CN102967834A - Device and method for magnetic resonance engine - Google Patents
Device and method for magnetic resonance engine Download PDFInfo
- Publication number
- CN102967834A CN102967834A CN2012104795422A CN201210479542A CN102967834A CN 102967834 A CN102967834 A CN 102967834A CN 2012104795422 A CN2012104795422 A CN 2012104795422A CN 201210479542 A CN201210479542 A CN 201210479542A CN 102967834 A CN102967834 A CN 102967834A
- Authority
- CN
- China
- Prior art keywords
- valve
- pipeline
- magnetic resonance
- pump
- compression pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 23
- 239000011261 inert gas Substances 0.000 claims abstract description 43
- 238000007906 compression Methods 0.000 claims abstract description 42
- 230000006835 compression Effects 0.000 claims abstract description 38
- 238000001514 detection method Methods 0.000 claims abstract description 14
- 238000005070 sampling Methods 0.000 claims abstract description 7
- 229910052756 noble gas Inorganic materials 0.000 claims description 11
- 230000002572 peristaltic effect Effects 0.000 claims description 9
- 239000011347 resin Substances 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims 1
- -1 perfluorinated alkoxy vinyl ether Chemical compound 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 22
- 238000005481 NMR spectroscopy Methods 0.000 abstract description 17
- 239000012528 membrane Substances 0.000 abstract description 13
- 239000000284 extract Substances 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229920001774 Perfluoroether Polymers 0.000 description 3
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 238000012631 diagnostic technique Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
本发明公开了一种磁共振引擎装置,第一阀门一端与第一管道一端连接,第一管道另一端设置有半透膜,第一阀门与第二阀门通过第二管道连接,第二管道上套设有检测线圈,压缩泵的出口、第二阀门和第三阀门分别与三通的三个通道连接,第三阀门与真空泵之间通过第三管道连接。还公开了一种磁共振引擎方法,超极化惰性气体在负压状态作用下,从半透膜中渗透进入PFA;逐步压缩腔体的空间;对高浓度气体进行核磁共振采样;残气抽出排走。本发明结构简单,操作方便,可将超极化惰性气体经过收集和压缩后,通过提高检测线圈中的超极化惰性气体样品浓度,进而进一步地提高超极化惰性气体的信号强度。
The invention discloses a magnetic resonance engine device. One end of a first valve is connected to one end of a first pipeline, and the other end of the first pipeline is provided with a semi-permeable membrane. The first valve and the second valve are connected through a second pipeline. A detection coil is sleeved, the outlet of the compression pump, the second valve and the third valve are respectively connected to the three channels of the tee, and the third valve is connected to the vacuum pump through a third pipeline. Also disclosed is a magnetic resonance engine method, in which the hyperpolarized inert gas penetrates into the PFA from the semi-permeable membrane under the action of negative pressure; gradually compresses the space of the cavity; conducts nuclear magnetic resonance sampling for high-concentration gas; and extracts the residual gas row away. The invention has simple structure and convenient operation. After the hyperpolarized inert gas is collected and compressed, the signal intensity of the hyperpolarized inert gas can be further improved by increasing the sample concentration of the hyperpolarized inert gas in the detection coil.
Description
技术领域technical field
本发明属于核磁共振波谱学领域,更具体涉及一种浪涌冲击试验装置,还涉及一种磁共振引擎方法,适用于超极化惰性气体核磁共振。The invention belongs to the field of nuclear magnetic resonance spectroscopy, and more specifically relates to a surge impact test device and a magnetic resonance engine method, which is suitable for hyperpolarized inert gas nuclear magnetic resonance.
背景技术Background technique
迄今为止,商用的核磁共振谱仪已经非常成熟,典型的有德国布鲁克、美国安捷伦等公司的产品。核磁共振谱仪首先通过线圈对处于强磁场的样品施加一个特定频率的电磁波,样品吸收了特定频率的电磁波后经过弛豫过程,会辐射出一定频率的电磁波,使用与该电磁波频率相同接收频率的线圈及电子线路可以将样品辐射的电磁波进行转换和处理,得到最终的磁共振信号。So far, commercial nuclear magnetic resonance spectrometers have been very mature, typically products from companies such as Bruker in Germany and Agilent in the United States. The NMR spectrometer first applies an electromagnetic wave of a specific frequency to the sample in a strong magnetic field through a coil. After the sample absorbs the electromagnetic wave of a specific frequency and undergoes a relaxation process, it will radiate an electromagnetic wave of a certain frequency. The coil and electronic circuit can convert and process the electromagnetic wave radiated by the sample to obtain the final magnetic resonance signal.
近年来,使用超极化惰性气体技术增强核磁共振灵敏度已经成为核磁共振波谱学的热门研究领域。核磁共振信号强度(S)正比于样品原子核的极化度P0,即:H核在磁场中由波尔兹曼分布决定的热平衡极化度PH=105~106,而由激光光泵和自旋交换技术可以将惰性气体核的极化度Pnoble□gas提高10000倍以上,因此,激光产生的非平衡核自旋极化惰性气体的核磁共振信号大大的强于热平衡极化的质子信号,使得它们可能成为重要的生物和医学新诊断技术的造影剂。In recent years, the use of hyperpolarized noble gas techniques to enhance NMR sensitivity has become a popular research area in NMR spectroscopy. The NMR signal intensity (S) is proportional to the polarization degree P 0 of the sample nucleus, namely: The thermal equilibrium polarizability P H of H nuclei determined by the Boltzmann distribution in the magnetic field is 10 5 ~10 6 , while the polarizability P noble gas of inert gas nuclei can be increased by laser optical pumping and spin exchange technology More than 10,000 times, therefore, the nuclear magnetic resonance signals of non-equilibrium nuclear spin-polarized inert gases produced by lasers are much stronger than the proton signals of thermal equilibrium polarization, making them possible to become important contrast agents for new diagnostic techniques in biology and medicine.
目前,对于超极化惰性气体磁共振信号的检测方法,通常都是使用光泵自旋交换极化装置产生超极化的惰性气体,直接输送到处于检测线圈中的PFA管里,然后再使用检测线圈获得超极化惰性气体的核磁共振信号。超极化惰性气体的核磁共振信号非常强,也使其超出传统工作范围在许多新的方面获得成功应用,例如将超极化惰性气体用于肺部MRI和脑功能成像、在材料科学研究中利用激光极化129Xe吸附和化学位移可以用于研究多孔材料、在化学方面,由于激光极化129Xe的化学位移对环境特别敏感,使得超极化129Xe特别适用做分子探针。At present, for the detection method of hyperpolarized inert gas magnetic resonance signals, the optical pump spin exchange polarization device is usually used to generate hyperpolarized inert gas, which is directly transported to the PFA tube in the detection coil, and then used The detection coil obtains the nuclear magnetic resonance signal of the hyperpolarized inert gas. The nuclear magnetic resonance signal of hyperpolarized inert gas is very strong, which also makes it successfully applied in many new aspects beyond the scope of traditional work, such as the use of hyperpolarized inert gas in lung MRI and brain functional imaging, in material science research The adsorption and chemical shift of laser polarized 129 Xe can be used to study porous materials. In terms of chemistry, since the chemical shift of laser polarized 129 Xe is particularly sensitive to the environment, hyperpolarized 129 Xe is especially suitable for molecular probes.
