CN103095216A - Oscillators and their methods - Google Patents
Oscillators and their methods Download PDFInfo
- Publication number
- CN103095216A CN103095216A CN2012104341222A CN201210434122A CN103095216A CN 103095216 A CN103095216 A CN 103095216A CN 2012104341222 A CN2012104341222 A CN 2012104341222A CN 201210434122 A CN201210434122 A CN 201210434122A CN 103095216 A CN103095216 A CN 103095216A
- Authority
- CN
- China
- Prior art keywords
- output signal
- feedback network
- network
- resistance
- transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B5/00—Generation of oscillations using amplifier with regenerative feedback from output to input
- H03B5/20—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising resistance and either capacitance or inductance, e.g. phase-shift oscillator
- H03B5/24—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising resistance and either capacitance or inductance, e.g. phase-shift oscillator active element in amplifier being semiconductor device
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B2200/00—Indexing scheme relating to details of oscillators covered by H03B
- H03B2200/003—Circuit elements of oscillators
- H03B2200/0036—Circuit elements of oscillators including an emitter or source coupled transistor pair or a long tail pair
Landscapes
- Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
- Oscillators With Electromechanical Resonators (AREA)
Abstract
Description
技术领域 technical field
本发明是关于一种电子电路,特别是关于一种振荡器及其方法。The present invention relates to an electronic circuit, in particular to an oscillator and its method.
背景技术 Background technique
压控振荡器(Voltage-controlled oscillator,VCO)广泛地使用在大多数的应用中。压控振荡器包括多级压控延迟单元(voltage-controlled delay cell;VCDC)。其中,每一级压控延迟单元接收来自前级的一输入且输出一输出给后级,并且由一控制电压控制由输入到输出的电路延迟。图1是3阶压控振荡器100的示意图。参照图1,压控振荡器100包括:3个压控延迟单元110、120、130、一输入、一输出以及由输入到输出的一电路延迟。每一个压控延迟单元是设置于平衡(差动)电路组态中。各压控延迟单元有一第一(正)输入端i+、第二(负)输入端i-、第一(正)输出端o+、第二(负)输出端o-及控制端VC。此输入定义为第一输入端i+和第二输入端i-之间的电压差,且此输出定义为第一输出端o+及第二输出端o-之间的电压差。由输入到输出的电路延迟是由施加在控制端VC的控制电压VCTL所控制。控制电压VCTL施用给所有的压控延迟单元110-130。控制电压VCTL决定这3个压控延迟单元110-130的电路延迟,因而决定振荡器100的振荡频率。每一压控延迟单元的电路延迟提供振荡信号一相位偏移(phase shift)。Voltage-controlled oscillators (Voltage-controlled oscillators, VCOs) are widely used in most applications. The voltage-controlled oscillator includes a multi-stage voltage-controlled delay cell (voltage-controlled delay cell; VCDC). Wherein, each stage of voltage-controlled delay unit receives an input from the previous stage and outputs an output to the subsequent stage, and a control voltage controls the circuit delay from the input to the output. FIG. 1 is a schematic diagram of a 3-stage VCO 100 . Referring to FIG. 1 , the voltage-controlled oscillator 100 includes: three voltage-controlled delay units 110 , 120 , 130 , an input, an output, and a circuit delay from the input to the output. Each voltage-controlled delay unit is configured in a balanced (differential) circuit configuration. Each voltage-controlled delay unit has a first (positive) input terminal i + , a second (negative) input terminal i − , a first (positive) output terminal o + , a second (negative) output terminal o − and a control terminal VC. The input is defined as the voltage difference between the first input terminal i + and the second input terminal i− , and the output is defined as the voltage difference between the first output terminal o + and the second output terminal o− . The circuit delay from input to output is controlled by the control voltage VCTL applied to the control terminal VC. The control voltage VCTL is applied to all voltage-controlled delay cells 110-130. The control voltage VCTL determines the circuit delay of the three voltage-controlled delay units 110 - 130 , thus determines the oscillation frequency of the oscillator 100 . The circuit delay of each voltage-controlled delay unit provides a phase shift of the oscillating signal.
为了维持振荡,当此振荡信号沿着环往复且返回至起始点时,总相位偏移必须为360度。为了协助振荡,将极性反转(polarity inversion)利用在此环中以产生180度的相位偏移,以致于为维持振荡来自此环的电路延迟的相位偏移的需求要降低至180度。在图1的3级压控振荡器100中,极性反转使用于压控延迟单元130的输出及压控延迟单元110的输入之间。为了维持振荡,每一压控延迟单元必需提供60度的相位偏移。除了相位偏移的需要外,每一压控延迟单元还必需提供一增益给此环以维持振荡。有许多电路适用于体现压控延迟单元。为了提供此增益,压控延迟单元必需包括一放大电路。为了维持高频振荡,此放大电路的延迟必需小,因而放大电路必需是一高速放大器。一般来说,高速放大器包括MOS(metal-oxide semiconductor)晶体管、电阻及(或)电容,并且其提供不超过90度的相位偏移。为了具有180度的相位偏移,需要至少二级。因此,现有技术的压控振荡器包括至少二级的压控延迟单元。一般来说,单级振荡器只有在利用一电感来达到180度的相位偏移时是可实施的。不过,电感的成本昂贵并且在成本敏感的设计中不受欢迎。To maintain oscillation, the total phase shift must be 360 degrees as this oscillating signal reciprocates around the ring and returns to the starting point. To assist in oscillation, polarity inversion is utilized in this loop to generate a phase shift of 180 degrees, so that the need for a phase shift of circuit delay from this ring to maintain oscillation is reduced to 180 degrees. In the 3-stage VCO 100 of FIG. 1 , polarity inversion is used between the output of the VCO 130 and the input of the VCO 110 . In order to maintain oscillation, each voltage-controlled delay unit must provide a phase offset of 60 degrees. In addition to the need for phase offset, each voltage-controlled delay unit must also provide a gain to the loop to maintain oscillation. There are many circuits suitable for embodying voltage-controlled delay cells. In order to provide this gain, the voltage controlled delay unit must include an amplifier circuit. In order to maintain high-frequency oscillation, the delay of this amplifying circuit must be small, so the amplifying circuit must be a high-speed amplifier. Generally, a high-speed amplifier includes MOS (metal-oxide semiconductor) transistors, resistors and (or) capacitors, and provides a phase shift of no more than 90 degrees. In order to have a phase shift of 180 degrees, at least two stages are required. Therefore, the prior art voltage controlled oscillator includes at least two stages of voltage controlled delay units. In general, single-stage oscillators are only practical when using an inductor to achieve a phase shift of 180 degrees. However, inductors are expensive and unpopular in cost-sensitive designs.
因此,如何提供不使用电感的振荡器为一亟待解决的议题。Therefore, how to provide an oscillator without using an inductor is an urgent issue to be solved.
发明内容 Contents of the invention
本发明的目的在于提供一种振荡器及其方法。The object of the present invention is to provide an oscillator and its method.
在一实施例中,本发明一种振荡器包括第一网络、第二网络及交叉耦合网络。第一网络包括一第一放大器。第一放大器经由一第一反馈网络设置在一自反馈组态(topology)中,并用以产生一输出信号的第一端。第二网络包括一第二放大器。第二放大器经由一第二反馈网络设置在另一自反馈组态中,并用以产生一输出信号的第二端。交叉耦合网络用以交叉耦接输出信号的第一端及输出信号的第二端。In an embodiment, an oscillator of the present invention includes a first network, a second network and a cross-coupling network. The first network includes a first amplifier. The first amplifier is set in a self-feedback topology via a first feedback network, and is used to generate a first end of an output signal. The second network includes a second amplifier. The second amplifier is set in another self-feedback configuration through a second feedback network, and is used to generate a second terminal of an output signal. The cross-coupling network is used for cross-coupling the first end of the output signal and the second end of the output signal.
在一实施例中,一种振荡器包括一第一自反馈放大器、一第二自反馈放大器及一交叉耦合网络。第一自反馈放大器用以输出输出信号的第一端、第二自反馈放大器用以输出输出信号的第二端,而交叉耦合网络用以交叉耦接输出信号的第一端和输出信号的第二端。其中,第一自反馈放大器及第二自反馈放大器共享一个供应电流且交叉控制彼此的自反馈。In one embodiment, an oscillator includes a first self-feedback amplifier, a second self-feedback amplifier and a cross-coupling network. The first self-feedback amplifier is used to output the first end of the output signal, the second self-feedback amplifier is used to output the second end of the output signal, and the cross-coupling network is used to cross-couple the first end of the output signal and the second end of the output signal Two ends. Wherein, the first self-feedback amplifier and the second self-feedback amplifier share a supply current and cross control self-feedback of each other.
在一实施例中,一种振荡器包括一第一放大器、一第二放大器、一电路及一交叉耦合网络。第一放大器包括一第一反馈网络,且此第一反馈网络是用以输出输出信号的第一端。第二放大器包括一第二反馈网络,且此第二反馈网络是用以输出输出信号的第二端。此电路是用以提供一供应电流给第一放大器及第二放大器,而交叉耦合网络是用以交叉耦接输出信号的第一端及输出信号的第二端。其中,第一反馈网络是由输出信号的第二端所控制,而第二反馈网络是由输出信号的第一端所控制。In one embodiment, an oscillator includes a first amplifier, a second amplifier, a circuit and a cross-coupling network. The first amplifier includes a first feedback network, and the first feedback network is used to output a first end of an output signal. The second amplifier includes a second feedback network, and the second feedback network is used to output the second terminal of the output signal. The circuit is used to provide a supply current to the first amplifier and the second amplifier, and the cross-coupling network is used to cross-couple the first end of the output signal and the second end of the output signal. Wherein, the first feedback network is controlled by the second terminal of the output signal, and the second feedback network is controlled by the first terminal of the output signal.
在一实施例中,一种振荡方法包括:通过放大一中间信号的第一端产生一输出信号的第一端;通过放大中间信号的第二端产生输出信号的第二端;交叉耦接输出信号的第一端及输出信号的第二端;使用以输出信号的第二端控制的一第一反馈网络将输出信号的第一端耦接至中间信号的第一端;及使用以输出信号的第一端控制的一第二反馈网络将输出信号的第二端耦接至中间信号的第二端。In one embodiment, a method of oscillating includes: generating a first end of an output signal by amplifying a first end of an intermediate signal; generating a second end of an output signal by amplifying a second end of an intermediate signal; cross-coupling the output a first end of the signal and a second end of the output signal; coupling the first end of the output signal to the first end of the intermediate signal using a first feedback network controlled by the second end of the output signal; and using the output signal A second feedback network controlled by the first terminal couples the second terminal of the output signal to the second terminal of the intermediate signal.
附图说明 Description of drawings
图1是现有技术压控振荡器的示意图。FIG. 1 is a schematic diagram of a prior art voltage controlled oscillator.
图2是本发明实施例的振荡器的示意图。FIG. 2 is a schematic diagram of an oscillator according to an embodiment of the present invention.
图3是图2的振荡器的回馈网路的等效电路的示意图。FIG. 3 is a schematic diagram of an equivalent circuit of a feedback network of the oscillator of FIG. 2 .
其中,附图标记说明如下:Wherein, the reference signs are explained as follows:
100压控振荡器100 VCO
110压控延迟单元110 voltage controlled delay unit
120压控延迟单元120 voltage controlled delay unit
130压控延迟单元130 voltage controlled delay unit
200振荡器200 oscillators
210偏压电流210 bias current
211第十一晶体管211 eleventh transistor
212供电节点212 power supply nodes
220第一放大器220 first amplifier
221第一晶体管221 first transistor
222第二晶体管222 second transistor
231第三晶体管231 third transistor
232第四晶体管232 fourth transistor
230第二放大器230 second amplifier
240第一回馈网路240 First Giving Back Network
241第一电阻241 first resistor
242第二电阻242 second resistor
243第六晶体管243 sixth transistor
244第五晶体管244 fifth transistor
250第二回馈网路250 Second Giving Back Network
251第三电阻251 third resistor
252第四电阻252 fourth resistor
253第八晶体管253 eighth transistor
254第七晶体管254 seventh transistor
260交叉耦合网路260 cross-coupling network
261第九晶体管261 ninth transistor
262第十晶体管262 tenth transistor
300梯形RC电路300 Ladder RC Circuit
VCTL控制电压VCTL control voltage
VC控制端VC control terminal
i+第一输入端i + first input
i-第二输入端i - the second input
o+第一输出端o + first output
o-第二输出端o - the second output
VDD固定电位电路节点V DD fixed potential circuit node
IB供应电流I B supply current
VCTL控制电压V CTL control voltage
Vi+第一端V i+ first terminal
Vi-第二端V i - the second terminal
Vo+第一端V o+ first terminal
Vo-第二端V o- the second terminal
R1前端电阻R1 Front Resistor
R2后端电阻R2 rear end resistor
R3可变电阻R3 variable resistor
C1前端寄生电容C1 front-end parasitic capacitance
C2后端寄生电容C2 back-end parasitic capacitance
具体实施方式 Detailed ways
以下将参考显示本发明具体实施例的附图详细描述。这些实施例描述足够详细以致使此领域技术人员实现这些和其他实施例。当一些实施例与一个或多个实施例结合以形成新实施例时。各种实施例之间不需相互排斥。因此,以下详细说明并无限制的用意,而是说明的用意。Hereinafter, a detailed description will be made with reference to the accompanying drawings showing specific embodiments of the present invention. These embodiments are described in sufficient detail to enable those skilled in the art to practice these and other embodiments. When some embodiments are combined with one or more embodiments to form a new embodiment. The various embodiments are not necessarily mutually exclusive. Accordingly, the following detailed description is not intended to be limiting, but rather illustrative.
图2是根据本发明一实施例的振荡器200的示意图。请参照图2,振荡器200包括:一偏压电路210、一放大器差动对、一交叉耦合网络260及一对反馈网络。偏压电流210用以提供一供应电流IB至供电节点212。放大器差动对包括第一放大器220和第二放大器230,并由来自供电节点212的供应电流IB偏压。放大器差动对用以接收包括第一端Vi+及第二端Vi-的差动中间信号(以下标示为Vi)并输出包括第一端Vo+及第二端Vo-的差动输出信号(以下标示为Vo)。其中,第一放大器220接收差动中间信号Vi的第一端Vi+和输出差动输出信号Vo的第一端Vo+,并且第二放大器230接收差动中间信号Vi的第二端Vi-和输出差动输出信号Vo的第二端Vo-。交叉耦合网络260用以交叉耦合差动输出信号Vo的第一端Vo+及差动输出信号Vo的第二端Vo-。此对反馈网络包括第一反馈网络240和第二反馈网络250,并且第一反馈网络240和第二反馈网络250分别用以提供反馈给第一放大器220及第二放大器230。其中,第一反馈网络240是由差动输出信号Vo的第二端Vo-所控制,而第二反馈网络250是由差动输出信号Vo的第一端Vo+所控制。第一放大器220是一反相器,且此反相器包括第一晶体管221及第二晶体管222。第二放大器230是一反相器,且此反相器包括第三晶体管231及第四晶体管232。第一反馈网络240包括串联的第一电阻241、并联的第五晶体管244与第六晶体管243及第二电阻242。其中,并联的第五晶体管244与第六晶体管243是配置以作为由差动输出信号Vo的第二端Vo-控制的可变电阻。FIG. 2 is a schematic diagram of an
第二反馈网络250包括串联的第三电阻251、并联的第七晶体管254与第八晶体管253,及第四电阻252。其中,并联的第七晶体管254与第八晶体管253是配置以作为由差动输出信号Vo的第一端Vo+控制的可变电阻。交叉耦合网络260包括第九晶体管261及第十晶体管262。偏压电路210包括第十一晶体管211,并且此第十一晶体管211用以依照控制电压VCTL输出供应电流IB给供电节点212。在此,VDD表示一固定电位电路节点。在另一实施例(图式未显示)中,移除第十一晶体管211且供电节点212直接耦接控制电压VCTL。以下说明振荡器200的原理。The
任何本领域技术人员,应知悉晶体管具有许多类型,在本发明中并无限制晶体管的类型。于一实施例,第一晶体管221、第三晶体管231、第六晶体管243及第八晶体管253为PMOS晶体管,及于一实施例,第二晶体管222、第四晶体管232、第五晶体管244、第七晶体管254、第九晶体管261及第十晶体管262为NMOS晶体管。Anyone skilled in the art should know that there are many types of transistors, and the present invention is not limited to the types of transistors. In one embodiment, the
第一放大器220与第一反馈网络240形成振荡器200的第一半边,而第二放大器230与第二反馈网络250形成振荡器200的第二半边。由于共享相同供应电流IB,振荡器200的第一半边及振荡器200的第二半边是相反的极性,即当差动输出信号Vo的第一端Vo+上升时,差动输出信号Vo的第二端Vo-下降,反之亦然。对振荡器200的每一半边而言,第一放大器220及第二放大器230各别因放大器的反相性质而产生180度的相位偏移,且因在放大器的输出的寄生电容负载(parasitic capacitive load)而产生额外的90度的相位偏移。注意,每一MOS晶体管会导致一寄生电容值。虽然第一放大器220及第二放大器230各别具有一有限的输出阻值,但通过交叉耦合网络260能抵消此有限的输出阻值。于此,此有限的输出阻值会使额外的相位偏移减少到小于90度。在差动电路组态中的交叉耦合网络260是等效于可抵消有限的输出阻值的一负电阻。The
针对振荡器200的每一半边,第一反馈网络240及第二反馈网络250各别等效于一梯形RC电路300,如图3所示。梯形RC电路300包括前端电阻R1(代表第一电阻241或第三电阻251)、前端寄生电容C1(是第六晶体管243与第五晶体管244的,或是第八晶体管253与第七晶体管254的)、可变电阻R3(代表第六晶体管243并联第五晶体管244的阻值,或第八晶体管253并联第七晶体管254的阻值)、后端寄生电容C2(是第六晶体管243与第五晶体管244的,或是第八晶体管253与第七晶体管254的),及后端电阻R2(代表第一电阻241或第三电阻251)。如此,梯形RC电路300满足以提供90度的相位偏移。因此,经由使用放大器(即第一放大器220及第二放大器230)与反馈网络(即第一反馈网络240及第二反馈网络250)致使360度的总相位偏移达到维持振荡。此振荡器的二半边交互控制,即,在第一半边的第一反馈网络240是由第二半边的输出(即,第二端Vo-)所控制,而在第二半边的第二反馈网络250则是由第一半边的输出(即,第一端Vo+)所控制。当输出信号的振幅大时,这样的配置架构通过降低反馈网络(即第一反馈网络240及第二反馈网络250)的总有效阻值而提升反馈的强度,因此有助于达到一较高的振荡频率。For each half of the
虽然本发明的技术内容已经以较佳实施例揭示如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神所作些许的更动与润饰,皆应涵盖于本发明的范畴内,因此本发明的保护范围当视所附的申请专利权利要求范围所界定者为准。Although the technical content of the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention, and any changes and modifications made by those skilled in the art without departing from the spirit of the present invention shall be covered by this disclosure. Therefore, the scope of protection of the present invention should be defined by the scope of the appended patent claims.
Claims (20)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/287,960 | 2011-11-02 | ||
| US13/287,960 US8570111B2 (en) | 2011-11-02 | 2011-11-02 | Single-staged balanced-output inductor-free oscillator and method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103095216A true CN103095216A (en) | 2013-05-08 |
| CN103095216B CN103095216B (en) | 2015-12-16 |
Family
ID=48171795
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210434122.2A Active CN103095216B (en) | 2011-11-02 | 2012-11-02 | Oscillator and method thereof |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US8570111B2 (en) |
| CN (1) | CN103095216B (en) |
| TW (1) | TWI492525B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106664094A (en) * | 2014-07-24 | 2017-05-10 | 美国莱迪思半导体公司 | Spectrum Shaping Voltage to Current Converter |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6215369B1 (en) * | 1998-11-22 | 2001-04-10 | Telefonaktiebolaget Lm Ericsson (Publ) | Controllable oscillator with feedback for reducing DC level of output signals |
| CN1527476A (en) * | 2003-03-04 | 2004-09-08 | ��ʽ���������Ƽ� | Oscillation circuit and L load differential circuit |
| CN102027678A (en) * | 2008-05-15 | 2011-04-20 | 高通股份有限公司 | High Speed Low Power Latches |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5801593A (en) * | 1996-12-16 | 1998-09-01 | Exar Corporation | Voltage-controlled oscillator capable of operating at lower power supply voltages |
| US7215194B2 (en) * | 2004-05-28 | 2007-05-08 | Cornell Research Foundation, Inc. | Extended bandwidth amplifier and oscillator using positive current feedback through inductive load |
| US7501860B2 (en) * | 2007-07-31 | 2009-03-10 | National Semiconductor Corporation | Differential input driver using current feedback and cross-coupled common base devices |
-
2011
- 2011-11-02 US US13/287,960 patent/US8570111B2/en active Active
-
2012
- 2012-10-31 TW TW101140416A patent/TWI492525B/en active
- 2012-11-02 CN CN201210434122.2A patent/CN103095216B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6215369B1 (en) * | 1998-11-22 | 2001-04-10 | Telefonaktiebolaget Lm Ericsson (Publ) | Controllable oscillator with feedback for reducing DC level of output signals |
| CN1527476A (en) * | 2003-03-04 | 2004-09-08 | ��ʽ���������Ƽ� | Oscillation circuit and L load differential circuit |
| CN102027678A (en) * | 2008-05-15 | 2011-04-20 | 高通股份有限公司 | High Speed Low Power Latches |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106664094A (en) * | 2014-07-24 | 2017-05-10 | 美国莱迪思半导体公司 | Spectrum Shaping Voltage to Current Converter |
| CN106664094B (en) * | 2014-07-24 | 2019-12-31 | 美国莱迪思半导体公司 | Spectrum Shaping Voltage to Current Converter |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103095216B (en) | 2015-12-16 |
| US8570111B2 (en) | 2013-10-29 |
| TW201320590A (en) | 2013-05-16 |
| TWI492525B (en) | 2015-07-11 |
| US20130106525A1 (en) | 2013-05-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20170104455A1 (en) | Quadrature LC Tank Digitally Controlled Ring Oscillator | |
| US7737795B2 (en) | Voltage controlled oscillator | |
| CN103078634B (en) | Voltage Controlled Delay Circuit and Its Common Mode Compensation Method | |
| JP2011509038A (en) | Differential voltage controlled oscillator and quadrature voltage controlled oscillator using transformer coupling | |
| CN101986556A (en) | Quadrature LC voltage-controlled oscillator structure for improving phase noise performance | |
| JP2012239168A (en) | Phase-locked loop circuit having voltage-controlled oscillator with improved bandwidth | |
| CN118041308B (en) | Crystal oscillator circuit and clock signal generation method | |
| CN101425803B (en) | Voltage controlled oscillator for loop circuit | |
| CN106209086A (en) | Voltage-controlled oscillator | |
| CN101127525A (en) | A bias circuit and a voltage-controlled oscillator | |
| TWI431943B (en) | Injection-locked frequency divider | |
| CN110460308B (en) | Wide-range annular voltage-controlled oscillator circuit | |
| US20220286089A1 (en) | Quadrature oscillator circuitry and circuitry comprising the same | |
| CN102723912B (en) | Broadband annular oscillator | |
| CN103095216B (en) | Oscillator and method thereof | |
| CN114793108A (en) | Duty cycle correction circuit and method, crystal oscillator circuit, and electronic equipment | |
| CN109831160B (en) | A negative resistance voltage controlled oscillation circuit and voltage controlled oscillator | |
| CN105827237A (en) | Time delay circuit and voltage-controlled oscillator | |
| US20130300476A1 (en) | Low noise and low power voltage controlled oscillators | |
| JPH088651A (en) | Voltage controlled oscillator | |
| CN103066921B (en) | Voltage-controlled oscillator with feedback and circuit provided with the same | |
| US9479144B2 (en) | Extended range ring oscillator using scalable feedback | |
| TWI627829B (en) | Current-contrlloed oscillator and ring oscillator | |
| JP2007208490A (en) | Crystal oscillator | |
| CN114785322B (en) | An injection locked ring oscillator |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |