CN102932419B - A kind of data-storage system for the safety production cloud service platform towards industrial and mining enterprises - Google Patents
A kind of data-storage system for the safety production cloud service platform towards industrial and mining enterprises Download PDFInfo
- Publication number
- CN102932419B CN102932419B CN201210370663.3A CN201210370663A CN102932419B CN 102932419 B CN102932419 B CN 102932419B CN 201210370663 A CN201210370663 A CN 201210370663A CN 102932419 B CN102932419 B CN 102932419B
- Authority
- CN
- China
- Prior art keywords
- data
- cloud storage
- cloud
- service
- storage management
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 82
- 238000005065 mining Methods 0.000 title claims abstract description 48
- 238000013500 data storage Methods 0.000 title claims abstract description 23
- 238000004458 analytical method Methods 0.000 claims abstract description 19
- 238000003860 storage Methods 0.000 claims description 115
- 238000007726 management method Methods 0.000 claims description 106
- 238000000034 method Methods 0.000 claims description 56
- 230000008569 process Effects 0.000 claims description 43
- 238000012545 processing Methods 0.000 claims description 33
- 238000004422 calculation algorithm Methods 0.000 claims description 23
- 238000004891 communication Methods 0.000 claims description 12
- 238000011161 development Methods 0.000 claims description 10
- 230000006978 adaptation Effects 0.000 claims description 7
- 238000013523 data management Methods 0.000 claims description 7
- 230000010354 integration Effects 0.000 claims description 7
- 239000008186 active pharmaceutical agent Substances 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims description 6
- 230000002776 aggregation Effects 0.000 claims description 5
- 238000004220 aggregation Methods 0.000 claims description 5
- 239000013307 optical fiber Substances 0.000 claims description 5
- 238000007405 data analysis Methods 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims description 2
- 239000000284 extract Substances 0.000 claims 1
- 238000003745 diagnosis Methods 0.000 description 25
- 230000006870 function Effects 0.000 description 25
- 238000012544 monitoring process Methods 0.000 description 21
- 238000005516 engineering process Methods 0.000 description 20
- 238000011156 evaluation Methods 0.000 description 17
- 238000004364 calculation method Methods 0.000 description 11
- 238000013480 data collection Methods 0.000 description 11
- 230000002159 abnormal effect Effects 0.000 description 9
- 210000004027 cell Anatomy 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 238000012549 training Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 210000002865 immune cell Anatomy 0.000 description 6
- 238000005457 optimization Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000012423 maintenance Methods 0.000 description 5
- 238000012706 support-vector machine Methods 0.000 description 5
- 230000005856 abnormality Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000013499 data model Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013439 planning Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000013468 resource allocation Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000012502 risk assessment Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 206010000372 Accident at work Diseases 0.000 description 1
- 101100119887 Arabidopsis thaliana FDM1 gene Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 101150046002 ced-1 gene Proteins 0.000 description 1
- 101150117572 ced-2 gene Proteins 0.000 description 1
- 238000010370 cell cloning Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000013210 evaluation model Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012821 model calculation Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一种用于面向工矿企业的安全生产云服务平台的数据存储系统,在数据采集设备中设有数据存储层,针对工矿企业中来自各种不同数据源的海量数据,对其进行处理后生成与不同业务对应的统一接口的主题数据,并将这些主题数据存储在分布式文件系统中,在有任务请求时,根据不同的任务请求,对所述分布式文件系统中存储的数据进行多节点、多任务的并行计算和分析,对分析结果根据不同的应用进行相应的展现。
A data storage system for a safe production cloud service platform for industrial and mining enterprises. A data storage layer is provided in the data acquisition equipment. Aiming at massive data from various data sources in industrial and mining enterprises, it is processed and generated with The theme data of the unified interface corresponding to different businesses, and store these theme data in the distributed file system. When there is a task request, according to different task requests, the data stored in the distributed file system is multi-node, Multi-task parallel computing and analysis, and display the analysis results according to different applications.
Description
技术领域 technical field
本发明属于工矿系统自动化信息采集与控制领域,涉及电力系统实时数据采集、处理与控制系统,尤其是基于云计算的工矿实时数据一体化处理系统及设计方法。 The invention belongs to the field of automatic information collection and control of industrial and mining systems, and relates to a power system real-time data collection, processing and control system, in particular to an industrial and mining real-time data integrated processing system and design method based on cloud computing.
背景技术 Background technique
互联网中已经广泛地使用云技术,主要包括三种不同的类型,软件即服务SaaS,平台即服务PaaS,基础架构即服务IaaS。其中PaaS提供了用户可以访问的完整或部分的应用程序开发,SaaS则提供了完整的可直接使用的应用程序,比如通过Intemet管理企业资源。而IaaS中的云技术以海量数据管理技术、海量数据分布存储技术、虚拟化技术、云计算平台管理技术最为关键。其中海量数据管理技术和分布式存储技术是数据处理的重要组成部分,云计算需要对分布的、海量的数据进行处理、分析,因此,数据管理技术必须能够高效的管理大量的数据,此外还需要冗余存储的方式保证数据的可靠性。云计算系统中广泛使用的数据存储系统是Google的GFS和Hadoop团队开发的GFS的开源实现HDFS。 Cloud technology has been widely used in the Internet, mainly including three different types, software as a service SaaS, platform as a service PaaS, infrastructure as a service IaaS. Among them, PaaS provides complete or partial application development that users can access, and SaaS provides complete and directly usable applications, such as managing enterprise resources through the Internet. The cloud technology in IaaS is mainly based on massive data management technology, massive data distributed storage technology, virtualization technology, and cloud computing platform management technology. Among them, massive data management technology and distributed storage technology are important components of data processing. Cloud computing needs to process and analyze distributed and massive data. Therefore, data management technology must be able to efficiently manage a large amount of data. Redundant storage ensures data reliability. Widely used data storage systems in cloud computing systems are Google's GFS and HDFS, an open source implementation of GFS developed by the Hadoop team.
工矿企业的安全生产在实际的生产运行中,必然有海量数据(如各种安全生产标准、监测的数据、教育培训知识等)需要处理,云服务平台采用分布式计算存储方式,将计算任务分配到多台机器上并行处理,以此提高运算速度。云平台将安全生产企业实际生产积累的数据信息进行统一的管理与存储,为生产过程中提供基于数据的预测、异常检测等功能,实现企业的安全生产。 In the actual production and operation of safe production in industrial and mining enterprises, there must be massive data (such as various safety production standards, monitoring data, education and training knowledge, etc.) Parallel processing on multiple machines to improve computing speed. The cloud platform manages and stores the data information accumulated in the actual production of safety production enterprises in a unified manner, and provides functions such as data-based prediction and abnormal detection for the production process, so as to realize the safe production of enterprises.
传统工矿企业的数据采集功能和具体的逻辑判断功能结合紧密,通常由较为单一的硬件设备完成,因此,完成不同的功能就需要配置不同的设备或系统,这些不同功能的设备或系统都有各自独立的数据采集单元。各个数据采集存在着交叉重复采集、利用率不高、数据及信息内容不一致、时间不统一等问题,形成了以纵向层次多、横向系统多为主要特征的“信息孤岛”,制约了信息的进一步融合和应用,数据及信息的重复采集和重复传输处理势必造成各种资源的浪费。大多数工矿企业中的仪表分成三类:保护类,测控类,计量类,他们都有自己的数据采集和处理单元,可与监控显示系统连接,用于基础参数测量。但也存在以下技术问题: The data collection function of traditional industrial and mining enterprises is closely combined with the specific logical judgment function, which is usually completed by a relatively single hardware device. Therefore, different devices or systems need to be configured to complete different functions. These devices or systems with different functions have their own Independent data acquisition unit. Various data collections have problems such as cross-repeated collection, low utilization rate, inconsistent data and information content, and inconsistent time, forming an "information island" characterized by multiple vertical levels and multiple horizontal systems, which restricts the further development of information. Convergence and application, repeated collection and repeated transmission of data and information will inevitably lead to waste of various resources. Instruments in most industrial and mining enterprises are divided into three categories: protection, measurement and control, and metering. They all have their own data acquisition and processing units, which can be connected with the monitoring and display system for basic parameter measurement. But there are also the following technical problems:
(1)仪表的精度不同,造成了数据不一致,成本上也不经济。 (1) The accuracy of the instruments is different, resulting in inconsistent data and uneconomical cost.
(2)仪表采集频率不同、算法不同造成了同一个量值在不同的仪表中也不同,数据冗余而且混乱。 (2) The different acquisition frequencies and algorithms of the instruments cause the same value to be different in different instruments, and the data is redundant and confusing.
(3)系统与设备,设备与设备之间通讯困难,缺乏统一标准。 (3) It is difficult to communicate between the system and equipment, and between equipment and equipment, and there is a lack of unified standards.
(4)过程数据缺失,在采样的过程中,产生了大量的过程数据,这些数据对于后期的事故分析或业务扩展都是有价值的,但我们从仪表中取得的都是经过N次运算的“二手数据”,“简化值”。这种独立配置、独立计算、独立功能的装置带来的问题是信息共享差,利用率低和硬、软件资源浪费问题。 (4) The process data is missing. During the sampling process, a large amount of process data is generated. These data are valuable for later accident analysis or business expansion, but what we get from the instrument is all calculated after N times "Secondary Data", "Simplified Values". The problems brought about by this independent configuration, independent calculation, and independent function device are poor information sharing, low utilization rate and waste of hardware and software resources.
为解决以上提到的问题,尤其是数据分别采集、数据分别处理与计算、数据难于共享等关键问题,有必要建立一套新的框架与机制,实现同一类型设备的数据一次采集,能在整套统一的软件应用平台下利用云计算技术实现测控、保护、相量测量、计量等多种应用功能。 In order to solve the above-mentioned problems, especially the key problems such as separate data collection, data processing and calculation, and data sharing, it is necessary to establish a new framework and mechanism to realize one-time data collection of the same type of equipment, which can be used in the entire set Under the unified software application platform, cloud computing technology is used to realize various application functions such as measurement and control, protection, phasor measurement, and metering.
发明内容 Contents of the invention
本发明的目的是提供一种工矿企业的安全生产云服务平台系统,以解决设备独立配置、独立计算、独立功能的装置带来的信息共享差、利用率低和软、硬件资源浪费的问题,实现同一类型设备数据的一次采集,及测控、保护、相量测量、计量等多种应用。 The purpose of the present invention is to provide a safety production cloud service platform system for industrial and mining enterprises to solve the problems of poor information sharing, low utilization rate, and waste of software and hardware resources caused by independent equipment configuration, independent calculation, and independent function devices. Realize one-time collection of the same type of equipment data, and multiple applications such as measurement and control, protection, phasor measurement, and metering.
所述的工矿企业的安全生产云服务平台系统,包括: The safety production cloud service platform system for industrial and mining enterprises includes:
1)建立面向工矿企业的安全生产云服务平台,该平台集成了支持安全生产服务的海量数据处理、安全生产管理业务协同以及系统管理等功能,为工矿企业的安全生产与政府监管提供重要的技术支持。 1) Establish a safety production cloud service platform for industrial and mining enterprises. This platform integrates functions such as massive data processing supporting safety production services, safety production management business collaboration, and system management, and provides important technologies for safety production and government supervision of industrial and mining enterprises support.
2)基于安全事故事件多维关联规则分析技术,能从海量的生产数据中分析挖掘出可能导致事故及未遂事件发生的频繁因素和潜在规律,建立安全生产标准效用及标准缺失情况的动态监测预警分析方法,为政府及行业监管部门制定基于风险的、合理的作业标准提供科学的依据。 2) Based on the multi-dimensional association rule analysis technology of safety accident events, it can analyze and dig out the frequent factors and potential laws that may lead to accidents and near-misses from massive production data, and establish a dynamic monitoring and early warning analysis of the effectiveness of safety production standards and the absence of standards This method provides a scientific basis for the government and industry regulators to formulate risk-based and reasonable operating standards.
3)提出了工矿企业安全生产中的海量数据处理方法,具体包括基于支持向量机的安全生产异常检测技术、基于广义规则推理的知识发现技术,能对生产的海量数据进行分析与知识挖掘,从而帮助企业提升事故预防预警和应急处置能力,提高企业安全生产水平。 3) The massive data processing method in the safety production of industrial and mining enterprises is proposed, including the support vector machine-based safety production anomaly detection technology and the knowledge discovery technology based on generalized rule reasoning, which can analyze and knowledge mine the massive production data, thereby Help enterprises improve accident prevention, early warning and emergency response capabilities, and improve enterprise safety production level.
4)开发安全生产管理工具集,方便工矿行业安全生产的安全管理、监督、配置等,实现企业的快速排查、快速响应。 4) Develop a safety production management tool set to facilitate the safety management, supervision, configuration, etc. of safety production in the industrial and mining industries, and realize rapid investigation and rapid response of enterprises.
其中开发的面向工矿企业的安全生产云服务平台,集成了支持安全生产服务云的海量数据处理、安全生产管理业务协同以及系统管理等功能,实现对企业生产安全的实时监测与预警。 Among them, the safety production cloud service platform developed for industrial and mining enterprises integrates the functions of massive data processing supporting safety production service cloud, safety production management business collaboration, and system management to realize real-time monitoring and early warning of enterprise production safety.
具体而言,一种用于面向工矿企业的安全生产云服务平台的数据存储系统,其特征在于所述面向工矿企业的安全生产云服务平台系统,其特征在于:包括安全云服务平台门户子系统,系统管理与相关工具集研制子系统,应用服务层子系统,虚拟资源层子系统,平台服务支撑层子系统,接入与适配层子系统,安全服务资源子系统,基础设施服务支撑层子系统,所述应用服务层子系统还包括海量数据处理系统,由数据采集设备、数据整合设备、数据管理设备、标准化服务接口设备以及高速可靠的光纤通信网络五大部分组成,构成基于云计算的工矿企业实时数据一体化处理系统,在所述数据采集设备中设有数据存储层,针对工矿企业中来自各种不同数据源的海量数据,对其进行处理后生成与不同业务对应的统一接口的主题数据,并将这些主题数据存储在分布式文件系统中,在有任务请求时,根据不同的任务请求,对所述分布式文件系统中存储的数据进行多节点、多任务的并行计算和分析,对分析结果根据不同的应用进行相应的展现。 Specifically, a data storage system for an industrial and mining enterprise-oriented safety production cloud service platform, characterized in that the industrial and mining enterprise-oriented safety production cloud service platform system is characterized in that it includes a safety cloud service platform portal subsystem , system management and related tool set development subsystem, application service layer subsystem, virtual resource layer subsystem, platform service support layer subsystem, access and adaptation layer subsystem, security service resource subsystem, infrastructure service support layer Subsystem, the application service layer subsystem also includes a massive data processing system, which is composed of five major parts: data acquisition equipment, data integration equipment, data management equipment, standardized service interface equipment, and high-speed and reliable optical fiber communication network, forming a cloud computing-based The real-time data integrated processing system for industrial and mining enterprises, which is equipped with a data storage layer in the data acquisition equipment, processes the massive data from various data sources in industrial and mining enterprises, and generates unified interfaces corresponding to different businesses after processing them Subject data, and store these subject data in the distributed file system, when there is a task request, according to different task requests, perform multi-node, multi-task parallel computing and analysis on the data stored in the distributed file system , and display the analysis results according to different applications.
所述的用于面向工矿企业的安全生产云服务平台的数据存储系统,其特征在于:所述数据存储系统包括至少一个云存储管理节点,至少一个云存储空间以及至少一个虚拟设备,云存储管理节点、云存储空间与虚拟设备构成私有云。 The data storage system for the safety production cloud service platform for industrial and mining enterprises is characterized in that: the data storage system includes at least one cloud storage management node, at least one cloud storage space and at least one virtual device, and the cloud storage management Nodes, cloud storage space and virtual devices constitute a private cloud.
所述的用于面向工矿企业的安全生产云服务平台的数据存储系统,其特征在于:所述数据存储系统包括两个云存储管理节点、三个云存储空间与多个虚拟设备,三个云存储空间与多个虚拟设备构成一个私有云。 The data storage system for the safety production cloud service platform for industrial and mining enterprises is characterized in that: the data storage system includes two cloud storage management nodes, three cloud storage spaces and multiple virtual devices, three cloud Storage Spaces and multiple virtual appliances form a private cloud.
所述的用于面向工矿企业的安全生产云服务平台的数据存储系统,其特征在于:所述数据存储系统包括两个云存储管理节点a、b,云存储管理节点a与云存储管理节点b相互连接,两个云存储管理节点之间相互接管,两个云存储管理节点之间可以均衡负载并且在其中一个云存储管理节点在发生故障时互为接管,以保证基于该云存储架构的系统运行时的可靠性能。 The data storage system for the safety production cloud service platform for industrial and mining enterprises is characterized in that: the data storage system includes two cloud storage management nodes a, b, cloud storage management node a and cloud storage management node b Interconnected, the two cloud storage management nodes take over each other, the load can be balanced between the two cloud storage management nodes and one of the cloud storage management nodes takes over each other when a failure occurs, so as to ensure that the system based on the cloud storage architecture Reliable performance at runtime.
所述的用于面向工矿企业的安全生产云服务平台的数据存储系统,其特征在于:所述两个云存储管理节点可分别对三个云存储空间以及多个虚拟设备进行管理,其管理包括对三个云存储空间与多个虚拟设备进行的新建、删除与配置,以进行系统备份、恢复与扩容。每个云存储管理节点中都有数据目录,数据目录用于记录云存储空间及虚拟设备的相关信息,云存储管理节点通过其内部的数据目录中的相关数据找到相对应的云存储空间与虚拟设备;另外,每个云存储管理节点上都设置有统一的应用程序访问入口,该应用程序访问入口为应用程序接口,应用程序/服务通过调用该应用程序访问入口访问云存储空间;外部的应用程序/服务分别与云存储架构中的云存储管理节点a、b相连接,在云存储管理节点上设置有统一的应用程序访问入口,应用程序/服务会通过应用程序访问入口指明访问或存取任意一个云存储空间中的相应信息、或者对云存储空间以及虚拟设备进行管理,应用程序/服务通过调用应用程序访问入口连接上云存储管理节点,接着应用程序/服务会通过API指明访问的云存储空间、文件名、偏移量、存取操作,云存储管理节点根据这些API所传入的信息结合内部数据字典将最终操作分配到一个或多个具体的物理存储设备上完成存取操作,最后通过云存储管理节点返回存取结果。 The data storage system for the safety production cloud service platform for industrial and mining enterprises is characterized in that: the two cloud storage management nodes can respectively manage three cloud storage spaces and multiple virtual devices, and the management includes Create, delete and configure three cloud storage spaces and multiple virtual devices for system backup, recovery and capacity expansion. Each cloud storage management node has a data directory. The data directory is used to record the relevant information of cloud storage space and virtual devices. The cloud storage management node finds the corresponding cloud storage space and virtual equipment; in addition, each cloud storage management node is provided with a unified application access entry, the application access entry is an application program interface, and the application program/service accesses the cloud storage space by calling the application access entry; the external application Programs/services are respectively connected to cloud storage management nodes a and b in the cloud storage architecture, and a unified application program access entry is set on the cloud storage management node, and the application program/service will indicate access or access through the application program access entry For the corresponding information in any cloud storage space, or to manage cloud storage space and virtual devices, the application/service connects to the cloud storage management node by calling the application access portal, and then the application/service specifies the cloud to be accessed through the API Storage space, file name, offset, access operation, the cloud storage management node assigns the final operation to one or more specific physical storage devices to complete the access operation according to the information passed in by these APIs and the internal data dictionary. Finally, the access result is returned through the cloud storage management node.
附图说明 Description of drawings
图1工矿企业的安全生产云服务平台系统 Figure 1 The safety production cloud service platform system of industrial and mining enterprises
图2工矿企业实时数据一体化处理系统 Figure 2 Integrated real-time data processing system for industrial and mining enterprises
图3无线数据采集设备集群 Figure 3 wireless data acquisition equipment cluster
图4无线数据采集设备结构图 Figure 4 Structure diagram of wireless data acquisition equipment
图5云存储系统结构图 Figure 5 Cloud storage system structure diagram
图6云存储数据中心结构图 Figure 6 Cloud storage data center structure diagram
图7设备资源实时监控模型 Figure 7 Real-time monitoring model of equipment resources
图8设备性能实时监控模型 Figure 8 Equipment performance real-time monitoring model
图9SVM训练与预测流程图 Figure 9 SVM training and prediction flow chart
图10免疫进化算法流程 Figure 10 Immune evolution algorithm flow
图11关联规则分析流程 Figure 11 Association rule analysis process
图12Petri网挖掘模型 Figure 12 Petri net mining model
具体实施方式 detailed description
图1所示为一种面向工矿企业的安全生产的云服务平台,集成了支持安全生产服务云的实时数据处理、安全生产管理业务协同以及系统管理等功能,实现对企业生产安全的实时监测与预警。 Figure 1 shows a cloud service platform for safety production of industrial and mining enterprises, which integrates the functions of real-time data processing, safety production management business collaboration and system management that support the safety production service cloud, and realizes real-time monitoring and monitoring of enterprise production safety. early warning.
具体而言,所述的面向工矿企业的安全生产云服务平台系统,包括安全云服务平台门户子系统,系统管理与相关工具集研制子系统,应用服务层子系统,虚拟资源层子系统,平台服务支撑层子系统,接入与适配层子系统,安全服务资源子系统,基础设施服务支撑层子系统。 Specifically, the safety production cloud service platform system for industrial and mining enterprises includes the safety cloud service platform portal subsystem, the system management and related tool set development subsystem, the application service layer subsystem, the virtual resource layer subsystem, and the platform Service support layer subsystem, access and adaptation layer subsystem, security service resource subsystem, infrastructure service support layer subsystem.
所述安全云服务平台门户子系统基于web2.0技术负责对外部实现信息查询和管理,包括政府监察平台,企业应用平台,行业监督平台,所述政府监察平台负责政府实时监察企业运行的设备数据和财税数据,所述企业应用系统负责对外提供增值服务和应用查询,所述行业监督平台用于产品质量的监控和反馈。 The portal subsystem of the security cloud service platform is responsible for external information query and management based on web2.0 technology, including a government monitoring platform, an enterprise application platform, and an industry monitoring platform. The government monitoring platform is responsible for the government's real-time monitoring of enterprise operation equipment data and fiscal and taxation data, the enterprise application system is responsible for providing value-added services and application inquiries, and the industry supervision platform is used for product quality monitoring and feedback.
所述系统管理与相关工具集研制子系统包括云服务工具的开发、部署、监控、安全管理、日志管理和配置。 The system management and related tool set development subsystem includes development, deployment, monitoring, security management, log management and configuration of cloud service tools.
所述应用服务层,包括海量数据处理系统和业务协同操作系统,其中所述海量数据处理系统负责,对数据采集、数据整合、数据管理并且提供标准化的服务接口为安全云服务平台门户提供数据流,而所述业务协同操作系统负责对协作任务和跨域任务构建数学模型,具体为对业务数据进行采集,把云平台提供的服务内容与采集的业务数据整合,预测后续业务的发展,所述跨域任务具体包括不同业务领域的管理和监控,将企业的不同部门之间的工作实现任务协调。 The application service layer includes a massive data processing system and a business collaborative operating system, wherein the massive data processing system is responsible for data collection, data integration, data management and provides standardized service interfaces to provide data streams for the security cloud service platform portal , and the business collaborative operating system is responsible for constructing a mathematical model for collaborative tasks and cross-domain tasks, specifically collecting business data, integrating service content provided by the cloud platform with collected business data, and predicting the development of subsequent businesses. Cross-domain tasks specifically include the management and monitoring of different business areas, and coordinate tasks between different departments of the enterprise.
所述虚拟资源层,主要是为云服务器提供虚拟化后的数字资源,具体包括知识服务资源池、生产服务资源池、数据信息资源池,所述虚拟资源层包括了这些原始的可提供知识服务、生产服务的数据信息资源,通过虚拟化技术,将该部分数据内容整合到应用服务层当中,随时可以被所述海量数据处理单元和业务协同单元调用。 The virtual resource layer mainly provides cloud servers with virtualized digital resources, specifically including knowledge service resource pools, production service resource pools, and data information resource pools. The virtual resource layer includes these original knowledge services that can be provided 1. The data information resources of the production service, through the virtualization technology, integrate this part of the data content into the application service layer, and can be called by the massive data processing unit and the business collaboration unit at any time.
所述接入与适配层子系统,主要从相关标准及验证测试系统中获得数据资源,此外还包括安全服务资源,具体包括生产设备数据、标准化基本规范、法律法规、安全管理制度、事故源历史数据、教育培训知识、安全生产投入、组织机构与负责、隐患检查信息从第三方服务适配接入。 The access and adaptation layer subsystem mainly obtains data resources from relevant standards and verification test systems, and also includes security service resources, specifically including production equipment data, standardization basic specifications, laws and regulations, safety management systems, accident sources Historical data, education and training knowledge, investment in safety production, organizational structure and responsibility, and hidden danger inspection information are adapted and accessed from third-party services.
所述平台服务支撑层对上述应用服务层、虚拟资源层、接入适配层服务,提供云服务管理与支撑引擎,交易协同逻辑引擎,知识聚集与分类引擎,所述云服务管理与支撑引擎为所述应用服务层提供云服务注册、发布、注销,云服务搜索、调度、组合,云服务执行与监控;所述交易协同逻辑引擎为业务协同提供过程管理、费用核算、信用评估,所述知识聚集与分类引擎为业务协同提供行业多资源分散知识获取,行业知识建模,行业知识聚集分类,而对于所述平台服务支撑层中其他的负责运营管理、运维管理、终端软件开发,平台开发工具的模块为所述虚拟资源层和接入与适配层服务,其中所述运营管理负责多租户服务,订单管理,交付管理,支付管理,用户管理,积分管理,所述运维管理负责安全管理,性能管理与优化,系统配置,海量数据容错与可信度管理,所述终端软件开发,包括传感信息的融合管理,服务资源图像界面和普适人机交互工具,以及平台开发工具,所述平台服务支撑层都由基础设施服务支撑层通过云计算,云网络,云存储统一支撑。 The platform service support layer provides cloud service management and support engines, transaction collaboration logic engines, knowledge aggregation and classification engines, and cloud service management and support engines for the above-mentioned application service layer, virtual resource layer, and access adaptation layer services. Provide cloud service registration, release, cancellation, cloud service search, scheduling, combination, cloud service execution and monitoring for the application service layer; the transaction collaboration logic engine provides process management, cost accounting, and credit evaluation for business collaboration, and the The knowledge aggregation and classification engine provides industry multi-resource decentralized knowledge acquisition, industry knowledge modeling, and industry knowledge aggregation and classification for business collaboration, while other in the platform service support layer are responsible for operation management, operation and maintenance management, terminal software development, platform The module of the development tool serves the virtual resource layer and the access and adaptation layer, wherein the operation management is responsible for multi-tenant services, order management, delivery management, payment management, user management, credit management, and the operation and maintenance management is responsible for Security management, performance management and optimization, system configuration, massive data fault tolerance and reliability management, terminal software development, including sensor information fusion management, service resource image interface and universal human-computer interaction tools, and platform development tools , the platform service support layer is uniformly supported by the infrastructure service support layer through cloud computing, cloud network, and cloud storage.
基于云计算的工矿企业实时数据处理系统,如图2所示,由数据采集设备、数据整合设备、数据管理设备、标准化服务接口设备以及高速可靠的光纤通信网络五大部分组成,构成基于云计算的工矿企业实时数据一体化处理系统, The real-time data processing system of industrial and mining enterprises based on cloud computing, as shown in Figure 2, consists of five major parts: data acquisition equipment, data integration equipment, data management equipment, standardized service interface equipment, and high-speed and reliable optical fiber communication network, forming a cloud computing-based system. Real-time data integrated processing system for industrial and mining enterprises,
数据采集设备:图2所示该数据一体化系统的网络结构,无线传感器集群负责采集工矿现场的数据,并将数据传输给工矿数据整合设备,所述数据整合设备上,标配HTTP代理模块代理服务器和云管理服务器,这两者都使用ubuntu服务器刀片板,作为接受管理的节点,每台节点服务器上都安装了节点管理器,此管理器的主要功能是实现对KVM虚拟机的管理,包括:(1)接收云管理器的控制指令进行KVM虚拟机的部署、启停等操作;(2)监控本地KVM虚拟机的可用性,在本地KVM虚拟机出错不可用时,尝试启动另外一个相同的KVM虚拟机实例;(3)实时监控本地各个KVM虚拟机资源的使用状况,并将KVM虚拟机的实时资源使用情况发送给云管理器;(4)根据虚拟机实时的资源使用情况自动执行KVM虚拟机的扩展操作;(5)接收来自云管理器的虚拟机迁移指令,同时,每台节点服务器上都还将部署多个KVM虚拟机,并在每个虚拟机中都部署节点服务器。所有上述的节点服务器都共享同一个网络数据存储器。而每个节点服务器的本地存储只用来缓存每个虚拟机自身运行数据,而虚拟机的镜像文件和实施例都会被缓存在共享的网络数据存储中,这样能够更容易地支持高可用性和虚拟机的迁移操作。此外,工矿数据采集的数据,也会受云控制服务器和代理服务器的控制被随机分布到网络存储器中,并由各节点服务器上的应用软件完成业务协同和跨域任务协同。图3所示的是设置有无线传感器数据采集集群,所述无线传感器数据采集装置根据系统中应用组件功能需要,与被工矿数据设备通过数据或模拟接口,有线或无线接口连接,并将采集频率设置为功能需要的最高频率和精度进行数据采样,采集的数据缓存在自身的存储器内,数据压缩成统一格式后经无线收发单元发射到远程监控中心。其中各无线传感器设备之间也可以进行同步或异步的通讯,构成数据采集集群。图4所示无线数据采集设备的工作原理图,包括;核心处理单元、触摸屏、摄像头、话筒、时钟、存储器、电源管理、接口电路、传感器电路组成;所述核心处理单元包括嵌入式控制器、音频接口电路、视频接口电路、触摸屏接口电路、多路串行接口、高速USB接口、无线通讯模块、调试接口和传感器接口电路;所述触摸屏接口电路、存储器、音频接口电路、多路串行接口、无线通讯模块、调试接口和高速USB接口分别与嵌入式控制器双向连接;所述触摸屏与触摸屏接口电路双向连接;所述话筒和摄像头分别接音频接口电路和视频接口电路的输入端;所述多路串行接口和高速USB接口分别接工矿数据设备;所述视频接口电路的输出端接嵌入式控制器的相应输入端;嵌入式控制器与因特网相连接;电源管理设备用于提供电能,电源采用光伏太阳能板和蓄电池组相组合的形式,既能保证设备能有效稳定的长期工作,还可避免布设电源线;其中使用MC3063芯片构成的充放电控制器,以便提供稳定的电压,传感器单元中设置有加速度、压力、温度、光传感器和载荷信号传感器,通过加速度信号和载荷信号来实现对位移的计算,通过压力和温度传感器对环境进行监控。核心处理单元用于传感器信号的采集运算和存储,无线通信模块实现无线信号的接收和发送;嵌入式控制器可采用CC2530ZigBee芯片,以方便地实现以ZigBee为基础的2.4GHzISM波段信号的发送和接收,例如当用在钻井机上时,钻井机包括电机、四连杆机构、游梁、支架、抽杆;电机通过四连杆机构带动游梁运动,游梁驱动与抽杆做上下运动,数据采集装置上的加速度信号传感器和载荷信号传感器就可以设置在抽杆上,以便采集抽杆的运动参数。此外,所示的无线数据采集单元还可以设置在工矿用电器设备上,用于实时视频、音频、数字化监控工作参数,获取工作状态,并将采集的数据通过多协议网关上传至服务器,服务器根据采集的数据对相应设备的工作状况进行分析,以便得出其运行状态。 Data collection equipment: the network structure of the data integration system shown in Figure 2. The wireless sensor cluster is responsible for collecting data on the industrial and mining sites and transmitting the data to the industrial and mining data integration equipment. The data integration equipment is equipped with standard HTTP proxy module proxy The server and the cloud management server both use the ubuntu server blade board as the node to be managed, and a node manager is installed on each node server. The main function of this manager is to realize the management of the KVM virtual machine, including : (1) Receive the control command of the cloud manager to deploy, start and stop the KVM virtual machine; (2) Monitor the availability of the local KVM virtual machine, and try to start another same KVM when the local KVM virtual machine is unavailable due to an error Virtual machine instance; (3) Real-time monitoring of the usage status of each local KVM virtual machine resource, and sending the real-time resource usage status of the KVM virtual machine to the cloud manager; (4) Automatically execute the KVM virtual machine according to the real-time resource usage status of the virtual machine (5) receiving a virtual machine migration instruction from the cloud manager, and at the same time, multiple KVM virtual machines will be deployed on each node server, and a node server will be deployed in each virtual machine. All above-mentioned node servers share the same network data storage. The local storage of each node server is only used to cache the running data of each virtual machine itself, and the image files and embodiments of the virtual machine will be cached in the shared network data storage, which can more easily support high availability and virtualization Machine migration operation. In addition, the data collected by industrial and mining data will also be randomly distributed to the network storage under the control of cloud control servers and proxy servers, and the application software on each node server will complete business collaboration and cross-domain task collaboration. Figure 3 shows that a wireless sensor data acquisition cluster is provided, and the wireless sensor data acquisition device is connected with the industrial and mining data equipment through a data or analog interface, a wired or wireless interface according to the functional requirements of the application components in the system, and the acquisition frequency Set the highest frequency and precision required by the function for data sampling, the collected data is cached in its own memory, and the data is compressed into a unified format and transmitted to the remote monitoring center through the wireless transceiver unit. The wireless sensor devices can also communicate synchronously or asynchronously to form a data collection cluster. The working principle diagram of wireless data acquisition equipment shown in Fig. 4, comprises; Core processing unit, touch screen, camera, microphone, clock, memory, power management, interface circuit, sensor circuit are formed; Described core processing unit comprises embedded controller, Audio interface circuit, video interface circuit, touch screen interface circuit, multi-channel serial interface, high-speed USB interface, wireless communication module, debugging interface and sensor interface circuit; said touch screen interface circuit, memory, audio interface circuit, multi-channel serial interface , the wireless communication module, the debugging interface and the high-speed USB interface are respectively bidirectionally connected with the embedded controller; the touch screen is bidirectionally connected with the touch screen interface circuit; the microphone and the camera are respectively connected to the input ends of the audio interface circuit and the video interface circuit; The multi-channel serial interface and the high-speed USB interface are respectively connected to industrial and mining data equipment; the output terminal of the video interface circuit is connected to the corresponding input terminal of the embedded controller; the embedded controller is connected to the Internet; the power management device is used to provide electric energy, The power supply is in the form of a combination of photovoltaic solar panels and battery packs, which can not only ensure the effective and stable long-term operation of the equipment, but also avoid the laying of power lines; the charge and discharge controller composed of MC3063 chips is used to provide stable voltage, and the sensor unit Acceleration, pressure, temperature, light sensors and load signal sensors are installed in the center, the displacement calculation is realized through the acceleration signal and the load signal, and the environment is monitored through the pressure and temperature sensors. The core processing unit is used for the acquisition, operation and storage of sensor signals, and the wireless communication module realizes the reception and transmission of wireless signals; the embedded controller can use CC2530ZigBee chip to conveniently realize the transmission and reception of 2.4GHz ISM band signals based on ZigBee For example, when used on a drilling machine, the drilling machine includes a motor, a four-bar linkage, a beam, a bracket, and a pumping rod; the motor drives the beam to move through the four-bar linkage, and the beam drives and the pumping rod moves up and down. Data acquisition The acceleration signal sensor and the load signal sensor on the device can be arranged on the drawer rod, so as to collect the motion parameters of the drawer rod. In addition, the wireless data acquisition unit shown can also be set on industrial and mining electrical equipment for real-time video, audio, and digital monitoring of working parameters, obtaining working status, and uploading the collected data to the server through a multi-protocol gateway. The collected data is analyzed for the working condition of the corresponding equipment in order to obtain its operating status.
数据存储层:设有云数据存储池,针对工矿企业中来自各种不同数据源的海量数据,对其进行处理后生成与不同业务对应的统一接口的主题数据,并将这些主题数据存储在分布式文件系统中,在有任务请求时,根据不同的任务请求,对所述分布式文件系统中存储的数据进行多节点、多任务的并行计算和分析,对分析结果根据不同的应用进行相应的展现。如图5所示,本发明提供的数据处理的云存储池,括至少一个云存储管理节点,至少一个云存储空间以及至少一个虚拟设备,云存储管理节点、云存储空间与虚拟设备构成私有云。如图4所示的实施例中,该云存储架构包括两个云存储节点、三个云存储空间与多个虚拟设备,三个云存储空间与多个虚拟设备构成一个私有云。云存储管理节点a与云存储管理节点b相互连接,两个云存储管理节点之间相互接管,两个云存储管理节点之间可以均衡负载并且在其中一个云存储管理节点在发生故障时互为接管,以保证基于该云存储架构的系统运行时的可靠性能。其中,两个云存储管理节点可分别对三个云存储空间以及多个虚拟设备进行管理,其管理包括对三个云存储空间与多个虚拟设备进行的新建、删除与配置,以进行系统备份、恢复与扩容。每个云存储管理节点中都有数据目录,数据目录用于记录云存储空间及虚拟设备的相关信息,云存储管理节点通过其内部的数据目录中的相关数据找到相对应的云存储空间与虚拟设备。另外,每个云存储管理节点上都设置有统一的应用程序访问入口,该应用程序访问入口为应用程序接口,应用程序/服务通过调用该应用程序访问入口访问云存储空间。图4中的每一个虚拟设备均可映射为操作系统中的一个裸设备、内存区、文件系统或内存文件系统等,并虚拟管理物理内存、内置磁盘和各种接口、协议的磁盘阵列。另外,由于多个虚拟设备c1、虚拟设备c2、......、虚拟设备cn均为特性相同的虚拟设备,所以,在本实施例中,虚拟设备c1、虚拟设备c2、......、虚拟设备cn可以构成一个虚拟设备组b,通过该虚拟设备组b简化了对多个虚拟设备的管理。多个虚拟设备可分别对应一个物理存储设备或一个物理存储设备中的一个存储空间。在本实施例中,虚拟设备a1、虚拟设备a2、......、虚拟设备an分别与物理存储设备a1、物理存储设备a2、......、物理存储设备an相连接,从而将从工矿现场采集的数据信息存储在上述物理存储设备中。外部的应用程序/服务a、b分别与云存储架构中的云存储管理节点a、b相连接。由于在云存储管理节点上设置有统一的应用程序访问入口,因此,应用程序/服务通过调用应用程序访问入口的接口函数从而访问相应的云存储空间。应用程序/服务会通过应用程序访问入口指明访问或存取任意一个云存储空间中的相应信息、或者对云存储空间以及虚拟设备进行管理。应用程序/服务通过调用应用程序访问入口连接上云存储管理节点,接着应用程序/服务会通过API指明访问的云存储空间、文件名、偏移量、存取操作等,云存储管理节点根据这些API所传入的信息结合内部数据字典将最终操作分配到一个或多个具体的物理存储设备上完成存取操作,最后通过云存储管理节点返回存取结果。 Data storage layer: There is a cloud data storage pool, which processes massive data from various data sources in industrial and mining enterprises, generates themed data corresponding to different businesses with a unified interface, and stores these themed data in distributed In the distributed file system, when there is a task request, according to different task requests, multi-node and multi-task parallel computing and analysis are performed on the data stored in the distributed file system, and the analysis results are correspondingly analyzed according to different applications. show. As shown in Figure 5, the cloud storage pool for data processing provided by the present invention includes at least one cloud storage management node, at least one cloud storage space and at least one virtual device, and the cloud storage management node, cloud storage space and virtual device constitute a private cloud . In the embodiment shown in FIG. 4 , the cloud storage architecture includes two cloud storage nodes, three cloud storage spaces and multiple virtual devices, and the three cloud storage spaces and multiple virtual devices constitute a private cloud. Cloud storage management node a and cloud storage management node b are connected to each other, the two cloud storage management nodes take over each other, the load can be balanced between the two cloud storage management nodes and when one of the cloud storage management nodes fails Takeover to ensure the reliable performance of the system based on the cloud storage architecture. Among them, two cloud storage management nodes can respectively manage three cloud storage spaces and multiple virtual devices, and its management includes creating, deleting and configuring three cloud storage spaces and multiple virtual devices for system backup , Restoration and expansion. Each cloud storage management node has a data directory. The data directory is used to record the relevant information of cloud storage space and virtual devices. The cloud storage management node finds the corresponding cloud storage space and virtual equipment. In addition, each cloud storage management node is provided with a unified application access entry, which is an application program interface, and the application program/service accesses the cloud storage space by calling the application access entry. Each virtual device in Figure 4 can be mapped as a raw device, memory area, file system or memory file system in the operating system, and virtual management of physical memory, built-in disk, and disk arrays of various interfaces and protocols. In addition, since multiple virtual devices c1, virtual devices c2, ..., virtual devices cn are virtual devices with the same characteristics, in this embodiment, virtual devices c1, virtual devices c2, ... ..., the virtual device cn can form a virtual device group b, and the management of multiple virtual devices is simplified through the virtual device group b. Multiple virtual devices may respectively correspond to a physical storage device or a storage space in a physical storage device. In this embodiment, virtual device a1, virtual device a2, ..., virtual device an are respectively connected to physical storage device a1, physical storage device a2, ..., physical storage device an, Therefore, the data information collected from the industrial and mining site is stored in the above physical storage device. External applications/services a and b are respectively connected to cloud storage management nodes a and b in the cloud storage architecture. Since a unified application access entry is set on the cloud storage management node, the application/service accesses the corresponding cloud storage space by calling the interface function of the application access entry. The application program/service will indicate to access or access the corresponding information in any cloud storage space through the application program access entry, or manage the cloud storage space and virtual devices. The application/service connects to the cloud storage management node by calling the application access portal, and then the application/service specifies the cloud storage space, file name, offset, access operation, etc. through the API, and the cloud storage management node according to these The information passed in by the API is combined with the internal data dictionary to assign the final operation to one or more specific physical storage devices to complete the access operation, and finally return the access result through the cloud storage management node.
数据计算层:对应于云数据计算平台,该云数据计算平台用于调用云数据存储池中存储的实时采集到的数据分别按照工矿系统业务公共关系计算其特性,建立通用的数据计算分析模型,如计算设备性能、负载能力、工作效率、安全程度、环境参数等数值,节点控制器上的虚拟系统的数据计算模块可实现灵活的添加与设置,更新数据分析计算模块,得到相应的计算值。数据中心的结构如图6所示。包括:云控制服务期通过网络适配器与代理服务器与数据网络、互联网络互联,监控及控制多个存储节点及其上的虚拟机,主控制器的任务控制模块负责对下游节点控制器进行统一调配管理,包括添加、删除及迁移控制系统的任何数量的可读数据的物理驱动器和存储介质等操作,管理模型负责对收集到的负载及资源使用信息进行分析处理,然后交由控制器进行控制。计算节点包含任意数量的虚拟机,每一个节点内部包含一个节点控制器负责节点内部的虚拟机资源控制,协同管理引擎负责资源的分配同步管理,虚拟机内运行应用程序资源,如资源监控器、性能监控器、预警监控器在内的多个性能监控器。以性能监控器为例介绍下数据统计流程,如图7所示,实时负载及资源监控模型,根据采样数据类型,选择预设设备类型,进而调用针对该设备的统计模型分析处理采样的工作性能数据,生成设备理想分配数据,再通过控制器结合实际采样数据进行模型计算,输出实际分配的数据,判断设备资源使用情况及其负载水平,进而指导主控节点控制系统设备资源的分配,而对于负载监控模块而言,如图8所示,在系统运行中,根据所收集到数据信息,实时监控生成的曲线,观察曲线是否有突变点或不符合拟合曲线的异常值出现。若存在,则说明当前数据中心该应用出现尖峰时刻,证明系统所需资源需要进行较大的变动。此时需要快速对系统资源使用状况进行分析,当系统资源达到最大容量时是否可以满足资源需求。因为是异常值点,当前所获参数不能代表整体的负载、性能及资源间的关系模型,但如果不及时处理的话会对系统的性能有很大的影响,所以需要及时对异常值点进行分析处理。若系统资源池资源满足当前需求,则直接交给云控制器进行处理,快速解决当前异常值点,如果资源不满足当前需求,就启动备份设备资源,期间使用简单的线性回归模型预测下一个5分钟的工作负载,简单的线性回归模型可以有效的捕捉工作负载随时间变化规律,即使是更为复杂的历史数据也可以很容易的归纳预测其负载。预测的工作负载作为模型的输入来评估现有的工作量所需的设备资源需求及系统可以达到的性能。许多复杂的因素都会影响应用程序的性能,例如环境参数、操作人员数量的改变等,这时可以采用KCCA算法及远距离相关算法实现多元统计分析建模,同时分析多个影响因素对系统性能带来的影响,实时调整模型参数,生成理想的设备资源分配数据。计算的分配数据可以通过主控节点上的标准化查询接口或通讯接口,由用户主动进行查询操作或被动推送到用户。其中针对那些需要实时收集的数据信息,需要及时更新数据,才能保证数据中心的服务质量。 Data computing layer: corresponding to the cloud data computing platform, the cloud data computing platform is used to call the real-time collected data stored in the cloud data storage pool to calculate its characteristics according to the business public relations of the industrial and mining system, and establish a general data computing and analysis model. For example, calculating equipment performance, load capacity, work efficiency, safety degree, environmental parameters and other values, the data calculation module of the virtual system on the node controller can be added and set flexibly, and the data analysis and calculation module can be updated to obtain corresponding calculation values. The structure of the data center is shown in Figure 6. Including: during the cloud control service period, the network adapter and proxy server are connected to the data network and the Internet to monitor and control multiple storage nodes and the virtual machines on them. The task control module of the main controller is responsible for the unified deployment of the downstream node controllers Management, including operations such as adding, deleting, and migrating any amount of data-readable physical drives and storage media of the control system, the management model is responsible for analyzing and processing the collected load and resource usage information, and then handing it over to the controller for control. Computing nodes contain any number of virtual machines. Each node contains a node controller responsible for the control of virtual machine resources inside the node. The collaborative management engine is responsible for resource allocation and synchronization management. Application resources run in virtual machines, such as resource monitors, Multiple performance monitors including performance monitor and early warning monitor. Taking the performance monitor as an example to introduce the data statistics process, as shown in Figure 7, the real-time load and resource monitoring model selects the preset device type according to the sampled data type, and then invokes the statistical model for the device to analyze and process the sampling performance Data, generate the ideal allocation data of equipment, and then perform model calculation through the controller combined with the actual sampling data, output the actual allocation data, judge the equipment resource usage and load level, and then guide the master control node to control the allocation of system equipment resources. As for the load monitoring module, as shown in Figure 8, during the operation of the system, according to the collected data information, the generated curve is monitored in real time to observe whether there are sudden changes in the curve or abnormal values that do not conform to the fitted curve. If it exists, it means that the application in the current data center has a peak time, which proves that the resources required by the system need to be greatly changed. At this time, it is necessary to quickly analyze the usage status of the system resources, and check whether the resource requirements can be met when the system resources reach the maximum capacity. Because it is an outlier point, the currently obtained parameters cannot represent the overall load, performance and relationship model between resources, but if it is not processed in time, it will have a great impact on the performance of the system, so it is necessary to analyze the outlier point in time deal with. If the resources in the system resource pool meet the current needs, they will be directly handed over to the cloud controller for processing to quickly resolve the current outliers. If the resources do not meet the current needs, the backup device resources will be started, and a simple linear regression model will be used to predict the next 5 Minute workload, simple linear regression model can effectively capture the change of workload over time, even more complex historical data can be easily inductively predicted its load. The predicted workload is used as input to the model to estimate the device resource requirements required by the existing workload and the achievable performance of the system. Many complex factors will affect the performance of the application, such as environmental parameters, changes in the number of operators, etc. At this time, KCCA algorithm and long-distance correlation algorithm can be used to realize multivariate statistical analysis and modeling, and simultaneously analyze the impact of multiple influencing factors on system performance. According to the influence of the future, the model parameters are adjusted in real time to generate ideal equipment resource allocation data. The calculated distribution data can be actively queried by the user or passively pushed to the user through the standardized query interface or communication interface on the master control node. Among them, for those data information that needs to be collected in real time, it is necessary to update the data in time to ensure the service quality of the data center.
数据访问层:云服务访问模块设有云服务访问接口,用于根据应用组件的触发,通过光纤网络找到云服务器,可快速实时从云数据计算平台获得相应的计算值。数据访问层提供的接口服务包括各类数据服务器提供的云服务访问接口。 Data access layer: The cloud service access module has a cloud service access interface, which is used to find the cloud server through the optical fiber network according to the trigger of the application component, and obtain the corresponding calculation value from the cloud data computing platform in real time. The interface services provided by the data access layer include cloud service access interfaces provided by various data servers.
以上四层通过可靠且高速的光交换通信网络依次连接,该通信环网与电力线路紧密关联,高速通信的光纤线路沿着电力线路敷设到所有智能单元,为企业提供强大的信息高速通信通道。相比传统工矿系统中的数据采集,本发明的数据处理系统可以扩展云端的数据存储和计算处理功能,以及具体的基于数据模型的逻辑判断功能,通过配置不同的硬件设备或系统完成不同的功能的统一监控,这些不同功能的设备或系统都有各自独立的数据处理单元。而传统的实时数据采集与处理单元是由孤立的多个系统组成,数据重复采集而且数据不完备,测控、计量、保护、安全自动装置是由不同的硬件装置当地实现。其缺陷是数据采集重复,数据难于共享,系统应用功能难以有效地协同。本发明中的测控、保护、计量、安全自动装置的应用功能都是通过功能组件的集群化形式实现,通过高速网络通信技术,真正实现数据统一处理、计算、共享,有利于提高系统的可靠性、降低系统的安装成本和维护费用。 The above four layers are connected sequentially through a reliable and high-speed optical switching communication network. The communication ring network is closely related to the power line. The high-speed communication optical fiber line is laid along the power line to all intelligent units, providing a powerful information high-speed communication channel for enterprises. Compared with the data collection in the traditional industrial and mining system, the data processing system of the present invention can expand the data storage and calculation processing functions of the cloud, as well as the specific logical judgment function based on the data model, and complete different functions by configuring different hardware devices or systems These devices or systems with different functions have their own independent data processing units. The traditional real-time data acquisition and processing unit is composed of multiple isolated systems, the data is collected repeatedly and the data is incomplete, and the measurement and control, measurement, protection, and safety automatic devices are realized locally by different hardware devices. The disadvantage is that data collection is repeated, data is difficult to share, and system application functions are difficult to coordinate effectively. The application functions of measurement and control, protection, metering, and safety automatic devices in the present invention are all realized through clustering of functional components, and through high-speed network communication technology, unified data processing, calculation, and sharing are truly realized, which is conducive to improving the reliability of the system , Reduce system installation costs and maintenance costs.
上述海量信息处理云平台将安全生产企业实际生产积累的数据信息进行统一的管理与存储,此外,为了生产过程中提供基于数据的预测、异常检测等功能,实现企业的安全生产,管理者们还希望能及时发现生产中的异常情况,找出原因,并及时提出应对措施,保持生产的正常进行。对生产情况的判断分为正常和不正常两种情况,所以可把其归为分类问题,采用分类效果较好的支持向量机来进行生产情况异常判断。通过分析数据库中安全生产的指标数据,选择产品质量、成分、实际生产率作为指标评判生产情况是否异常的支持数据,对支持原始数据进行箱线图分析与相关性分析,获取数据之间的相互影响。选择数据样本,由于变量之间量级差距较大,首先需要进行需要对变量数据进行标准化处理, The above-mentioned mass information processing cloud platform manages and stores the data information accumulated in the actual production of safety production enterprises in a unified manner. In addition, in order to provide functions such as data-based prediction and abnormal detection in the production process, and realize the safe production of enterprises, managers also It is hoped that the abnormal situation in production can be discovered in time, the reason can be found out, and countermeasures can be put forward in time to keep the normal production. The judgment of the production situation is divided into normal and abnormal situations, so it can be classified as a classification problem, and the support vector machine with better classification effect is used to judge the abnormal production situation. By analyzing the index data of safe production in the database, select product quality, composition, and actual production rate as the supporting data for judging whether the production situation is abnormal, and perform boxplot analysis and correlation analysis on the supporting original data to obtain the mutual influence between the data . When selecting data samples, due to the large magnitude gap between variables, it is first necessary to standardize the variable data.
其中,Vi是原变量值,μ是原变量值的平均值,σ是原变量标准差。 Among them, Vi is the original variable value, μ is the average value of the original variable value, and σ is the original variable standard deviation.
经过标准化处理后,可进行支持向量机决策模型的训练与测试,如图9所示,使用训练样本集数据进行模型训练,其训练算法采用SMO算法(SequentialMinimalOptimization,序列最小优化),得出其分类模型的支持向量,根据支持向量计算出判定函数f(x)的参数。经过训练后得到的改进型支持向量机并不是最优的,这是由于初始参考模板和算法中的一些参数设置会影响训练的结果。通过选择分层核中的具体参数和对软件度量进行选择,可以得到更为优化的模型。在训练好的改进型支持向量机中输入需要进行预测的软件模块对应的树形数据结构,得到[-1,+1]间的输出,如果输出大于0,产品质量生产情况不存在异常;反之,输出小于0意味着产品质量的生产情况异常。 After standardized processing, the training and testing of the support vector machine decision model can be carried out, as shown in Figure 9, the training sample set data is used for model training, and the training algorithm adopts the SMO algorithm (SequentialMinimalOptimization, sequence minimum optimization), and its classification The support vector of the model, and the parameters of the decision function f(x) are calculated according to the support vector. The improved support vector machine obtained after training is not optimal, because the initial reference template and some parameter settings in the algorithm will affect the training results. A more optimal model can be obtained by selecting specific parameters in the layered kernel and selecting software metrics. Input the tree data structure corresponding to the software module that needs to be predicted into the trained improved support vector machine, and get the output between [-1, +1]. If the output is greater than 0, there is no abnormality in the production quality of the product; otherwise , the output is less than 0 means that the production situation of the product quality is abnormal.
图1中所述的虚拟资源层和接入与适配层之间还需要提取和生产有关的标准、知识、数据等帮助生产与决策,这就要求云平台能够在数据库中搜索到有用的知识。针对知识的内涵与特性、知识转移的目的与要求,我们还将免疫算子(Immuneerator)引入到标准进化规划算法中。将知识、知识转移与免疫理论结合起来,基于知识转移的免疫规划算法实现知识的推理发现。在实际的操作过程中,免疫算法是在遗传算法基础之上发展起来的一种全局优化算法,大多遗传算法能够解决的问题,免疫算法都能够有效解决且效率要比遗传算法好,利用免疫算法良好的寻优能力可以在虚拟资源层和无线传感器网络访问所有节点完成数据收集而总能耗最小的选择路径方案,最终实现了减少无线传感器网络的能量消耗、减少网络系统时延、提高虚拟资源层交互效率的问题。如图10所述,首先,根据最优化的目标与条件,对所求解的问题进行具体分析和分解,提取出最基本的特征信息或特征集;其次,对此特征信息进行处理,以将其转化为局部环境或最优约束条件下求解问题的一种方案;最后,将此方案以适当的形式转化成免疫算子并用来产生新的个体。基于知识及知识转移的过程,在合理提取免疫疫苗的基础上,通过接种疫苗和免疫选择实现免疫进化,以有效地对待求问题的先验知识,提高个体的适应度。 Between the virtual resource layer and the access and adaptation layer described in Figure 1, it is necessary to extract and produce related standards, knowledge, data, etc. to help production and decision-making, which requires the cloud platform to be able to search for useful knowledge in the database . In view of the connotation and characteristics of knowledge, the purpose and requirements of knowledge transfer, we also introduce the immune operator (Immuneerator) into the standard evolutionary programming algorithm. Combining knowledge, knowledge transfer and immune theory, the immune planning algorithm based on knowledge transfer realizes knowledge reasoning and discovery. In the actual operation process, the immune algorithm is a global optimization algorithm developed on the basis of the genetic algorithm. Most of the problems that the genetic algorithm can solve, the immune algorithm can effectively solve and the efficiency is better than the genetic algorithm. Using the immune algorithm Good optimization ability can access all nodes in the virtual resource layer and wireless sensor network to complete data collection and select the path scheme with the smallest total energy consumption, and finally realize the reduction of energy consumption of wireless sensor networks, reduce network system delay, and improve virtual resource utilization. The problem of layer interaction efficiency. As shown in Figure 10, firstly, according to the optimization goals and conditions, the problem to be solved is specifically analyzed and decomposed, and the most basic feature information or feature set is extracted; secondly, the feature information is processed to extract its It is transformed into a scheme to solve the problem under the local environment or optimal constraints; finally, this scheme is transformed into an immune operator in an appropriate form and used to generate new individuals. Based on the process of knowledge and knowledge transfer, on the basis of rationally extracting immune vaccines, immune evolution can be realized through vaccination and immune selection, so as to effectively treat the prior knowledge of the problem and improve the fitness of individuals.
以免疫协同故障诊断软件工作流程为例,在免疫学研究中,各种免疫细胞之间的相互促进和抑制现象可以理解为一种特有的协同进化形式-免疫协同进化,可借鉴免疫协同进化机制,针对励磁系统故障诊断问题求解特点和协同诊断模式,提出了一种多诊断模型协同进化诊断策略,免疫协同诊断计算的主要构成要素是各个免疫诊断细胞群体、免疫诊断细胞的诊断进化算法和细胞种群调节机制等,进化采用基本免疫算法,免疫协同诊断策略可形式化描述如下:ICED=(CPD,CPDN,CEDA,CPCM),其中:CPD:免疫细胞诊断种群,CPDN:免疫细胞诊断种群数,诊断种群的免疫协同诊断算法, Taking the workflow of immune collaborative fault diagnosis software as an example, in the study of immunology, the phenomenon of mutual promotion and inhibition among various immune cells can be understood as a unique form of coevolution-immune coevolution, which can be used for reference in the mechanism of immune coevolution , according to the characteristics of the excitation system fault diagnosis problem and the cooperative diagnosis mode, a multi-diagnosis model cooperative evolution diagnosis strategy is proposed. Population adjustment mechanism, etc. Evolution adopts the basic immune algorithm, and the immune collaborative diagnosis strategy can be formally described as follows: ICED = (CPD, CPDN, CEDA, CPCM), where: CPD: immune cell diagnosis population, CPDN: immune cell diagnosis population number, Immune Collaborative Diagnosis Algorithm for Diagnosis Population,
其中CEDij={PCMij,CEDPij,EDVij},i,j=1,2,…,CPDN:第i个诊断细胞种群同第j个诊断细胞种群的协同模式,PCMij代表同步任务评估,决定该任务是否需要和其他智能体协作完成,CEDPij代表同步进化算子,EDVij代表同步评价算子;DAi={si,gi,pi,fi,di},i=1,2,…,CPN:第i个诊断细胞种群的免疫进化算法,si表示第i个诊断细胞种群的选择策略,gi表示第i个诊断细胞种群的进化操作算子,包括细胞克隆、克隆抑制等,pi表示第i个诊断细胞种群的进化操作算子的执行概率,fi表示第i个诊断细胞种群的亲合度函数,di表示第i个诊断细胞种群的浓度函数;CNi:第i个诊断细胞种群的所含个体的数量;CPCM={CPO,CPD,CPA,CPE}:免疫细胞进化种群控制模式,CPO表示种群规模算子,CPD表示种群浓度调节,CPA表示种群进化目标函数;CPE表示种群评价方式。在采用上述描述方式后,若:CPD(k)={CPD1 k,CPD2 k,…,CPDCPN k}表示第k代免疫细胞群体,则第k代免疫细胞群体协同进化表示为:CEDA{CPD(k)}=CEDA{{CPD1 k,CPD2 k,…,CPDCPN k}},则免疫协同诊断中从第k-1代进化到第k代可以表示为:CPCM(k):CEDA{CPD(k-1)}→CEDA{CPD(k)},k=1,2,…。异常诊断过程大致分为六个阶段:①genI=1,故障诊断域设为设备故障集合F={F1,...,Fi,...,FM},诊断模型集合为FDM={FDM1,...,FDMi,...,FDMM},M为设备故障模型数,FDMi为第i个故障诊断模型;②针对某个诊断任务FDM_TASK,初始化故障诊断模型群体FDM,分配各诊断模型权重w={w1,...,wi,...,wM},wi表示诊断模型FDMi在诊断故障任务FDM_TASK中的诊断重要度;③各故障模型FDMi对诊断任务FDM_TASK,给出各自诊断子结论FDR={FDR1,...,FDRi,...,FDRM},计算每个诊断模型个体FDMi亲合度和浓度,评价FDM_TASK故障诊断效果,若满足故障诊断结束条件,则转向⑥;④genI=genI+1,对故障诊断模型群体FDM,基于亲合度和浓度值从上一代群体中选取新一代群体;⑤将免疫算子(克隆、突变、抑制)应用到群体的个体中,获得新的故障诊断模型群体FDM,并分配新诊断模型权重w={w1,...,wi,...,wM},转向③;⑥故障诊断结束。某一时刻的故障诊断过程,免疫协同故障诊断软件模块5将在完成了上述全部诊断行为,得到较为满意的诊断结果后,才结束本次诊断流程。 Among them, CED ij = {PCM ij , CEDP ij , EDV ij }, i, j=1, 2, ..., CPDN: the cooperative mode of the i-th diagnostic cell population and the j-th diagnostic cell population, PCMij represents the synchronous task evaluation, Decide whether the task needs to be completed in cooperation with other agents, CEDPij represents the synchronous evolution operator, EDVij represents the synchronous evaluation operator; DA i = {s i , g i , p i , f i , d i }, i=1, 2, ..., CPN: the immune evolution algorithm of the i-th diagnostic cell population, si represents the selection strategy of the i-th diagnostic cell population, gi represents the evolution operator of the i-th diagnostic cell population, including cell cloning, cloning suppression, etc. , pi represents the execution probability of the evolution operator of the i-th diagnostic cell population, fi represents the affinity function of the i-th diagnostic cell population, di represents the concentration function of the i-th diagnostic cell population; CNi: the i-th diagnostic cell The number of individuals contained in the population; CPCM={CPO, CPD, CPA, CPE}: immune cell evolution population control mode, CPO represents the population size operator, CPD represents the population concentration adjustment, CPA represents the population evolution objective function; CPE represents the population evaluation method. After adopting the above description method, if: CPD(k)={CPD 1 k , CPD 2 k , ..., CPD CPN k } represents the k-th generation immune cell population, then the co-evolution of the k-th generation immune cell population is expressed as: CEDA {CPD(k)}=CEDA{{CPD 1 k , CPD 2 k ,..., CPD CPN k }}, then the evolution from generation k-1 to generation k in immune collaborative diagnosis can be expressed as: CPCM(k) : CEDA{CPD(k-1)}→CEDA{CPD(k)}, k=1, 2, . . . The abnormal diagnosis process is roughly divided into six stages: ① genI = 1, the fault diagnosis domain is set to equipment fault set F = {F1, ..., Fi, ..., FM}, and the diagnosis model set is FDM = {FDM1, . .., FDMi, ..., FDMM}, M is the number of equipment fault models, and FDMi is the i-th fault diagnosis model; ② For a certain diagnosis task FDM_TASK, initialize the fault diagnosis model group FDM, and assign each diagnosis model weight w= {w1,...,wi,...,wM}, wi represents the diagnostic importance of the diagnostic model FDMi in the diagnostic fault task FDM_TASK; ③ Each fault model FDMi gives its own diagnostic sub-conclusion FDR= for the diagnostic task FDM_TASK {FDR1,...,FDRi,...,FDRM}, calculate the individual FDMi affinity and concentration of each diagnostic model, evaluate the fault diagnosis effect of FDM_TASK, if the end condition of fault diagnosis is met, turn to ⑥; ④genI=genI+1 , for the fault diagnosis model population FDM, select a new generation population from the previous generation population based on affinity and concentration values; ⑤ Apply immune operators (cloning, mutation, suppression) to individuals in the population to obtain a new fault diagnosis model population FDM, and assign new diagnostic model weight w={w1,...,wi,...,wM}, turn to ③; ⑥ end of fault diagnosis. In the fault diagnosis process at a certain moment, the immune cooperative fault diagnosis software module 5 will not end the diagnosis process until it has completed all the above-mentioned diagnostic actions and obtained a relatively satisfactory diagnosis result.
此外,真对平台服务支撑层中的知识聚集和分类引擎,随着安全生产企业的生产建设,数据资料的数量和种类相应增加,数据间关系日也益复杂,对安全事故进行传统的定性分析已不适应大量而复杂数据的需要,提出利用关联规则的分析工具挖掘安全事故数据的特点与规律,找到事故发生类型与“人-机-环境-管理”各因子之间的强关联规则,对事故的发生进行预警。收集与挖掘有关的历史灾害数据和设计勘察资料,得到施工事故相关的数据。对施工事故数据进行数据清理,保证数据的准确规范。在施工事故数据记录不完整,不一致,还有错误的信息等等,因此,为保证以后分析中数据的有效,这一阶段需要对此类数据进行清理,主要解决数据文件建立中的人为误差,以及数据文件中一些对统计分析结果影响较大的特殊数值建立多维数据模型。图11给出了一种基于关联规则分析流程的数据分析方法,其根据施工事故的特点事故发生的原因,设置数据属性,从数据库中提取事故数据和勘查数据构成事故样本数据,从事故类型、事故发生时间、设备工作参数三个维度建立其数据立方体,并利用SQL语言的聚集查询和连接语句对该数据立方体进行操作,完成频繁谓词集和强规则的搜索过程。产生频繁谓词集。具体需要满足最小支持度和最小置信度,设置最小支持度计数为3,从而确定没有概念分层维度的谓词集,最小置信度可以用项集最小支持度计数表示的条件概率来表达,从而利用改进的经典Apriori算法产生频繁谓词集。产生强关联规则。进一步的可以通过描述满足最小支持度阈值和最小置信度阈值的关联规则的现实含义,比如月份时间,设备工作参数对可能发生的事故级别进行关联预测,将有助于工矿事故的预警,辅助企业科学决策,在具体的挖掘过程中,各阈值可以由工作人员和领域专家共同设定,也就是说规则是否正确、适用,要取决于边界条件的设定。 In addition, for the knowledge aggregation and classification engine in the platform service support layer, with the production and construction of safety production enterprises, the number and types of data materials have increased accordingly, and the relationship between data has become increasingly complex. Traditional qualitative analysis of safety accidents It is no longer suitable for the needs of a large amount of complex data, and it is proposed to use the analysis tools of association rules to mine the characteristics and laws of safety accident data, and find the strong association rules between the types of accidents and the factors of "man-machine-environment-management". Early warning of accidents. Collect historical disaster data and design survey data related to excavation to obtain data related to construction accidents. Clean up the construction accident data to ensure the accuracy and specification of the data. The construction accident data records are incomplete, inconsistent, and have wrong information, etc. Therefore, in order to ensure the validity of the data in the subsequent analysis, this stage needs to clean up such data, mainly to solve the human errors in the establishment of data files, And some special values in the data file that have a great influence on the statistical analysis results establish a multidimensional data model. Figure 11 shows a data analysis method based on the analysis process of association rules. According to the characteristics of construction accidents and the causes of accidents, data attributes are set, and accident data and survey data are extracted from the database to form accident sample data. The data cube is established from the three dimensions of accident occurrence time and equipment operating parameters, and the data cube is operated by aggregate query and connection statement of SQL language to complete the search process of frequent predicate sets and strong rules. Generate frequent predicate sets. Specifically, it is necessary to meet the minimum support and minimum confidence. Set the minimum support count to 3, so as to determine the predicate set without concept hierarchical dimension. The minimum confidence can be expressed by the conditional probability represented by the minimum support count of the itemset, so that using An improved classic Apriori algorithm produces frequent predicate sets. Generate strong association rules. Further, by describing the practical meaning of the association rules that meet the minimum support threshold and minimum confidence threshold, such as the time of the month and the operating parameters of the equipment, the association prediction of the possible accident level will help the early warning of industrial and mining accidents and assist enterprises. Scientific decision-making. In the specific mining process, each threshold can be set jointly by staff and domain experts. That is to say, whether the rules are correct and applicable depends on the setting of boundary conditions.
针对工矿企业安全生产管理交互频繁、协作紧密的特点,梳理企业的业务类型,实现支持业务协作的安全管理协同,还具体包括如下技术: In view of the characteristics of frequent interactions and close collaboration in safety production management of industrial and mining enterprises, sort out the business types of enterprises, and realize safety management collaboration that supports business collaboration, including the following technologies:
依据国外的辨识标准,同时又结合了我国的生产技术水平和各个场所环境的不同,可以采用层次分析和模糊数学的方法进行综合评价,以判断其是否为重大危险源。对重大危险源的分析评价包括对各种危险源的危险原因,事故发生几率,后果的影响范围等。重大危险源的评价是控制重大工业事故的关键措施之一。重大危险源评价应从固有危险性评价和现实危险性评价两方面进行。固有危险性评价主要反映了物质固有特性,危险物质生产过程的特点和危险单元内部、外部环境状况。现实危险性评价是在前者的基础上考虑各种危险性的抵消因子,反映了人在控制事故发生和控制事故后果扩大方面的主观能动作用。增加了外部环境抵消因子提出如下评价模型: Based on foreign identification standards, combined with my country's production technology level and the differences in the environment of each site, analytic hierarchy process and fuzzy mathematics can be used for comprehensive evaluation to determine whether it is a major hazard. The analysis and evaluation of major hazards includes the causes of various hazards, the probability of accidents, the scope of consequences, etc. The evaluation of major hazard sources is one of the key measures to control major industrial accidents. The evaluation of major hazards should be carried out from two aspects: inherent risk evaluation and actual risk evaluation. Inherent risk assessment mainly reflects the inherent characteristics of substances, the characteristics of the production process of hazardous substances and the internal and external environmental conditions of hazardous units. Realistic risk assessment considers various risk offset factors on the basis of the former, and reflects people's subjective initiative in controlling the occurrence of accidents and the expansion of accident consequences. The external environment offset factor is added to propose the following evaluation model:
式中(B111)i——第i种物质的物质危险性评价值;(B112)j——第j种物质的工艺危险性评价值;Wij——第j项工艺与第i种物质危险性的相关系数;B12——事故严重评价值;B21——工艺设备容器建筑结构抵消因子;B22——人员素质抵消因子;B23——安全管理抵消因子。 In the formula (B111)i——the material hazard evaluation value of the i-th substance; (B112)j——the process hazard evaluation value of the j-th substance; Wij——the j-th process and the i-th substance hazard B12—accident severity evaluation value; B21—offset factor of process equipment, container building structure; B22—offset factor of personnel quality; B23—offset factor of safety management.
通常采用危险源分级时的方法,通过死亡半径来确定一个圆形区域,这个圆形区域就是该危险源影响的范围。这种圆形区域的范围对于爆炸的影响是适用的,但是对于其他一些情况就不适用,比如涉及气体泄漏,就不能完全按照死亡半径来确定。对危险源进行准确的判断和分级,然后通过其评价的结果来采取相应的预防、急救措施。重大危险源快速评价分级的目的,是在重大危险源数据所收录的数据信息基础上,对重大危险源进行快速评价和分级,以便利政府主管部门对重大危险源进行宏观分级监控和管理。危险源快速评价方法主要对重大危险源可能导致的事故后果进行评价,以预测事故发生的死亡半径为主要评价指标,以死亡半径的大小进行重大危险源的分级。首先选择危险源的编号,然后根据此编号查找数据库的相关数据,得到数据以后进行分析,判断此危险源数据中所包含的物质的种类数,是否有毒性,从而分几种途径来处理该危险源。其中最重要的部分就是计算有毒物质,易燃,易爆物质的伤害模型的死亡半径,最后通过最大的死亡半径来给危险源分级。 Usually, the method of grading hazards is adopted, and a circular area is determined by the death radius, and this circular area is the range affected by the hazard. The scope of this circular area is applicable to the impact of the explosion, but it is not applicable to some other situations, such as involving gas leakage, which cannot be completely determined according to the death radius. Accurately judge and classify hazard sources, and then take corresponding preventive and first aid measures based on the evaluation results. The purpose of the rapid evaluation and grading of major hazard sources is to quickly evaluate and classify major hazard sources based on the data information collected in the major hazard source data, so as to facilitate the macro-level monitoring and management of major hazard sources by the competent government departments. The rapid evaluation method of hazards mainly evaluates the accident consequences that may be caused by major hazards. The main evaluation index is the predicted death radius of the accident, and the major hazards are classified according to the size of the death radius. First select the number of the hazard source, then search the relevant data in the database according to the number, analyze the data after obtaining it, and judge the number of substances contained in the hazard source data and whether it is toxic, so as to deal with the hazard in several ways source. The most important part is to calculate the death radius of the damage model of toxic substances, flammable and explosive substances, and finally classify the hazards by the maximum death radius.
此外,企业还可以通过云平台加强生产现场安全管理和生产过程的控制。对生产过程及物料、设备设施、器材、通道、作业环境等存在的隐患,应进行分析和控制。对动火作业、受限空间内作业、临时用电作业、高处作业等危险性较高的作业活动实施作业许可管理,严格履行审批手续。如图12所示,以Petri的过程挖掘算法为基础,将非Petri网建模的过程模型转换为Petri网,解决从日志中挖掘隐藏任务这一开放性问题,使得挖掘得到的Petri网中包含不带标签的任务节点。对安全生产过程日志进行分析,对生产过程的数据进行评估,及时杜绝不安全隐患。基于该Petr算法可以用于支持一种组合业务的工作流引擎,包括:接口层、控制层、实体层、存储层以及用于存储业务的流程实例的数据库;所述工作流引擎部署后,通过所述接口层接收业务系统或其他接口系统发送的业务信息,所述其他接口系统包括资源管理系统、服务开通管理系统、计费帐务系统;所述接口层提供了三种方式的接口,包括API接口、Corba接口、WebService接口,便于工作流引擎与业务系统的衔接;所述业务信息包括业务的流程实例、流程实例的当前环节完成情况;所述控制层接收到所述接口层传递的业务信息后,根据支持组合业务的流程路由控制方法,来控制业务的流程实例的生成、调度、分解、合并、结束;并确定业务的流程实例是自动流转到下一个环节,还是需要原地等待;同时所述控制层调用所述实体层提供的方法记录流程实例的当前环节的完成情况以及所述流程路由控制方法确定的流转结果,流程结果通过所述接口层返回;所述实体层提供的方法为:对工作流引擎内部所描述的管理对象的新增、修改、删除和查询的操作,所述管理对象包括:业务的流程实例对象、流程路由对象、流程实例的当前环节对象、流程任务对象;其中,所述流程任务对象描述每个流程实例的环节执行的具体任务;所述存储层通过所述数据库持久性的保存所述业务的流程实例信息。所述流程操作过程中还可以融合一种优化调度的验证方法,具体步骤是: In addition, enterprises can also strengthen production site safety management and production process control through the cloud platform. The hidden dangers in the production process and materials, equipment and facilities, equipment, passages, working environment, etc. should be analyzed and controlled. Implement operation permit management for high-risk operations such as hot-fire operations, operations in confined spaces, temporary power-use operations, and high-altitude operations, and strictly implement the approval procedures. As shown in Figure 12, based on the Petri process mining algorithm, the non-Petri net modeling process model is converted into a Petri net to solve the open problem of mining hidden tasks from logs, so that the mined Petri net contains A task node without a label. Analyze the logs of the safe production process, evaluate the data of the production process, and eliminate potential safety hazards in time. Based on the Petr algorithm, it can be used to support a workflow engine for composite services, including: an interface layer, a control layer, a physical layer, a storage layer, and a database for storing business process instances; after the workflow engine is deployed, through The interface layer receives business information sent by the business system or other interface systems, and the other interface systems include a resource management system, a service activation management system, and a billing and accounting system; the interface layer provides three types of interfaces, including API interface, Corba interface, and WebService interface facilitate the connection between the workflow engine and the business system; the business information includes the process instance of the business and the completion of the current link of the process instance; the control layer receives the business delivered by the interface layer After information, according to the process routing control method that supports the composite business, control the generation, scheduling, decomposition, merging, and end of the business process instance; and determine whether the business process instance will automatically flow to the next link, or need to wait in place; At the same time, the control layer calls the method provided by the entity layer to record the completion of the current link of the process instance and the flow result determined by the process routing control method, and the process result is returned through the interface layer; the method provided by the entity layer It is: the operation of adding, modifying, deleting and querying the management objects described inside the workflow engine. The management objects include: business process instance objects, process routing objects, current link objects of process instances, and process task objects ; Wherein, the process task object describes the specific tasks performed by the link of each process instance; the storage layer persistently saves the process instance information of the business through the database. A verification method for optimized scheduling can also be integrated into the process operation process, and the specific steps are:
(1)调度方案生成:根据产品销售计划、原料采购计划、设备维修计划、产品(中间体、原料)库存信息和设备生产能力,生产资源占用、消耗、生产成本等生产约束信息,生成目标模型的数据文件建立优化调度的数学模型,并根据用户设定的优化目标(最大生产能力、最大利润或满足销售订单),以及模型求解器,解算出优化调度方案。 (1) Scheduling plan generation: According to product sales plan, raw material procurement plan, equipment maintenance plan, product (intermediate, raw material) inventory information and equipment production capacity, production resource occupation, consumption, production cost and other production constraint information, generate a target model The mathematical model of optimal scheduling is established based on the data files, and the optimal scheduling scheme is calculated according to the optimization goals set by the user (maximum production capacity, maximum profit, or satisfying sales orders) and the model solver.
(2)通过推算预知可能出现的生产异常:采集企业资源计划系统中当前的产品销售计划、原料采购计划(包括到货情况)、库存信息、设备检修计划、能源供应计划等,通过混杂设备约束(包括间歇生产设备和连续生产设备)、容量约束、物流平衡约束和能源约束按时间进行跟踪推算,预知可能出现的生产异常。 (2) Predict possible production abnormalities through calculation: collect the current product sales plan, raw material procurement plan (including arrival status), inventory information, equipment maintenance plan, energy supply plan, etc. in the enterprise resource planning system, and use mixed equipment constraints (including intermittent production equipment and continuous production equipment), capacity constraints, logistics balance constraints and energy constraints are tracked and calculated according to time to predict possible production abnormalities.
(3)将优化调度方案(步骤1获取的数据)与可能出现的生产异常(步骤2获取的数据)结合在一起,利用图形的可视化ESCPetri-Nets网技术仿真生产过程。以调度时间为轴线,动态曲线显示生产车间设备工况、物料平衡(采购-库存-销售),模拟验证生产调度情况。以物料为中心,随调度时间变化,以图形的方式动态显示某个物料的变化趋势和某时刻与某物料生产消耗相关的设备运行状况。 (3) Combining the optimized scheduling scheme (data obtained in step 1) with possible production abnormalities (data obtained in step 2), the production process is simulated by using graphic visualization ESCPetri-Nets technology. Taking the scheduling time as the axis, the dynamic curve shows the equipment working conditions and material balance (purchase-inventory-sales) of the production workshop, and simulates and verifies the production scheduling situation. Centering on the material, it dynamically displays the change trend of a certain material and the operating status of equipment related to the production and consumption of a certain material in a graphical way as the scheduling time changes.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210370663.3A CN102932419B (en) | 2012-09-25 | 2012-09-25 | A kind of data-storage system for the safety production cloud service platform towards industrial and mining enterprises |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210370663.3A CN102932419B (en) | 2012-09-25 | 2012-09-25 | A kind of data-storage system for the safety production cloud service platform towards industrial and mining enterprises |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102932419A CN102932419A (en) | 2013-02-13 |
| CN102932419B true CN102932419B (en) | 2016-02-10 |
Family
ID=47647116
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210370663.3A Active CN102932419B (en) | 2012-09-25 | 2012-09-25 | A kind of data-storage system for the safety production cloud service platform towards industrial and mining enterprises |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102932419B (en) |
Families Citing this family (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104570961A (en) * | 2013-10-10 | 2015-04-29 | 江苏百盛信息科技股份有限公司 | Remote monitoring and failure weakening management system |
| CN103581325B (en) * | 2013-11-11 | 2017-11-03 | 中国联合网络通信集团有限公司 | A kind of cloud computing resources cell system and its implementation method |
| CN105843803B (en) * | 2015-01-12 | 2019-04-12 | 上海悦程信息技术有限公司 | Big data secure visual interaction analysis system and method |
| CN104766160A (en) * | 2015-03-19 | 2015-07-08 | 中国石油化工股份有限公司 | Safety production diagnosing and early warning system based on inherent danger level of enterprise |
| CN106143533A (en) * | 2015-04-21 | 2016-11-23 | 深圳市神拓机电股份有限公司 | A kind of mthods, systems and devices of industrial and mineral vehicle safety monitoring |
| CN105574078A (en) * | 2015-12-02 | 2016-05-11 | 上海华兴数字科技有限公司 | Data analysis system and method for excavator |
| CN106446263B (en) * | 2016-10-18 | 2020-06-09 | 北京航空航天大学 | Multimedia file cloud storage platform and redundancy removal method using same |
| CN108123994B (en) * | 2016-11-28 | 2021-01-29 | 中国科学院沈阳自动化研究所 | Industrial-field-oriented cloud platform architecture |
| CN106953802B (en) * | 2017-03-01 | 2020-03-03 | 浙江工商大学 | Network optimal path selection method based on deep learning |
| WO2018216197A1 (en) * | 2017-05-26 | 2018-11-29 | 三菱電機ビルテクノサービス株式会社 | Anomaly seriousness computation system, anomaly seriousness computation device, and anomaly seriousness computation program |
| CN107566536A (en) * | 2017-10-29 | 2018-01-09 | 长沙准光里电子科技有限公司 | The big data processing platform network architecture |
| CN107994943B (en) * | 2017-12-05 | 2020-04-10 | 中盈优创资讯科技有限公司 | Parameter acquisition system, method and computer-readable storage medium |
| CN110069210B (en) * | 2018-01-23 | 2021-09-28 | 杭州海康威视系统技术有限公司 | Storage system, and method and device for allocating storage resources |
| US10769007B2 (en) | 2018-06-08 | 2020-09-08 | Microsoft Technology Licensing, Llc | Computing node failure and health prediction for cloud-based data center |
| US12216552B2 (en) | 2018-06-29 | 2025-02-04 | Microsoft Technology Licensing, Llc | Multi-phase cloud service node error prediction based on minimization function with cost ratio and false positive detection |
| CN110427420B (en) * | 2019-08-05 | 2022-02-15 | 中国地质大学(北京) | Dynamically adjustable data management system and model control method |
| CN111209229B (en) * | 2019-12-30 | 2021-12-21 | 苏州艾利特机器人有限公司 | Fieldbus method based on virtual equipment |
| EP3929843A1 (en) * | 2020-06-26 | 2021-12-29 | Infrakit Group Oy | Harmonizing data |
| CN112165508B (en) * | 2020-08-24 | 2021-07-09 | 北京大学 | A resource allocation method for multi-tenant cloud storage request service |
| CN112214165A (en) * | 2020-09-11 | 2021-01-12 | 济南浪潮数据技术有限公司 | Storage method and system of virtualization platform and related components |
| CN114065220B (en) * | 2021-11-25 | 2022-11-22 | 国网四川省电力公司成都供电公司 | Dual-level analysis situation assessment method based on distributed system |
| CN114936915B (en) * | 2022-02-28 | 2024-09-06 | 北京百度网讯科技有限公司 | Data processing method, device, electronic device and storage medium |
| CN117971936A (en) * | 2023-12-07 | 2024-05-03 | 东营市无线电监测站 | A method and system for realizing atomic radio spectrum monitoring equipment data storage, fusion analysis and evaluation |
| WO2025086727A1 (en) * | 2024-06-28 | 2025-05-01 | 郭信忠 | Digital dual-cycle task management system for enterprise operation |
| CN118567578B (en) * | 2024-07-31 | 2024-11-15 | 浙江省邮电工程建设有限公司 | Distributed meta-universe storage construction method and system |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7209945B2 (en) * | 2002-09-11 | 2007-04-24 | Bellsouth Intellectual Property Corporation | Application services gateway |
-
2012
- 2012-09-25 CN CN201210370663.3A patent/CN102932419B/en active Active
Non-Patent Citations (6)
| Title |
|---|
| 中小企业云制造服务平台共性关键技术体系_尹超;尹超 等;《计算机集成制造系统》;20110331;第17卷(第3期);全文 * |
| 云计算架构下的安全生产应急预测预警系统的设计和应用;任钢 等;《软件工程》;20120731;第33卷(第7期);正文第3.2部分及附图1 * |
| 在线备份服务机制及容错模型研究;王桦;《中国博士学位论文全文数据库信息科技辑》;20111115(第11期);全文 * |
| 在线备份服务机制及容错模型研究;王桦;《中国博士学位论文全文数据库信息科技辑》;20111115(第11期);第17页附图2.1及18页6-7行 * |
| 面向制造及管理的集团企业云制造服务平台;战德臣 等;《计算机集成制造系统》;20110331;第17卷(第3期);全文 * |
| 面向区域产业集群的云制造服务平台架构与模式研究;盛磊 等;《科技管理研究》;20120615(第11期);第207页右栏第6段-208页左栏第6段、附图1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102932419A (en) | 2013-02-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102932419B (en) | A kind of data-storage system for the safety production cloud service platform towards industrial and mining enterprises | |
| CN102882969B (en) | A kind of safety production cloud service platform of industrial and mining enterprises | |
| CN102880802B (en) | A kind of assay method for the major hazard source towards industrial and mining establishment's safety production cloud service platform system | |
| CN118916147B (en) | Multi-source calculation force data integration and intelligent scheduling system and method | |
| CN102917032B (en) | A kind of safety production cloud service platform of industrial and mining enterprises | |
| CN102929827B (en) | A kind of wireless sensor data for ore deposit enterprise safety in production cloud platform gathers cluster | |
| CN102903011A (en) | Mass data processing system used for safety production cloud service platform facing industrial and mining enterprises | |
| CN110493025B (en) | A method and device for fault root cause diagnosis based on multi-layer directed graph | |
| Rajagopalan et al. | Empowering power distribution: Unleashing the synergy of IoT and cloud computing for sustainable and efficient energy systems | |
| CN102917031A (en) | Data computing system of safety production cloud service platform for industrial and mining enterprises | |
| CN102903010A (en) | Support vector machine-based abnormal judgment method for safety production cloud service platform orientating industrial and mining enterprises | |
| CN102930372A (en) | Data analysis method for association rule of cloud service platform system orienting to safe production of industrial and mining enterprises | |
| CN101408769B (en) | On-line energy forecasting system and method based on product ARIMA model | |
| CN113642946A (en) | Perception information integration access system based on city important infrastructure | |
| CN110647131B (en) | Five-character integration analysis method based on model | |
| CN104268695A (en) | Multi-center watershed water environment distributed cluster management system and method | |
| CN111784076A (en) | Cloud metering system for industrial Internet and use method thereof | |
| WO2019137206A1 (en) | Oil and gas pipeline scada system | |
| CN106161620A (en) | A kind of cloud computing resources Internet of Things supervision and service platform | |
| CN102915482A (en) | Safety production process control and management method for cloud service platforms of industrial and mining enterprises | |
| CN118068782B (en) | Pump station group operation management and control system based on digital twin | |
| CN102903009B (en) | Malfunction diagnosis method based on generalized rule reasoning and used for safety production cloud service platform facing industrial and mining enterprises | |
| CN115423429A (en) | Multimode integrated distribution network operation system based on image and sound information | |
| CN110932405A (en) | Intelligent monitoring and analyzing system for power transformation equipment based on big data | |
| Bolsunovskaya et al. | The development and application of non-standard approach to the management of a pilot project |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| CB02 | Change of applicant information |
Address after: 2 building, block B, Xixi Software Park, 168 Wuchang Road, Yuhang District, Zhejiang, Hangzhou, 310012 Applicant after: ZHEJIANG TOPINFO TECHNOLOGY CO.,LTD. Address before: 2 building, block B, Xixi Software Park, 168 Wuchang Road, Yuhang District, Zhejiang, Hangzhou, 310012 Applicant before: ZHEJIANG TOPINFO TECHNOLOGY Co.,Ltd. |
|
| COR | Change of bibliographic data | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: A data storage system for a safety production cloud service platform for industrial and mining enterprises Granted publication date: 20160210 Pledgee: Guotou Taikang Trust Co.,Ltd. Pledgor: ZHEJIANG TOPINFO TECHNOLOGY CO.,LTD. Registration number: Y2024980004920 |
|
| PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
| PC01 | Cancellation of the registration of the contract for pledge of patent right |
Granted publication date: 20160210 Pledgee: Guotou Taikang Trust Co.,Ltd. Pledgor: ZHEJIANG TOPINFO TECHNOLOGY CO.,LTD. Registration number: Y2024980004920 |
|
| PC01 | Cancellation of the registration of the contract for pledge of patent right |