然而,实验中检测到的超极化惰性气体核磁共振信号强度往往没有其产生时信号强度高。其主要原因包括:1)受到收集装置、管道等的洁净度、材料种类以及顺磁性物质等影响,部分超极化惰性气体的极化度会损失;2)在检测时,受容纳超极化惰性气体管道内的空间限制,到达的超极化惰性气体信号的自身密度较低;3)尽管实验中所用的光泵自旋交换工作气体为高压混合气体,例如5atm8,但是通常混合气体组成的成分中主要包括压力增宽气体4He、荧光淬灭气体N2,而惰性气体含量仅仅为1~3%,即产生的超极化惰性气体量有限。对于人体肺部核磁共振成像、生物探针等更新的应用,如何增加超极化惰性气体的数量或者压力、进一步增强检测中的超极化惰性气体核磁共振信号是一个迫切需要解决的问题。However, the hyperpolarized noble gas NMR signal intensity detected in the experiment is often not as high as the signal intensity when it was produced. The main reasons include: 1) Due to the influence of the cleanliness of the collection device, pipeline, etc., material types, and paramagnetic substances, the polarization degree of some hyperpolarized inert gases will be lost; Due to the space limitation in the noble gas pipeline, the density of the arriving hyperpolarized noble gas signal is low; 3) Although the optical pump spin exchange working gas used in the experiment is a high-pressure mixed gas, such as 5atm 8 , the mixed gas usually consists of The main components of the NFC include pressure-increasing gas 4 He and fluorescence quenching gas N 2 , while the content of inert gas is only 1-3%, that is, the amount of hyperpolarized inert gas generated is limited. For newer applications such as human lung MRI and biological probes, how to increase the amount or pressure of hyperpolarized inert gas and further enhance the hyperpolarized inert gas NMR signal in detection is an urgent problem to be solved.
本发明磁共振引擎主要通过压缩混合气体、分离混合气体、压缩超极化惰性气体,增加超极化惰性气体的浓度(密度或者压力),旨在提供一种能够进一步超极化惰性气体核磁共振信号的方法。The magnetic resonance engine of the present invention mainly increases the concentration (density or pressure) of the hyperpolarized inert gas by compressing the mixed gas, separating the mixed gas, and compressing the hyperpolarized inert gas, aiming to provide a further hyperpolarized inert gas NMR Signal method.
发明内容Contents of the invention
本发明的目的是在于针对现有技术存在的上述问题,提供一种浪涌冲击试验装置,还提供一种磁共振引擎方法,本装置结构简单,操作方便,可将超极化惰性气体经过收集和压缩后,通过提高检测线圈中的超极化惰性气体样品浓度,进而进一步地提高超极化惰性气体的信号强度。The purpose of the present invention is to solve the above problems in the prior art, provide a surge impact test device, and also provide a magnetic resonance engine method, the device is simple in structure, easy to operate, and can collect hyperpolarized inert gas and after compression, by increasing the hyperpolarized inert gas sample concentration in the detection coil, the signal intensity of the hyperpolarized inert gas is further increased.
为了实现上述目的,本发明采用以下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种磁共振引擎装置,包括第一阀门、第二阀门、第三阀门、真空泵、压缩泵和压缩泵控制器,第一阀门一端与第一管道一端连接,第一管道另一端设置有半透膜,第一阀门与第二阀门通过第二管道连接,第二管道上套设有检测线圈,压缩泵的出口、第二阀门和第三阀门分别与三通的三个通道连接,第三阀门与真空泵之间通过第三管道连接。A magnetic resonance engine device, comprising a first valve, a second valve, a third valve, a vacuum pump, a compression pump and a compression pump controller, one end of the first valve is connected to one end of a first pipeline, and the other end of the first pipeline is provided with a semi-permeable The first valve and the second valve are connected through the second pipeline, the second pipeline is covered with a detection coil, the outlet of the compression pump, the second valve and the third valve are respectively connected to the three channels of the tee, and the third valve It is connected with the vacuum pump through the third pipeline.
一种磁共振引擎装置,还包括极化器和蠕动泵,极化器与蠕动泵连接,蠕动泵通过半透膜与第一管道连接。A magnetic resonance engine device also includes a polarizer and a peristaltic pump, the polarizer is connected with the peristaltic pump, and the peristaltic pump is connected with the first pipeline through a semipermeable membrane.
如上所述的第一管道、第二管道、第三管道和三通均为全氟烷氧基乙烯基醚树脂。The first pipe, the second pipe, the third pipe and the tee mentioned above are all perfluoroalkoxy vinyl ether resins.
一种磁共振引擎的方法,包括以下步骤:A method for a magnetic resonance engine, comprising the steps of:
步骤1(A)、打开第一阀门、第二阀门和第三阀门,启动真空泵,直至装置中各个管道和阀门内的真空度低于4psi,压缩泵的活塞由于负压被吸至最靠近三通的进程;Step 1 (A), open the first valve, the second valve and the third valve, and start the vacuum pump until the vacuum degree in each pipe and valve in the device is lower than 4psi, and the piston of the compression pump is sucked to the nearest three due to the negative pressure. pass the process;
步骤2(B)、关闭第三阀门,超极化惰性气体透过半透膜进入第一管道,压缩泵控制器控制压缩泵的活塞向远离三通的方向运动,超极化惰性气体充满压缩泵的容积空间;Step 2 (B), close the third valve, the hyperpolarized inert gas enters the first pipeline through the semi-permeable membrane, the compression pump controller controls the piston of the compression pump to move away from the tee, and the hyperpolarized inert gas fills the compression pump volume space;
步骤3(C)、关闭第一阀门,压缩泵控制器控制压缩泵的活塞向靠近三通的方向压缩,将超极化惰性气体压入第一阀门和第二阀门之间的第二管道,关闭第二阀门;Step 3 (C), close the first valve, the controller of the compression pump controls the piston of the compression pump to compress in the direction close to the tee, and press the hyperpolarized inert gas into the second pipeline between the first valve and the second valve, close the second valve;
步骤4(D)、启动检测线圈对第二管道中的超极化惰性气体进行采样;Step 4 (D), start the detection coil to sample the hyperpolarized inert gas in the second pipeline;
步骤5(E)、采样完成后,打开第二阀门和第三阀门,将真空泵将采样完毕的惰性气体抽出系统之外,返回步骤1进行循环直至停止采样。Step 5 (E), after the sampling is completed, open the second valve and the third valve, pump the vacuum pump to extract the sampled inert gas out of the system, and return to step 1 to cycle until the sampling is stopped.
如上所述的超极化惰性气体为129Xe。The hyperpolarized noble gas as described above is129Xe .
本发明与现有技术相比,具有以下优点和效果:Compared with the prior art, the present invention has the following advantages and effects:
1、改进了原先实验中在混合气体中测试超极化惰性气体核磁共振信号的方法,能从混合气体中分离出超极化惰性气体气体,并通过磁共振引擎技术提高样品密度;1. Improved the method of testing the hyperpolarized inert gas NMR signal in the mixed gas in the original experiment, which can separate the hyperpolarized inert gas from the mixed gas, and increase the sample density through the magnetic resonance engine technology;
2、能够克服由于管道内径较小,样品浓度低造成的填充因子Q值很小,信号微弱的问题,能够极大增强磁共振信号。2. It can overcome the problem of small filling factor Q value and weak signal due to the small inner diameter of the pipeline and low sample concentration, and can greatly enhance the magnetic resonance signal.
3、区别于传统的核磁共振过程中,要求射频激发和接收必须同步的问题,利用超极化惰性气体气体较长的纵向弛豫时间T1和良好的水溶性和脂溶性的特点,使得射频激发和接收两个过程分开。3. Different from the problem that radio frequency excitation and reception must be synchronized in the traditional nuclear magnetic resonance process, using the long longitudinal relaxation time T 1 of hyperpolarized inert gas and good water solubility and fat solubility, radio frequency The two processes of excitation and reception are separated.
附图说明Description of drawings
图1为本发明装置连接图;Fig. 1 is a device connection diagram of the present invention;
图2为本发明方法流程图。Fig. 2 is a flow chart of the method of the present invention.
图中:1-半透膜;2-第一阀门;3-检测线圈;4-真空泵;5-压缩泵控制器;6-压缩泵;7-第二阀门;8-第三阀门;9-第一管道;10-第二管道;11-第三管道;12-三通;13-蠕动泵;14-极化器。In the figure: 1-semipermeable membrane; 2-first valve; 3-detection coil; 4-vacuum pump; 5-compression pump controller; 6-compression pump; 7-second valve; 8-third valve; 9- 10-second pipeline; 11-third pipeline; 12-tee; 13-peristaltic pump; 14-polarizer.
具体实施方式Detailed ways
下面结合附图对本发明作进一步详细描述:Below in conjunction with accompanying drawing, the present invention is described in further detail:
实施1:Implementation 1:
如图1所示,一种磁共振引擎装置,包括第一阀门2、第二阀门7、第三阀门8、真空泵4、压缩泵6和压缩泵控制器5,第一阀门2一端与第一管道9一端连接,第一管道9另一端设置有半透膜1,第一阀门2与第二阀门7通过第二管道10连接,第二管道10上套设有检测线圈3,压缩泵6的出口、第二阀门7和第三阀门8分别与三通12的三个通道连接,第三阀门8与真空泵4之间通过第三管道11连接。As shown in Figure 1, a kind of magnetic resonance engine device comprises a
一种磁共振引擎装置,还包括极化器14和蠕动泵13,极化器14与蠕动泵13连接,蠕动泵13通过半透膜1与第一管道9连接。A magnetic resonance engine device further includes a
第一管道9、第二管道10、第三管道11和三通12均为全氟烷氧基乙烯基醚树脂。The first pipe 9, the
超极化惰性气体可包括:超极化3He,超极化87Kr,超极化131Xe和129Xe等。The hyperpolarized inert gas may include: hyperpolarized 3 He, hyperpolarized 87 Kr, hyperpolarized 131 Xe and 129 Xe, etc.
实施例2:Example 2:
超极化惰性气体为129Xe,The hyperpolarized inert gas is 129 Xe,
实验开始后,首先第一阀门2、第二阀门7、第三阀门8均保持开通状态,启动真空泵4,将整个系统管道中的空气全部抽走,保持真空度低于4psi,由于真空泵4持续的往系统外抽气,系统内将处于并且保持一个负压状态,此时压缩泵6的活塞会处于其自身的接近三通12状态。当系统处于真空状态后,关闭第三阀门8,使得管道系统与真空系统隔绝,由于半透膜1是一种单向透过的化学膜,只能允许129Xe气体分子透过,在半透膜1两端存在压力差的情况下,当溶解有超极化129Xe的溶液中的超极化129Xe气体会透过半透膜1从而进入第一管道9中。随着129Xe气体的不断流入,气体会逐步的充满压缩泵6的容积空间,压缩泵6的活塞会逐渐的向远离三通12移动。After the experiment started, at first the
当气体充满压缩泵6的容积空间后,关闭第一阀门2,使得129Xe气体不再进入第一阀门2右边的区域,同时压缩泵控制器5控制压缩泵6的活塞,压缩腔内气体,使129Xe气体逐步进入第一阀门2和第二阀门7之间的区域,此时关闭第二阀门7,并启动检测线圈3对第二管道10中的高浓度的超极化129Xe气体采样。After the gas fills the volume space of the
实施例3:Example 3:
一种磁共振引擎方法,包括以下步骤:A magnetic resonance engine method, comprising the steps of:
步骤1(A)、打开第一阀门2、第二阀门7和第三阀门8,启动真空泵4,直至装置中各个管道和阀门内的真空度低于4psi,压缩泵6的活塞由于负压被吸至最靠近三通12的进程;Step 1 (A), open the
步骤2(B)、关闭第三阀门8,超极化的惰性气体透过半透膜1进入第一管道9,压缩泵控制器5控制压缩泵6的活塞向远离三通12的方向运动,超极化的惰性气体充满压缩泵6的容积空间;Step 2 (B), close the
步骤3(C)、关闭第一阀门2,压缩泵控制器5控制压缩泵6的活塞向靠近三通12的方向压缩,将超极化的惰性气体压入第一阀门2和第二阀门7之间的第二管道10,关闭第二阀门7;Step 3 (C), close the
步骤4(D)、启动检测线圈3对第二管道10中的超极化惰性气体进行采样;Step 4 (D), start the
步骤5(E)、采样完成后,打开第二阀门7和第三阀门8,将真空泵4将采样完毕的惰性气体抽出系统之外,返回步骤1进行循环直至停止采样。Step 5 (E), after the sampling is completed, open the
磁共振引擎的工作过程分为四步,即:吸气—压缩—采样—排气。吸气指的是溶液中的超极化惰性气体在负压状态作用下,从半透膜中渗透进入PFA(Perfluoroalkoxy—全氟烷氧基乙烯基醚树脂)的管道中的过程;当压缩泵腔体中的超极化惰性气体收集到足够数量时,压缩泵逐步压缩腔体的空间,使得在线圈区域的管道中超极化惰性气体浓度最大;压缩过程完毕后,将高浓度气体进行核磁共振采样;最后开启相关的阀门,用真空泵将残气抽出排走,从而进入下一个吸气循环,周而复始。磁共振引擎的工作过程非常类似于机械引擎吸气冲程—压缩冲程-点火冲程排气冲程。The working process of the magnetic resonance engine is divided into four steps, namely: suction-compression-sampling-exhaust. Inhalation refers to the process in which the hyperpolarized inert gas in the solution penetrates from the semi-permeable membrane into the pipeline of PFA (Perfluoroalkoxy-perfluoroalkoxy vinyl ether resin) under negative pressure; when the compression pump When a sufficient amount of hyperpolarized inert gas in the cavity is collected, the compression pump gradually compresses the space of the cavity to maximize the concentration of hyperpolarized inert gas in the pipeline in the coil area; after the compression process is completed, the high-concentration gas is subjected to nuclear magnetic resonance Sampling; finally open the relevant valves, use a vacuum pump to pump out the residual gas, and then enter the next suction cycle, repeating itself. The working process of a magnetic resonance engine is very similar to a mechanical engine intake stroke-compression stroke-ignition stroke exhaust stroke.
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。The specific embodiments described herein are merely illustrative of the spirit of the invention. Those skilled in the art to which the present invention belongs can make various modifications or supplements to the described specific embodiments or adopt similar methods to replace them, but they will not deviate from the spirit of the present invention or go beyond the definition of the appended claims range.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210479542.2A CN102967834B (en) | 2012-11-23 | 2012-11-23 | Device and method for magnetic resonance engine |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210479542.2A CN102967834B (en) | 2012-11-23 | 2012-11-23 | Device and method for magnetic resonance engine |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102967834A true CN102967834A (en) | 2013-03-13 |
| CN102967834B CN102967834B (en) | 2014-10-15 |
Family
ID=47798111
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210479542.2A Active CN102967834B (en) | 2012-11-23 | 2012-11-23 | Device and method for magnetic resonance engine |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102967834B (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107359299A (en) * | 2016-05-10 | 2017-11-17 | 宁德时代新能源科技股份有限公司 | Gas production extraction device |
| CN114910503A (en) * | 2022-04-07 | 2022-08-16 | 中国科学院精密测量科学与技术创新研究院 | Near-zero field magnetic resonance spectrum device and measuring method |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5934103A (en) * | 1997-04-22 | 1999-08-10 | Northrop Grumman Corporation | Method and apparatus for production of spin-polarized medical-grade xenon 129 gas by laser optical pumping |
| WO2000078398A1 (en) * | 1999-06-21 | 2000-12-28 | The Brigham And Women's Hospital, Inc. | Method and apparatus for delivering and recovering gasses |
| US6286319B1 (en) * | 1998-09-30 | 2001-09-11 | Medi-Physics, Inc. | Meted hyperpolarized noble gas dispensing methods and associated devices |
| CN1328472A (en) * | 1998-09-30 | 2001-12-26 | 医疗物理有限公司 | Hyperpolarized noble gas extraction method, masking method and associated delivery vessel |
| US20020051712A1 (en) * | 2000-01-11 | 2002-05-02 | Anselm Deninger | UHV compatible lead through, device and procedure for highly effective production of nuclear spin polarized 3He at high polarization |
| CN1371480A (en) * | 1999-06-30 | 2002-09-25 | 医疗物理有限公司 | Nuclear Magnetic Resonance Polarization Monitoring Coil, Hyperpolarizer, and Method for Determining Polarization Degree of Accumulated Hyperpolarized Noble Gas |
| CN1385695A (en) * | 2001-05-10 | 2002-12-18 | 中国科学院武汉物理与数学研究所 | Laser intensified polarization inert gas dynamic device |
| CN101569847A (en) * | 2008-04-29 | 2009-11-04 | 台湾磁原科技股份有限公司 | Filling type micro noble gas polarization generator |
| US8035376B2 (en) * | 2001-10-22 | 2011-10-11 | Medi-Physics, Inc. | Optical pumping modules, polarized gas blending and dispensing systems, and automated polarized gas distribution systems and related devices and methods |
| JP2012520987A (en) * | 2009-03-16 | 2012-09-10 | オックスフォード インストルメンツ ナノテクノロジー ツールス リミテッド | Cryogen-free cooling device and method |
-
2012
- 2012-11-23 CN CN201210479542.2A patent/CN102967834B/en active Active
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5934103A (en) * | 1997-04-22 | 1999-08-10 | Northrop Grumman Corporation | Method and apparatus for production of spin-polarized medical-grade xenon 129 gas by laser optical pumping |
| US6286319B1 (en) * | 1998-09-30 | 2001-09-11 | Medi-Physics, Inc. | Meted hyperpolarized noble gas dispensing methods and associated devices |
| CN1328472A (en) * | 1998-09-30 | 2001-12-26 | 医疗物理有限公司 | Hyperpolarized noble gas extraction method, masking method and associated delivery vessel |
| WO2000078398A1 (en) * | 1999-06-21 | 2000-12-28 | The Brigham And Women's Hospital, Inc. | Method and apparatus for delivering and recovering gasses |
| CN1371480A (en) * | 1999-06-30 | 2002-09-25 | 医疗物理有限公司 | Nuclear Magnetic Resonance Polarization Monitoring Coil, Hyperpolarizer, and Method for Determining Polarization Degree of Accumulated Hyperpolarized Noble Gas |
| US20020051712A1 (en) * | 2000-01-11 | 2002-05-02 | Anselm Deninger | UHV compatible lead through, device and procedure for highly effective production of nuclear spin polarized 3He at high polarization |
| CN1385695A (en) * | 2001-05-10 | 2002-12-18 | 中国科学院武汉物理与数学研究所 | Laser intensified polarization inert gas dynamic device |
| US8035376B2 (en) * | 2001-10-22 | 2011-10-11 | Medi-Physics, Inc. | Optical pumping modules, polarized gas blending and dispensing systems, and automated polarized gas distribution systems and related devices and methods |
| CN101569847A (en) * | 2008-04-29 | 2009-11-04 | 台湾磁原科技股份有限公司 | Filling type micro noble gas polarization generator |
| JP2012520987A (en) * | 2009-03-16 | 2012-09-10 | オックスフォード インストルメンツ ナノテクノロジー ツールス リミテッド | Cryogen-free cooling device and method |
Non-Patent Citations (1)
| Title |
|---|
| 孙献平 等: "超极化129Xe磁共振波谱和成像及在生物医学中的应用", 《物理》, vol. 40, no. 6, 31 December 2011 (2011-12-31), pages 381 - 390 * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107359299A (en) * | 2016-05-10 | 2017-11-17 | 宁德时代新能源科技股份有限公司 | Gas production extraction device |
| CN114910503A (en) * | 2022-04-07 | 2022-08-16 | 中国科学院精密测量科学与技术创新研究院 | Near-zero field magnetic resonance spectrum device and measuring method |
| CN114910503B (en) * | 2022-04-07 | 2024-02-27 | 中国科学院精密测量科学与技术创新研究院 | Near-zero field magnetic resonance spectrum device and measuring method |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102967834B (en) | 2014-10-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9176206B2 (en) | Effective-inductance-change based magnetic particle sensing | |
| Spengler et al. | Micro-fabricated Helmholtz coil featuring disposable microfluidic sample inserts for applications in nuclear magnetic resonance | |
| CN205656091U (en) | Volumetric method shale isothermal adsorption experimental apparatus | |
| CN110261280A (en) | A kind of reverse imbibition on-line monitoring experimental provision of high temperature and pressure rock core and experimental method | |
| Bordonali et al. | Parahydrogen based NMR hyperpolarisation goes micro: an alveolus for small molecule chemosensing | |
| Ehrmann et al. | Microfabricated solenoids and Helmholtz coils for NMR spectroscopy of mammalian cells | |
| CN104237283B (en) | Method and system for detecting adsorption capacity of solid sample to hydrogen-atom-containing gas | |
| CN1371480A (en) | Nuclear Magnetic Resonance Polarization Monitoring Coil, Hyperpolarizer, and Method for Determining Polarization Degree of Accumulated Hyperpolarized Noble Gas | |
| CN107063920B (en) | A kind of measuring device and method of gas content in insulating oil | |
| CN102444400B (en) | Nuclear magnetic resonance fluid analyzer probe and nuclear magnetic resonance fluid analyzer | |
| CN106932741A (en) | The temperature of electrical sheet vector magnetic characteristic and stress effect measurement apparatus | |
| CN102967834B (en) | Device and method for magnetic resonance engine | |
| CN103808458A (en) | Device and method for testing suction and vent quantity of vacuum gauge based on dynamic flow method | |
| CN206945933U (en) | The temperature of electrical sheet vector magnetic characteristic and stress effect measurement apparatus | |
| CN107154065B (en) | A kind of quick function MR imaging method for human lung | |
| CN104076057B (en) | Based on probe that gallium solenoid miniature coils is integrated with glass micro passage and preparation method thereof | |
| CN113607769A (en) | Parahydrogen content detection device and method by utilizing nuclear magnetic resonance | |
| CN102607932A (en) | Underwater in-situ sample introduction diluter | |
| CN106290603B (en) | A method and application for simultaneous detection of inorganic anions, organic acids and three phytochemicals in plants using valve switching method | |
| Choukeife et al. | On-site production of hyperpolarised helium-3 gas for lung MRI | |
| CN119086618A (en) | Device and method for flow sampling of hyperpolarized 129Xe magnetic resonance molecular probe | |
| CN116297624A (en) | A method for determining the minimum miscible pressure of hydrocarbon gas and crude oil by two-dimensional NMR | |
| CN102095746B (en) | Micro solenoid radio frequency coil for microfluid nuclear magnetic resonance detection and manufacturing method thereof | |
| CN104287731A (en) | Animal expiration device for MRI (magnetic resonance imaging) of lung hyperpolarization gas | |
| Sequeira-Antunes et al. | µ-NMR Technology for Biomedical Applications: A Review |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |