CN102931863A - Method for setting up modularized multi-level converter composite structure model - Google Patents
Method for setting up modularized multi-level converter composite structure model Download PDFInfo
- Publication number
- CN102931863A CN102931863A CN2012104519189A CN201210451918A CN102931863A CN 102931863 A CN102931863 A CN 102931863A CN 2012104519189 A CN2012104519189 A CN 2012104519189A CN 201210451918 A CN201210451918 A CN 201210451918A CN 102931863 A CN102931863 A CN 102931863A
- Authority
- CN
- China
- Prior art keywords
- sub
- bridge
- module
- modules
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 13
- 239000002131 composite material Substances 0.000 title abstract 3
- 230000002457 bidirectional effect Effects 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 abstract description 7
- 230000005540 biological transmission Effects 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 4
- 238000007599 discharging Methods 0.000 abstract description 2
- 238000012163 sequencing technique Methods 0.000 abstract 1
- 239000003990 capacitor Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 5
- 238000011217 control strategy Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Images
Landscapes
- Rectifiers (AREA)
- Inverter Devices (AREA)
Abstract
Description
技术领域 technical field
本发明属于输配电技术领域,尤其涉及一种建立模块化多电平换流器的混合结构模型的方法。 The invention belongs to the technical field of power transmission and distribution, and in particular relates to a method for establishing a hybrid structure model of a modular multilevel converter. the
背景技术 Background technique
模块化多电平换流器(MMC)已经成功地应用于大功率换流器中,主要是应用在高压直流(HVDC)输电领域。与传统两、三电平电压源换流器高压直流输电(Voltage Source Converter based HVDC,VSC-HVDC)相比而言,模块化多电平换流器高压直流输电(ModularMultilevel Converter based HVDC,MMC-HVDC)有诸多优点:交流侧和直流侧能够进行完全控制,直流母线无需安装电容器,电力电子设备在故障后具有冗余运行能力,无需安装交流滤波器等等。由于MMC的独特优点,MMC-HVDC已成为未来HVDC领域的发展趋势。2010年,第一个商业化的MMC-HVDC工程“Trans Bay Cable Project(TBC)”在美国投运,其最高运行的直流电压为±200kV、输送容量最大400MW。此外,世界各地有超过4个MMC-HVDC工程将在2013年投运。国内已建成投运的上海南汇柔性直流工程,以及即将启动建设的舟山多端柔性直流工程和大连柔性直流工程均以半桥型MMC(Half-Bridge MMC,HBMMC)为换流器拓扑,目前来说,几乎所有的MMC-HVDC工程都是采用半桥子模块(Half-Bridge Sub-Module,HBSM)拓扑结构。 Modular multilevel converters (MMCs) have been successfully used in high-power converters, mainly in the field of high voltage direct current (HVDC) transmission. Compared with the traditional two-level and three-level voltage source converter based HVDC (Voltage Source Converter based HVDC, VSC-HVDC), the modular multilevel converter based HVDC (MMC- HVDC) has many advantages: the AC side and the DC side can be fully controlled, the DC bus does not need to install capacitors, the power electronic equipment has the ability to operate redundantly after a fault, no need to install AC filters, etc. Due to the unique advantages of MMC, MMC-HVDC has become the development trend in the field of HVDC in the future. In 2010, the first commercial MMC-HVDC project "Trans Bay Cable Project (TBC)" was put into operation in the United States, with a maximum operating DC voltage of ±200kV and a maximum transmission capacity of 400MW. In addition, more than 4 MMC-HVDC projects around the world will be put into operation in 2013. The Shanghai Nanhui flexible DC project that has been completed and put into operation in China, as well as the Zhoushan multi-terminal flexible DC project and the Dalian flexible DC project that are about to start construction all use half-bridge MMC (Half-Bridge MMC, HBMMC) as the converter topology. , almost all MMC-HVDC projects use the Half-Bridge Sub-Module (HBSM) topology. the
当柔性直流输电系统发生双极直流短路故障时,HBMMC-HVDC以及两、三电平VSC-HVDC中绝缘栅双极晶体管(Insul ated Gate Bipolar Transistor,IGBT)反并联二极管的续流作用,使得交流系统在短路点发生三相短路,且无法依靠换流器自身切断短路电流,严重危害系统的安全运行。同时,由于高电压大容量直流断路器的制造工艺尚不成熟,现有多端柔性直流工程必须要求直流电缆具有极高的可靠性,即要求极低的直流故障发生概率,这在一定程度上限制了柔性直流向多端输电领域的发展和应用。 When a bipolar DC short-circuit fault occurs in the flexible DC transmission system, the freewheeling effect of the anti-parallel diode of the insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, IGBT) in the HBMMC-HVDC and the two- and three-level VSC-HVDC makes the AC The system has a three-phase short-circuit at the short-circuit point, and the inverter itself cannot cut off the short-circuit current, which seriously endangers the safe operation of the system. At the same time, due to the immature manufacturing process of high-voltage and large-capacity DC circuit breakers, the existing multi-terminal flexible DC projects must require DC cables to have extremely high reliability, that is, require extremely low DC fault occurrence probability, which limits to a certain extent The development and application of flexible direct current to multi-terminal transmission field. the
为解决这一问题,HBMMC拓扑的创始人R.Marquardt教授又在其论文中介绍了具有穿越严重直流故障的全桥型MMC(Full-BridgeMMC,FBMMC)结构,每个全桥子模块(Full-Bridge Sub-module,FBSM)可以输出三种电平,其能够中断任何方向的桥臂电流,并能够改变MMC的直流母线电压极性,但是它需要双倍数量的半导体器件。由于FBMMC所需要的半导体器件要比HBMMC多一倍,这又严重制约了FBMMC的工程应用,这也是目前的MMC-HVDC工程均采用半桥结构的原因 In order to solve this problem, Professor R. Marquardt, the founder of the HBMMC topology, introduced a full-bridge MMC (Full-BridgeMMC, FBMMC) structure in his thesis that can traverse severe DC faults. Each full-bridge sub-module (Full-BridgeMMC) Bridge Sub-module, FBSM) can output three levels, which can interrupt the bridge arm current in any direction, and can change the polarity of the DC bus voltage of the MMC, but it requires double the number of semiconductor devices. Since FBMMC requires twice as many semiconductor devices as HBMMC, this severely restricts the engineering application of FBMMC, which is why the current MMC-HVDC project adopts a half-bridge structure.
发明内容 Contents of the invention
本发明所要解决的技术问题是MMC能够用尽可能少的半导体器件实现较优的直流故障穿越能力,提出了一种改进的模块化多电平换流器的混合结构模型。 The technical problem to be solved by the present invention is that MMC can realize better DC fault ride-through capability with as few semiconductor devices as possible, and an improved hybrid structure model of modular multilevel converter is proposed. the
一种建立模块化多电平换流器的混合结构模型的方法,其特征在于,所述方法具体包括以下步骤: A method for establishing a hybrid structure model of a modular multilevel converter, characterized in that the method specifically includes the following steps:
步骤1:对半桥换流器HBMMC的每个桥臂上的子模块进行分组,分为等数量的上下两组,每组分配等数量的子模块,并将上组的子模块全改为全桥子模块FBSM/半桥子模块HBSM结构,下组的子模块全为半桥子模块HBSM/全桥子模块FBSM结构; Step 1: Group the sub-modules on each bridge arm of the half-bridge converter HBMMC into two groups of the same number, the upper and lower groups, and assign the same number of sub-modules to each group, and change all the sub-modules in the upper group to Full-bridge sub-module FBSM/half-bridge sub-module HBSM structure, the sub-modules in the lower group are all half-bridge sub-module HBSM/full-bridge sub-module FBSM structure;
步骤2:各桥臂的上下两组分别进行排序选通,并对采用全桥子 模块FBSM结构的组采取轮换导通控制方法进行导通; Step 2: The upper and lower groups of each bridge arm are respectively sorted and strobed, and the group using the full bridge sub-module FBSM structure is turned on by means of a rotation conduction control method;
步骤3:在模块化多电平换流器MMC结构的每个桥臂电抗器上分别并联放电通路,该换流器MMC在闭锁时,使通路导通放电。 Step 3: Connect a discharge path in parallel on each bridge arm reactor of the modular multilevel converter MMC structure, and when the converter MMC is blocked, the path is turned on and discharged. the
所述放电通路包括双向导通的并联双向晶闸管和串联电阻。 The discharge path includes bidirectionally conducting parallel bidirectional thyristors and series resistors. the
本发明的有益效果是,提出的模块化多电平换流器的混合结构模型,具有较强的直流故障穿越能力,同时不需要全桥型模块化多电平换流器FBMMC那么多的半导体器件,其在技术和成本上实现了较好的统一。 The beneficial effect of the present invention is that the hybrid structure model of the proposed modular multilevel converter has strong DC fault ride-through capability, and at the same time does not require as many semiconductors as the full bridge modular multilevel converter FBMMC Devices, which have achieved better unification in technology and cost. the
附图说明 Description of drawings
图1是本发明提供的通用的模块化多电平换流器MMC的拓扑结构图; Fig. 1 is the topological structure diagram of general modular multilevel converter MMC provided by the present invention;
图2是本发明提供的半桥结构MMC的子模块拓扑结构以及其故障闭锁时的电流通路;其中,(a)是半桥结构MMC的子模块拓扑结构;(b)是半桥结构MMC的子模块故障闭锁时的电流通路; Fig. 2 is the submodule topology structure of the half-bridge structure MMC provided by the present invention and the current path during its fault locking; Wherein, (a) is the submodule topology structure of the half-bridge structure MMC; (b) is the structure of the half-bridge structure MMC The current path when the sub-module is faulty and blocked;
图3是本发明提供的全桥结构MMC的子模块拓扑结构以及其故障闭锁时的电流通路;其中,(a)是全桥结构MMC的子模块拓扑结构;(b)是全桥结构MMC的子模块故障闭锁时的电流通路; Fig. 3 is the submodule topology structure of the full bridge structure MMC provided by the present invention and the current path when its fault is blocked; Wherein, (a) is the submodule topology structure of the full bridge structure MMC; (b) is the submodule topology structure of the full bridge structure MMC The current path when the sub-module is faulty and blocked;
图4是本发明提供的混合模块化多电平换流器MMC结构模型的说明图。 Fig. 4 is an explanatory diagram of the MMC structure model of the hybrid modular multilevel converter provided by the present invention. the
具体实施方式 Detailed ways
下面结合附图,对优选实施例作详细说明。应该强调的是下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。 The preferred embodiments will be described in detail below in conjunction with the accompanying drawings. It should be emphasized that the following description is only exemplary and not intended to limit the scope of the invention and its application. the
图1是本发明提供的通用的模块化多电平换流器MMC的拓扑结构图。图1中,A,B和C分别表示MMC换流器交流侧三相;SM1,SM2,…,SMn,表示MMC某桥臂中第一个子模块,第二个子模块,…,第n个子模块;L表示桥臂电抗器;Udc表示MMC正负极直流母线间的电压差。 Fig. 1 is a topological structure diagram of a general modular multilevel converter MMC provided by the present invention. In Fig. 1, A, B and C represent the three phases of the AC side of the MMC converter respectively; SM1, SM2, ..., SMn, represent the first sub-module, the second sub-module, ..., the nth sub-module in a certain bridge arm of the MMC module; L represents the bridge arm reactor; Udc represents the voltage difference between the positive and negative DC bus bars of the MMC. the
图2是本发明提供的半桥结构MMC的子模块拓扑结构以及其故障闭锁时的电流通路。图2中,T1和T2分别表示半桥子模块中上下两个IGBT;D1和D2分别表示相应绝缘栅双极晶体管IGBT的反并联二极管;C0表示半桥子模块中电容器;Uc表示子模块电容电压;usm表示子模块端口输出电压。 Fig. 2 is the sub-module topology of the half-bridge structure MMC provided by the present invention and its current path when it is fault-locked. In Figure 2, T 1 and T 2 represent the upper and lower IGBTs in the half-bridge sub-module; D 1 and D 2 represent the anti-parallel diodes of the corresponding IGBTs; C0 represents the capacitor in the half-bridge sub-module; Uc Indicates the capacitor voltage of the sub-module; u sm indicates the output voltage of the sub-module port.
图3是本发明提供的全桥结构MMC的子模块拓扑结构以及其故障闭锁时的电流通路。图3中,T1,T2,T3和T4分别表示全桥子模块中四个绝缘栅双极晶体管IGBT,D1,D2,D3,D4分别表示相应绝缘栅双极晶体管IGBT的反并联二极管;C0表示全桥子模块中电容器;Uc表示子模块电容电压;usm表示子模块端口输出电压。 Fig. 3 is the sub-module topology of the full-bridge structure MMC provided by the present invention and its current path during fault latching. In Figure 3, T 1 , T 2 , T 3 and T 4 represent the four insulated gate bipolar transistors IGBTs in the full bridge sub-module respectively, and D 1 , D 2 , D 3 , D 4 represent the corresponding insulated gate bipolar transistors respectively IGBT anti-parallel diode; C 0 represents the capacitor in the full bridge sub-module; Uc represents the capacitor voltage of the sub-module; u sm represents the output voltage of the sub-module port.
图4是本发明提供的混合模块化多电平换流器MMC结构模型的说明图。图4中,HBSM表示半桥子模块,FBSM表示全桥子模块,Udc表示MMC正负极直流母线间的电压差。 Fig. 4 is an explanatory diagram of the MMC structure model of the hybrid modular multilevel converter provided by the present invention. In Figure 4, HBSM represents the half-bridge sub-module, FBSM represents the full-bridge sub-module, and U dc represents the voltage difference between the positive and negative DC bus bars of the MMC.
建立混合结构模型的具体步骤为: The specific steps to establish a hybrid structure model are:
步骤1:混合模块化多电平换流器MMC桥臂子模块结构的改变: Step 1: Changes in the structure of the MMC bridge arm sub-module of the hybrid modular multilevel converter:
如图1所示,模块化多电平换流器MMC的通用拓扑结构由三相六个桥臂组成,一般其子模块结构是半桥形式(如图2所示),也就是 HBMMC模型,其直流故障穿越能力较差。图3是全桥子模块拓扑(FBSM)以及其在故障闭锁时的电流通路图,很明显,其具有较为优秀的直流故障穿越能力,能有效的抑制直流故障电流,但其需用双倍的半导体器件,工程成本较高。为了实现尽可能少的半导体器件实现较优的直流故障穿越能力,对原有的HBMMC换流器的下桥臂(或上桥臂)中的子模块进行更换,对原有的HBMMC换流器的每个桥臂上的子模块进行分组,分为等数量的上下两组,每组分配等数量的子模块,但上组(或下组)的子模块全改为FBSM结构,下组(或上组)的子模块全为HBSM结构,如图4所示,从而可以实现技术和成本上的统一。 As shown in Figure 1, the general topology of the modular multilevel converter MMC is composed of three-phase and six bridge arms, and its sub-module structure is generally in the form of a half-bridge (as shown in Figure 2), which is the HBMMC model. Its DC fault ride-through capability is poor. Figure 3 is the full-bridge sub-module topology (FBSM) and its current path diagram during fault blocking. Obviously, it has a relatively good DC fault ride-through capability and can effectively suppress the DC fault current, but it requires double Semiconductor devices have high engineering costs. In order to achieve better DC fault ride-through capability with as few semiconductor devices as possible, the sub-modules in the lower bridge arm (or upper bridge arm) of the original HBMMC converter are replaced, and the original HBMMC converter The sub-modules on each bridge arm of the bridge arm are grouped and divided into two groups of the same number of upper and lower groups, and each group is allocated an equal number of sub-modules, but the sub-modules of the upper group (or lower group) are all changed to FBSM structure, and the lower group ( or the above group) sub-modules are all HBSM structures, as shown in Figure 4, so that the unification of technology and cost can be achieved. the
步骤2:各桥臂的上下两组分别进行排序选通,并且对全桥子模块FBSM结构的组加入轮换导通控制策略: Step 2: The upper and lower groups of each bridge arm are respectively sorted and selected, and the group with the FBSM structure of the full bridge sub-module is added with a rotation conduction control strategy:
步骤1中,将半桥型模块化多电平换流器HBMMC的桥臂子模块进行了分组,构造了混合模块化多电平换流器MMC,那么其相应的控制器就要进行相应的改变,加入分组排序的控制策略,以使其子模块可以有效进行控制。同时,由于每个桥臂上都有一组子模块采用的是全桥子模块FBSM结构,如图3和4所示,全桥子模块FBSM的有4个IGBT,其要脉冲的触发要进行采取轮换导通的策略进行控制。 In step 1, the bridge arm sub-modules of the half-bridge modular multilevel converter HBMMC are grouped, and the hybrid modular multilevel converter MMC is constructed, and the corresponding controllers need to perform corresponding Change and add the control strategy of group sorting, so that its sub-modules can be effectively controlled. At the same time, since each bridge arm has a group of sub-modules that adopt the full-bridge sub-module FBSM structure, as shown in Figures 3 and 4, the full-bridge sub-module FBSM has 4 IGBTs, and the triggering of the pulses must be taken Alternate conduction strategy to control. the
由于FBSM有四个IGBT,1)T1与T4开通,输出电压为电容电压Uc;2)T1与T2开通或T3与T4开通,输出电压为0;3)T2与T3开通,输出电压为-Uc Since FBSM has four IGBTs, 1) T 1 and T 4 are turned on, and the output voltage is the capacitor voltage Uc; 2) T 1 and T 2 are turned on or T 3 and T 4 are turned on, and the output voltage is 0; 3) T 2 and T 3 open, the output voltage is -Uc
由于T1与T2开通或T3与T4开通,输出电压都为0,那么为了均衡 开关,我们需要在输出0电位的时候进行轮换导通,这次输出0时导通T1与T2,下次的输出0的时候开通T3与T4。 Since T 1 and T 2 are turned on or T 3 and T 4 are turned on, the output voltage is 0, so in order to balance the switch, we need to switch on when outputting 0 potential, and turn on T 1 and T when outputting 0 this time. 2 , turn on T 3 and T 4 when the next output is 0.
步骤3:桥臂电抗器并联放电通路: Step 3: Bridge arm reactor parallel discharge path:
混合结构模型具有直流故障的穿越能力,混合MMC在直流故障发生后换流器闭锁前,子模块迅速放电,直流电压随之降低;闭锁后,子模块停止放电,依然保留部分电量,随着桥臂电抗器储能的释放,子模块的电容会进行充电,为了防止电容电压发生过充,使电容电压超过电容所能承受的电压值,需要在六个桥臂电抗器上并联放电通路,如图4所示。即,在每个桥臂电抗器上并联双向导通的并联双向晶闸管和串联电阻的放电通路,当闭锁时,让该通路导通放电,避免电容发生过充。 The hybrid structure model has the ability to ride through DC faults. After the DC fault occurs, the sub-modules of the hybrid MMC discharge rapidly before the converter is blocked, and the DC voltage decreases accordingly; after the blockage, the sub-modules stop discharging and still retain some power. When the energy stored in the arm reactor is released, the capacitor of the sub-module will be charged. In order to prevent the capacitor voltage from overcharging and make the capacitor voltage exceed the voltage value that the capacitor can withstand, it is necessary to connect the discharge path in parallel on the six arm reactors, such as Figure 4 shows. That is, on each bridge arm reactor, a discharge path of a parallel bidirectional thyristor and a series resistor is connected in parallel, and when blocked, the path is turned on and discharged to avoid overcharging of the capacitor. the
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。 The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any person skilled in the art within the technical scope disclosed in the present invention can easily think of changes or Replacement should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims. the
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210451918.9A CN102931863B (en) | 2012-11-12 | 2012-11-12 | Method for setting up modularized multi-level converter composite structure model |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210451918.9A CN102931863B (en) | 2012-11-12 | 2012-11-12 | Method for setting up modularized multi-level converter composite structure model |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102931863A true CN102931863A (en) | 2013-02-13 |
| CN102931863B CN102931863B (en) | 2015-04-15 |
Family
ID=47646595
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210451918.9A Active CN102931863B (en) | 2012-11-12 | 2012-11-12 | Method for setting up modularized multi-level converter composite structure model |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102931863B (en) |
Cited By (44)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103248255A (en) * | 2013-05-24 | 2013-08-14 | 哈尔滨工业大学 | Tri-phase modular multi-level converter and fault-tolerate detecting method for IGBT (insulated gate bipolar translator) open circuit fault in sub-modules thereof |
| CN103701145A (en) * | 2014-01-02 | 2014-04-02 | 浙江大学 | Mixed MMC-based mixed direct current power transmission system |
| CN103715930A (en) * | 2013-11-25 | 2014-04-09 | 国家电网公司 | Method for increasing capacity of flexible direct-current power transmission system and apparatus thereof |
| CN104022666A (en) * | 2014-05-30 | 2014-09-03 | 荣信电力电子股份有限公司 | Modularization multi-level converter valve for flexible DC power transmission system |
| CN104167912A (en) * | 2014-08-14 | 2014-11-26 | 华中科技大学 | MMC with zero direct voltage fault ride-through capability and design method thereof |
| CN104300569A (en) * | 2014-09-29 | 2015-01-21 | 华中科技大学 | HVDC DC side short-circuit fault ride-through and recovery method based on hybrid MMC |
| CN104467393A (en) * | 2015-01-04 | 2015-03-25 | 南京南瑞继保电气有限公司 | Device for preventing sub-module capacitor overvoltage |
| CN104617800A (en) * | 2015-01-30 | 2015-05-13 | 天津大学 | Improved redundancy type MMC current converter structure having direct-current fault current-limiting capacity |
| CN104901570A (en) * | 2015-06-23 | 2015-09-09 | 南京南瑞继保电气有限公司 | Modularized multi-level current converter |
| CN104917415A (en) * | 2014-03-13 | 2015-09-16 | 国家电网公司 | DC fault ride-through control method for hybrid modular multilevel converter |
| CN104953873A (en) * | 2015-06-15 | 2015-09-30 | 中国科学院电工研究所 | Simulation model of hybrid-structure modular multi-level current converter |
| WO2015169115A1 (en) * | 2014-05-09 | 2015-11-12 | 南京南瑞继保电气有限公司 | Voltage-source multi-level converter, direct-current power transmission system and fault processing method and device |
| CN105245119A (en) * | 2015-10-16 | 2016-01-13 | 山东大学 | Hybrid modular multilevel converter-based topology structure and deicing device |
| CN105356780A (en) * | 2015-10-23 | 2016-02-24 | 南方电网科学研究院有限责任公司 | Modulation method and system of submodule hybrid modular multilevel converter |
| CN105388947A (en) * | 2015-12-15 | 2016-03-09 | 济南银河电气有限公司 | Device for inhibiting sudden rising of power supply voltage of high-power microwave generator |
| CN105406743A (en) * | 2015-09-22 | 2016-03-16 | 华南理工大学 | Hybrid modular multi-level converter with asymmetric bridge arms |
| CN105634259A (en) * | 2015-05-26 | 2016-06-01 | 华北电力大学 | Reliability analysis and redundancy configuration calculation method for hybrid modular multilevel converter |
| CN105763086A (en) * | 2016-04-07 | 2016-07-13 | 电子科技大学 | Five-level sub module capacitance voltage balance control method for MMC (Module Multilevel Converter) |
| CN105790228A (en) * | 2016-04-20 | 2016-07-20 | 广州供电局有限公司 | Converter valve sub-module and modularized multi-level converter |
| CN105946849A (en) * | 2016-06-27 | 2016-09-21 | 山东大学 | Topological structure and method for comprehensive transformation system of plug-in type hybrid electric vehicle |
| CN106021767A (en) * | 2016-05-27 | 2016-10-12 | 天津大学 | Mixed type MMC topology submodule quantity configuration calculation method |
| CN106253725A (en) * | 2016-08-24 | 2016-12-21 | 清华大学 | Be suitable to the unilateral brachium pontis blocking-up type modular multi-level converter of unidirectional trend |
| US9537421B2 (en) | 2014-08-22 | 2017-01-03 | General Electric Company | Multilevel converter |
| CN106452146A (en) * | 2016-11-22 | 2017-02-22 | 佛山科学技术学院 | Multi-level converter submodule circuit and multi-level converter |
| CN106787087A (en) * | 2017-01-09 | 2017-05-31 | 许继集团有限公司 | Hybrid MMC sequences pressure charging method, startup method and device |
| CN106803679A (en) * | 2015-11-26 | 2017-06-06 | 国网智能电网研究院 | A kind of flexible ring net controller and control method for electromagnetic looped network solution inscription of loop |
| CN107123993A (en) * | 2017-07-13 | 2017-09-01 | 东莞市阿特为电气有限公司 | Switching circuit |
| CN107196539A (en) * | 2017-06-23 | 2017-09-22 | 西安交通大学 | A kind of MMC zero DC voltage fault traversing control methods under bridge arm parameter unbalance state |
| CN108199591A (en) * | 2018-01-19 | 2018-06-22 | 中电普瑞电力工程有限公司 | A kind of drop capacitive circuit and modularization multi-level converter |
| WO2018130203A1 (en) * | 2017-01-16 | 2018-07-19 | 南京南瑞继保电气有限公司 | Method for charging sub-module based hybrid converter |
| WO2018130205A1 (en) * | 2017-01-16 | 2018-07-19 | 南京南瑞继保电气有限公司 | Method for charging sub-module based hybrid converter |
| CN109474008A (en) * | 2018-11-12 | 2019-03-15 | 沈阳工业大学 | Fan grid-connected system based on hybrid MMC and matrix converter |
| CN109546882A (en) * | 2018-11-14 | 2019-03-29 | 华北电力大学 | A kind of half full mixing MMC and its control method based on hybrid full-bridge |
| CN109921388A (en) * | 2019-01-17 | 2019-06-21 | 华北电力大学 | DC current interruption device and method for hybrid MMC and AC circuit breaker |
| CN110707681A (en) * | 2019-08-27 | 2020-01-17 | 华北电力大学 | An interconnected power distribution system with flexible multi-state switches and a reliable operation evaluation method |
| CN111541362A (en) * | 2020-03-27 | 2020-08-14 | 山东大学 | A switching control method and system of MMC redundant sub-module |
| CN112534695A (en) * | 2018-08-06 | 2021-03-19 | Abb电网瑞士股份公司 | Method for controlling MMC |
| WO2021051315A1 (en) * | 2019-09-18 | 2021-03-25 | 西门子股份公司 | Modular multilevel converter and discharge method therefor |
| US10998813B2 (en) | 2015-12-30 | 2021-05-04 | Hyosung Heavy Industries Corporation | Modular multi-level converter and DC failure blocking method therefor |
| WO2021135459A1 (en) * | 2020-01-03 | 2021-07-08 | 东南大学 | Series-parallel modular multi-level converter with cut-off capability and control method thereof |
| CN113258761A (en) * | 2021-05-17 | 2021-08-13 | 东南大学 | Modular multilevel converter for inhibiting fault current and control method thereof |
| CN117240122A (en) * | 2023-11-15 | 2023-12-15 | 四川大学 | A hybrid open-winding dual-modular multi-level converter and its control method |
| CN117792063A (en) * | 2024-02-23 | 2024-03-29 | 四川大学 | Hybrid modular multi-level converter AC/DC side precharge start-up control strategy |
| CN119315614A (en) * | 2024-12-17 | 2025-01-14 | 浙江大学 | MMC converter valve and method for realizing AC/DC fault ride-through based on energy-consuming submodule |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4503388B2 (en) * | 2004-08-02 | 2010-07-14 | オリジン電気株式会社 | BRIDGE DEVICE AND POWER SUPPLY DEVICE USING THE SAME |
| CN102158112A (en) * | 2011-03-03 | 2011-08-17 | 山东大学 | Complex control system and method of modular multi-level converter |
| CN102244477A (en) * | 2011-07-07 | 2011-11-16 | 西南交通大学 | Multi-level converter with DC (direct current) capacitor assisted voltage-sharing circuit |
| CN102281014A (en) * | 2011-08-29 | 2011-12-14 | 浙江大学 | Multilevel current converter with function of processing direct current fault |
-
2012
- 2012-11-12 CN CN201210451918.9A patent/CN102931863B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4503388B2 (en) * | 2004-08-02 | 2010-07-14 | オリジン電気株式会社 | BRIDGE DEVICE AND POWER SUPPLY DEVICE USING THE SAME |
| CN102158112A (en) * | 2011-03-03 | 2011-08-17 | 山东大学 | Complex control system and method of modular multi-level converter |
| CN102244477A (en) * | 2011-07-07 | 2011-11-16 | 西南交通大学 | Multi-level converter with DC (direct current) capacitor assisted voltage-sharing circuit |
| CN102281014A (en) * | 2011-08-29 | 2011-12-14 | 浙江大学 | Multilevel current converter with function of processing direct current fault |
Cited By (69)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103248255B (en) * | 2013-05-24 | 2014-12-31 | 哈尔滨工业大学 | Tri-phase modular multi-level converter and fault-tolerate detecting method for IGBT (insulated gate bipolar translator) open circuit fault in sub-modules thereof |
| CN103248255A (en) * | 2013-05-24 | 2013-08-14 | 哈尔滨工业大学 | Tri-phase modular multi-level converter and fault-tolerate detecting method for IGBT (insulated gate bipolar translator) open circuit fault in sub-modules thereof |
| CN103715930A (en) * | 2013-11-25 | 2014-04-09 | 国家电网公司 | Method for increasing capacity of flexible direct-current power transmission system and apparatus thereof |
| CN103715930B (en) * | 2013-11-25 | 2016-09-21 | 国家电网公司 | A kind of method promoting flexible direct current power transmission system capacity |
| CN103701145A (en) * | 2014-01-02 | 2014-04-02 | 浙江大学 | Mixed MMC-based mixed direct current power transmission system |
| CN104917415A (en) * | 2014-03-13 | 2015-09-16 | 国家电网公司 | DC fault ride-through control method for hybrid modular multilevel converter |
| WO2015135352A1 (en) * | 2014-03-13 | 2015-09-17 | 国家电网公司 | Dc fault ride-through control method of hybrid modular multilevel converter |
| CN104917415B (en) * | 2014-03-13 | 2017-09-01 | 国家电网公司 | A DC fault ride-through control method for hybrid modular multilevel converters |
| KR101924707B1 (en) | 2014-05-09 | 2018-12-03 | 엔알 일렉트릭 컴퍼니 리미티드 | Voltage-source multi-level converter, direct-current power transmission system and fault processing method and device |
| CN105099242B (en) * | 2014-05-09 | 2018-09-11 | 南京南瑞继保电气有限公司 | Voltage-source type multilevel converter, DC transmission system, fault handling method and device |
| WO2015169115A1 (en) * | 2014-05-09 | 2015-11-12 | 南京南瑞继保电气有限公司 | Voltage-source multi-level converter, direct-current power transmission system and fault processing method and device |
| CN105099242A (en) * | 2014-05-09 | 2015-11-25 | 南京南瑞继保电气有限公司 | Voltage source type multi-level converter, direct current power transmission system, fault processing method and apparatus |
| EP3145071A4 (en) * | 2014-05-09 | 2018-01-17 | NR Electric Co., Ltd. | Voltage-source multi-level converter, direct-current power transmission system and fault processing method and device |
| US20170070047A1 (en) * | 2014-05-09 | 2017-03-09 | Nr Electric Co., Ltd | Voltage-source multi-level converter, dc power transmission system, and fault processing method and device |
| US10164428B2 (en) | 2014-05-09 | 2018-12-25 | Nr Electric Co., Ltd | Voltage-source multi-level converter, DC power transmission system, and fault processing method and device |
| CN104022666A (en) * | 2014-05-30 | 2014-09-03 | 荣信电力电子股份有限公司 | Modularization multi-level converter valve for flexible DC power transmission system |
| CN104167912B (en) * | 2014-08-14 | 2016-08-31 | 华中科技大学 | A kind of MMC possessing zero DC voltage fault ride-through capacity and method for designing thereof |
| CN104167912A (en) * | 2014-08-14 | 2014-11-26 | 华中科技大学 | MMC with zero direct voltage fault ride-through capability and design method thereof |
| US9537421B2 (en) | 2014-08-22 | 2017-01-03 | General Electric Company | Multilevel converter |
| CN104300569A (en) * | 2014-09-29 | 2015-01-21 | 华中科技大学 | HVDC DC side short-circuit fault ride-through and recovery method based on hybrid MMC |
| CN104467393A (en) * | 2015-01-04 | 2015-03-25 | 南京南瑞继保电气有限公司 | Device for preventing sub-module capacitor overvoltage |
| CN104617800A (en) * | 2015-01-30 | 2015-05-13 | 天津大学 | Improved redundancy type MMC current converter structure having direct-current fault current-limiting capacity |
| CN105634259A (en) * | 2015-05-26 | 2016-06-01 | 华北电力大学 | Reliability analysis and redundancy configuration calculation method for hybrid modular multilevel converter |
| CN105634259B (en) * | 2015-05-26 | 2019-04-19 | 华北电力大学 | A Reliability Analysis and Redundancy Configuration Calculation Method for a Hybrid Modular Multilevel Converter |
| CN104953873B (en) * | 2015-06-15 | 2017-07-07 | 中国科学院电工研究所 | A kind of mixed structure modularization multi-level converter simulation model |
| CN104953873A (en) * | 2015-06-15 | 2015-09-30 | 中国科学院电工研究所 | Simulation model of hybrid-structure modular multi-level current converter |
| CN104901570B (en) * | 2015-06-23 | 2017-10-13 | 南京南瑞继保电气有限公司 | Modular Multilevel Converter |
| CN104901570A (en) * | 2015-06-23 | 2015-09-09 | 南京南瑞继保电气有限公司 | Modularized multi-level current converter |
| CN105406743A (en) * | 2015-09-22 | 2016-03-16 | 华南理工大学 | Hybrid modular multi-level converter with asymmetric bridge arms |
| CN105245119A (en) * | 2015-10-16 | 2016-01-13 | 山东大学 | Hybrid modular multilevel converter-based topology structure and deicing device |
| CN105356780A (en) * | 2015-10-23 | 2016-02-24 | 南方电网科学研究院有限责任公司 | Modulation method and system of submodule hybrid modular multilevel converter |
| CN105356780B (en) * | 2015-10-23 | 2018-03-30 | 南方电网科学研究院有限责任公司 | Modulation method and system of submodule hybrid modular multilevel converter |
| CN106803679A (en) * | 2015-11-26 | 2017-06-06 | 国网智能电网研究院 | A kind of flexible ring net controller and control method for electromagnetic looped network solution inscription of loop |
| CN105388947A (en) * | 2015-12-15 | 2016-03-09 | 济南银河电气有限公司 | Device for inhibiting sudden rising of power supply voltage of high-power microwave generator |
| US10998813B2 (en) | 2015-12-30 | 2021-05-04 | Hyosung Heavy Industries Corporation | Modular multi-level converter and DC failure blocking method therefor |
| CN105763086A (en) * | 2016-04-07 | 2016-07-13 | 电子科技大学 | Five-level sub module capacitance voltage balance control method for MMC (Module Multilevel Converter) |
| CN105763086B (en) * | 2016-04-07 | 2019-02-05 | 电子科技大学 | A five-level sub-module capacitor-voltage balance control method for a modular multilevel converter |
| CN105790228A (en) * | 2016-04-20 | 2016-07-20 | 广州供电局有限公司 | Converter valve sub-module and modularized multi-level converter |
| CN106021767A (en) * | 2016-05-27 | 2016-10-12 | 天津大学 | Mixed type MMC topology submodule quantity configuration calculation method |
| CN105946849B (en) * | 2016-06-27 | 2019-03-26 | 山东大学 | A kind of comprehensive transformation system topological structure of plug-in hybrid-electric car and method |
| CN105946849A (en) * | 2016-06-27 | 2016-09-21 | 山东大学 | Topological structure and method for comprehensive transformation system of plug-in type hybrid electric vehicle |
| CN106253725A (en) * | 2016-08-24 | 2016-12-21 | 清华大学 | Be suitable to the unilateral brachium pontis blocking-up type modular multi-level converter of unidirectional trend |
| CN106253725B (en) * | 2016-08-24 | 2018-10-19 | 清华大学 | Unilateral bridge arm blocking-up type modular multi-level converter suitable for unidirectional trend |
| CN106452146B (en) * | 2016-11-22 | 2019-04-23 | 佛山科学技术学院 | A multi-level converter sub-module circuit and multi-level converter |
| CN106452146A (en) * | 2016-11-22 | 2017-02-22 | 佛山科学技术学院 | Multi-level converter submodule circuit and multi-level converter |
| CN106787087A (en) * | 2017-01-09 | 2017-05-31 | 许继集团有限公司 | Hybrid MMC sequences pressure charging method, startup method and device |
| US10483788B2 (en) | 2017-01-16 | 2019-11-19 | Nr Electric Co., Ltd | Charging method for sub-module based hybrid converter |
| WO2018130203A1 (en) * | 2017-01-16 | 2018-07-19 | 南京南瑞继保电气有限公司 | Method for charging sub-module based hybrid converter |
| WO2018130205A1 (en) * | 2017-01-16 | 2018-07-19 | 南京南瑞继保电气有限公司 | Method for charging sub-module based hybrid converter |
| CN107196539A (en) * | 2017-06-23 | 2017-09-22 | 西安交通大学 | A kind of MMC zero DC voltage fault traversing control methods under bridge arm parameter unbalance state |
| CN107123993A (en) * | 2017-07-13 | 2017-09-01 | 东莞市阿特为电气有限公司 | Switching circuit |
| CN108199591A (en) * | 2018-01-19 | 2018-06-22 | 中电普瑞电力工程有限公司 | A kind of drop capacitive circuit and modularization multi-level converter |
| CN112534695A (en) * | 2018-08-06 | 2021-03-19 | Abb电网瑞士股份公司 | Method for controlling MMC |
| CN112534695B (en) * | 2018-08-06 | 2025-06-20 | 日立能源有限公司 | Methods for controlling MMC |
| CN109474008A (en) * | 2018-11-12 | 2019-03-15 | 沈阳工业大学 | Fan grid-connected system based on hybrid MMC and matrix converter |
| CN109546882A (en) * | 2018-11-14 | 2019-03-29 | 华北电力大学 | A kind of half full mixing MMC and its control method based on hybrid full-bridge |
| CN109921388A (en) * | 2019-01-17 | 2019-06-21 | 华北电力大学 | DC current interruption device and method for hybrid MMC and AC circuit breaker |
| CN110707681B (en) * | 2019-08-27 | 2021-09-10 | 华北电力大学 | Interconnected power distribution system with flexible multi-state switch and reliable operation evaluation method |
| CN110707681A (en) * | 2019-08-27 | 2020-01-17 | 华北电力大学 | An interconnected power distribution system with flexible multi-state switches and a reliable operation evaluation method |
| WO2021051315A1 (en) * | 2019-09-18 | 2021-03-25 | 西门子股份公司 | Modular multilevel converter and discharge method therefor |
| WO2021135459A1 (en) * | 2020-01-03 | 2021-07-08 | 东南大学 | Series-parallel modular multi-level converter with cut-off capability and control method thereof |
| US11329549B2 (en) | 2020-01-03 | 2022-05-10 | Southeast University | Hybrid modular multilevel converter having fault blocking capability, and control method thereof |
| CN111541362A (en) * | 2020-03-27 | 2020-08-14 | 山东大学 | A switching control method and system of MMC redundant sub-module |
| CN113258761A (en) * | 2021-05-17 | 2021-08-13 | 东南大学 | Modular multilevel converter for inhibiting fault current and control method thereof |
| CN117240122A (en) * | 2023-11-15 | 2023-12-15 | 四川大学 | A hybrid open-winding dual-modular multi-level converter and its control method |
| CN117240122B (en) * | 2023-11-15 | 2024-01-26 | 四川大学 | A hybrid open-winding dual-modular multi-level converter and its control method |
| CN117792063A (en) * | 2024-02-23 | 2024-03-29 | 四川大学 | Hybrid modular multi-level converter AC/DC side precharge start-up control strategy |
| CN117792063B (en) * | 2024-02-23 | 2024-05-10 | 四川大学 | AC/DC side pre-charging start-up control strategy for hybrid modular multilevel converter |
| CN119315614A (en) * | 2024-12-17 | 2025-01-14 | 浙江大学 | MMC converter valve and method for realizing AC/DC fault ride-through based on energy-consuming submodule |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102931863B (en) | 2015-04-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102931863B (en) | Method for setting up modularized multi-level converter composite structure model | |
| CN104052026B (en) | For submodule topology and the application thereof of modularization multi-level converter | |
| Adam et al. | Mixed cells modular multilevel converter | |
| CN105119508B (en) | Full-bridge and the modularization multi-level converter and startup method of half-bridge submodule series-parallel connection | |
| EP2786479B1 (en) | Power converter | |
| CN104320011B (en) | Hybrid sub-module MMC converter with direct-current fault ride-through capability | |
| CN204304822U (en) | A kind of modularization multi-level converter of mixed structure | |
| CN108306320A (en) | A kind of energy accumulation current converter and energy storage converter system | |
| CN104638615A (en) | Modular multilevel converter with direct-current fault isolation function and submodule thereof | |
| CN103236710B (en) | Adopt the THE UPFC of modular construction | |
| CN104868748A (en) | Current converter module unit, current converter, DC power transmission system and control method | |
| CN105429165B (en) | A kind of multiterminal Hybrid HVDC system topological and control method to the power supply of more drop point passive networks | |
| CN113938037A (en) | Modular multilevel converter, fault ride-through method and electronic equipment | |
| CN104953571B (en) | A kind of modularization multi-level converter improved structure with DC Line Fault Scavenging activity | |
| CN107370393A (en) | A kind of Modularized multi-level converter sub-module topological structure and its guard method | |
| CN103731059A (en) | Novel double-clamping sub-module structure circuit of modular multilevel converter | |
| Li et al. | Active-forced-commutated bridge using hybrid devices for high efficiency voltage source converters | |
| CN104796025B (en) | A kind of Modularized multi-level converter sub-module topological structure | |
| Liu et al. | DC side line-to-line fault analysis of VSC-HVDC and DC-fault-clearing methods | |
| CN105680681B (en) | Clamping type single submodule-based starting method of modular multilevel converter | |
| Tian et al. | Assessment of low-loss configurations for efficiency improvement in hybrid modular multilevel converters | |
| Cano et al. | Distributed input multiport MMC based power converter for AC and DC loads | |
| CN113489359B (en) | A submodule topology with DC fault clearing capability | |
| CN208046465U (en) | An Improved Double Clamp Submodule and Modular Multilevel Converter | |
| Xue et al. | A novel sub-module topology for MMC against DC side short-circuit faults |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |