasers on the arc-shaped heat sink is at least two.

在上述技术方案中,所述衍射光栅为透射型衍射光栅或者反射型衍射光栅。In the above technical solution, the diffraction grating is a transmission type diffraction grating or a reflection type diffraction grating.

在上述技术方案中,所述外腔镜为具有一定反射率的平行平板,反射率值从1%到50%。In the above technical solution, the external cavity mirror is a parallel flat plate with a certain reflectivity, and the reflectivity value is from 1% to 50%.

在上述技术方案中,所述外腔镜的摆放方向与衍射光束的方向严格垂直。In the above technical solution, the placement direction of the external cavity mirror is strictly perpendicular to the direction of the diffracted light beam.

在上述技术方案中,所述聚焦镜为球面透镜、非球面透镜或者两个分离的柱面镜。In the above technical solution, the focusing mirror is a spherical lens, an aspherical lens or two separate cylindrical mirrors.

在上述技术方案中,所述单管半导体激光器的波长从400nm~2000nm。In the above technical solution, the wavelength of the single-tube semiconductor laser is from 400nm to 2000nm.

在上述技术方案中,所述多模光纤纤芯直径范围为50μm~600μm,数值孔径范围为0.1到0.3,光功率输出为1W~200W。In the above technical solution, the core diameter of the multimode optical fiber ranges from 50 μm to 600 μm, the numerical aperture ranges from 0.1 to 0.3, and the optical power output ranges from 1W to 200W.

本发明的外腔合束半导体激光光纤耦合模块具有以下的优点:The external cavity beam combining semiconductor laser fiber coupling module of the present invention has the following advantages:

本发明的外腔合束半导体激光光纤耦合模块,在单管合束中使用了衍射光栅,通过衍射光栅的分光作用和外腔镜的反馈作用下,每只单管半导体激光器发出的光束在由激光器的后腔面和外腔镜构成的谐振腔内实现外腔反馈和波长锁定,并由衍射光栅将多路光束合成一束从而实现外腔合束,最后通过聚焦镜耦合进入多模光纤。The external cavity beam combining semiconductor laser fiber coupling module of the present invention uses a diffraction grating in the single tube beam combining, and under the light splitting effect of the diffraction grating and the feedback of the external cavity mirror, the beam emitted by each single tube semiconductor laser is generated by The external cavity feedback and wavelength locking are realized in the resonant cavity formed by the rear cavity surface of the laser and the external cavity mirror, and the multi-path beams are combined into one beam by the diffraction grating to realize the external cavity beam combination, and finally coupled into the multimode fiber through the focusing mirror.

这种方法可以将多只单管半导体激光器发出的光束进行合束并以单只激光器的光束质量输出,可以实现光纤耦合模块的细芯径、大功率、高光束质量激光输出。This method can combine the beams emitted by multiple single-tube semiconductor lasers and output them with the beam quality of a single laser, and can realize the fine-core diameter, high-power, and high-beam quality laser output of the fiber-coupled module.

本发明的外腔合束半导体激光光纤耦合模块结构中,激光器的数量可根据需要的激光总功率和单个激光器的功率、机械尺寸、散热条件确定,十分灵活。其激光器的上限取决于激光器的增益谱宽和衍射光栅的衍射能力以及衍射光栅的损伤阈值。In the structure of the external cavity combined semiconductor laser fiber coupling module of the present invention, the number of lasers can be determined according to the total laser power required and the power, mechanical size, and heat dissipation conditions of a single laser, which is very flexible. The upper limit of the laser depends on the gain spectral width of the laser, the diffraction ability of the diffraction grating and the damage threshold of the diffraction grating.

附图说明 Description of drawings

图1是本发明的外腔合束半导体激光光纤耦合模块一种具体实施方式的结构示意图,其衍射光栅为反射型衍射光栅;Fig. 1 is a structural schematic diagram of a specific embodiment of the external cavity beam combining semiconductor laser fiber coupling module of the present invention, and its diffraction grating is a reflective diffraction grating;

图2是本发明的外腔合束半导体激光光纤耦合模块另外一种具体实施方式的结构示意图,其衍射光栅为透射型衍射光栅;Fig. 2 is a structural schematic diagram of another specific embodiment of the external cavity beam combining semiconductor laser fiber coupling module of the present invention, and its diffraction grating is a transmission type diffraction grating;

图3是本发明的图1所示具体实施方式中,通过衍射光栅合束后的光斑示意图;Fig. 3 is a schematic diagram of the light spot after combining beams through a diffraction grating in the specific embodiment shown in Fig. 1 of the present invention;

图4是以现有的空间合束技术实现的外腔合束半导体激光光纤耦合模块示意图;Fig. 4 is a schematic diagram of an external cavity beam combining semiconductor laser fiber coupling module realized by existing spatial beam combining technology;

图5是以现有的空间合束技术实现的外腔合束半导体激光光纤耦合模块合束后的光斑置示意图。Fig. 5 is a schematic diagram of spot placement after beam combining of the external cavity beam combining semiconductor laser fiber coupling module realized by the existing spatial beam combining technology.

具体实施方式 Detailed ways

本发明的发明思想为:一种半导体激光器单管合束光纤耦合模块,包括多个同一波长的单管半导体激光器;每个所述单管半导体激光器固定在过渡热沉上,所述过渡热沉固定在弧形热沉上;多个单管半导体激光器发出的多条光束经过不同倾角入射到衍射光栅上,光斑在衍射光栅上发生重叠,然后以相同的衍射角衍射至外腔镜;多条光束被外腔镜反馈后沿原光路返回,使每个单管半导体激光器收到自身的输出反馈;经过输出反馈的多条光束经过衍射光栅后合成为一束,通过聚焦镜耦合进入多模光纤。每个所述单管半导体激光器前还分别安装有用来减小激光器快慢轴的发散角的快轴准直镜和慢轴准直镜。The inventive idea of the present invention is: a semiconductor laser single-tube beam-combining fiber coupling module, including a plurality of single-tube semiconductor lasers of the same wavelength; each of the single-tube semiconductor lasers is fixed on a transitional heat sink, and the transitional heat sink Fixed on the arc-shaped heat sink; multiple beams emitted by multiple single-tube semiconductor lasers are incident on the diffraction grating through different inclination angles, and the light spots overlap on the diffraction grating, and then diffract to the external cavity mirror at the same diffraction angle; multiple beams The beam is fed back by the external cavity mirror and returns along the original optical path, so that each single-tube semiconductor laser receives its own output feedback; multiple beams after the output feedback pass through the diffraction grating and then synthesize into one beam, which is coupled into the multimode fiber through the focusing mirror . A fast-axis collimating mirror and a slow-axis collimating mirror for reducing the divergence angle of the fast and slow axes of the laser are respectively installed in front of each single-tube semiconductor laser.

本发明的外腔合束半导体激光光纤耦合模块,所使用的单管激光器前腔面镀有增透膜,透过率在99%以上,单管激光器焊接在过渡热沉上,过渡热沉通过固定螺钉与弧形热沉固定,所有激光器呈弧形排放,且在同一平面上。所有单管半导体激光器发出的光通过快轴准直镜、慢轴准直镜后,具有很小的发散角,每路光束各自以一定的倾角入射到衍射光栅上,并且每束光斑在衍射光栅上发生叠加,叠加后的光斑与一束光的光斑相同。半导体激光器的光谱较宽,通常可以达到2~3nmFWHM。逆用光栅的分光作用和波长选择作用,将激光器发出的光束中波长与其对应的入射角满足光栅方程的光以相同的角度衍射至外腔镜,由于外腔镜的部分反馈作用并且根据光路可逆原理,垂直入射到外腔镜上的这部分光束将再次经衍射光栅按原光路回到各自的激光器腔内,这样每个激光器将收到自己单元的输出反馈并将在由激光器的后端面与外腔镜构成的新谐振腔内进行振荡,每只激光器反馈回来的波长依次呈线性变化。根据半导体激光器的模式竞争理论,反馈的作用迫使每只激光器激发出与注入反馈相同波长的激光输出。这样每只激光器都激发出波长略微不同的光束并入射到衍射光栅上,此时每束光的波长和各自的入射角都满足光栅方程,衍射光栅可以将这些波长和入射角不同的光束以相同衍射角合成一束并通过外腔镜输出实现外腔合束,最后通过聚焦镜耦合进多模光纤。In the external cavity combining semiconductor laser fiber coupling module of the present invention, the front cavity surface of the single-tube laser used is coated with an anti-reflection film, and the transmittance is above 99%. The single-tube laser is welded on the transitional heat sink, and the transitional heat sink passes through the The fixing screw is fixed with the arc-shaped heat sink, and all the lasers are emitted in an arc and are on the same plane. The light emitted by all single-tube semiconductor lasers has a small divergence angle after passing through the fast-axis collimator mirror and the slow-axis collimator mirror. Each beam is incident on the diffraction grating at a certain inclination angle, and each beam spot Superposition occurs on , and the superimposed spot is the same as that of a beam of light. Semiconductor lasers have a wide spectrum, usually up to 2-3nmFWHM. Reversing the spectroscopic function and wavelength selection function of the grating, the wavelength of the beam emitted by the laser and the light whose corresponding incident angle satisfies the grating equation are diffracted to the external cavity mirror at the same angle. Due to the partial feedback of the external cavity mirror and the reversibility according to the optical path Principle, this part of the light beam vertically incident on the external cavity mirror will return to the respective laser cavity through the diffraction grating according to the original optical path, so that each laser will receive the output feedback of its own unit and will be connected by the rear end face of the laser. Oscillation is carried out in the new resonant cavity formed by the external cavity mirror, and the wavelength fed back by each laser changes linearly in turn. According to the mode competition theory of semiconductor lasers, the effect of feedback forces each laser to excite laser output with the same wavelength as the injected feedback. In this way, each laser excites light beams with slightly different wavelengths and is incident on the diffraction grating. At this time, the wavelength of each beam and its respective incident angle satisfy the grating equation. The diffraction grating can convert these light beams with different wavelengths and incident angles into the same The diffraction angles are combined into one beam and output through the external cavity mirror to realize the external cavity beam combination, and finally coupled into the multimode fiber through the focusing mirror.

以下结合附图给出的实施例对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the embodiment given with accompanying drawing.

图1和3显示了本发明的外腔合束半导体激光光纤耦合模块的一种具体实施方式。参照图1,本发明的外腔合束半导体激光光纤耦合模块,其中包括过渡热沉1、同一波长的多个单管半导体激光器2、弧形热沉3、固定螺钉4、快轴准直镜5、慢轴准直镜6、衍射光栅7、外腔镜8、聚焦镜9、多模光纤10。1 and 3 show a specific embodiment of the external cavity beam combining semiconductor laser fiber coupling module of the present invention. Referring to Fig. 1, the external cavity beam combining semiconductor laser fiber coupling module of the present invention includes a transitional heat sink 1, multiple single-tube semiconductor lasers 2 of the same wavelength, an arc heat sink 3, fixing screws 4, and a fast axis collimator 5. Slow axis collimating mirror 6, diffraction grating 7, external cavity mirror 8, focusing mirror 9, multimode optical fiber 10.

本发明中所使用的激光器为带有AlN陶瓷片子模块封装的单管半导体激光器2,单管半导体激光器2可以通过焊接固定在过渡热沉1上,过渡热沉1可以通过固定螺钉4固定在弧形热沉3上,过渡热沉2和弧形热沉3都应采用高热导率的金属,例如无氧铜;当然,在其他的具体实施方式中,也可以将激光器直接烧结在弧形热沉3上。所有单管半导体激光器2按图1中示意呈弧形排放且在同一平面上,即多个单管半导体激光器2等间距安放,并且相邻的两个单管半导体激光器2的夹角相同的放在同一平面上。由于激光器的子模块为AlN材料,所以无论采用串联方式还是并联方式,都可以不采取绝缘措施。The laser used in the present invention is a single-tube semiconductor laser 2 with an AlN ceramic chip module package. The single-tube semiconductor laser 2 can be fixed on the transitional heat sink 1 by welding, and the transitional heat sink 1 can be fixed on the arc by the fixing screw 4. On the heat sink 3, both the transition heat sink 2 and the arc heat sink 3 should be made of metal with high thermal conductivity, such as oxygen-free copper; of course, in other specific embodiments, the laser can also be directly sintered on the arc heat Shen 3 on. All single-tube semiconductor lasers 2 are arranged in an arc and on the same plane as shown in Fig. on the same plane. Since the sub-module of the laser is made of AlN material, it is not necessary to take insulation measures no matter whether it is connected in series or in parallel.

本发明的外腔合束半导体激光光纤耦合模块,通过六轴精密调整架和紫外胶,将快轴准直镜5安装到每一个激光器2的腔面前,使快轴方向的光束得到准直。慢轴准直镜6下面可以由机械镜座支撑,用紫外胶将慢轴准直镜6和机械镜座进行胶合固定。在快轴准直镜5和慢轴准直镜6装调过程中,需要检查所有激光器的远场光斑位置在衍射光栅的预定位置平面上是否重叠。The external cavity beam combining semiconductor laser fiber coupling module of the present invention installs the fast axis collimating mirror 5 in front of the cavity of each laser 2 through a six-axis precision adjustment frame and ultraviolet glue, so that the beam in the fast axis direction is collimated. The bottom of the slow-axis collimating mirror 6 can be supported by a mechanical mirror base, and the slow-axis collimating mirror 6 and the mechanical mirror base are glued and fixed with ultraviolet glue. During the assembly process of the fast-axis collimating mirror 5 and the slow-axis collimating mirror 6, it is necessary to check whether the far-field spot positions of all lasers overlap on the predetermined position plane of the diffraction grating.

本发明的外腔合束半导体激光光纤耦合模块,衍射光栅7是在基底材料上进行光刻镀膜制成的,透射光栅的基底材料为微晶玻璃,反射光栅的基底材料为金属。通过六轴调整架和适当的夹具夹住衍射光栅7进行调整,将衍射光栅7放置在光斑重叠位置处,调整好后用紫外胶或者机械方法进行固定。In the external cavity combined semiconductor laser fiber coupling module of the present invention, the diffraction grating 7 is made of photolithographic coating on the base material, the base material of the transmission grating is glass ceramics, and the base material of the reflection grating is metal. The diffraction grating 7 is adjusted by clamping the diffraction grating 7 with a six-axis adjustment frame and an appropriate fixture, and the diffraction grating 7 is placed at the overlapping position of the light spots, and fixed with ultraviolet glue or mechanical methods after adjustment.

本发明的外腔合束半导体激光光纤耦合模块,外腔镜8是一个平行平板,反射率值从1%到50%。外腔镜8的基底材料为光学玻璃,一边镀有增透膜,一边镀有半透半反膜,将半透半反膜方向对着衍射光栅7从而实现光反馈。通过六轴调整架和适当的夹具夹住外腔镜8进行调整,使得外腔镜8的摆放方向与衍射光栅7的衍射方向严格垂直。再将聚焦镜9和多模光纤10安装在光路中,通过调整架对二者进行调整,直到获得最高的光纤输出功率,这样就完成了光路系统的调节。In the external cavity beam combining semiconductor laser fiber coupling module of the present invention, the external cavity mirror 8 is a parallel flat plate, and the reflectivity value is from 1% to 50%. The base material of the external cavity mirror 8 is optical glass, one side is coated with an anti-reflection film, and the other side is coated with a semi-transparent and semi-reflective film, and the direction of the semi-transparent and semi-reflective film faces the diffraction grating 7 to realize optical feedback. The external cavity mirror 8 is clamped by the six-axis adjustment frame and an appropriate fixture for adjustment, so that the placement direction of the external cavity mirror 8 is strictly perpendicular to the diffraction direction of the diffraction grating 7 . Then install the focusing mirror 9 and the multimode optical fiber 10 in the optical path, and adjust them through the adjustment frame until the highest output power of the optical fiber is obtained, thus completing the adjustment of the optical path system.

在本发明的外腔合束半导体激光光纤耦合模块中,可以采用芯径为50μm~600μm、数值孔径范围为0.1到0.3的多模光纤,激光波长从400nm~2000nm,通过选择不同的激光器数目2~若干个,可获得1W~200W的光功率输出。单管半导体激光器1可以是同一偏振态,也可以是不同偏振态。所述聚焦镜9还可以为球面透镜,所述快轴准直镜5和所述慢轴准直镜6均为柱面微透镜。当然在其他的具体实施方式中,所述聚焦镜9还可以为非球面透镜或者两个分离的柱面镜;所述快轴准直镜5和所述慢轴准直镜6还可以分别为球面微透镜。In the external cavity combined semiconductor laser fiber coupling module of the present invention, a multimode optical fiber with a core diameter of 50 μm to 600 μm and a numerical aperture range of 0.1 to 0.3 can be used, and the laser wavelength is from 400nm to 2000nm. By selecting different laser numbers 2 ~Several units can obtain optical power output from 1W to 200W. The single-tube semiconductor laser 1 can be in the same polarization state or in different polarization states. The focusing mirror 9 can also be a spherical lens, and the fast-axis collimating mirror 5 and the slow-axis collimating mirror 6 are cylindrical microlenses. Of course, in other specific embodiments, the focusing mirror 9 can also be an aspheric lens or two separate cylindrical mirrors; the fast axis collimating mirror 5 and the slow axis collimating mirror 6 can also be respectively spherical microlenses.

本发明的外腔合束半导体激光光纤耦合模块,在单管合束中使用了衍射光栅,衍射光栅将所有单管激光器发出的光以相同的衍射角衍射至外腔镜,由于外腔镜的部分反馈作用,光束将经衍射光栅后回到单管激光器腔内,由于光栅的波长选择作用,迫使每只激光器发出具有与注入反馈相同波长的激光,最后再次通过衍射光栅将这些光束合成为一束实现外腔合束,最后通过聚焦镜耦合进入多模光纤。这种方法可以将多只单管半导体激光器发出的光束进行合束并以单只激光器的光束质量输出,可以实现光纤耦合模块的细芯径、大功率、高光束质量激光输出。The semiconductor laser fiber coupling module for external cavity beam combining of the present invention uses a diffraction grating in the single-tube beam combining, and the diffraction grating diffracts the light emitted by all single-tube lasers to the external cavity mirror at the same diffraction angle. Partial feedback, the beam will return to the cavity of the single-tube laser after passing through the diffraction grating. Due to the wavelength selection effect of the grating, each laser is forced to emit laser light with the same wavelength as the injected feedback, and finally these beams are combined into a single laser beam through the diffraction grating again. The beams are combined in the external cavity, and finally coupled into the multimode fiber through the focusing mirror. This method can combine the beams emitted by multiple single-tube semiconductor lasers and output them with the beam quality of a single laser, and can realize the fine-core diameter, high-power, and high-beam quality laser output of the fiber-coupled module.

图2显示了本发明的外腔合束半导体激光光纤耦合模块的另外一种具体实施方式。与图1所示的具体实施方式不同的是,衍射光栅为透射型衍射光栅。本具体实施方式的外腔合束半导体激光光纤耦合模块的工作原理与图1所示的具体实施方式相同,故在此不再赘述。Fig. 2 shows another specific embodiment of the external cavity beam combining semiconductor laser fiber coupling module of the present invention. The difference from the specific embodiment shown in FIG. 1 is that the diffraction grating is a transmission type diffraction grating. The working principle of the external cavity beam-combining semiconductor laser fiber coupling module in this specific embodiment is the same as that in the specific embodiment shown in FIG. 1 , so it will not be repeated here.

显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Apparently, the above-mentioned embodiments are only examples for clear description, rather than limiting the implementation. For those of ordinary skill in the art, other changes or changes in different forms can be made on the basis of the above description. It is not necessary and impossible to exhaustively list all the implementation manners here. And the obvious changes or changes derived therefrom are still within the scope of protection of the present invention.

Claims (10)

1.一种外腔合束半导体激光光纤耦合模块,其特征在于,包括多个同一波长的单管半导体激光器(2);每个所述单管半导体激光器(2)固定在过渡热沉(1)上,所述过渡热沉(1)固定在弧形热沉(3)上;多个单管半导体激光器(2)发出的多条光束经过不同倾角入射到衍射光栅(7)上,光斑在衍射光栅(7)上发生重叠,然后以相同的衍射角衍射至外腔镜(8);多条光束被外腔镜(8)反馈后沿原光路返回,使每个单管半导体激光器(2)收到自身的输出反馈;经过输出反馈的多条光束经过衍射光栅(7)后合成为一束,通过聚焦镜(9)耦合进入多模光纤(10)。1. An external cavity combined semiconductor laser fiber coupling module, characterized in that it includes multiple single-tube semiconductor lasers (2) of the same wavelength; each of the single-tube semiconductor lasers (2) is fixed on a transitional heat sink (1 ), the transitional heat sink (1) is fixed on the arc-shaped heat sink (3); multiple beams emitted by multiple single-tube semiconductor lasers (2) are incident on the diffraction grating (7) through different inclination angles, and the light spots are in the The diffraction grating (7) overlaps, and then diffracts to the external cavity mirror (8) at the same diffraction angle; multiple beams are fed back by the external cavity mirror (8) and return along the original optical path, so that each single-tube semiconductor laser (2 ) receives its own output feedback; the multiple light beams that have passed the output feedback pass through the diffraction grating (7) and then combine into one beam, which is coupled into the multimode optical fiber (10) through the focusing lens (9). 2.根据权利要求1所述的外腔合束半导体激光光纤耦合模块,其特征在于,每个所述的单管半导体激光器(2)前腔面镀有透过率在99%以上的增透膜。2. The external-cavity beam-combining semiconductor laser fiber coupling module according to claim 1, characterized in that, the front cavity surface of each single-tube semiconductor laser (2) is coated with an anti-reflection film with a transmittance of more than 99%. membrane. 3.根据权利要求1所述的外腔合束半导体激光光纤耦合模块,其特征在于,每个所述单管半导体激光器(2)前还分别安装有用来减小激光器快慢轴发散角的快轴准直镜(5)和慢轴准直镜(6);所述快轴准直镜(5)为柱面微透镜或球面微透镜;所述慢轴准直镜(6)为柱面微透镜或球面微透镜。3. The external-cavity beam-combining semiconductor laser fiber coupling module according to claim 1, characterized in that, each of the single-tube semiconductor lasers (2) is equipped with a fast axis for reducing the divergence angle of the fast and slow axes of the laser. A collimating mirror (5) and a slow-axis collimating mirror (6); the fast-axis collimating mirror (5) is a cylindrical microlens or a spherical microlens; the slow-axis collimating mirror (6) is a cylindrical microlens lens or spherical microlens. 4.根据权利要求1-3任一所述的外腔合束半导体激光光纤耦合模块,其特征在于,所述弧形热沉(3)上的所述单管半导体激光器(2)的数目为至少两个。4. The external cavity beam combining semiconductor laser fiber coupling module according to any one of claims 1-3, characterized in that the number of the single-tube semiconductor lasers (2) on the arc-shaped heat sink (3) is at least two. 5.根据权利要求1-3任一所述的外腔合束半导体激光光纤耦合模块,其特征在于,所述衍射光栅(7)为透射型衍射光栅或者反射型衍射光栅。5. The external cavity beam combining semiconductor laser fiber coupling module according to any one of claims 1-3, characterized in that the diffraction grating (7) is a transmission type diffraction grating or a reflection type diffraction grating. 6.根据权利要求1-3任一所述的外腔合束半导体激光光纤耦合模块,其特征在于,所述外腔镜(8)为具有一定反射率的平行平板,反射率值从1%到50%。6. The external cavity beam combining semiconductor laser fiber coupling module according to any one of claims 1-3, characterized in that, the external cavity mirror (8) is a parallel plate with a certain reflectivity, and the reflectivity value ranges from 1% to to 50%. 7.根据权利要求6所述的外腔合束半导体激光光纤耦合模块,其特征在于,所述外腔镜(8)的摆放方向与衍射光束的方向严格垂直。7. The external cavity beam combining semiconductor laser fiber coupling module according to claim 6, characterized in that the placement direction of the external cavity mirror (8) is strictly perpendicular to the direction of the diffracted beam. 8.根据权利要求1-3任一所述的外腔合束半导体激光光纤耦合模块,其特征在于,所述聚焦镜(9)为球面透镜、非球面透镜或者两个分离的柱面镜。8. The external cavity beam combining semiconductor laser fiber coupling module according to any one of claims 1-3, characterized in that the focusing lens (9) is a spherical lens, an aspheric lens or two separate cylindrical lenses. 9.根据权利要求1-3任一所述的外腔合束半导体激光光纤耦合模块,其特征在于,所述单管半导体激光器(2)的波长从400nm~2000nm。9. The external cavity beam combining semiconductor laser fiber coupling module according to any one of claims 1-3, characterized in that the wavelength of the single-tube semiconductor laser (2) is from 400nm to 2000nm. 10.根据权利要求1-3任一所述的外腔合束半导体激光光纤耦合模块,其特征在于,所述多模光纤(10)纤芯直径范围为50μm~600μm,数值孔径范围为0.1到0.3,光功率输出为1W~200W。10. The external cavity beam combining semiconductor laser fiber coupling module according to any one of claims 1-3, characterized in that, the core diameter of the multimode fiber (10) ranges from 50 μm to 600 μm, and the numerical aperture ranges from 0.1 to 0.3, the optical power output is 1W~200W.
CN2012104274406A 2012-10-31 2012-10-31 External-cavity-beam-combination semiconductor laser fiber coupling module Pending CN102931585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012104274406A CN102931585A (en) 2012-10-31 2012-10-31 External-cavity-beam-combination semiconductor laser fiber coupling module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012104274406A CN102931585A (en) 2012-10-31 2012-10-31 External-cavity-beam-combination semiconductor laser fiber coupling module

Publications (1)

Publication Number Publication Date
CN102931585A true CN102931585A (en) 2013-02-13

Family

ID=47646326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012104274406A Pending CN102931585A (en) 2012-10-31 2012-10-31 External-cavity-beam-combination semiconductor laser fiber coupling module

Country Status (1)

Country Link
CN (1) CN102931585A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633560A (en) * 2013-12-02 2014-03-12 中国电子科技集团公司第四十四研究所 Multi-chip semiconductor laser
CN103904557A (en) * 2014-03-25 2014-07-02 中国科学院半导体研究所 Device and method for beam combination of laser devices
CN103996967A (en) * 2014-06-11 2014-08-20 中国科学院半导体研究所 Device used for improving light beam quality of high-power solid laser
CN104252043A (en) * 2013-06-26 2014-12-31 无锡和瑞盛光电科技有限公司 Flow cytometer multi-wavelength excitation laser cluster method and device
CN104283108A (en) * 2013-07-11 2015-01-14 山东浪潮华光光电子股份有限公司 High-power laser module and packaging method thereof
CN104300368A (en) * 2013-07-15 2015-01-21 温州泛波激光有限公司 Semiconductor laser beam combination device
CN104393481A (en) * 2014-11-15 2015-03-04 北京理工大学 Large-power spectrum synthesis method
CN104393480A (en) * 2014-11-15 2015-03-04 北京理工大学 High-power spectral synthesis method based on transmission type optical grating
CN104682196A (en) * 2013-11-29 2015-06-03 福州高意通讯有限公司 Direct semiconductor laser
CN106067657A (en) * 2016-07-12 2016-11-02 中国科学院半导体研究所 Bundle coupling device and coupled system are reversely closed in a kind of N × 1
CN106532435A (en) * 2017-01-05 2017-03-22 苏州长光华芯光电技术有限公司 Semiconductor laser array beam combining device
CN107404061A (en) * 2017-09-01 2017-11-28 中国科学院长春光学精密机械与物理研究所 A kind of semiconductor laser outer cavity coherent closes beam system
WO2018107307A1 (en) * 2016-12-14 2018-06-21 徐海军 Ultra-high power laser spatial combining system and systems related thereto
CN108270148A (en) * 2018-02-06 2018-07-10 中国计量科学研究院 A kind of novel column VCSEL light emitting arrays, control system and control method
CN110999000A (en) * 2017-06-13 2020-04-10 努布鲁有限公司 High Dense Wavelength Beam Combination Laser System
CN111146685A (en) * 2019-12-06 2020-05-12 中国电子科技集团公司第十三研究所 Optical fiber coupling semiconductor laser
CN112164975A (en) * 2020-09-27 2021-01-01 西安立芯光电科技有限公司 Beam combining method and beam combining device for semiconductor laser chip
CN112290374A (en) * 2020-09-23 2021-01-29 北京遥测技术研究所 Wide tuning semiconductor laser cavity based on multi-channel composite external cavity beam combination
JP2021043352A (en) * 2019-09-11 2021-03-18 パナソニックIpマネジメント株式会社 Laser light source device and image forming device using the same
CN112531462A (en) * 2020-12-04 2021-03-19 苏州长光华芯光电技术股份有限公司 Bragg grating external cavity semiconductor laser module beam combining device
CN112636141A (en) * 2020-12-18 2021-04-09 中国工程物理研究院上海激光等离子体研究所 Self-adaptive spectrum synthesis system
CN113381270A (en) * 2021-04-21 2021-09-10 深圳市瑞沃德生命科技有限公司 Laser and have its laser physiotherapy device
CN113615018A (en) * 2019-03-25 2021-11-05 松下电器产业株式会社 Semiconductor laser device
CN114784623A (en) * 2022-06-16 2022-07-22 北京凯普林光电科技股份有限公司 High-brightness external cavity semiconductor laser
CN117317811A (en) * 2023-11-02 2023-12-29 北京凯普林光电科技股份有限公司 Semiconductor laser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456756B1 (en) * 1999-10-25 2002-09-24 Aculight Corporation Fiber raman amplifier pumped by an incoherently beam combined diode laser
US20030206336A1 (en) * 2002-05-02 2003-11-06 Fujitsu Limited Variable wavelength light source apparatus and optical amplifier using same
US20060018356A1 (en) * 2004-07-19 2006-01-26 Andreas Voss Diode laser arrangement and associated beam shaping unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456756B1 (en) * 1999-10-25 2002-09-24 Aculight Corporation Fiber raman amplifier pumped by an incoherently beam combined diode laser
US20030206336A1 (en) * 2002-05-02 2003-11-06 Fujitsu Limited Variable wavelength light source apparatus and optical amplifier using same
US20060018356A1 (en) * 2004-07-19 2006-01-26 Andreas Voss Diode laser arrangement and associated beam shaping unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
朱洪波等: "808nm高亮度半导体激光器光纤耦合器件", 《光学精密工程》 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104252043A (en) * 2013-06-26 2014-12-31 无锡和瑞盛光电科技有限公司 Flow cytometer multi-wavelength excitation laser cluster method and device
CN104283108A (en) * 2013-07-11 2015-01-14 山东浪潮华光光电子股份有限公司 High-power laser module and packaging method thereof
CN104300368A (en) * 2013-07-15 2015-01-21 温州泛波激光有限公司 Semiconductor laser beam combination device
CN104682196A (en) * 2013-11-29 2015-06-03 福州高意通讯有限公司 Direct semiconductor laser
CN103633560A (en) * 2013-12-02 2014-03-12 中国电子科技集团公司第四十四研究所 Multi-chip semiconductor laser
CN103904557A (en) * 2014-03-25 2014-07-02 中国科学院半导体研究所 Device and method for beam combination of laser devices
CN103996967A (en) * 2014-06-11 2014-08-20 中国科学院半导体研究所 Device used for improving light beam quality of high-power solid laser
CN103996967B (en) * 2014-06-11 2018-03-06 中国科学院半导体研究所 The device of beam quality is improved for high power solid state laser
CN104393481A (en) * 2014-11-15 2015-03-04 北京理工大学 Large-power spectrum synthesis method
CN104393480A (en) * 2014-11-15 2015-03-04 北京理工大学 High-power spectral synthesis method based on transmission type optical grating
CN106067657A (en) * 2016-07-12 2016-11-02 中国科学院半导体研究所 Bundle coupling device and coupled system are reversely closed in a kind of N × 1
WO2018107307A1 (en) * 2016-12-14 2018-06-21 徐海军 Ultra-high power laser spatial combining system and systems related thereto
CN106532435A (en) * 2017-01-05 2017-03-22 苏州长光华芯光电技术有限公司 Semiconductor laser array beam combining device
CN110999000A (en) * 2017-06-13 2020-04-10 努布鲁有限公司 High Dense Wavelength Beam Combination Laser System
CN107404061A (en) * 2017-09-01 2017-11-28 中国科学院长春光学精密机械与物理研究所 A kind of semiconductor laser outer cavity coherent closes beam system
CN107404061B (en) * 2017-09-01 2019-06-11 中国科学院长春光学精密机械与物理研究所 A semiconductor laser external cavity coherent beam combining system
CN108270148A (en) * 2018-02-06 2018-07-10 中国计量科学研究院 A kind of novel column VCSEL light emitting arrays, control system and control method
CN113615018A (en) * 2019-03-25 2021-11-05 松下电器产业株式会社 Semiconductor laser device
JP7403077B2 (en) 2019-09-11 2023-12-22 パナソニックIpマネジメント株式会社 Laser light source device and image forming device using the same
JP2021043352A (en) * 2019-09-11 2021-03-18 パナソニックIpマネジメント株式会社 Laser light source device and image forming device using the same
CN111146685A (en) * 2019-12-06 2020-05-12 中国电子科技集团公司第十三研究所 Optical fiber coupling semiconductor laser
CN112290374A (en) * 2020-09-23 2021-01-29 北京遥测技术研究所 Wide tuning semiconductor laser cavity based on multi-channel composite external cavity beam combination
CN112164975B (en) * 2020-09-27 2021-08-17 西安立芯光电科技有限公司 Beam combining method and beam combining device for semiconductor laser chip
CN112164975A (en) * 2020-09-27 2021-01-01 西安立芯光电科技有限公司 Beam combining method and beam combining device for semiconductor laser chip
CN112531462A (en) * 2020-12-04 2021-03-19 苏州长光华芯光电技术股份有限公司 Bragg grating external cavity semiconductor laser module beam combining device
CN112636141A (en) * 2020-12-18 2021-04-09 中国工程物理研究院上海激光等离子体研究所 Self-adaptive spectrum synthesis system
CN112636141B (en) * 2020-12-18 2022-05-31 中国工程物理研究院上海激光等离子体研究所 Self-adaptive spectrum synthesis system
CN113381270A (en) * 2021-04-21 2021-09-10 深圳市瑞沃德生命科技有限公司 Laser and have its laser physiotherapy device
CN114784623A (en) * 2022-06-16 2022-07-22 北京凯普林光电科技股份有限公司 High-brightness external cavity semiconductor laser
CN117317811A (en) * 2023-11-02 2023-12-29 北京凯普林光电科技股份有限公司 Semiconductor laser

Similar Documents

Publication Publication Date Title
CN102931585A (en) External-cavity-beam-combination semiconductor laser fiber coupling module
CN102916341A (en) Method for combining beams of single-tube semiconductor laser devices
US8891579B1 (en) Laser diode apparatus utilizing reflecting slow axis collimators
CN101833150B (en) A high-power semiconductor laser fiber coupling module
US7668214B2 (en) Light source
CN102089943A (en) High brightness diode output method and device
CN102904157A (en) A beam-combining structure of a single-tube semiconductor laser
CN201113224Y (en) Diffraction Grating Array External Cavity Diode Laser Line Array
JP2014216361A (en) Laser device and wavelength coupling method of light beam
CN102962585A (en) Semiconductor laser processing machine with light-feedback-proof device
JP7488445B2 (en) Light source unit
CN207009893U (en) Multi-tube beam combining device for single-tube semiconductor laser
TW202007029A (en) Methods and systems for spectral beam-combining
CN112886382A (en) Single-group high-power optical fiber coupling semiconductor laser packaging structure and application
CN110488429A (en) A kind of multikilowatt semiconductor laser fiber coupling module
CN115954761A (en) A multi-single-tube semiconductor laser beam combining device
CN111326952A (en) Spectral beam combining device based on on-chip control semiconductor laser chip
CN115981017A (en) A multi-channel laser color separation and beam combining module and its adjustment method
JP7212274B2 (en) Light source device, direct diode laser device
CN118645882A (en) A semiconductor laser system and beam combining method thereof
CN112310800A (en) Compact optical fiber coupling output semiconductor laser
CN204615151U (en) A multi-single-tube high-power fiber-coupled semiconductor laser
CN117559225A (en) Spectral beam combining and spectral width compression device and method
CN207074784U (en) A kind of multi-wavelength high-power semiconductor laser
JP2007248581A (en) Laser module

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20130213