[go: up one dir, main page]

CN103096482A - Wireless communication device and communication operation coordination method - Google Patents

Wireless communication device and communication operation coordination method Download PDF

Info

Publication number
CN103096482A
CN103096482A CN2012104316555A CN201210431655A CN103096482A CN 103096482 A CN103096482 A CN 103096482A CN 2012104316555 A CN2012104316555 A CN 2012104316555A CN 201210431655 A CN201210431655 A CN 201210431655A CN 103096482 A CN103096482 A CN 103096482A
Authority
CN
China
Prior art keywords
channel
mentioned
protocol stack
paging
packet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012104316555A
Other languages
Chinese (zh)
Inventor
陈宏岳
黄家毅
赖彦丞
张忆婷
张云璿
林长宽
施至永
翁宪政
谢逵绎
徐明琬
施泓玮
连瑞屏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MediaTek Inc
Original Assignee
MediaTek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MediaTek Inc filed Critical MediaTek Inc
Publication of CN103096482A publication Critical patent/CN103096482A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

The invention provides at least one wireless communication device and a communication operation coordination method, wherein the wireless communication device comprises a baseband chip, the baseband chip monitors a first channel related to a first service network to receive a called call from the first service network or measure a candidate cell located in the first service network, and performs wireless transceiving with a second service network through a second channel. In addition, the baseband chip is used for keeping the wireless transceiving uninterrupted by the monitoring of the first channel when the wireless transceiving is executed for the predetermined program. The present invention can coordinate and manage the operation among a plurality of wireless communication modules related to a multi-user identification card, so that the wireless transceiving corresponding to the second wireless communication module is prevented from being interrupted by the monitoring of the first channel corresponding to the first wireless module when the wireless transceiving corresponding to the second wireless communication module is executed aiming at the predetermined program.

Description

无线通信装置以及通信作业协调方法Wireless communication device and communication operation coordination method

技术领域technical field

本发明是有关于无线通信的射频资源分配,且特别是有关于与多个服务网络进行通信时的射频资源分配。The present invention relates to allocation of radio frequency resources for wireless communications, and more particularly to allocation of radio frequency resources when communicating with multiple serving networks.

背景技术Background technique

随着全球对普及运算(ubiquitous computing)及网络的需求逐渐攀升,许多无线通信技术因应而生,例如:全球移动通信系统(Global System for Mobilecommunications,GSM)技术、通用分组无线服务(General Packet Radio Service,GPRS)技术、全球增强型数据传输(Enhanced Data rates for Global Evolution,EDGE)技术、通用移动通信系统(Universal Mobile Telecommunications System,UMTS)技术、码分多址-2000(Code Division Multiple Access 2000,CDMA-2000)技术、时分同步码分多址(Time Division-Synchronous Code Division MultipleAccess,TD-SCDMA)技术、全球互通微波存取(Worldwide Interoperability forMicrowave Access,WiMAX)技术、长期演进(Long Term Evolution,LTE)技术、长期演进高阶(Long Term Evolution-Advanced,LTE-A)技术、以及时分长期演进(Time-Division LTE,TD-LTE)技术等等。一般来说,一支移动电话只支持一种无线通信技术,并通过所支持的无线通信技术来提供用户随时随地都能进行通信的弹性。特别在现今的商业世界里,移动电话已是进行商务不可或缺的便利工具。对商务人士而言,由于在离开办公室或甚至在出国时仍需要处理商业事务,因此他们普遍会选择再额外拥有一只商务专用的移动电话。或者,对其他用户而言,也可能会选择额外拥有一只移动电话,以节省/控制无线服务上的开销(包括语音话费以及/或数据服务费用)。但是同时拥有两只或两只以上的移动电话却是件麻烦的事,尤其是用户需要随身携带多只移动电话,而且还需要频繁地在不同移动电话之间切换使用。为了让用户能够更便利地拥有多重用户号码,于是推出了双卡或多卡的移动电话,其可能具有一个或多个无线通信模块,可支持相同或不同的多种通讯技术(例如,可支持GSM与UMTS的移动电话),以各自使用不同的用户号码进行无线传输与接收。双卡或多卡的移动电话能够让多个无线通信模块同时运作,并在同一时刻可自任一无线通信模块接收到其对应的用户号码的通话。因此,用户便可使用双卡或多卡的移动电话根据不同的用户号码及账单去区分商务及私人的用途,或者在出国时使用额外的用户号码作为漫游的用途。As the global demand for ubiquitous computing and networks has gradually increased, many wireless communication technologies have emerged accordingly, such as: Global System for Mobile Communications (Global System for Mobilecommunications, GSM) technology, General Packet Radio Service (General Packet Radio Service) , GPRS) technology, Enhanced Data rates for Global Evolution (EDGE) technology, Universal Mobile Telecommunications System (UMTS) technology, Code Division Multiple Access-2000 (Code Division Multiple Access 2000, CDMA -2000) technology, Time Division-Synchronous Code Division Multiple Access (TD-SCDMA) technology, Worldwide Interoperability for Microwave Access (WiMAX) technology, Long Term Evolution (LTE) technology, Long Term Evolution-Advanced (LTE-A) technology, and Time-Division Long-Term Evolution (Time-Division LTE, TD-LTE) technology, etc. Generally speaking, a mobile phone supports only one wireless communication technology, and provides flexibility for users to communicate anytime and anywhere through the supported wireless communication technology. Especially in today's business world, mobile phones have become an indispensable and convenient tool for doing business. For business people, because they still need to deal with business affairs when they leave the office or even go abroad, they generally choose to have an additional business-specific mobile phone. Alternatively, for other users, it may be an option to have an additional mobile phone in order to save/control the cost of wireless services (including voice calls and/or data service charges). But having two or more mobile phones at the same time is a troublesome thing, especially the user needs to carry many mobile phones with him, and also needs to switch between different mobile phones frequently. In order to allow users to have multiple user numbers more conveniently, dual-card or multi-card mobile phones have been introduced, which may have one or more wireless communication modules that can support the same or different communication technologies (for example, can support GSM and UMTS mobile phones) use different subscriber numbers for wireless transmission and reception. A dual-card or multi-card mobile phone can allow multiple wireless communication modules to operate simultaneously, and can receive a call from any wireless communication module with its corresponding user number at the same time. Therefore, users can use dual-card or multi-card mobile phones to distinguish business and private purposes according to different user numbers and bills, or use additional user numbers for roaming purposes when going abroad.

对于仅具有单一收发器(transceiver)的双卡或多卡移动电话,同一时间只有一个无线通信模块能够使用收发器以取得网络资源,而另一无线通信模块则无法存取收发器。明确来说,因为这些无线通信模块独立运作且相互之间缺乏适当的通信机制,所以无法存取收发器的无线通信模块便无从得知收发器当前正被另一无线通信模块所占用。举例说明,一只双卡移动电话的唯一收发器被第一无线通信模块占用以进行分组交换(Packet-Switched,PS)数据服务,例如:多媒体消息服务(Multimedia Messaging Service,MMS)、实时消息服务(InstantMessaging Service,IMS)、通过文件传输协议(File Transfer Protocol,FTP)进行的文件传输或网页浏览等等。此时,当相关于第二无线通信模块的服务网络发起针对第二无线通信模块的移动终端(Mobile-Terminated,MT)呼叫时,第二无线通信模块有可能因无法存取收发器而漏接本次MT呼叫,且第二无线通信模块更因无法接收到来自服务网络端的寻呼(paging)消息,而无法知晓本次MT呼叫的进入。For a dual-card or multi-card mobile phone with only a single transceiver, only one wireless communication module can use the transceiver to obtain network resources at a time, while the other wireless communication module cannot access the transceiver. Specifically, a wireless communication module that cannot access a transceiver has no way of knowing that the transceiver is currently occupied by another wireless communication module because these wireless communication modules operate independently and lack a proper communication mechanism with each other. For example, the only transceiver of a dual-card mobile phone is occupied by the first wireless communication module to perform packet-switched (Packet-Switched, PS) data services, such as: Multimedia Messaging Service (Multimedia Messaging Service, MMS), real-time message service (InstantMessaging Service, IMS), file transfer or web browsing through File Transfer Protocol (File Transfer Protocol, FTP), etc. At this time, when the service network related to the second wireless communication module initiates a mobile terminal (Mobile-Terminated, MT) call for the second wireless communication module, the second wireless communication module may miss the connection because it cannot access the transceiver. In this MT call, and because the second wireless communication module cannot receive the paging message from the serving network, it cannot know the entry of this MT call.

因此,亟需有一种更具弹性的方式,以管理相关于多重用户识别卡的多个无线通信模块之间的作业(operations),以使得第二无线通信模块在第一无线模块进行分组交换数据服务时依然能够接收到来自服务网络端的MT呼叫。Therefore, there is an urgent need for a more flexible way to manage operations between multiple wireless communication modules related to multiple subscriber identity cards, so that the second wireless communication module performs packet exchange data in the first wireless module The MT call from the serving network side can still be received while serving.

发明内容Contents of the invention

为此,本发明提供了至少一种无线通信装置以及通信作业协调方法。To this end, the present invention provides at least one wireless communication device and a communication operation coordination method.

本发明的一实施例提供了一种无线通信装置,该无线通信装置包括基带芯片,用以监控(monitor)与第一服务网络相关的第一信道以接收来自上述第一服务网络的被叫通话或以测量位于上述第一服务网络的多个候选小区(cell),通过第二信道进行与一第二服务网络之间的无线收发,以及于上述无线收发是针对预定程序而执行时,保持上述无线收发不被上述第一信道的监控所中断。An embodiment of the present invention provides a wireless communication device, the wireless communication device includes a baseband chip, used to monitor (monitor) a first channel related to a first service network to receive a called call from the first service network Or measure a plurality of candidate cells (cells) located in the first service network, perform wireless transmission and reception with a second service network through a second channel, and when the wireless transmission and reception is performed for a predetermined procedure, keep the above Wireless transceiving is not interrupted by the above-mentioned monitoring of the first channel.

本发明的另一实施例提供了一种通信作业协调方法,适用于无线通信装置中协调与不同服务网络所进行的通信作业。上述通信作业协调方法包括以下步骤:监控与第一服务网络相关的第一信道以接收来自上述第一服务网络的一被叫通话或以测量位于上述第一服务网络的多个候选小区;通过第二信道进行与第二服务网络之间的无线收发;以及于上述无线收发是针对预定程序而执行时,保持上述无线收发不被上述第一信道的监控所中断。Another embodiment of the present invention provides a method for coordinating communication operations, which is suitable for coordinating communication operations with different service networks in a wireless communication device. The above communication operation coordination method includes the following steps: monitoring the first channel related to the first service network to receive a called call from the first service network or to measure a plurality of candidate cells located in the first service network; performing wireless transmission and reception with the second service network through two channels; and when the wireless transmission and reception is performed according to a predetermined procedure, keep the wireless transmission and reception from being interrupted by the monitoring of the first channel.

利用本发明可协调管理相关于多重用户识别卡的多个无线通信模块之间的作业,使得对应于第二无线通信模块的无线收发是针对预定程序而执行时,免于被对应于第一无线模块的第一信道的监控所中断。Utilizing the present invention can coordinate and manage the work between multiple wireless communication modules related to multiple subscriber identification cards, so that when the wireless transmission and reception corresponding to the second wireless communication module is executed for a predetermined program, it is prevented from being corresponding to the first wireless communication module. Monitoring of the first channel of the module is interrupted.

关于本发明其他附加的特征与优点,本领域技术人员,在不脱离本发明的精神和范围内,当可根据本案实施方法中所揭露的无线通信装置以及通信作业协调方法,做些许的更动与润饰而得到。With regard to other additional features and advantages of the present invention, those skilled in the art can make some changes according to the wireless communication device and communication operation coordination method disclosed in the implementation method of this case without departing from the spirit and scope of the present invention. obtained with retouching.

附图说明Description of drawings

图1是根据本发明一实施例所述的移动通信环境的示意图。Fig. 1 is a schematic diagram of a mobile communication environment according to an embodiment of the present invention.

图2是根据本发明一实施例所述的移动台的硬件架构示意图。FIG. 2 is a schematic diagram of a hardware architecture of a mobile station according to an embodiment of the invention.

图3是根据本发明另一实施例所述的移动台的硬件架构示意图。Fig. 3 is a schematic diagram of a hardware architecture of a mobile station according to another embodiment of the present invention.

图4是根据本发明另一实施例所述配备单一天线并耦接两张用户识别卡的移动台的硬件架构示意图。FIG. 4 is a schematic diagram of a hardware architecture of a mobile station equipped with a single antenna and coupled with two subscriber identification cards according to another embodiment of the present invention.

图5是显示移动台在GSM/GPRS/EDGE系统中接收被叫通话的通话控制示意图。FIG. 5 is a schematic diagram showing call control of a mobile station receiving a called call in the GSM/GPRS/EDGE system.

图6是显示GPRS/EDGE系统的分组存取程序的范例示意图。FIG. 6 is a schematic diagram showing an example of the packet access procedure of the GPRS/EDGE system.

图7是显示根据本发明一实施例所述对正在监控3G电路切换的寻呼信道的移动台进行信道调度以执行2G分组存取程序的示意图。7 is a schematic diagram showing channel scheduling for a mobile station monitoring a paging channel of a 3G circuit handover to perform a 2G packet access procedure according to an embodiment of the present invention.

图8是显示根据本发明一实施例所述对处于2G分组传输模式的移动台进行信道调度以监控3G电路切换的寻呼信道的示意图。FIG. 8 is a schematic diagram showing channel scheduling for a mobile station in 2G packet transmission mode to monitor a paging channel for 3G circuit switching according to an embodiment of the present invention.

图9是显示关联至GSM/GPRS/EDGE系统并处于闲置模式的移动台在执行分组小区更动命令程序的范例示意图。FIG. 9 is a schematic diagram showing an example of a packet cell change order procedure performed by a mobile station associated with a GSM/GPRS/EDGE system and in an idle mode.

图10A与图10B是显示关联至GSM/GPRS/EDGE系统并处于联机模式的移动台在执行小区更动命令程序的范例示意图。FIG. 10A and FIG. 10B are schematic diagrams showing an example of a cell change order procedure performed by a mobile station associated with a GSM/GPRS/EDGE system and in an online mode.

图11是显示关联至GPRS/EDGE系统的移动台在执行分组交换交递程序的范例示意图。FIG. 11 is a schematic diagram showing an example of a PS handover procedure performed by a mobile station associated with a GPRS/EDGE system.

图12是显示关联至UMTS系统的移动台在执行联机建立程序的范例示意图。FIG. 12 is a schematic diagram showing an example of a mobile station associated with the UMTS system performing a connection establishment procedure.

图13是显示根据本发明一实施例所述对正在监控2G寻呼信道的移动台进行信道调度以执行3G联机建立程序。FIG. 13 shows a channel scheduling procedure for a mobile station monitoring a 2G paging channel to execute a 3G connection establishment procedure according to an embodiment of the present invention.

图14是显示关联至UMTS系统的移动台在执行硬式交递程序的范例示意图。FIG. 14 is a schematic diagram showing an example of a mobile station associated with the UMTS system performing a hard handover procedure.

图15是显示根据本发明一实施例所述对正在监控2G寻呼信道的移动台进行信道调度以执行3G硬式交递程序。FIG. 15 shows channel scheduling for a mobile station monitoring a 2G paging channel to perform a 3G hard handover procedure according to an embodiment of the present invention.

图16是根据本发明一实施例所述的移动台的软件架构示意图。Fig. 16 is a schematic diagram of the software architecture of the mobile station according to an embodiment of the present invention.

图17是根据本发明一实施例所述由仲裁模块1630协调协议栈处理模块1610与1620的作业的方法流程图。FIG. 17 is a flowchart of a method for coordinating the operations of the protocol stack processing modules 1610 and 1620 by the arbitration module 1630 according to an embodiment of the present invention.

图18A与图18B是显示仲裁模块1630以及协议栈处理模块1610与1620在图7的实施例中相互沟通的消息序列图。18A and 18B are message sequence diagrams showing the communication between the arbitration module 1630 and the protocol stack processing modules 1610 and 1620 in the embodiment of FIG. 7 .

图19A与图19B是显示仲裁模块1630以及协议栈处理模块1610与1620在图8的实施例中相互沟通的消息序列图。19A and 19B are message sequence diagrams showing the communication between the arbitration module 1630 and the protocol stack processing modules 1610 and 1620 in the embodiment of FIG. 8 .

图20A与图20B是显示仲裁模块1630以及协议栈处理模块1610与1620在图13的实施例中相互沟通的消息序列图。20A and 20B are message sequence diagrams showing the communication between the arbitration module 1630 and the protocol stack processing modules 1610 and 1620 in the embodiment of FIG. 13 .

图21A~21C是显示仲裁模块1630以及协议栈处理模块1610与1620在图15的实施例中相互沟通的消息序列图。21A-21C are message sequence diagrams showing the communication between the arbitration module 1630 and the protocol stack processing modules 1610 and 1620 in the embodiment of FIG. 15 .

图22是根据本发明另一实施例所述的移动台的软件架构示意图。Fig. 22 is a schematic diagram of the software architecture of the mobile station according to another embodiment of the present invention.

图23是根据本发明一实施例所述由协议栈处理模块2210与2220协调作业的方法流程图。FIG. 23 is a flowchart of a method for coordinating operations by the protocol stack processing modules 2210 and 2220 according to an embodiment of the present invention.

图24是显示协议栈处理模块2210与2220在图7的实施例中相互沟通的消息序列图。FIG. 24 is a message sequence diagram showing the communication between the protocol stack processing modules 2210 and 2220 in the embodiment of FIG. 7 .

图25是显示协议栈处理模块2210与2220在图8的实施例中相互沟通的消息序列图。FIG. 25 is a message sequence diagram showing the communication between the protocol stack processing modules 2210 and 2220 in the embodiment of FIG. 8 .

图26A与图26B是显示协议栈处理模块2210与2220在图13的实施例中相互沟通的消息序列图。26A and 26B are message sequence diagrams showing the communication between the protocol stack processing modules 2210 and 2220 in the embodiment of FIG. 13 .

图27A与图27B是显示协议栈处理模块2210与2220在图15的实施例中相互沟通的消息序列图。27A and 27B are message sequence diagrams showing the communication between the protocol stack processing modules 2210 and 2220 in the embodiment of FIG. 15 .

具体实施方式Detailed ways

下文所叙述的是实施本发明的最佳方式,目的在于说明本发明的精神而非用以限定本发明的保护范围,本发明范围由权利要求所限定。应理解下列实施例可通过软件、硬件、固件或上述任意组合来实现。The following description is the best way to implement the present invention, the purpose is to illustrate the spirit of the present invention rather than to limit the protection scope of the present invention, the scope of the present invention is defined by the claims. It should be understood that the following embodiments may be implemented by software, hardware, firmware or any combination of the above.

图1是根据本发明一实施例所述的无线通信环境的示意图。无线通信环境100包括了移动台(Mobile Station,MS)110以及服务网络120与130。移动台110可于驻留(camp on)在两个小区(cell)后分别使用不同用户号码与服务网络120与130进行无线通信。每个小区可由一基站(node-B)、基站(Base Station,BS)、高阶基站(Advanced BS,ABS)、或增强型基站(Enhanced BS,EBS)等所管理。然而,在同一时间,移动台110仅能够与服务网络120与130中的一个进行通信。服务网络120与130的运作可分别依循GSM、GPRS、EDGE、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、CDMA-2000、TD-SCDMA、WiMAX、LTE、LTE-A、以及TD-LTE技术的任两者。上述用户号码则由两张用户识别卡所提供,且这些用户识别卡的规格是依循服务网络120与130所使用的无线通信技术的标准。举例来说,服务网络120可为GSM/GPRS/EDGE系统,相应地,其中一张用户识别卡则为用户识别模块(Subscriber Identity Module,SIM)卡;服务网络130可为WCDMA/LTE/TD-LTE系统,相应地,另外一张用户识别卡则为通用用户识别模块(Universal SIM,USIM)卡。或者,服务网络120可为CDMA-2000系统,相应地,其中一张用户识别卡则为可移除用户识别模块(Removable UserIdentity Module,R-UIM)卡;服务网络130可为TD-SCDMA系统,相应地,另外一张用户识别卡则为同步码分多址的用户识别模块(CDMA SIM,CSIM)卡。FIG. 1 is a schematic diagram of a wireless communication environment according to an embodiment of the present invention. The wireless communication environment 100 includes a mobile station (Mobile Station, MS) 110 and service networks 120 and 130 . The mobile station 110 can use different subscriber numbers to perform wireless communication with the service networks 120 and 130 after camping on the two cells. Each cell can be managed by a base station (node-B), base station (Base Station, BS), advanced base station (Advanced BS, ABS), or enhanced base station (Enhanced BS, EBS). However, the mobile station 110 can only communicate with one of the serving networks 120 and 130 at a time. The operation of the service networks 120 and 130 can respectively follow GSM, GPRS, EDGE, Wideband Code Division Multiple Access (WCDMA), CDMA-2000, TD-SCDMA, WiMAX, LTE, LTE-A, and TD- Either of the LTE technologies. The above-mentioned user numbers are provided by two subscriber identification cards, and the specifications of these subscriber identification cards follow the standard of the wireless communication technology used by the service networks 120 and 130 . For example, the service network 120 can be a GSM/GPRS/EDGE system, and correspondingly, one of the subscriber identity cards is a Subscriber Identity Module (SIM) card; the service network 130 can be a WCDMA/LTE/TD- In the LTE system, correspondingly, another subscriber identity card is a universal subscriber identity module (Universal SIM, USIM) card. Alternatively, the service network 120 can be a CDMA-2000 system, and correspondingly, one of the subscriber identity cards is a removable user identity module (Removable UserIdentity Module, R-UIM) card; the service network 130 can be a TD-SCDMA system, Correspondingly, the other subscriber identity card is a synchronous code division multiple access subscriber identity module (CDMA SIM, CSIM) card.

移动台110可无线地存取网络资源,例如:收发电子邮件、浏览网页、上传/下载文件、收发实时消息、进行串流视讯、或进行网络通话(Voice over IP,VoIP)等等,或者拨打无线电话。另外,计算机主机或笔记本计算机亦可连接/耦接至移动台110,然后通过移动台110存取网络资源。在GSM系统中,移动台110可使用所插入的SIM卡运作于闲置(idle)模式或专用(dedicated)模式。当运作于闲置模式时,移动台110会搜寻或测量特定服务网络中的小区,以从中找出广播控制信道(Broadcast Control Channel,BCCH)的信号质量较佳者,或者与一特定小区的广播控制信道同步,之后移动台110随即准备好在随机存取信道(Random Access Channel,RACH)上执行随机存取程序,以请求配置专用信道。当运作于专用模式时,移动台110会占用物理信道并尝试与物理信道同步,然后建立多个逻辑信道,并于该多个逻辑信道之间执行切换作业。由于移动台110配备有一或多张USIM卡,所以移动台110可在WCDMA或TD-SCDMA系统中使用所插入的USIM卡运作于闲置模式或联机模式。The mobile station 110 can wirelessly access network resources, such as: send and receive emails, browse the web, upload/download files, send and receive real-time messages, perform streaming video, or conduct network calls (Voice over IP, VoIP), etc., or dial wireless phone. In addition, a host computer or a notebook computer can also be connected/coupled to the mobile station 110 , and then access network resources through the mobile station 110 . In the GSM system, the mobile station 110 can operate in an idle mode or a dedicated mode with an inserted SIM card. When operating in the idle mode, the mobile station 110 will search or measure the cells in the specific service network to find out the signal quality of the broadcast control channel (Broadcast Control Channel, BCCH) is better, or the broadcast control channel with a specific cell The channel is synchronized, and then the mobile station 110 is ready to perform a random access procedure on a random access channel (Random Access Channel, RACH) to request configuration of a dedicated channel. When operating in the dedicated mode, the mobile station 110 will occupy the physical channel and try to synchronize with the physical channel, then establish multiple logical channels, and perform handover operations among the multiple logical channels. Since the mobile station 110 is equipped with one or more USIM cards, the mobile station 110 can operate in an idle mode or an online mode in WCDMA or TD-SCDMA systems with the inserted USIM cards.

图2是根据本发明一实施例所述的移动台的硬件架构示意图。移动台200配备有基带芯片210、以及耦接至天线230的单一射频模块220。基带芯片210可包括多个硬件装置以执行基带信号处理,包括模数转换(analog to digitalconversion,ADC)/数模转换(digital to analog conversion,DAC)、增益(gain)调整、调制与解调制、以及编码/解码等等。射频模块220可从天线230接收射频无线信号,并将射频无线信号转换为基带信号以交由基带芯片210进一步处理,或自基带芯片210接收基带信号,并将基带信号转换为射频无线信号以通过天线230进行传送。射频模块220亦可包括多个硬件装置以执行上述射频转换,举例来说,射频模块220可包括一混频器(mixer),以将基带信号乘上无线通信系统的射频中的一振荡载波,其中该射频可为GSM系统所使用的900兆赫(MHz)、1800兆赫或1900兆赫,或可为WCDMA系统所使用的900兆赫、1900兆赫或2100兆赫,或视所使用的其它无线存取技术(Radio Access Technology,RAT)的标准而定。如图2所示,用户识别卡10与20是分别插入移动台200的两个插槽,移动台200还包括双卡控制器240,其耦接或连接于基带芯片210以及用户识别卡10与20之间。双卡控制器240根据用户识别卡10与20的需求,通过电源管理集成芯片(Power Management Integrated Chip,PMIC)(未绘示)与电池(未绘示)以相同或不同的电压电平驱动用户识别卡10与20,其中每张用户识别卡所需的电压电平于启动(initiation)过程中所决定。基带芯片210可通过双卡控制器240对用户识别卡10或20进行数据的读取与写入。另外,双卡控制器240可根据基带芯片210所发出的指令选择性地发送时钟信号、重置(reset)信号、以及/或数据信号至用户识别卡10与20。基带芯片210可支持GSM/GPRS/EDGE、WCDMA、CDMA-2000、WiMAX、TD-SCDMA、LTE以及TD-LTE技术之一或多者。用户识别卡10与20可为SIM卡、USIM卡、R-UIM卡以及CSIM卡的任两者,只要能够相应于基带芯片210所支持的无线通信技术。因此,针对用户识别卡10与20,移动台200可同时驻留于相同或不同网络运营商(如图1中所示的核心网络运营商A及核心网络运营商B)所提供的两个小区上,并使用单一射频模块220与基带芯片210以运作于不同的模式,例如:联机模式、闲置模式、小区专用信道(cell Dedicated Channel,CELL_DCH)模式、小区转送存取信道(cell Forward Access Channel,CELL_FACH)模式、小区寻呼信道(cell Paging Channel,CELL_PCH)模式、以及UMTS的陆地无线存取网络(UMTS Terrestrial Radio Access Network,UTRAN)注册区域寻呼信道(UTRAN Registration Area Paging Channel,URA_PCH)模式。此外,移动台200还包括用户接口装置250以提供用户接口,让用户能够与移动台200互动,用户接口装置250可包括键盘、触控面板、触控屏幕、游戏杆、鼠标、以及/或扫描器等等。举例来说,当收到被叫通话(MT呼叫)时,用户接口装置250可于触控屏幕上显示来电通知,然后用户可通过点击触控屏幕上所显示的虚拟接听按键以接听该通话。FIG. 2 is a schematic diagram of a hardware architecture of a mobile station according to an embodiment of the invention. The mobile station 200 is equipped with a baseband chip 210 and a single radio frequency module 220 coupled to an antenna 230 . The baseband chip 210 may include multiple hardware devices to perform baseband signal processing, including analog to digital conversion (analog to digital conversion, ADC)/digital to analog conversion (digital to analog conversion, DAC), gain (gain) adjustment, modulation and demodulation, and encoding/decoding etc. The radio frequency module 220 can receive a radio frequency wireless signal from the antenna 230, and convert the radio frequency wireless signal into a baseband signal for further processing by the baseband chip 210, or receive a baseband signal from the baseband chip 210, and convert the baseband signal into a radio frequency wireless signal for passing The antenna 230 transmits. The radio frequency module 220 may also include multiple hardware devices to perform the above radio frequency conversion. For example, the radio frequency module 220 may include a mixer (mixer) to multiply the baseband signal by an oscillating carrier in the radio frequency of the wireless communication system, Wherein the radio frequency can be 900 megahertz (MHz), 1800 megahertz or 1900 megahertz used by the GSM system, or 900 megahertz, 1900 megahertz or 2100 megahertz used by the WCDMA system, or other radio access technologies ( Radio Access Technology, RAT) standards. As shown in Figure 2, the subscriber identification cards 10 and 20 are respectively inserted into two slots of the mobile station 200, and the mobile station 200 also includes a dual-card controller 240, which is coupled or connected to the baseband chip 210 and the subscriber identification card 10 and the mobile station 200. Between 20. The dual-card controller 240 drives the user with the same or different voltage levels through a power management integrated chip (Power Management Integrated Chip, PMIC) (not shown) and a battery (not shown) according to the requirements of the subscriber identification cards 10 and 20 The identification cards 10 and 20, wherein the voltage level required by each subscriber identification card is determined during the initiation process. The baseband chip 210 can read and write data to the SIM card 10 or 20 through the dual-card controller 240 . In addition, the dual-card controller 240 can selectively send a clock signal, a reset signal, and/or a data signal to the SIM cards 10 and 20 according to the command sent by the baseband chip 210 . The baseband chip 210 can support one or more of GSM/GPRS/EDGE, WCDMA, CDMA-2000, WiMAX, TD-SCDMA, LTE and TD-LTE technologies. The subscriber identity cards 10 and 20 can be any two of SIM cards, USIM cards, R-UIM cards and CSIM cards, as long as they can correspond to the wireless communication technology supported by the baseband chip 210 . Therefore, for the SIM cards 10 and 20, the mobile station 200 can reside in two cells provided by the same or different network operators (core network operator A and core network operator B as shown in FIG. 1 ) at the same time. , and use a single radio frequency module 220 and baseband chip 210 to operate in different modes, such as: online mode, idle mode, cell dedicated channel (cell Dedicated Channel, CELL_DCH) mode, cell forward access channel (cell Forward Access Channel, CELL_FACH) mode, cell paging channel (cell Paging Channel, CELL_PCH) mode, and UMTS Terrestrial Radio Access Network (UMTS Terrestrial Radio Access Network, UTRAN) registration area paging channel (UTRAN Registration Area Paging Channel, URA_PCH) mode. In addition, the mobile station 200 also includes a user interface device 250 to provide a user interface for the user to interact with the mobile station 200. The user interface device 250 may include a keyboard, a touch panel, a touch screen, a joystick, a mouse, and/or a scanning device. device and so on. For example, when receiving a called call (MT call), the user interface device 250 can display an incoming call notification on the touch screen, and then the user can answer the call by clicking a virtual answer button displayed on the touch screen.

图3是根据本发明另一实施例所述的移动台的硬件架构示意图。类似于图2,基带芯片310用以执行基带信号处理,例如模数转换/数模转换、增益调整、调制与解调制以及编码/解码等等。不同的是,移动台300与用户识别卡10、20之间的连接由基带芯片310所提供的两个接口分别处理。当可了解的是,如图2、图3所示的硬件架构可被进一步修改以包括两张以上的用户识别卡,且本发明不在此限。Fig. 3 is a schematic diagram of a hardware architecture of a mobile station according to another embodiment of the present invention. Similar to FIG. 2 , the baseband chip 310 is used to perform baseband signal processing, such as analog-to-digital conversion/digital-to-analog conversion, gain adjustment, modulation and demodulation, encoding/decoding, and so on. The difference is that the connection between the mobile station 300 and the subscriber identity cards 10 and 20 is handled by two interfaces provided by the baseband chip 310 respectively. It should be understood that the hardware architecture shown in FIG. 2 and FIG. 3 can be further modified to include more than two subscriber identification cards, and the present invention is not limited thereto.

图4是根据本发明另一实施例所述配备单一天线并耦接两张用户识别卡的移动台的硬件架构示意图。此架构可适用于支持GSM/GPRS以及WCDMA技术的任何移动台。在此架构中,两个无线存取技术模块410与420共享单一天线430,且每个无线存取技术模块皆包括至少一射频模块与一基带芯片,以驻留于小区并运作于待命(stand-by)模式、闲置模式、或联机模式。如图4所示,GSM/GPRS基带芯片411耦接至GSM/GPRS射频模块412,而WCDMA基带芯片421耦接至WCDMA射频模块422。另外,当运作于一特定模式时,每个无线存取技术模块皆与一特定用户识别卡,例如(U)SIM卡A或B,进行互动。切换装置440耦接于共享的天线430与多个低噪声放大器(Low Noise Amplifiers,LNAs)之间,负责接通天线430与其中一个低噪声放大器,使射频信号得以通过所连接的低噪声放大器。每个低噪声放大器将接收自天线430的2G/3G频带信号放大,然后将放大的信号提供给对应的射频模块,其中2G/3G频带可为900兆赫、1800兆赫、1900兆赫或2100兆赫等等的频带。当GSM/GPRS基带芯片411或WCDMA基带芯片421欲进行收发作业时,例如传输(Tx)或接收(Rx)作业,会发出控制信号Ctrl_GSM_band_sel或Ctrl_WCDMA_band_sel以控制切换装置440接通天线430与指定的低噪声放大器。需注意的是,GSM/GPRS基带芯片411与WCDMA基带芯片421还可进一步相互连接以进行上述协调作业,协调作业主要是关于数据传输或接收的暂停/终止、以及继续/重启。需了解的是,GSM/GPRS模块410与WCDMA模块420仅为范例,对本领域技术人员而言,在不脱离本发明的精神和范围内,当可得出以GSM/GPRS/EDGE、WCDMA、CDMA-2000、WiMAX、TD-SCDMA、LTE、TD-LTE以及其他技术等的任两者去来实施图4所示的无线存取模块410、420,以取代GSM/GPRS模块410与WCDMA模块420,且本发明不在此限。另外还需了解的是,如图4所示的硬件架构可被进一步修改以包括两张以上的用户识别卡,且本发明不在此限。FIG. 4 is a schematic diagram of a hardware architecture of a mobile station equipped with a single antenna and coupled with two subscriber identification cards according to another embodiment of the present invention. This architecture is applicable to any mobile station supporting GSM/GPRS and WCDMA technology. In this architecture, two radio access technology modules 410 and 420 share a single antenna 430, and each radio access technology module includes at least one radio frequency module and one baseband chip to reside in the cell and operate on standby (standby) -by) mode, idle mode, or online mode. As shown in FIG. 4 , the GSM/GPRS baseband chip 411 is coupled to the GSM/GPRS radio frequency module 412 , and the WCDMA baseband chip 421 is coupled to the WCDMA radio frequency module 422 . In addition, each RAT module interacts with a specific subscriber identity card, such as (U)SIM card A or B, when operating in a specific mode. The switching device 440 is coupled between the shared antenna 430 and a plurality of low noise amplifiers (Low Noise Amplifiers, LNAs), and is responsible for connecting the antenna 430 and one of the LNAs, so that the radio frequency signal can pass through the connected LNAs. Each low noise amplifier amplifies the 2G/3G frequency band signal received from the antenna 430, and then provides the amplified signal to the corresponding radio frequency module, wherein the 2G/3G frequency band can be 900 MHz, 1800 MHz, 1900 MHz or 2100 MHz, etc. frequency band. When the GSM/GPRS baseband chip 411 or the WCDMA baseband chip 421 intend to perform transceiver operations, such as transmission (Tx) or reception (Rx) operations, the control signal Ctrl_GSM_band_sel or Ctrl_WCDMA_band_sel will be sent to control the switching device 440 to connect the antenna 430 to the designated low noise amplifier. It should be noted that the GSM/GPRS baseband chip 411 and the WCDMA baseband chip 421 can be further connected to each other to perform the above-mentioned coordination operations. The coordination operations are mainly related to the suspension/termination and continuation/restart of data transmission or reception. It should be understood that the GSM/GPRS module 410 and the WCDMA module 420 are only examples. For those skilled in the art, without departing from the spirit and scope of the present invention, it can be obtained that GSM/GPRS/EDGE, WCDMA, CDMA - any two of 2000, WiMAX, TD-SCDMA, LTE, TD-LTE and other technologies etc. to implement the wireless access modules 410, 420 shown in FIG. 4 to replace the GSM/GPRS module 410 and the WCDMA module 420, And the present invention is not limited thereto. It should also be understood that the hardware architecture shown in FIG. 4 can be further modified to include more than two subscriber identification cards, and the present invention is not limited thereto.

典型的SIM卡包括用户账号信息、国际移动用户标识符(International MobileSubscriber Identity,IMSI)、以及SIM应用开发工具(SIM Application Toolkit,SAT)的指令集。另外,SIM卡还提供了储存电话簿联络人的空间。基带芯片的微处理单元(Micro-Processing Unit,MCU)(于文后通称为Baseband MCU)可与SIM卡的微处理单元(于文后通称为SIM MCU)进行互动,以自己插入的SIM卡获取数据或SIM应用开发工具的指令。在插入SIM卡后,移动台即完成编程。SIM卡亦可被设定以显示个人服务专属的功能列表。SIM卡可进一步储存本地公共陆地移动网络(Home Public-Land-Mobile-Network,HPLMN)的代码,以指示与之关联的网络运营商,其中该HPLMN代码包含移动国别码(MobileCountry Code,MCC)及紧随其后的移动网络码(Mobile Network Code,MNC)。进一步说明,国际移动用户标识符是关联至GSM或UMTS系统中的一对应用户、且为独一无二的号码。移动台可将国际移动用户标识符传送给GSM或UMTS网络,以自本地位置寄存器(Home Location Register,HLR)中取得该网络用户的其它详细信息、或自访问位置寄存器(Visitor Location Register,VLR)中取得该网络用户在访地复制的详细信息。典型的国际移动用户标识符的长度为15位(digit)或稍短(例如:南非的运营商MTN所使用的国际移动用户标识符的长度为14位)。前3位即为移动国别码,而紧接着的2位(欧规)或3位(北美规)即为移动网络码,剩下的其它位数字则为对应用户在GSM或UMTS系统中的移动用户识别号码(Mobile Subscriber Identification Number,MSIN)。A typical SIM card includes user account information, an International Mobile Subscriber Identity (IMSI), and an instruction set for a SIM Application Toolkit (SAT). In addition, the SIM card also provides space for storing phonebook contacts. The micro-processing unit (Micro-Processing Unit, MCU) of the baseband chip (hereinafter referred to as Baseband MCU) can interact with the micro-processing unit of the SIM card (hereinafter referred to as SIM MCU). data or instructions for SIM application development tools. After inserting the SIM card, the mobile station is programmed. The SIM card can also be programmed to display a list of functions specific to individual services. The SIM card can further store the code of the local public land mobile network (Home Public-Land-Mobile-Network, HPLMN) to indicate the network operator associated with it, where the HPLMN code contains the mobile country code (MobileCountry Code, MCC) And followed by Mobile Network Code (Mobile Network Code, MNC). To further explain, the International Mobile Subscriber Identifier is a unique number associated with a corresponding user in the GSM or UMTS system. The mobile station can transmit the international mobile user identifier to the GSM or UMTS network to obtain other detailed information of the network user from the home location register (Home Location Register, HLR), or from the visitor location register (Visitor Location Register, VLR) Obtain the detailed information of the network user's in-visit replication in . The length of a typical international mobile subscriber identifier is 15 digits (digit) or slightly shorter (for example: the length of the international mobile subscriber identifier used by the operator MTN in South Africa is 14 digits). The first 3 digits are the mobile country code, and the next 2 digits (European regulations) or 3 digits (North American regulations) are the mobile network codes, and the remaining digits are the corresponding user's mobile phone number in the GSM or UMTS system. Mobile Subscriber Identification Number (MSIN).

USIM卡使用于UMTS系统(或称为3G通信系统),供移动台与网络端进行电话通信。USIM卡中储存有用户账号信息、国际移动用户标识符以及USIM应用开发工具(USIM Application Toolkit,USAT)的指令集,并提供储存电话簿联络人以及文字消息的空间。USIM卡可进一步储存本地公共陆地移动网络的代码,以指示与之关联的网络运营商。Baseband MCU可与USIM卡的微处理单元(于文后通称为USIM MCU)进行互动,以自己插入的USIM卡获取数据或USIM应用开发工具的指令。值得注意的是,相较于SIM卡,USIM卡上的电话簿联络人功能已大幅提升。针对认证的目的,USIM卡可储存一长期的预先分享密钥K,由USIM卡与网络端的认证中心(Authentication Center,AuC)共享。USIM MCU可使用窗口机制(window mechanism)确认一序号是否落在合理范围内,以避免重送攻击(replay attack)。USIM MCU还负责产生交谈密钥(sessionkeys)CK与IK,用于UMTS系统的KASUMI块编码中的保密与完整性算法(或称为A5、A3算法)。在插入USIM卡后,移动台即完成编程。此外,R-UIM或CSIM卡用于同步码分多址的移动台,除了适用于同步码分多址网络之外,其等同于GSM系统所用的SIM卡以及UMTS系统所用的USIM卡。R-UIM或CSIM卡在结构上兼容于GSM系统所用的SIM卡,并提供用户及同步码分多址网络类似的安全机制。The USIM card is used in the UMTS system (or 3G communication system) for the mobile station to communicate with the network terminal. The USIM card stores user account information, international mobile subscriber identifier, and USIM Application Toolkit (USAT) instruction set, and provides space for storing phonebook contacts and text messages. The USIM card can further store the code of the local public land mobile network to indicate the network operator associated with it. The Baseband MCU can interact with the micro-processing unit of the USIM card (hereinafter referred to as the USIM MCU), and obtain data or instructions of the USIM application development tool with the USIM card inserted by itself. It is worth noting that compared with the SIM card, the function of the phone book contacts on the USIM card has been greatly improved. For the purpose of authentication, the USIM card can store a long-term pre-shared key K, which is shared by the USIM card and the authentication center (Authentication Center, AuC) on the network side. USIM MCU can use the window mechanism to confirm whether a sequence number falls within a reasonable range to avoid replay attacks. USIM MCU is also responsible for generating session keys (sessionkeys) CK and IK, which are used for the confidentiality and integrity algorithm (or A5, A3 algorithm) in the KASUMI block coding of the UMTS system. After inserting the USIM card, the mobile station is programmed. In addition, the R-UIM or CSIM card is used for the mobile station of Synchronous Code Division Multiple Access, which is equivalent to the SIM card used in the GSM system and the USIM card used in the UMTS system except that it is suitable for the Synchronous Code Division Multiple Access network. The R-UIM or CSIM card is structurally compatible with the SIM card used in the GSM system, and provides similar security mechanisms for users and synchronous code division multiple access networks.

图5是显示移动台在GSM/GPRS/EDGE系统中接收被叫通话的通话控制(Call Control,CC)示意图。通话控制为联机管理(Connection Management,CM)物理之一,且包括了建立、控制、以及终止通话的程序。被叫通话是指从公共陆地移动网络内或外部发起并打到移动台的通话。当针对一移动台的被叫通话发起时,移动交换中心(Mobile Switching Center,MSC)/访问位置寄存器可命令基站子系统(Base Station Subsystem,BSS)去寻呼移动台。因为移动交换中心/访问位置寄存器不知道移动台驻留在基站子系统的哪个基站,所以会在整个位置区域(Location Area,LA)内发出寻呼消息。移动台可通过寻呼信道接收到寻呼请求消息(于图5中标示为PAG_REQ),并根据临时移动用户标识符(Temporary Mobile Subscriber Identity,TMSI)或国际移动用户标识符辨识出该寻呼请求消息是针对它的。然后,移动台可通过随机存取信道(Random AccessChannel,RACH)传送信道请求消息(于图5中标示为CHAN_REQ)给基站子系统,而基站子系统可通过准许接入信道(Access Grant Channel,AGCH)传送配置消息(于图5中标示为IMM_ASS_COM)以回应移动台。配置消息用以配置一独立专用控制信道(Stand-Alone Dedicated Control Channel,SDCCH)给移动台,以便在配置数据传输信道(Traffic Channel,TCH)之前用来与服务网络进行传信(signaling)。截至当前为止,服务网络还不知道该移动台就是其欲寻呼的目标移动台,只知道该移动台想要存取服务网络。针对所收到的配置消息,移动台立即切换到配置的独立专用控制信道,并通过独立专用控制信道传送寻呼响应消息(于图5中标示为PAG_RES)到服务网络。此时,服务网络才知道该移动台就是其欲寻呼的移动台,所以到这里才完成被叫通话的初步设定。Fig. 5 is a schematic diagram showing call control (Call Control, CC) of a mobile station receiving a called call in the GSM/GPRS/EDGE system. Call control is one of the physics of Connection Management (CM), and includes procedures for establishing, controlling, and terminating calls. A called call is a call initiated from within or outside the public land mobile network and made to a mobile station. When a called call to a mobile station is initiated, the mobile switching center (Mobile Switching Center, MSC)/visitor location register can order the base station subsystem (Base Station Subsystem, BSS) to page the mobile station. Because the Mobile Switching Center/Visitor Location Register does not know which base station of the base station subsystem the mobile station is camped on, paging messages are sent throughout the Location Area (LA). The mobile station can receive the paging request message (marked as PAG_REQ in Figure 5) through the paging channel, and identify the paging request according to the temporary mobile subscriber identifier (Temporary Mobile Subscriber Identity, TMSI) or the international mobile subscriber identifier The message is for it. Then, the mobile station can send a channel request message (marked as CHAN_REQ in Figure 5) to the base station subsystem through the random access channel (Random Access Channel, RACH), and the base station subsystem can pass the access grant channel (Access Grant Channel, AGCH) ) to send a configuration message (marked as IMM_ASS_COM in Figure 5) in response to the mobile station. The configuration message is used to configure an independent dedicated control channel (Stand-Alone Dedicated Control Channel, SDCCH) to the mobile station, so that it can be used for signaling with the serving network before configuring the data transmission channel (Traffic Channel, TCH). So far, the serving network does not know that the mobile station is the target mobile station it wants to page, only that the mobile station wants to access the serving network. Upon receiving the configuration message, the mobile station immediately switches to the configured dedicated dedicated control channel, and sends a paging response message (labeled as PAG_RES in FIG. 5 ) to the serving network through the dedicated dedicated control channel. At this point, the service network knows that the mobile station is the mobile station it wants to page, so the preliminary setting of the called call is completed here.

在服务网络提供服务给移动台之前,移动台需要向服务网络验证自己。基站子系统传送包括一随机数(于图5中标示为RAND)的验证请求消息(于图5中标示为AUTH_REQ)给移动台,该随机数是由本地位置寄存器所产生用于验证的一128位的随机诘问(challenge)。移动台根据该随机数计算适合的认证回签(Signed Response,SRES),再通过验证响应消息(于图5中标示为AUTH_RESP)将认证回签传送给基站子系统。接着,基站子系统核对认证回签,如果认证回签正确,则移动台通过认证并可允许其存取服务网络。一旦认证完毕,移动交换中心/访问位置寄存器可通过安全模式指令消息(于图5中标示为CIPH_MOD_CMD)命令基站子系统与移动台切换到加密(ciphering)模式。当移动台已进入加密模式时,访问位置寄存器便配置新的临时移动用户标识符给移动台,然后移动交换中心通过基站子系统传送建立消息(于图5中标示为SETUP)给移动台以发起信道的建立。建立消息可包括发话号码显示(CallingLine Identification Presentation,CLIP),即发话号码。移动台传送通话确认消息(于图5中标示为CALL_CON)以回应所收到的建立消息,通话确认消息用以指示移动台能够建立所要求的联机,且通话确认消息可通过基站子系统转送到移动交换中心。接着,流程进行到通话建立程序,基站子系统通过被配置的独立专用控制信道传送配置指令消息(于图5中标示为ASS_CMD)给移动台。配置指令消息用以配置数据传输信道给移动台。收到配置指令消息时,移动台立即切换到数据传输信道,并通过快速随路控制信道(Fast Associated ControlChannel,FACCH)传送配置完成消息(于图5中标示为ASS_COM)以响应基站子系统(快速随路控制信道用于传信且隶属于数据传输信道上的一时槽,意即,在数据传输信道上的所有传信皆于快速随路控制信道上进行)。一旦移动台完成数据传输信道的建立,即开始来电的响铃。之后,移动台通过快速随路控制信道传送警示消息(于图5中标示为ALERT)给移动交换中心,再由基站子系统通过公共电话网络(Public Switched Telephone Network,PSTN)将警示消息转送到发话端(如果移动台与发话端位于不同的公共电话网络),然后发话端就会听到接通的铃声。当移动台的用户接听该通话(按下特定按键或触碰显示于屏幕上的特定按键、或通过其它方式进行接听)时,移动台传送联机消息(于图5中标示为CON)给移动交换中心,而联机消息再由发话端的切换装置进行转送以启动该通话。最后,移动交换中心再回复联机确认消息(于图5中标示为CON_ACK)给移动台,从而完成建立该被叫通话。UMTS、TS-SCDMA、或LTE系统的通话控制类似于上述GSM系统的通话控制,故在此不再赘述。Before the serving network provides services to the mobile station, the mobile station needs to authenticate itself to the serving network. The base station subsystem sends an authentication request message (denoted AUTH_REQ in FIG. 5 ) including a random number (denoted RAND in FIG. 5 ) to the mobile station. The random number is a 128 generated by the home location register for authentication. A random challenge of bits. The mobile station calculates the appropriate signed response (Signed Response, SRES) based on the random number, and then sends the signed response to the base station subsystem through the verification response message (marked as AUTH_RESP in Figure 5). Next, the base station subsystem checks the authentication back-sign. If the authentication back-sign is correct, the mobile station is authenticated and allowed to access the service network. Once authenticated, the MSC/VLR can instruct the BSS and MS to switch to ciphering mode via a security mode command message (labeled as CIPH_MOD_CMD in FIG. 5 ). When the mobile station has entered the encryption mode, the visitor location register will configure a new temporary mobile user identifier for the mobile station, and then the mobile switching center will send a setup message (marked as SETUP in Figure 5) to the mobile station through the base station subsystem to initiate Channel establishment. Creating a message may include Calling Line Identification Presentation (CLIP), that is, the calling line. The mobile station sends a call confirmation message (marked as CALL_CON in Figure 5) in response to the received establishment message. The call confirmation message is used to indicate that the mobile station can establish the required connection, and the call confirmation message can be forwarded by the base station subsystem to mobile switching center. Then, the flow proceeds to the call establishment procedure, and the base station subsystem transmits a configuration command message (marked as ASS_CMD in FIG. 5 ) to the mobile station through the configured independent dedicated control channel. The configuration instruction message is used to configure the data transmission channel to the mobile station. When receiving the configuration instruction message, the mobile station immediately switches to the data transmission channel, and transmits the configuration completion message (marked as ASS_COM in Figure 5) through the Fast Associated Control Channel (FACCH) to respond to the base station subsystem (fast The control associated channel is used for signaling and belongs to a time slot on the data transmission channel, that is, all signaling on the data transmission channel is performed on the fast associated control channel). Once the mobile station completes the establishment of the data transmission channel, it starts ringing for incoming calls. Afterwards, the mobile station sends an alert message (marked as ALERT in Figure 5) to the mobile switching center through the fast associated control channel, and then the base station subsystem forwards the alert message to the caller through the public switched telephone network (PSTN). (if the mobile station and the calling party are in different public telephone networks), then the calling party will hear the connected ring tone. When the user of the mobile station answers the call (by pressing a specific button or touching a specific button displayed on the screen, or by other means), the mobile station sends a connection message (marked as CON in Figure 5) to the mobile exchange Center, and the connection message is forwarded by the switching device at the originating end to start the conversation. Finally, the mobile switching center replies a connection confirmation message (marked as CON_ACK in FIG. 5 ) to the mobile station, thereby completing the establishment of the called call. The call control of the UMTS, TS-SCDMA, or LTE system is similar to the call control of the above-mentioned GSM system, so it will not be repeated here.

图6是显示GPRS/EDGE系统的分组存取程序的范例示意图。一开始,由移动台通过分组随机存取信道(Packet Random Access Channel,PRACH)或随机存取信道(RACH)传送分组信道请求(PACKET CHANNEL REQUEST)消息给GPRS/EDGE系统中的基站子系统,其中分组信道请求消息包括指示移动台所请求的无线资源与存取类型的参数。在单阶段的分组存取程序中,基站子系统可通过分组准许接入信道(Packet Access Grant Channel,PAGCH)或准许接入信道(AGCH)传送分组立即分配(PACKET IMMEDIATE ASSIGNMENT)消息以响应移动台,其中分组立即分配消息包括在分组数据信道(Packet DataChannel,PDCH)上所保留用作上行数据传输的无线资源的相关信息。待成功接收到分组立即分配消息之后,移动台便可开始进行数据传送。在双阶段的分组存取程序中,基站子系统可通过分组准许接入信道或准许接入信道传送分组立即分配消息以响应移动台,其中分组立即分配消息包括为了稍后要传送的分组资源请求(PACKET RESOURCE REQUEST)消息所保留的无线资源的相关信息。分组资源请求消息包括上行数据传输的完整相关信息。当接收到分组资源请求消息时,基站子系统传送分组资源分配(PACKET RESOURCEASSIGNMENT)消息以响应移动台,其中分组资源分配消息包括在分组数据信道上所保留用作上行数据传输的无线资源的相关信息。待成功接收到分组资源分配消息之后,移动台便可开始进行数据传送。FIG. 6 is a schematic diagram showing an example of the packet access procedure of the GPRS/EDGE system. Initially, the mobile station transmits a packet channel request (PACKET CHANNEL REQUEST) message to the base station subsystem in the GPRS/EDGE system through the packet random access channel (PRACH) or random access channel (RACH), where The packet channel request message includes parameters indicating the radio resource and access type requested by the mobile station. In a single-phase packet access procedure, the base station subsystem can transmit a packet immediate assignment (PACKET IMMEDIATE ASSIGNMENT) message through the packet grant access channel (Packet Access Grant Channel, PAGCH) or grant access channel (AGCH) to respond to the mobile station , wherein the packet immediate assignment message includes relevant information about radio resources reserved for uplink data transmission on a packet data channel (Packet DataChannel, PDCH). After successfully receiving the packet immediate assignment message, the mobile station can start data transmission. In a two-phase packet access procedure, the base station subsystem may respond to the mobile station by transmitting a Packet Immediate Assignment message on the Packet Granted Access Channel or the Granted Access Channel, where the Packet Immediate Assignment message includes a resource request for a packet to be transmitted later (PACKET RESOURCE REQUEST) information about the radio resources reserved by the message. The packet resource request message includes complete relevant information for uplink data transmission. When receiving a packet resource request message, the base station subsystem transmits a packet resource assignment (PACKET RESOURCE ASSIGNMENT) message to respond to the mobile station, where the packet resource assignment message includes information about radio resources reserved for uplink data transmission on the packet data channel . After successfully receiving the packet resource allocation message, the mobile station can start data transmission.

图7是显示根据本发明一实施例所述对正在监控3G电路切换(CircuitSwitched,CS)的寻呼信道的移动台进行信道调度以执行2G分组存取程序的示意图。此实施例所述的移动台(例如:移动台200、300或400)可支持与GPRS/EDGE系统以及UMTS系统同时进行通信。特别是,移动台使用第一用户识别卡(于图7中标示为SIM-Y)关联至UMTS系统以监控3G电路切换的寻呼信道,并且使用第二用户识别卡(于图7中标示为SIM-X)关联至GPRS/EDGE系统以执行2G分组存取程序。明确来说,移动台需持续收听3G寻呼信道以接收来自UMTS系统的寻呼消息,移动台可能会需要在每个非连续接收(Discontinuous Reception,DRX)周期的寻呼时段(paging occasion)收听寻呼指示信道(Paging Indicator Channel,PICH)或寻呼信道(PCH)以接收寻呼消息。如图7所示,在执行2G分组存取程序之前,射频资源分配若遇到寻呼时段则都是指派给3G寻呼信道,意即寻呼指示信道或寻呼信道。在2G分组存取程序进行过程中,当移动台已传送分组信道请求消息并且正在等待分组立即分配消息时,射频资源分配则指派给2G准许接入信道,而当移动台没有在等待分组立即分配消息时,射频资源分配则指派给3G寻呼信道。换句话说,2G准许接入信道得以受到保护而不被3G寻呼作业所中断。当接收到寻呼消息时,移动台会判断该寻呼消息是否是针对它的,若是,移动台可中止2G分组存取程序,以建立与UMTS系统的联机好接听该被叫通话;反之,如果该寻呼消息不是针对它的,则移动台可进入针对UMTS系统的3G闲置模式以等待下个寻呼时段,而射频资源分配便可用于其它所需进行的作业,包括与GPRS/EDGE系统以及UMTS系统关联的任何作业。7 is a schematic diagram showing channel scheduling for a mobile station monitoring a 3G Circuit Switched (CS) paging channel to perform a 2G packet access procedure according to an embodiment of the present invention. The mobile station described in this embodiment (for example: mobile station 200, 300 or 400) can support simultaneous communication with the GPRS/EDGE system and the UMTS system. In particular, the mobile station associates to the UMTS system using a first Subscriber Identity Card (denoted SIM-Y in FIG. 7) to monitor the paging channel for 3G circuit switching, and uses a second Subscriber Identity Card (denoted SIM-X) associated to GPRS/EDGE system to perform 2G packet access procedures. Specifically, the mobile station needs to continuously listen to the 3G paging channel to receive paging messages from the UMTS system, and the mobile station may need to listen to the paging occasion in each Discontinuous Reception (DRX) cycle. Paging Indicator Channel (PICH) or Paging Channel (PCH) to receive paging messages. As shown in FIG. 7 , before the 2G packet access procedure is executed, if the radio resource allocation meets the paging period, it is all assigned to the 3G paging channel, that is, the paging indicator channel or the paging channel. During the 2G packet access procedure, when the mobile station has transmitted the packet channel request message and is waiting for the packet immediate allocation message, the radio frequency resource allocation is assigned to the 2G grant access channel, and when the mobile station is not waiting for the packet immediate allocation When sending messages, the RF resource allocation is assigned to the 3G paging channel. In other words, 2G grant access channels are protected from being interrupted by 3G paging operations. When receiving a paging message, the mobile station will judge whether the paging message is aimed at it, if so, the mobile station can suspend the 2G packet access procedure to establish a connection with the UMTS system to answer the called call; otherwise, If the paging message is not intended for it, the mobile station can enter 3G idle mode for the UMTS system to wait for the next paging period, and the radio resource allocation can be used for other required operations, including communication with GPRS/EDGE systems and any jobs associated with the UMTS system.

移动台可测量候选小区(candidate cells)的信号质量以及/或信号强度,然后以测量结果(测量到的信号质量及/或信号强度)作为判断因素以执行交递程序与小区重选程序。如果移动台处于闲置模式,会接收到一小区广播关于邻近小区的信息,例如:邻近小区的广播控制信道的频率。在GSM/GPRS/EDGE系统中,移动台可接收邻近小区的信息,并据以测量邻近小区的广播控制信道的接收信号强度指标(Received Signal Strength Indications,RSSIs),其中每个接收信号强度指标用以指示在GSM信道频带中的宽带接收功率。在UMTS系统中,即便邻近小区皆使用相同的宽带频率,但仍可通过其各自使用的搅乱码(scrambling codes)以求区分,而移动台可持续监控公用前导信道(Common PilotChannel,CPICH)以测量功率水平,例如:功率噪声比(Ec/No)、接收信号码功率(Received Signal Code Power,RSCP)等等,监控所得的信息便可用来评估该将哪些UMTS小区当作小区重选时的候选小区。The mobile station can measure the signal quality and/or signal strength of candidate cells, and then use the measurement result (measured signal quality and/or signal strength) as a judgment factor to perform the handover procedure and the cell reselection procedure. If the mobile station is in idle mode, it will receive a cell broadcasting information about neighboring cells, such as the frequency of the broadcasting control channel of the neighboring cells. In the GSM/GPRS/EDGE system, the mobile station can receive the information of the adjacent cells, and measure the received signal strength indicators (Received Signal Strength Indications, RSSIs) of the broadcast control channels of the adjacent cells, where each RSSI is used To indicate the wideband received power in the GSM channel frequency band. In the UMTS system, even if adjacent cells use the same broadband frequency, they can still be distinguished by their respective scrambling codes, and the mobile station continuously monitors the Common Pilot Channel (CPICH) to measure Power level, such as: power-to-noise ratio (Ec/No), received signal code power (Received Signal Code Power, RSCP), etc., the information obtained from monitoring can be used to evaluate which UMTS cells should be used as candidates for cell reselection district.

在一实施例,移动台可发起小区重选程序,以维持其位于相同或不同GSM/GPRS/EDGE系统中的机动性,即所谓的同无线存取技术内(intra-RadioAccess Technology,intra-RAT)的小区重选程序,或者移动台也可发起小区重选程序以将其机动性从GSM/GPRS/EDGE系统转移至UMTS系统或从UMTS系统转移至GSM/GPRS/EDGE系统,即所谓的异无线存取技术间(inter-RAT)的小区重选程序。明确来说,移动台可根据所使用的无线存取技术的重选准则决定执行小区重选程序。举例来说,在GSM系统中,重选准则包括C1准则与C2准则;在UMTS系统中,重选准则包括小区排序准则R。关于GSM系统中的C1/C2准则的详细说明,请参照第三代移动通信伙伴计划(3rd GenerationPartnership Project,3GPP)所制订的标准规格书TS 05.08(第4版之前)或TS45.008(第4版之后),关于UMTS系统中的小区排序准则R的详细说明,请参照第三代移动通信伙伴计划所制订的标准规格书TS 25.304。另外,移动台亦可接收来自服务小区及邻近小区所广播的系统信息,以进行小区重选。明确来说,是根据服务小区所广播的系统信息取得邻近小区的广播控制信道的频率,然后再根据广播控制信道的频率去接收邻近小区所广播的系统信息。In one embodiment, the mobile station can initiate a cell reselection procedure to maintain its mobility in the same or a different GSM/GPRS/EDGE system, the so-called intra-RadioAccess Technology (intra-RAT) ), or the mobile station can also initiate a cell reselection procedure to transfer its mobility from the GSM/GPRS/EDGE system to the UMTS system or from the UMTS system to the GSM/GPRS/EDGE system, the so-called heterogeneous Inter-RAT cell reselection procedure. Specifically, the mobile station may decide to perform the cell reselection procedure according to the reselection criteria of the used RAT. For example, in the GSM system, the reselection criterion includes the C1 criterion and the C2 criterion; in the UMTS system, the reselection criterion includes the cell ranking criterion R. For a detailed description of the C1/C2 guidelines in the GSM system, please refer to the standard specification TS 05.08 (before the 4th edition) or TS45.008 (4th edition) formulated by the 3rd Generation Partnership Project (3GPP). For the detailed description of the cell sorting criterion R in the UMTS system, please refer to the standard specification book TS 25.304 formulated by the Third Generation Partnership Project. In addition, the mobile station can also receive system information broadcast from the serving cell and neighboring cells for cell reselection. Specifically, the frequency of the broadcast control channel of the adjacent cell is obtained according to the system information broadcast by the serving cell, and then the system information broadcast by the adjacent cell is received according to the frequency of the broadcast control channel.

由于系统信息的接收在小区重选程序中占有极重要的角色,因此必须避免系统信息的接收被关联至不同服务网络的作业(例如:寻呼作业、测量作业、以及小区扫描作业等等)所中断。图8是显示根据本发明一实施例所述对处于2G分组传输模式的移动台进行信道调度以监控3G电路切换的寻呼信道的示意图。此实施例所述的移动台(例如:移动台200、300、或400)可支持与GPRS/EDGE系统以及UMTS系统同时进行通信。特别是,移动台使用第一用户识别卡(于图8中标示为SIM-X)关联至GPRS/EDGE系统以进行分组交换数据服务(例如:收发电子邮件、浏览网页等等),并且使用第二用户识别卡(于图8中标示为SIM-Y)关联至UMTS系统。也就是说,移动台在GPRS/EDGE系统中处于2G分组传输模式,而在UMTS系统中处于3G闲置模式。当设定于3G闲置模式时,移动台需持续收听3G寻呼信道以接收来自UMTS系统的寻呼消息,移动台可能会需要在每个非连续接收周期的寻呼时段收听寻呼指示信道或寻呼信道以接收寻呼消息。如图8所示,在与GPRS/EDGE系统关联的分组交换数据服务期间需要执行小区重选程序之前,如果移动台不需要接收寻呼消息,则射频资源分配都是指派给2G分组数据信道以进行分组交换数据服务,然后在每个寻呼时段,射频资源分配则是指派给3G寻呼信道,亦即寻呼指示信道或寻呼信道。当接收到寻呼消息时,移动台会判断该寻呼消息是否是针对它的,若是,移动台可暂停与GPRS/EDGE系统关联的分组交换数据服务,以自UMTS系统接收被叫通话;反之,如果该寻呼消息不是针对它的,则移动台可切换回分组交换数据服务,而射频资源分配则可用于其它所需进行的作业,包括与GPRS/EDGE系统以及UMTS系统关联的任何作业。然而,在小区重选程序进行的过程中,当需要接收目标小区以及/或邻近小区的系统信息时,射频资源分配会指派给2G广播控制信道,而当不需要接收目标小区以及/或邻近小区的系统信息时,射频资源分配则在每个寻呼时段指派给3G寻呼信道、在其它时候则指派给2G分组数据信道。需注意的是,在小区重选程序进行的过程中,因为接收目标小区以及/或邻近小区的系统信息所进行的时间与寻呼时段重迭,所以射频资源分配会指派给2G广播控制信道而不是3G寻呼信道。换句话说,2G广播控制信道得以受到保护而不被2G分组交换数据服务以及3G寻呼作业所中断。在小区重选程序完成后,射频资源分配则如上所述,优先指派给3G寻呼信道而不是2G分组数据信道。Since the reception of system information plays a very important role in the cell reselection procedure, it is necessary to avoid the reception of system information being blocked by operations related to different serving networks (such as paging operations, measurement operations, and cell scanning operations, etc.) interruption. FIG. 8 is a schematic diagram showing channel scheduling for a mobile station in 2G packet transmission mode to monitor a paging channel for 3G circuit switching according to an embodiment of the present invention. The mobile station described in this embodiment (for example: mobile station 200, 300, or 400) can support simultaneous communication with the GPRS/EDGE system and the UMTS system. In particular, the mobile station uses the first subscriber identity card (marked as SIM-X in FIG. 8 ) to associate with the GPRS/EDGE system for packet-switched data services (such as sending and receiving emails, browsing the web, etc.), and uses the second Two Subscriber Identity Cards (labeled SIM-Y in Figure 8) are associated to the UMTS system. That is, the mobile station is in 2G packet transmission mode in GPRS/EDGE system, and is in 3G idle mode in UMTS system. When set to 3G idle mode, the mobile station needs to continuously listen to the 3G paging channel to receive paging messages from the UMTS system, and the mobile station may need to listen to the paging indicator channel or Paging channel to receive paging messages. As shown in Figure 8, before the cell reselection procedure needs to be performed during the packet switched data service associated with the GPRS/EDGE system, if the mobile station does not need to receive paging messages, the radio frequency resource allocation is assigned to the 2G packet data channel for Perform packet switched data service, and then in each paging period, the radio frequency resource allocation is assigned to the 3G paging channel, that is, the paging indicator channel or paging channel. When receiving the paging message, the mobile station will judge whether the paging message is aimed at it, if so, the mobile station can suspend the packet-switched data service associated with the GPRS/EDGE system to receive the called call from the UMTS system; otherwise , if the paging message is not intended for it, the mobile station can switch back to packet-switched data service, and the radio frequency resource allocation can be used for other operations that need to be performed, including any operations associated with GPRS/EDGE systems and UMTS systems. However, during the cell reselection procedure, when it is necessary to receive the system information of the target cell and/or neighboring cells, the radio frequency resource allocation will be assigned to the 2G broadcast control channel, and when it is not necessary to receive the system information of the target cell and/or neighboring cells When receiving system information, the radio frequency resource allocation is assigned to the 3G paging channel in each paging period, and assigned to the 2G packet data channel at other times. It should be noted that during the cell reselection procedure, because the time for receiving the system information of the target cell and/or neighboring cells overlaps with the paging period, the radio frequency resource allocation will be assigned to the 2G broadcast control channel instead of Not a 3G paging channel. In other words, the 2G broadcast control channel is protected from being interrupted by 2G packet switched data services and 3G paging operations. After the cell reselection procedure is completed, the radio frequency resource allocation is as described above, and the 3G paging channel is preferentially assigned to the 2G packet data channel.

在GSM/GPRS/EDGE系统中的小区重选程序进行的过程中,移动台除了要从广播控制信道上收集广播的系统信息之外,还可能需要在目标基站子系统的频率校正信道(Frequency Correction Channel,FCCH)上搜寻频率校正突发(Frequency correction Burst,FB)以及/或在同步信道(Synchronization Channel,SCH)上搜寻同步突发(Synchronization Burst,SB)。其中移动台使用频率校正突发以与目标基站子系统的频率同步,并且使用同步突发以与目标基站子系统的时序同步。对本领域技术人员而言,当可根据图7与图8所述的实施例想出如何进行信道调度,以避免频率校正突发以及/或同步突发的搜寻被关联至不同服务网络的特定作业(例如:寻呼作业、测量作业、以及小区扫描作业等等)所中断。During the cell reselection procedure in the GSM/GPRS/EDGE system, in addition to collecting the broadcast system information from the broadcast control channel, the mobile station may also need to use the frequency correction channel (Frequency Correction) of the target base station subsystem. Search for Frequency correction Burst (FB) on Channel, FCCH) and/or search for Synchronization Burst (SB) on Synchronization Channel (SCH). Wherein the mobile station uses a frequency correction burst to synchronize with the frequency of the target BSS, and uses a synchronization burst to synchronize with the timing of the target BSS. Those skilled in the art can figure out how to perform channel scheduling based on the embodiments described in FIG. 7 and FIG. 8 , so as to avoid the search for frequency correction bursts and/or synchronization bursts from being associated with specific tasks of different service networks. (For example: paging operation, measurement operation, and cell scanning operation, etc.) interrupted.

在另一实施例,可由服务网络发起小区重选程序,明确来说,如果服务网络欲将移动台从相同或不同GSM/GPRS/EDGE系统中的一小区转移至另一小区,即所谓的分组小区变更命令(Packet Cell Change Order,PCCO)程序,则服务网络可传送分组小区变更命令(PACKET CELL CHANGE ORDER)消息给移动台,其中分组小区变更命令消息包括了移动台需用以搜寻并与目标小区同步的相关信息。或者,如果服务网络欲将移动台从UMTS系统转移至GSM/GPRS/EDGE系统,即所谓的小区变更命令(Cell Change Order,CCO)程序,则服务网络可传送小区变更命令(CELL CHANGE ORDER)消息给移动台。图9是显示关联至GSM/GPRS/EDGE系统并处于闲置模式的移动台在执行分组小区变更命令程序的范例示意图。在移动台驻留于当前的基站子系统并进入闲置模式之后,当前的基站子系统通过准许接入信道传送分组立即分配消息给移动台,其中分组立即分配消息配置了一分组随路控制信道(Packet AssociatedControl Channel,PACCH)给移动台用来与服务网络进行通信。当收到分组立即分配消息时,移动台便照着设定分组随路控制信道。接着,当前的基站子系统通过分组随路控制信道传送分组测量命令(PACKET MEASUREMENTORDER)消息给移动台,其中分组测量命令消息包括了移动台在针对网络控制的小区重选程序进行测量所需的信息。当接收到分组测量命令消息时,移动台回复一分组控制确认(PACKET CONTROL ACKNOWLEDGEMENT)消息给当前的基站子系统,以确认其已接收到分组测量命令消息。然后,移动台再根据分组测量命令消息中所带的信息执行测量。明确来说,移动台针对分组测量命令消息中的信息所指示的候选小区测量其广播控制信道的接收信号强度指标。测量完毕后,移动台通过随机存取信道传送信道请求(CHANNEL REQUEST)消息给当前的基站子系统,以请求射频资源分配好回报测量结果。然后,当前的基站子系统回复立即分配(IMMEDIATE ASSIGNMENT)消息以指派射频资源分配。当接收到立即分配消息时,移动台通过分组测量回报(PACKETMEASUREMENT REPORT)消息将测量结果回报给当前的基站子系统。根据测量结果,服务网络决定把移动台从当前的基站子系统转移至另一目标基站子系统。于是,当前的基站子系统传送分组小区变更命令消息给移动台,其中分组小区变更命令消息包括了目标基站子系统的相关信息,例如:目标基站子系统的絶对无线频率信道编号(Absolute Radio Frequency Channel Number,ARFCN)、以及基站标识符(Base Station Identity Code,BSIC)等等。最后,移动台根据分组小区变更命令消息中所带的信息去收集目标基站子系统的系统信息,然后再根据所收集到的系统信息切换到目标基站子系统。需注意的是,在收集目标基站子系统的系统信息的过程中,射频资源分配优先指派给目标基站子系统的广播控制信道,如图8所示。In another embodiment, the cell reselection procedure can be initiated by the serving network, specifically, if the serving network wants to transfer the mobile station from one cell to another in the same or a different GSM/GPRS/EDGE system, the so-called packet Cell Change Order (Packet Cell Change Order, PCCO) procedure, the serving network can send a packet cell change order (PACKET CELL CHANGE ORDER) message to the mobile station, where the packet cell change order message includes the Information about cell synchronization. Alternatively, if the serving network wants to transfer the mobile station from the UMTS system to the GSM/GPRS/EDGE system, the so-called Cell Change Order (CCO) procedure, the serving network can transmit the Cell Change Order (CELL CHANGE ORDER) message to the mobile station. FIG. 9 is a schematic diagram showing an example of a mobile station in idle mode associated with a GSM/GPRS/EDGE system performing a packet cell change command procedure. After the mobile station camps on the current base station subsystem and enters the idle mode, the current base station subsystem transmits a packet immediate allocation message to the mobile station through the grant access channel, wherein the packet immediate allocation message configures a packet associated control channel ( Packet Associated Control Channel, PACCH) is used by the mobile station to communicate with the serving network. When receiving the packet-associated immediate message, the mobile station sets the packet-associated control channel accordingly. Next, the current base station subsystem transmits a packet measurement order (PACKET MEASUREMENTORDER) message to the mobile station through the packet-associated channel control channel, where the packet measurement order message includes the information required by the mobile station to perform measurements on the network-controlled cell reselection procedure . When receiving the packet measurement command message, the mobile station replies a packet control acknowledgment (PACKET CONTROL ACKNOWLEDGEMENT) message to the current base station subsystem to confirm that it has received the packet measurement command message. Then, the mobile station performs measurement according to the information carried in the packet measurement command message. Specifically, the mobile station measures the RSSI of the broadcast control channel of the candidate cell indicated by the information in the packet measurement command message. After the measurement is completed, the mobile station transmits a channel request (CHANNEL REQUEST) message to the current base station subsystem through a random access channel to request radio frequency resource allocation and return the measurement result. Then, the current base station subsystem replies with an IMMEDIATE ASSIGNMENT message to assign radio frequency resource allocation. When receiving the immediate allocation message, the mobile station reports the measurement result to the current base station subsystem through a packet measurement report (PACKETMEASUREMENT REPORT) message. According to the measurement result, the serving network decides to handover the mobile station from the current BSS to another target BSS. Therefore, the current base station subsystem transmits a packet cell change command message to the mobile station, wherein the packet cell change command message includes relevant information of the target base station subsystem, for example: the absolute radio frequency channel number (Absolute Radio Frequency) of the target base station subsystem Channel Number, ARFCN), and Base Station Identity Code (BSIC), etc. Finally, the mobile station collects the system information of the target base station subsystem according to the information carried in the packet cell change command message, and then switches to the target base station subsystem according to the collected system information. It should be noted that during the process of collecting the system information of the target base station subsystem, radio frequency resource allocation is preferentially assigned to the broadcast control channel of the target base station subsystem, as shown in FIG. 8 .

或者,如果图9所示的分组小区变更命令程序为盲(blind)分组小区变更命令程序(意即,移动台在进行分组小区变更命令程序之前并未执行测量与同步作业),则在切换至目标基站子系统之前,移动台可能需要在目标基站子系统的频率校正信道上搜寻频率校正突发以及/或在同步信道上搜寻同步突发。其中移动台使用频率校正突发以与目标基站子系统的频率同步,并且使用同步突发以与目标基站子系统的时序同步。对本领域技术人员而言,当可根据图7、图8所述的实施例想出如何进行信道调度,以避免频率校正突发以及/或同步突发的搜寻被关联至不同服务网络的特定作业(例如:寻呼作业、测量作业、以及小区扫描作业等等)所中断。Alternatively, if the packet cell change command procedure shown in Figure 9 is a blind (blind) packet cell change command procedure (that is, the mobile station does not perform measurement and synchronization operations before performing the packet cell change command procedure), then after switching to Before the target BSS, the mobile station may need to search for frequency correction bursts on the frequency correction channel of the target BSS and/or search for synchronization bursts on the synchronization channel. Wherein the mobile station uses a frequency correction burst to synchronize with the frequency of the target BSS, and uses a synchronization burst to synchronize with the timing of the target BSS. Those skilled in the art can figure out how to perform channel scheduling according to the embodiments described in FIG. 7 and FIG. 8 , so as to avoid the search for frequency correction bursts and/or synchronization bursts from being associated with specific operations of different service networks. (For example: paging operation, measurement operation, and cell scanning operation, etc.) interrupted.

图10A与图10B是显示关联至GSM/GPRS/EDGE系统并处于联机模式的移动台在执行小区变更命令程序的范例示意图。联机模式可为小区专用信道模式、或小区转送存取信道模式。在此实施例,移动台首先连接至UMTS系统,然后即将从UMTS系统被转移到GSM/GPRS/EDGE系统。当UMTS系统决定要将移动台转移到GSM/GPRS/EDGE系统时,UMTS系统中的服务无线电网络控制器(serving Radio Network Controller,serving RNC)会传送UTRAN小区变更命令(CELL CHANGE ORDER FROM UTRAN)消息给移动台,该消息至少包括位于GSM/GPRS/EDGE系统中的所请求的目标基站子系统的相关信息。然后,移动台再根据该消息中的信息切换到目标基站子系统。明确来说,移动台可接收目标基站子系统在广播控制信道上所广播的系统信息,而该系统信息可为移动台欲重选至目标基站子系统的所需信息。需注意的是,在需要接收广播的系统信息时,射频资源分配都是优先指派给广播控制信道,如图8所示。在成功地切换到目标基站子系统之后,移动台通过传送路由区域更新请求(ROUTINGAREA UPDATE REQUEST)消息给目标基站子系统的服务GPRS支持节点(Serving GPRS Support Node,SGSN)以发起路由区域更新程序,该消息包括有移动台的分组临时移动用户标识符(Packet Temporary Mobile SubscriberIdentity,P-TMSI)、以及移动台在接收到UTRAN小区变更命令消息之前所停留的路由区域标识符。当UTRAN小区变更命令消息传送给移动台时,分组内文即由UMTS系统中的服务无线电网络控制器被转移至GSM/GPRS/EDGE系统中的SGSN。明确来说,GSM/GPRS/EDGE系统中的SGSN传送服务无线电网络控制器的内文请求(SRNC CONTEXT REQUEST)消息以请求分组内文的转移。然后,为了响应服务无线电网络控制器的内文请求消息,UMTS系统中的服务无线电网络控制器回传了服务无线电网络控制器的内文响应(SRNCCONTEXT RESPONSE)消息给SGSN。当接收到服务无线电网络控制器的内文响应消息时,GSM/GPRS/EDGE系统中的SGSN传送服务无线电网络控制器的数据转送命令(SRNC DATA FORWARD COMMAND)消息以发起分组数据的转移。在分组数据的转移完成之后,GSM/GPRS/EDGE系统中的SGSN再传送Iu释放命令(IU RELEASE COMMAND)消息以请求UMTS系统中的服务无线电网络控制器释放掉它们之间的Iu联机以及该Iu联机的相关无线资源。为了响应Iu释放命令消息,UMTS系统中的服务无线电网络控制器传送Iu释放完成(IURELEASE COMPLETE)消息给GSM/GPRS/EDGE系统中的SGSN。接着,UMTS系统中的服务无线电网络控制器与GSM/GPRS/EDGE系统中的SGSN两者间的Iu联机以及该Iu联机的相关无线资源就被释放掉了。尔后,GSM/GPRS/EDGE系统中的SGSN回复了路由区域更新接受(ROUTING AREA UPDATEACCEPT)消息给移动台以确认该路由区域更新请求,其中该路由区域更新接受消息可能包括有移动台的分组临时移动用户标识符。当接收到路由区域更新接受消息时,移动台便进一步传送路由区域更新完成(ROUTING AREA UPDATECOMPLETE)消息给GSM/GPRS/EDGE系统中的SGSN,以告知确收该路由区域更新接受消息,于是结束了小区变更命令程序。FIG. 10A and FIG. 10B are schematic diagrams showing an example of a cell change order procedure performed by a mobile station associated with a GSM/GPRS/EDGE system and in an on-line mode. The connection mode can be a cell-dedicated channel mode or a cell-transfer access channel mode. In this embodiment, the mobile station is first connected to the UMTS system, and then is about to be handed over from the UMTS system to the GSM/GPRS/EDGE system. When the UMTS system decides to transfer the mobile station to the GSM/GPRS/EDGE system, the serving Radio Network Controller (serving RNC) in the UMTS system will send a UTRAN cell change order (CELL CHANGE ORDER FROM UTRAN) message For the mobile station, the message includes at least information about the requested target BSS located in the GSM/GPRS/EDGE system. Then, the mobile station switches to the target base station subsystem according to the information in the message. Specifically, the mobile station can receive system information broadcast by the target BSS on the broadcast control channel, and the system information can be required information for the mobile station to reselect to the target BSS. It should be noted that when it is necessary to receive broadcast system information, radio frequency resource allocation is assigned to the broadcast control channel first, as shown in FIG. 8 . After successfully handing over to the target base station subsystem, the mobile station initiates the routing area update procedure by sending a routing area update request (ROUTINGAREA UPDATE REQUEST) message to the serving GPRS support node (Serving GPRS Support Node, SGSN) of the target base station subsystem, The message includes the packet temporary mobile subscriber identity (Packet Temporary Mobile Subscriber Identity, P-TMSI) of the mobile station, and the routing area identifier where the mobile station stays before receiving the UTRAN cell change command message. When the UTRAN Cell Change Order message is sent to the mobile station, the packet context is transferred from the serving radio network controller in the UMTS system to the SGSN in the GSM/GPRS/EDGE system. Specifically, the SGSN in the GSM/GPRS/EDGE system transmits a context request (SRNC CONTEXT REQUEST) message of the serving radio network controller to request the transfer of the packet context. Then, in response to the context request message of the serving radio network controller, the serving radio network controller in the UMTS system returns a context response (SRNCCONTEXT RESPONSE) message of the serving radio network controller to the SGSN. When receiving the context response message of the serving radio network controller, the SGSN in the GSM/GPRS/EDGE system transmits the data forwarding command (SRNC DATA FORWARD COMMAND) message of the serving radio network controller to initiate the transfer of packet data. After the transfer of packet data is completed, the SGSN in the GSM/GPRS/EDGE system sends an Iu Release Command (IU RELEASE COMMAND) message to request the serving radio network controller in the UMTS system to release the Iu connection between them and the Iu Online related wireless resources. In response to the Iu release command message, the serving radio network controller in the UMTS system sends an Iu release complete (IURELEASE COMPLETE) message to the SGSN in the GSM/GPRS/EDGE system. Then, the Iu connection between the serving radio network controller in the UMTS system and the SGSN in the GSM/GPRS/EDGE system and the related radio resources of the Iu connection are released. Afterwards, the SGSN in the GSM/GPRS/EDGE system replies with a routing area update accept (ROUTING AREA UPDATE ACCEPT) message to the mobile station to confirm the routing area update request, wherein the routing area update accept message may include the group temporary movement of the mobile station user identifier. When receiving the routing area update acceptance message, the mobile station further transmits the routing area update completion (ROUTING AREA UPDATECOMPLETE) message to the SGSN in the GSM/GPRS/EDGE system to inform the confirmation of the routing area update acceptance message, thus ending Cell Change Order Procedure.

或者,在图10A与图10B所示的小区变更命令程序中,如果移动台在接收到UTRAN小区变更命令消息之前并未针对目标基站子系统执行过测量与同步作业,则移动台可能需要在接收目标基站子系统的广播控制信道上所广播的系统信息之前先在目标基站子系统的频率修正信道上搜寻频率校正突发以及/或在同步信道上搜寻同步突发,其中移动台使用频率校正突发以与目标基站子系统的频率同步,并使用同步突发以与目标基站子系统的时序同步。对本领域技术人员而言,当可根据图7、图8所述的实施例想出如何进行信道调度,以避免频率校正突发以及/或同步突发的搜寻被关联至不同服务网络的特定作业(例如:寻呼作业、测量作业、以及小区扫描作业等等)所中断。Alternatively, in the cell change order procedure shown in Figure 10A and Figure 10B, if the mobile station has not performed measurement and synchronization operations for the target BSS before receiving the UTRAN cell change order message, the mobile station may need to receive The system information broadcast on the broadcast control channel of the target BSS is preceded by searching for a frequency correction burst on the frequency correction channel of the target BSS and/or searching for a synchronization burst on the synchronization channel, wherein the mobile station uses the frequency correction burst Transmit to synchronize with the frequency of the target BSS and use synchronization bursts to synchronize with the timing of the target BSS. Those skilled in the art can figure out how to perform channel scheduling according to the embodiments described in FIG. 7 and FIG. 8 , so as to avoid the search for frequency correction bursts and/or synchronization bursts from being associated with specific operations of different service networks. (For example: paging operation, measurement operation, and cell scanning operation, etc.) interrupted.

图11是显示关联至GPRS/EDGE系统的移动台在执行分组交换交递(Packet-Switched HandOver,PSHO)程序的范例示意图。在此实施例,移动台首先通过来源基站子系统连接至GPRS/EDGE系统以取得下行/上行数据服务。当来源基站子系统决定要将移动台交递至同一SGSN下的目标基站子系统时,会传送分组交换交递需求(PS HANDOVER REQUIRED)消息给SGSN,以请求交递移动台。为了响应分组交换交递需求消息,SGSN会传送分组交换交递请求(PS HANDOVER REQUEST)消息给目标基站子系统,以请求为移动台保留资源。待保留所需资源之后,目标基站子系统便回复分组交换交递请求确认(PSHANDOVER REQUEST ACKNOWLEDGE)消息给SGSN,以告知确收分组交换交递请求消息。当接收到分组交换交递请求确认消息时,SGSN即开始将移动台所要求的下行/上行数据服务的数据分组传递(relay)给目标基站子系统。待数据分组传递完毕后,SGSN再传送分组交换交递需求确认(PS HANDOVERREQUIRED ACKNOWLEDGE)消息给来源基站子系统,以响应上述分组交换交递需求消息。接着,来源基站子系统传送分组交换交递命令(PS HANDOVERCOMMAND)消息给移动台,其中分组交换交递命令消息包括有配置给移动台的资源信息以及目标基站子系统的系统资源信息。有了目标基站子系统的系统资源信息,移动台就能够不用在通用控制信道上进行传信作业就可以存取配置资源。当接收到分组交换交递命令消息时,移动台先暂停进行中的下行/上行数据服务,然后回复分组控制确认(PACKET CONTROL ACKNOWLEDGEMENT)消息给来源基站子系统,以告知确收分组交换交递命令消息。在此实施例,由于移动台在离开来源基站子系统之前并未取得目标基站子系统的提前时序(timing advance)信息,所以移动台需要通过分组数据信道传送分组交换交递存取(PS HANDOVER ACCESS)消息给目标基站子系统,以取得目标基站子系统的提前时序。当接收到分组交换交递存取消息时,目标基站子系统会通过分组数据信道回复分组物理信息(PACKET PHYSICAL INFORMATION)消息给移动台,然后再传送分组交换交递完成(PS HANDOVER COMPLETE)消息给SGSN,于是结束了分组交换交递程序。一旦得知分组交换交递已完成,SGSN就只会把下行数据分组转送至目标基站子系统,且来源基站子系统为移动台所配置的资源则会被释放掉。同时,移动台一旦取得了目标基站子系统的提前时序信息,就能够传送正常突发,并继续被暂停的下行/上行数据服务。值得注意的是,在分组交换交递程序中,当移动台传送完分组交换交递存取消息且在等待分组物理信息消息之时,可以确保分组数据信道不会被关联至UMTS系统的特定作业(例如:寻呼作业、测量作业、以及小区扫描作业等等)所中断。对本领域技术人员而言,当可根据图7、图8所述的实施例想出如何进行信道调度,以避免下行/上行数据服务被关联至不同服务网络的特定作业(例如:寻呼作业、测量作业、以及小区扫描作业等等)所中断。FIG. 11 is an exemplary schematic diagram showing a mobile station associated with a GPRS/EDGE system performing a Packet-Switched Handover (PSHO) procedure. In this embodiment, the mobile station first connects to the GPRS/EDGE system through the source BSS to obtain downlink/uplink data services. When the source base station subsystem decides to handover the mobile station to the target base station subsystem under the same SGSN, it will send a PS HANDOVER REQUIRED message to the SGSN to request the handover of the mobile station. In response to the packet switching handover request message, the SGSN will send a packet switching handover request (PS HANDOVER REQUEST) message to the target base station subsystem to request to reserve resources for the mobile station. After the required resources are reserved, the target base station subsystem will reply a PSHANDOVER REQUEST ACKNOWLEDGE message to the SGSN to inform the packet switched handover request message. When receiving the packet switching handover request confirmation message, the SGSN starts to relay (relay) the data packets of the downlink/uplink data service required by the mobile station to the target base station subsystem. After the data packet is delivered, the SGSN sends a PS HANDOVERREQUIRED ACKNOWLEDGE message to the source base station subsystem in response to the above packet switching handover demand message. Next, the source base station subsystem transmits a packet switched handover command (PS HANDOVERCOMMAND) message to the mobile station, wherein the PS HANDOVER COMMAND message includes resource information configured for the mobile station and system resource information of the target base station subsystem. With the system resource information of the target BSS, the mobile station can access the configuration resource without signaling on the common control channel. When receiving the packet switching handover command message, the mobile station first suspends the ongoing downlink/uplink data service, and then replies with a packet control acknowledgment (PACKET CONTROL ACKNOWLEDGEMENT) message to the source base station subsystem to notify the packet switching handover command information. In this embodiment, since the mobile station does not obtain the timing advance information of the target base station subsystem before leaving the source base station subsystem, the mobile station needs to transmit PS HANDOVER ACCESS (PS HANDOVER ACCESS) information through the packet data channel. ) message to the target base station subsystem to obtain the timing advance of the target base station subsystem. When receiving the packet switched handover access message, the target base station subsystem will reply the packet physical information (PACKET PHYSICAL INFORMATION) message to the mobile station through the packet data channel, and then send the packet switched handover complete (PS HANDOVER COMPLETE) message to the mobile station The SGSN, then ends the packet switched handover procedure. Once the packet switching handover is known, the SGSN will only forward the downlink data packets to the target BSS, and the resources configured by the source BSS for the mobile station will be released. At the same time, once the mobile station obtains the timing advance information of the target base station subsystem, it can transmit normal bursts and continue the suspended downlink/uplink data service. It is worth noting that in the PS handover procedure, when the mobile station has transmitted the PS handover access message and is waiting for the packet physical information message, it can ensure that the packet data channel will not be associated with a specific operation of the UMTS system (For example: paging operation, measurement operation, and cell scanning operation, etc.) interrupted. For those skilled in the art, how to perform channel scheduling can be figured out according to the embodiments described in FIG. 7 and FIG. Measurement operations, and cell scanning operations, etc.) are interrupted.

或者,在图11所示的分组交换交递程序中,如果移动台在接收到分组交换交递命令消息之前并未针对目标基站子系统执行过测量与同步作业,则移动台可能需要在切换到目标基站子系统之前先在目标基站子系统的频率修正信道上搜寻频率校正突发以及/或在同步信道上搜寻同步突发,其中移动台使用频率校正突发以与目标基站子系统的频率同步,并使用同步突发以与目标基站子系统的时序同步。对本领域技术人员而言,当可根据图7、图8所述的实施例想出如何进行信道调度,以避免频率校正突发以及/或同步突发的搜寻被关联至不同服务网络的特定作业(例如:寻呼作业、测量作业、以及小区扫描作业等等)所中断。Alternatively, in the packet switching handover procedure shown in Figure 11, if the mobile station has not performed measurement and synchronization operations for the target BSS before receiving the packet switching handover command message, the mobile station may need to handover to The target BSS previously searches for a frequency correction burst on a frequency correction channel of the target BSS and/or searches for a synchronization burst on a synchronization channel, wherein the mobile station uses the frequency correction burst to synchronize with the frequency of the target BSS , and use synchronization bursts to synchronize with the timing of the target BSS. Those skilled in the art can figure out how to perform channel scheduling according to the embodiments described in FIG. 7 and FIG. 8 , so as to avoid the search for frequency correction bursts and/or synchronization bursts from being associated with specific operations of different service networks. (For example: paging operation, measurement operation, and cell scanning operation, etc.) interrupted.

图12是显示关联至UMTS系统的移动台在执行联机建立程序的范例示意图。首先,联机建立程序始于移动台通过随机存取信道传送无线资源控制的联机请求(RRC CONNECTION REQUEST)消息给UTRAN,该消息包括了移动台的标识符(例如:临时移动用户标识符、分组临时移动用户标识符、或国际移动用户标识符等等)以及建立原因(例如:一般通话、串流服务、紧急通话、注册、或位置更新等等)。当接收到无线资源控制的联机请求消息时,UTRAN可为移动台保留无线资源,然后通过转送存取信道回复无线资源控制的联机建立(RRC CONNECTION SETUP)消息给移动台,该消息包括了配置给移动台的无线资源的设定信息,例如:移动台在上行方向所使用的搅乱码(scramblingcode)。为了响应无线资源控制的联机建立消息,移动台执行同步程序A以至少建立对应至配置无线资源的下行与上行专用物理信道,然后再通过转送存取信道或专用信道回复无线资源控制的联机建立完成(RRC CONNECTIONSETUP COMPLETE)消息给UTRAN,以告知移动台已确收配置无线资源。一旦UTRAN成功地接收到无线资源控制的联机建立完成消息,即完成联机建立程序。之后,移动台便可接着继续进行一开始触发联机建立程序的特定程序。举例说明,如果联机建立程序的建立原因是“注册”,则移动台可继续向UTRAN进行注册;如果联机建立程序的建立原因是“位置更新”,则移动台可继续向UTRAN更新其位置信息。需注意的是,在联机建立程序中,当移动台在传送完无线资源控制的联机请求消息后,射频资源分配优先指派给转送存取信道,而当移动台在接收到无线资源控制的联机建立消息时,射频资源分配优先指派给专用信道,如此一来,可以确保联机建立程序不会被关联至不同服务网络的特定作业(例如:寻呼作业、测量作业、以及小区扫描作业等等)所中断。之后,当移动台传送完无线资源控制的联机建立消息后,射频资源分配则优先指派给关联至不同服务网络的特定作业(例如:寻呼作业、测量作业、以及小区扫描作业等等)。FIG. 12 is a schematic diagram showing an example of a mobile station associated with the UMTS system performing a connection establishment procedure. First of all, the connection establishment procedure begins with the mobile station sending a radio resource control connection request (RRC CONNECTION REQUEST) message to the UTRAN through a random access channel. Mobile Subscriber Identifier, or International Mobile Subscriber Identifier, etc.) and the reason for establishment (for example: general call, streaming service, emergency call, registration, or location update, etc.). When receiving a radio resource control connection request message, UTRAN can reserve radio resources for the mobile station, and then reply the radio resource control connection establishment (RRC CONNECTION SETUP) message to the mobile station through the forwarding access channel, which includes the information configured for The configuration information of the radio resource of the mobile station, for example: the scrambling code (scrambling code) used by the mobile station in the uplink direction. In response to the RRC connection establishment message, the mobile station executes the synchronization procedure A to at least establish the downlink and uplink dedicated physical channels corresponding to the configured radio resources, and then replies that the RRC connection establishment is completed through the transfer access channel or the dedicated channel (RRC CONNECTIONSETUP COMPLETE) message to UTRAN to inform the mobile station that it has confirmed the configuration of radio resources. Once the UTRAN successfully receives the RRC connection establishment complete message, the connection establishment procedure is completed. Afterwards, the mobile station can then continue with the specific procedure that initially triggered the connection establishment procedure. For example, if the establishment reason of the connection establishment procedure is "registration", the mobile station can continue to register with UTRAN; if the establishment reason of the connection establishment procedure is "location update", the mobile station can continue to update its location information to UTRAN. It should be noted that in the connection establishment procedure, when the mobile station sends the RRC connection request message, the radio frequency resource allocation is assigned to the transfer access channel first, and when the mobile station receives the RRC connection establishment When sending messages, the RF resource allocation is preferentially assigned to dedicated channels, thus ensuring that the connection establishment procedure will not be blocked by specific operations associated with different service networks (such as paging operations, measurement operations, and cell scanning operations, etc.) interruption. Afterwards, after the mobile station sends the RRC connection setup message, the radio resource allocation is preferentially assigned to specific tasks associated with different service networks (eg, paging tasks, measurement tasks, and cell scanning tasks, etc.).

图13是显示根据本发明一实施例所述对正在监控2G寻呼信道的移动台进行信道调度以执行3G联机建立程序。此实施例所述的移动台(例如:移动台200、300、或400)可支持与GSM/GPRS/EDGE以及UMTS系统同时进行通信。特别是,移动台使用第一用户识别卡(于图13中标示为SIM-Y)关联至GSM/GPRS/EDGE系统以监控2G寻呼信道,并且使用第二用户识别卡(于图13中标示为SIM-X)关联至UMTS系统以执行3G联机建立程序。明确来说,移动台需要持续监控2G寻呼信道以自GSM/GPRS/EDGE系统接收寻呼消息。移动台可能会需要在每个非连续接收周期的寻呼时段收听通用控制信道(Common Control Channel,CCCH)以接收寻呼消息。如图13所示,在执行3G联机建立程序之前的每个寻呼时段,射频资源分配优先指派给2G寻呼信道。当接收到寻呼消息时,移动台会判断该寻呼消息是否是针对它的,若是,移动台可进入针对UMTS系统的3G闲置模式,以自GSM/GPRS/EDGE系统接收被叫通话。反之,如果该寻呼消息不是针对它的,移动台可进入针对GSM/GPRS/EDGE系统的2G闲置模式,以等待下次寻呼时段,此时,不论是关联至GSM/GPRS/EDGE系统或UMTS系统的任何作业,皆可取得射频资源分配。然而,在3G联机建立程序中,当移动台在传送完无线资源控制的联机请求消息且在等待无线资源控制的联机建立消息之时,射频资源分配优先指派给3G转送存取信道;而当移动台接收到无线资源控制的联机建立消息时,射频资源分配优先指派给3G专用信道。换句话说,3G联机建立程序能够不被2G寻呼作业所中断。在3G联机建立程序完成后(意即,当传送完无线资源控制的联机建立完成消息后),射频资源分配则可优先指派给2G寻呼信道。FIG. 13 shows a channel scheduling procedure for a mobile station monitoring a 2G paging channel to execute a 3G connection establishment procedure according to an embodiment of the present invention. The mobile station described in this embodiment (for example: mobile station 200, 300, or 400) can support simultaneous communication with GSM/GPRS/EDGE and UMTS systems. In particular, the mobile station associates to the GSM/GPRS/EDGE system using a first Subscriber Identity Card (marked SIM-Y in Figure 13) to monitor the 2G paging channel, and uses a second Subscriber Identity Card (marked SIM-Y in Figure 13 For SIM-X) associate to UMTS system to perform 3G connection establishment procedure. Specifically, the mobile station needs to continuously monitor the 2G paging channel to receive paging messages from the GSM/GPRS/EDGE system. The mobile station may need to listen to the Common Control Channel (CCCH) during the paging period of each DRX cycle to receive paging messages. As shown in FIG. 13 , in each paging period before the 3G connection establishment procedure is executed, the radio frequency resource allocation is preferentially assigned to the 2G paging channel. When receiving the paging message, the mobile station will judge whether the paging message is for it, if so, the mobile station can enter the 3G idle mode for the UMTS system to receive the called call from the GSM/GPRS/EDGE system. Conversely, if the paging message is not intended for it, the mobile station can enter the 2G idle mode for the GSM/GPRS/EDGE system to wait for the next paging period. At this time, whether it is associated to the GSM/GPRS/EDGE system or Any operation in the UMTS system can obtain RF resource allocation. However, in the 3G connection establishment procedure, when the mobile station has sent the RRC connection request message and is waiting for the RRC connection establishment message, the radio frequency resource allocation is preferentially assigned to the 3G transfer access channel; and when the mobile station When the station receives the connection establishment message of the radio resource control, the radio frequency resource allocation is preferentially assigned to the 3G dedicated channel. In other words, the 3G connection establishment procedure cannot be interrupted by the 2G paging operation. After the 3G connection establishment procedure is completed (that is, after the RRC connection establishment complete message is transmitted), the radio resource allocation can be preferentially assigned to the 2G paging channel.

图14是显示关联至UMTS系统的移动台在执行硬式交递(Hard HandOver,HHO)程序的范例示意图。在此实施例,移动台首先通过来源无线电网络控制器连接至UMTS系统,并处于3G联机模式。当来源无线电网络控制器决定要把服务无线电网络控制器的功能重置到同一SGSN下的目标无线电网络控制器(意即,将移动台从来源无线电网络控制器交递至目标无线电网络控制器)时,会传送交递需求(HANDOVER REQUIRED)消息给SGSN以请求交递移动台。为了响应交递需求消息,SGSN传送交递请求(HANDOVER REQUEST)消息给目标无线电网络控制器以请求为移动台保留资源。待资源保留完成后,目标无线电网络控制器便回复交递请求确认(HANDOVER REQUESTACKNOWLEDGE)消息给SGSN,以告知确收交递请求消息。当接收到交递请求确认消息时,SGSN传送交递命令(HANDOVER COMMAND)消息给来源无线电网络控制器,以告知该交递的后端准备作业已完成。接着,来源无线电网络控制器传送硬式交递命令给移动台,该硬式交递命令包括了在目标无线电网络控制器所需用到的设定信息。明确来说,该硬式交递命令可为物理信道重设(PHYSICAL CHANNEL RECONFIGURATION)消息、无线乘载重设(RADIOBEARER RECONFIGURATION)消息、无线乘载建立(RADIO BEARER SETUP)消息、无线乘载释放(RADIO BEARER RELEASE)消息、或传输信道重设(TRANSPORT CHANNEL RECONFIGURATION)消息。以物理信道重设消息为例,消息中可包括针对目标无线电网络控制器的无线链路所需用到的扰乱码、以及针对该交递的新UTRAN无线电网络临时标识符(UTRAN Radio NetworkTemporary Identifier,U-RNTI)。接着,移动台使用硬式交递命令所包含的信息去更改连接到目标无线电网络控制器的无线链路的设定,然后在更改完成时传送硬式交递响应给目标无线电网络控制器,以指示确收硬式交递命令中所包含的设定信息。明确来说,该硬式交递回应可为物理信道重设完成(PHYSICALCHANNEL RECONFIGURATION COMPLETE)消息、无线乘载重设完成(RADIO BEARER RECONFIGURATION COMPLETE)消息、无线乘载建立完成(RADIO BEARER SETUP COMPLETE)消息、无线乘载释放完成(RADIOBEARER RELEASE COMPLETE)消息、或传输信道重设完成(TRANSPORTCHANNEL RECONFIGURATION COMPLETE)消息。需注意的是,从移动台接收到来自UMTS系统的硬式交递命令到移动台传送硬式交递响应给UMTS系统的这期间,本发明能够确保硬式交递程序不会被关联至不同服务网络的特定作业(例如:寻呼作业、测量作业、以及小区扫描作业等等)所中断。之后,当接收到硬式交递响应时,目标无线电网络控制器再传送交递完成(HANDOVER COMPLETE)消息给SGSN。为了响应交递完成消息,SGSN传送Iu释放命令(IU RELEASE COMMAND)消息给服务无线电网络控制器,以请求服务无线电网络控制器释放Iu联机以及Iu联机的相关无线资源。FIG. 14 is a schematic diagram showing an example of a hard handover (HHO) procedure performed by a mobile station associated with the UMTS system. In this embodiment, the mobile station first connects to the UMTS system through the source RNC and is in 3G connection mode. When the source RNC decides to reset the function of the serving RNC to the target RNC under the same SGSN (i.e. handover the mobile station from the source RNC to the target RNC) , it will send a handover request (HANDOVER REQUIRED) message to the SGSN to request handover of the mobile station. In response to the handover requirement message, the SGSN transmits a handover request (HANDOVER REQUEST) message to the target radio network controller to request resources reserved for the mobile station. After the resource reservation is completed, the target radio network controller will reply a handover request confirmation (HANDOVER REQUESTACKNOWLEDGE) message to the SGSN to inform the acknowledgment of the handover request message. When receiving the Handover Request Acknowledgment message, the SGSN sends a Handover Command (HANDOVER COMMAND) message to the source radio network controller to inform that the backend preparation for the handover has been completed. Next, the source RNC sends a hard handover command to the mobile station, the hard handover command includes configuration information required at the target RNC. Specifically, the hard handover command can be a physical channel reset (PHYSICAL CHANNEL RECONFIGURATION) message, a radio bearer reset (RADIOBEARER RECONFIGURATION) message, a radio bearer setup (RADIO BEARER SETUP) message, a radio bearer release (RADIO BEARER RELEASE) message, or transmission channel reset (TRANSPORT CHANNEL RECONFIGURATION) message. Taking the physical channel reset message as an example, the message may include the scrambling code required for the radio link of the target radio network controller, and the new UTRAN radio network temporary identifier (UTRAN Radio Network Temporary Identifier, U-RNTI). Then, the mobile station uses the information contained in the hard handover command to change the setting of the radio link connected to the target radio network controller, and then transmits a hard handover response to the target radio network controller to indicate confirmation Receive the setting information contained in the hard handover command. Specifically, the hard handover response can be a physical channel reset complete (PHYSICALCHANNEL RECONFIGURATION COMPLETE) message, a radio bearer reset complete (RADIO BEARER RECONFIGURATION COMPLETE) message, a radio bearer establishment complete (RADIO BEARER SETUP COMPLETE) message, a wireless RADIOBEARER RELEASE COMPLETE message, or TRANSPORTCHANNEL RECONFIGURATION COMPLETE message. It should be noted that during the period from when the mobile station receives the hard handover command from the UMTS system to when the mobile station transmits the hard handover response to the UMTS system, the present invention can ensure that the hard handover procedure will not be associated with a different service network. Specific operations (such as: paging operations, measurement operations, and cell scanning operations, etc.) are interrupted. Afterwards, when receiving the hard handover response, the target radio network controller sends a handover complete (HANDOVER COMPLETE) message to the SGSN. In response to the handover completion message, the SGSN sends an Iu Release Command (IU RELEASE COMMAND) message to the serving radio network controller to request the serving radio network controller to release the Iu connection and the related radio resources of the Iu connection.

图15是显示根据本发明一实施例所述对正在监控2G寻呼信道的移动台进行信道调度以执行3G硬式交递程序。此实施例所述的移动台(例如:移动台200、300、或400)可支持与GSM/GPRS/EDGE以及UMTS系统同时进行通信。特别是,移动台使用第一用户识别卡(于图15中标示为SIM-Y)关联至GSM/GPRS/EDGE系统以监控2G寻呼信道,并且使用第二用户识别卡(于图15中标示为SIM-X)关联至UMTS系统以执行3G硬式交递程序。移动台需要持续监控2G寻呼信道以自GSM/GPRS/EDGE系统接收寻呼消息。明确来说,移动台可能会需要在每个非连续接收周期的寻呼时段收听通用控制信道以接收寻呼消息。在执行3G硬式交递程序之前,移动台通过执行联机建立程序而连接至UMTS系统。关于联机建立程序的信道调度作业,其细节描述可参考图13所示的实施例,故于此不再赘述,唯不同于图13的实施例的是,本实施例中的移动台处于小区转送存取信道模式且3G专用信道在联机建立程序中不需被特别保护。如图15所示,在联机建立程序完成后且在3G硬式交递程序执行之前,针对每个寻呼时段,射频资源分配优先指派给2G寻呼信道。当接收到寻呼消息时,移动台会判断该寻呼消息是否是针对它的,若是,移动台可进入针对UMTS系统的3G闲置模式,以自GSM/GPRS/EDGE系统接收被叫通话。反之,如果该寻呼消息不是针对它的,移动台可进入针对GSM/GPRS/EDGE系统的2G闲置模式,以等待下次寻呼时段,此时,不论是关联至GSM/GPRS/EDGE系统或UMTS系统的任何作业,皆可取得射频资源分配。接着,当移动台在接收到来自UMTS系统的硬式交递命令(意即,用以告知开始进行硬式交递程序的指示)时,射频资源分配优先指派给3G专用信道,直到移动台传送硬式交递响应给UMTS系统为止。换句话说,3G硬式交递程序能够不被2G寻呼作业所中断。一旦传送硬式交递响应给UMTS系统,射频资源分配则可优先指派给2G寻呼信道。FIG. 15 shows channel scheduling for a mobile station monitoring a 2G paging channel to perform a 3G hard handover procedure according to an embodiment of the present invention. The mobile station described in this embodiment (for example: mobile station 200, 300, or 400) can support simultaneous communication with GSM/GPRS/EDGE and UMTS systems. In particular, the mobile station associates to the GSM/GPRS/EDGE system using a first Subscriber Identity Card (marked SIM-Y in Figure 15) to monitor the 2G paging channel, and uses a second Subscriber Identity Card (marked SIM-Y in Figure 15 For SIM-X) associate to UMTS system to perform 3G hard handover procedure. The mobile station needs to continuously monitor the 2G paging channel to receive paging messages from the GSM/GPRS/EDGE system. Specifically, the mobile station may need to listen to the general control channel during the paging period of each DRX cycle to receive paging messages. Before performing the 3G hard handover procedure, the mobile station connects to the UMTS system by performing the connection establishment procedure. Regarding the channel scheduling operation of the connection establishment procedure, its detailed description can refer to the embodiment shown in FIG. The access channel mode and the 3G dedicated channel need not be specially protected during the connection establishment procedure. As shown in FIG. 15 , after the connection establishment procedure is completed and before the 3G hard handover procedure is performed, for each paging period, the radio resource allocation is preferentially assigned to the 2G paging channel. When receiving the paging message, the mobile station will judge whether the paging message is for it, if so, the mobile station can enter the 3G idle mode for the UMTS system to receive the called call from the GSM/GPRS/EDGE system. Conversely, if the paging message is not intended for it, the mobile station can enter the 2G idle mode for the GSM/GPRS/EDGE system to wait for the next paging period. At this time, whether it is associated to the GSM/GPRS/EDGE system or Any operation in the UMTS system can obtain RF resource allocation. Then, when the mobile station receives a hard handover command from the UMTS system (that is, an instruction to notify the start of the hard handover procedure), the radio frequency resource allocation is preferentially assigned to the 3G dedicated channel until the mobile station transmits the hard handover command. Pass the response to the UMTS system. In other words, the 3G hard handover procedure cannot be interrupted by the 2G paging operation. Once the hard handover response is sent to the UMTS system, the RF resource allocation can be preferentially assigned to the 2G paging channel.

图16是根据本发明一实施例所述的移动台的软件架构示意图。该软件架构的范例包括有协议栈(protocol stack)处理模块1610与1620、以及仲裁模块1630。协议栈处理模块1610在被处理单元或Baseband MCU执行时,是用以使用第一用户识别卡(例如:用户识别卡10)与第一服务网络(例如:服务网络120)进行通信;而协议栈处理模块1620在被处理单元或Baseband MCU执行时,是用以使用第二用户识别卡(例如:用户识别卡20)与第二服务网络(例如:服务网络130)进行通信。由于该移动台仅配置了单一射频模块,协议栈处理模块1610与1620皆可在同一时段请求取得射频模块的控制权以进行无线通信,所以仲裁模块1630用以针对协议栈处理模块1610与1620进行射频资源分配的调度。FIG. 16 is a schematic diagram of the software architecture of the mobile station according to an embodiment of the present invention. An example of the software architecture includes protocol stack processing modules 1610 and 1620 and an arbitration module 1630 . When the protocol stack processing module 1610 is executed by the processing unit or Baseband MCU, it is used to communicate with the first service network (for example: service network 120) using the first subscriber identity card (for example: subscriber identity card 10); and the protocol stack When the processing module 1620 is executed by the processing unit or the Baseband MCU, it is used to communicate with the second service network (for example: the service network 130 ) by using the second subscriber identity card (for example: the subscriber identity card 20 ). Since the mobile station is only equipped with a single radio frequency module, both the protocol stack processing modules 1610 and 1620 can request to obtain the control right of the radio frequency module to perform wireless communication at the same time period, so the arbitration module 1630 is used for the protocol stack processing modules 1610 and 1620. Scheduling of RF resource allocation.

图17是根据本发明一实施例所述由仲裁模块1630协调协议栈处理模块1610与1620的作业的方法流程图。首先,协议栈处理模块1610与1620处于闲置模式,且可各自请求仲裁模块1630以取得与不同服务网络进行通信所需的射频资源分配。在该通信作业协调方法一开始,仲裁模块1630在接收到协议栈处理模块1610与1620中的一个请求配置特定信道时(步骤S 1701),决定当前是否有可用的射频资源分配(步骤S1702),若是,仲裁模块1630准予该请求并将当前的射频资源分配指派给上述特定信道(步骤S1703),然后在被协议栈处理模块1610与1620中的一个通知已不再需要该射频资源分配时收回(retrieve)当前的射频资源分配(步骤S1704)。接续步骤S 1702,反之,如果当前的射频资源分配已被配置给协议栈处理模块1610与1620中的另一个在执行特定作业/程序或服务时所使用的另一信道,则仲裁模块1630根据该请求与信道优先清单决定是否可中断上述特定作业/程序或服务(步骤S1705)。明确来说,仲裁模块1630可先决定该请求是否指示所用的特定信道是针对拥有特权的程序,若是,再决定该请求的特定信道相较于上述另一信道是否具有较高的优先级。如果该请求的特定信道具有较高的优先级,则将上述特定作业/程序或服务视为可被中断的,然后仲裁模块1630请求协议栈处理模块1610与1620的另一个暂停正在使用上述另一信道进行的无线作业(步骤S1706)。当接收到响应指示当前的射频资源分配已被释放,仲裁模块1630再准予该请求并将当前的射频资源分配指派给上述特定信道(步骤S1707)。接着,当被协议栈处理模块1610与1620中的一个通知已不再需要该射频资源分配时,仲裁模块1630则请求协议栈处理模块1610与1620中的另一个使用当前的射频资源分配继续进行被暂停的无线作业(步骤S1708)。接续步骤S1705,如果上述特定作业/程序或服务不可被中断,仲裁模块1630则回绝该请求(步骤S1709)。FIG. 17 is a flowchart of a method for coordinating the operations of the protocol stack processing modules 1610 and 1620 by the arbitration module 1630 according to an embodiment of the present invention. Firstly, the protocol stack processing modules 1610 and 1620 are in the idle mode, and each can request the arbitration module 1630 to obtain radio resource allocation required for communication with different service networks. At the beginning of the communication operation coordination method, the arbitration module 1630 determines whether there is currently available radio frequency resource allocation (step S1702) when receiving a request from the protocol stack processing modules 1610 and 1620 to configure a specific channel (step S1701), If so, the arbitration module 1630 grants the request and assigns the current radio frequency resource allocation to the above-mentioned specific channel (step S1703), and then retracts when notified by one of the protocol stack processing modules 1610 and 1620 that the radio frequency resource allocation is no longer needed ( retrieve) the current radio frequency resource allocation (step S1704). Continuing with step S1702, on the contrary, if the current radio frequency resource allocation has been configured to another channel used by another one of the protocol stack processing modules 1610 and 1620 when executing a specific job/program or service, the arbitration module 1630 according to the The request and channel priority list determines whether the above-mentioned specific operation/program or service can be interrupted (step S1705). Specifically, the arbitration module 1630 may first determine whether the request indicates that the specific channel used is for a privileged program, and if so, whether the requested specific channel has a higher priority than the other channel. If the requested specific channel has a higher priority, the above-mentioned specific job/program or service is considered to be interruptible, and then the arbitration module 1630 requests another suspension of the protocol stack processing modules 1610 and 1620 that are using the above-mentioned another channel. The wireless operation performed by the channel (step S1706). When receiving a response indicating that the current radio frequency resource allocation has been released, the arbitration module 1630 grants the request and assigns the current radio frequency resource allocation to the above-mentioned specific channel (step S1707 ). Next, when notified by one of the protocol stack processing modules 1610 and 1620 that the radio frequency resource allocation is no longer needed, the arbitration module 1630 requests the other of the protocol stack processing modules 1610 and 1620 to use the current radio frequency resource allocation to continue to be allocated. Suspended wireless job (step S1708). Following step S1705, if the above-mentioned specific operation/program or service cannot be interrupted, the arbitration module 1630 rejects the request (step S1709).

在一实施例,可使用特权程序列表以指示拥有特权的程序,包括:关联至GSM/GPRS/EDGE系统的寻呼作业、分组存取程序、同无线存取技术内的小区重选程序、异无线存取技术间的小区重选程序、小区更动命令程序、分组小区更动命令程序、盲分组小区更动命令程序、或分组交换交递程序,或关联至UMTS系统的寻呼作业、联机建立程序、或硬式交递程序。而相应地,信道优先清单可用以指示在上述拥有特权的程序中需要被保护的信道优先级顺序。明确来说,用于特权程序中的2G准许接入信道、广播控制信道、频率修正信道、同步信道、以及分组数据信道相较于3G的寻呼信道/寻呼指示信道具有较高的优先级;用于特权程序中的3G转送存取信道与专用信道相较于2G的寻呼信道具有较高的优先级;而不是用于特权程序的3G转送存取信道与专用信道则相较于2G的寻呼信道具有较低的优先级;不是用于特权程序的2G准许接入信道、广播控制信道、频率修正信道、同步信道、以及分组数据信道则相较于3G的寻呼信道/寻呼指示信道具有较低的优先级。In one embodiment, a list of privileged procedures can be used to indicate privileged procedures, including: paging operations associated with GSM/GPRS/EDGE systems, packet access procedures, cell reselection procedures within the same RAT, different Cell reselection procedures, cell change command procedures, packet cell change command procedures, blind packet cell change command procedures, or packet switching handover procedures between RATs, or paging operations associated with UMTS systems, connection Build procedures, or hard handover procedures. Correspondingly, the channel priority list can be used to indicate the priority order of the channels that need to be protected in the above-mentioned privileged program. Specifically, the 2G Granted Access Channel, Broadcast Control Channel, Frequency Correction Channel, Synchronization Channel, and Packet Data Channel used in privileged procedures have higher priority than the 3G Paging Channel/Page Indicator Channel ;3G FACHs and dedicated channels used in privileged programs have higher priority than 2G paging channels; 3G FACHs and dedicated channels not used in privileged programs have higher priority than 2G The paging channel has lower priority; the 2G grant access channel, broadcast control channel, frequency correction channel, synchronization channel, and packet data channel that are not used for privileged procedures are compared to the 3G paging channel/paging channel Indicates that the channel has a lower priority.

需注意的是,在图16所示的软件架构中,协议栈处理模块1610与1620皆可包括多个协议层(未绘示),而为了实施本发明所述的信道保护,上述特权程序列表与信道优先列表的信息可由上层协议层提供给第一层协议层(例如:由无线资源控制层提供给第一层)。It should be noted that, in the software architecture shown in FIG. 16 , both the protocol stack processing modules 1610 and 1620 can include multiple protocol layers (not shown), and in order to implement the channel protection described in the present invention, the above-mentioned privileged program list The information related to the channel priority list can be provided by the upper layer protocol layer to the first layer protocol layer (for example: provided by the radio resource control layer to the first layer).

图18A与图18B是显示仲裁模块1630以及协议栈处理模块1610与1620在图7的实施例中相互沟通的消息序列图。在此实施例,协议栈处理模块1610使用第一用户识别卡与GPRS/EDGE系统进行通信以执行分组存取程序,而协议栈处理模块1620使用第二用户识别卡与UMTS系统进行通信。特别是,协议栈处理模块1620处于3G闲置模式,且当处于3G闲置模式时,协议栈处理模块1620需要持续地执行寻呼作业,去收听3G寻呼信道以接收来自UMTS系统的寻呼消息。明确来说,协议栈处理模块1620需要在每个非连续接收周期的寻呼时段收听寻呼指示信道或寻呼信道。针对每个寻呼时段,协议栈处理模块1620会请求仲裁模块1630以取得寻呼作业用的射频资源分配(步骤S1801),由于当前有可用的射频资源分配,所以仲裁模块1630决定将当前的射频资源分配指派给3G的寻呼信道(步骤S 1802)。然后,仲裁模块1630准予了协议栈处理模块1620的请求(步骤S1803)。因为请求获得准予,所以协议栈处理模块1620存取唯一的射频模块以收听3G的寻呼信道(步骤S1804)。之后,由于在当前的寻呼时段中没有收到任何寻呼消息、或所收到的寻呼消息不是针对此移动台的,于是协议栈处理模块1620在寻呼时段结束时通知仲裁模块1630已不再需要存取唯一的射频模块(步骤S1805)。在收到协议栈处理模块1620的通知时,仲裁模块1630便收回指派给3G寻呼信道的当前射频资源分配(步骤S1806)。接着,当协议栈处理模块1610需要执行分组存取程序时,会请求仲裁模块1630在分组存取程序的执行过程中将射频资源分配指派给准许接入信道(步骤S1807),由于当前有可用的射频资源分配,所以仲裁模块1630决定将当前的射频资源分配指派给2G的准许接入信道(步骤S1808)。然后,仲裁模块1630准予了协议栈处理模块1610的请求(步骤S 1809)。因为请求获得准予,所以协议栈处理模块1610存取唯一的射频模块以监控2G的准许接入信道(步骤S1810)。如图7所示,针对接下来的两个寻呼时段,协议栈处理模块1620都会请求仲裁模块1630以取得寻呼作业用的射频资源分配(步骤S1811与S1813),然而,由于当前的射频资源分配已指派给协议栈处理模块1610以监控2G的准许接入信道,所以仲裁模块1630回绝了协议栈处理模块1620的请求(步骤S1812与S1814)。接着,当分组存取程序结束时,协议栈处理模块1610会通知仲裁模块1630已不再需要存取唯一的射频模块(步骤S1815)。在收到协议栈处理模块1610的通知时,仲裁模块1630便收回指派给2G准许接入信道的当前射频资源分配(步骤S1816)。之后,当收到协议栈处理模块1620请求寻呼作业用的射频资源分配时(步骤S1817),由于当前有可用的射频资源分配,所以仲裁模块1630决定将当前的射频资源分配指派给3G的寻呼信道(步骤S1818)。然后,仲裁模块1630准予了协议栈处理模块1620的请求(步骤S1819)。接下来,步骤S1820~S1822类似于步骤S1804~S1806,首先,协议栈处理模块1620先存取唯一的射频模块以收听3G的寻呼信道(步骤S1820),并且因为在当前的寻呼时段中没有收到任何寻呼消息、或所收到的寻呼消息不是针对此移动台的,所以协议栈处理模块1620在寻呼时段结束时通知仲裁模块1630已不再需要存取唯一的射频模块(步骤S1821),然后仲裁模块1630在收到协议栈处理模块1620的通知时,再收回指派给3G寻呼信道的当前射频资源分配(步骤S1822)。18A and 18B are message sequence diagrams showing the communication between the arbitration module 1630 and the protocol stack processing modules 1610 and 1620 in the embodiment of FIG. 7 . In this embodiment, the protocol stack processing module 1610 uses the first SIM to communicate with the GPRS/EDGE system to perform packet access procedures, and the protocol stack processing module 1620 uses the second SIM to communicate with the UMTS system. In particular, the protocol stack processing module 1620 is in the 3G idle mode, and when in the 3G idle mode, the protocol stack processing module 1620 needs to continuously perform paging operations to listen to the 3G paging channel to receive paging messages from the UMTS system. Specifically, the protocol stack processing module 1620 needs to listen to the paging indicator channel or the paging channel during the paging period of each discontinuous reception cycle. For each paging period, the protocol stack processing module 1620 will request the arbitration module 1630 to obtain the allocation of radio frequency resources for paging operations (step S1801). Since there are currently available radio frequency resource allocations, the arbitration module 1630 decides to assign the current Resource allocation is assigned to the paging channel of 3G (step S 1802). Then, the arbitration module 1630 grants the request of the protocol stack processing module 1620 (step S1803 ). Since the request is granted, the protocol stack processing module 1620 accesses the only radio module to listen to the 3G paging channel (step S1804 ). Afterwards, because no paging message is received in the current paging period, or the received paging message is not for this mobile station, then the protocol stack processing module 1620 notifies the arbitration module 1630 when the paging period ends It is no longer necessary to access a unique radio frequency module (step S1805). Upon receiving the notification from the protocol stack processing module 1620, the arbitration module 1630 withdraws the current allocation of radio frequency resources assigned to the 3G paging channel (step S1806). Next, when the protocol stack processing module 1610 needs to execute the packet access procedure, it will request the arbitration module 1630 to allocate radio frequency resources to the permitted access channel during the execution of the packet access procedure (step S1807). Radio frequency resource allocation, so the arbitration module 1630 decides to assign the current radio frequency resource allocation to the grant access channel of 2G (step S1808 ). Then, the arbitration module 1630 grants the request of the protocol stack processing module 1610 (step S 1809). Since the request is granted, the protocol stack processing module 1610 accesses the unique RF module to monitor the 2G granted access channel (step S1810). As shown in Figure 7, for the next two paging periods, the protocol stack processing module 1620 will request the arbitration module 1630 to obtain radio frequency resource allocation for paging operations (steps S1811 and S1813), however, due to the current radio frequency resources The allocation has been assigned to the protocol stack processing module 1610 to monitor the 2G grant access channel, so the arbitration module 1630 rejects the request of the protocol stack processing module 1620 (steps S1812 and S1814). Next, when the packet access procedure ends, the protocol stack processing module 1610 will notify the arbitration module 1630 that it no longer needs to access the unique radio frequency module (step S1815 ). Upon receiving the notification from the protocol stack processing module 1610, the arbitration module 1630 withdraws the current allocation of radio frequency resources assigned to the 2G access channel (step S1816). Afterwards, when receiving a request from the protocol stack processing module 1620 for radio frequency resource allocation for paging operations (step S1817), since there are currently available radio frequency resource allocations, the arbitration module 1630 decides to assign the current radio frequency resource allocation to the 3G paging call channel (step S1818). Then, the arbitration module 1630 grants the request of the protocol stack processing module 1620 (step S1819 ). Next, steps S1820~S1822 are similar to steps S1804~S1806. First, the protocol stack processing module 1620 first accesses the only radio frequency module to listen to the 3G paging channel (step S1820), and because there is no Receive any paging message, or the received paging message is not for this mobile station, so the protocol stack processing module 1620 notifies the arbitration module 1630 when the paging period ends and no longer needs to access the unique radio frequency module (step S1821), and then the arbitration module 1630 withdraws the current radio frequency resource allocation assigned to the 3G paging channel when receiving the notification from the protocol stack processing module 1620 (step S1822).

图19A与图19B是显示仲裁模块1630以及协议栈处理模块1610与1620在图8的实施例中相互沟通的消息序列图。在此实施例,协议栈处理模块1610使用第一用户识别卡与GPRS/EDGE系统进行通信以执行分组存取程序,而协议栈处理模块1620使用第二用户识别卡与UMTS系统进行通信。特别是,协议栈处理模块1610处于2G分组传输模式以进行分组交换数据服务,而协议栈处理模块1620处于3G闲置模式。由于处于2G分组传输模式,协议栈处理模块1610便请求仲裁模块1630将射频资源分配指派给分组交换数据服务用的分组数据信道(步骤S1901),由于当前有可用的射频资源分配,所以仲裁模块1630决定将当前的射频资源分配指派给2G的分组数据信道(步骤S1902)。然后,仲裁模块1630准予了协议栈处理模块1610的请求(步骤S1903)。因为请求获得准予,所以协议栈处理模块1610存取唯一的射频模块以通过2G的分组数据信道进行分组交换数据服务(步骤S1904)。稍后,当协议栈处理模块1620需要执行寻呼作业去收听3G的寻呼信道以接收来自UMTS系统的寻呼消息时,会请求仲裁模块1630以取得寻呼作业用的射频资源分配(步骤S1905),由于3G的寻呼信道相较于2G的分组数据信道具有较高的优先级,所以仲裁模块1630决定将当前的射频资源分配指派给3G的寻呼信道。明确来说,仲裁模块1630会先请求协议栈处理模块1610暂停进行中的分组交换数据服务(步骤S1906)。当收到该请求时,协议栈处理模块1610便暂停进行中的分组交换数据服务,并停止存取唯一的射频模块(步骤S1907),然后传送响应给仲裁模块1630以指示分组交换数据服务已暂停(步骤S1908)。接着,仲裁模块1630在接收到协议栈处理模块1610的响应时,将当前的射频资源分配指派给3G的寻呼信道(步骤S1909),然后再准予协议栈处理模块1620的请求(步骤S1910)。因为请求获得准予,所以协议栈处理模块1620存取唯一的射频模块以收听3G的寻呼信道(步骤S1911)。之后,由于在当前的寻呼时段中没有收到任何寻呼消息、或所收到的寻呼消息不是针对此移动台的,于是协议栈处理模块1620在寻呼时段结束时通知仲裁模块1630已不再需要存取唯一的射频模块(步骤S1912)。在收到协议栈处理模块1620的通知时,仲裁模块1630再请求协议栈处理模块1610继续进行被暂停的分组交换数据服务(步骤S1913)。协议栈处理模块1610再存取唯一的射频模块以继续进行被暂停的分组交换数据服务(步骤S1914)。19A and 19B are message sequence diagrams showing the communication between the arbitration module 1630 and the protocol stack processing modules 1610 and 1620 in the embodiment of FIG. 8 . In this embodiment, the protocol stack processing module 1610 uses the first SIM to communicate with the GPRS/EDGE system to perform packet access procedures, and the protocol stack processing module 1620 uses the second SIM to communicate with the UMTS system. In particular, the protocol stack processing module 1610 is in the 2G packet transfer mode for packet switched data services, while the protocol stack processing module 1620 is in the 3G idle mode. Since it is in the 2G packet transmission mode, the protocol stack processing module 1610 requests the arbitration module 1630 to allocate radio frequency resources to the packet data channel for packet switched data services (step S1901). Since there are currently available radio frequency resource allocations, the arbitration module 1630 It is decided to assign the current radio frequency resource allocation to the packet data channel of 2G (step S1902 ). Then, the arbitration module 1630 grants the request of the protocol stack processing module 1610 (step S1903 ). Since the request is granted, the protocol stack processing module 1610 accesses the unique radio frequency module for packet-switched data service over the 2G packet data channel (step S1904 ). Later, when the protocol stack processing module 1620 needs to perform the paging operation to listen to the 3G paging channel to receive the paging message from the UMTS system, it will request the arbitration module 1630 to obtain the radio frequency resource allocation for the paging operation (step S1905 ), since the 3G paging channel has a higher priority than the 2G packet data channel, the arbitration module 1630 decides to assign the current radio frequency resource allocation to the 3G paging channel. Specifically, the arbitration module 1630 will first request the protocol stack processing module 1610 to suspend the ongoing packet-switched data service (step S1906 ). When receiving the request, the protocol stack processing module 1610 suspends the ongoing packet-switched data service and stops accessing the unique radio frequency module (step S1907), and then sends a response to the arbitration module 1630 to indicate that the packet-switched data service has been suspended (step S1908). Next, when receiving the response from the protocol stack processing module 1610, the arbitration module 1630 assigns the current radio resource allocation to the 3G paging channel (step S1909), and then grants the request of the protocol stack processing module 1620 (step S1910). Since the request is granted, the protocol stack processing module 1620 accesses the only radio module to listen to the 3G paging channel (step S1911 ). Afterwards, because no paging message is received in the current paging period, or the received paging message is not for this mobile station, then the protocol stack processing module 1620 notifies the arbitration module 1630 when the paging period ends It is no longer necessary to access a unique radio frequency module (step S1912). When receiving the notification from the protocol stack processing module 1620, the arbitration module 1630 requests the protocol stack processing module 1610 to continue the suspended packet switching data service (step S1913). The protocol stack processing module 1610 re-accesses the only radio frequency module to continue the suspended packet-switched data service (step S1914 ).

接着,在分组交换数据服务进行的过程中,当需要为了小区重选程序(包括:同无线存取技术内的小区重选程序、以及异无线存取技术间的小区重选程序)、小区更动命令程序、或分组小区更动命令程序而通过2G广播控制信道接收系统信息以及/或测量周遭小区时,协议栈处理模块1610会请求仲裁模块1630指派射频资源分配给2G的广播控制信道(步骤S1915),由于用在上述程序中的2G广播控制信道相较于2G的分组数据信道具有较高的优先级,所以仲裁模块1630决定将当前的射频资源分配指派给2G的广播控制信道(步骤S1916)。然后,仲裁模块1630准予了协议栈处理模块1610的请求(步骤S 1917)。因为请求获得准予,所以协议栈处理模块1610通过出让(sacrifice)与分组交换数据服务关联的部分数据收发去通过2G广播控制信道接收GPRS/EDGE系统的系统信息或测量周遭小区,以协调分组交换数据服务以及系统信息接收/周遭小区测量之间的作业(步骤S1918)。在上述程序(小区重选程序、小区更动命令程序、分组小区更动命令程序)进行的过程中,仲裁模块1630在收到协议栈处理模块1620请求寻呼作业用的射频资源分配时(步骤S1919与S1921),会因为2G的广播控制信道相较于3G的寻呼信道具有较高的优先级而回绝该请求(步骤S1920与S1922)。当上述程序(小区重选程序、小区更动命令程序、分组小区更动命令程序)结束时,协议栈处理模块1610会通知仲裁模块1630已不再需要用到2G的广播控制信道(步骤S1923)。在收到协议栈处理模块1610的通知时,仲裁模块1630便知道协议栈处理模块1610现在只需要进行分组交换数据服务,且射频资源分配只需指派给2G的分组数据信道。所以之后,仲裁模块1630便可准予协议栈处理模块1620用以取得寻呼作业用的射频资源分配的请求。Then, during the process of packet switched data service, when it is necessary for the cell reselection procedure (including: the cell reselection procedure within the same RAT and the cell reselection procedure between different RATs), the cell reselection procedure When receiving system information and/or measuring surrounding cells through the 2G broadcast control channel through the group cell change command program or the packet cell change command program, the protocol stack processing module 1610 will request the arbitration module 1630 to assign radio frequency resources to the 2G broadcast control channel (step S1915), since the 2G broadcast control channel used in the above procedure has a higher priority than the 2G packet data channel, the arbitration module 1630 decides to assign the current radio frequency resource allocation to the 2G broadcast control channel (step S1916 ). Then, the arbitration module 1630 grants the request of the protocol stack processing module 1610 (step S 1917). Because the request is granted, the protocol stack processing module 1610 receives the system information of the GPRS/EDGE system through the 2G broadcast control channel or measures the surrounding cells to coordinate packet-switched data by giving away (sacrifice) part of the data transmission and reception associated with the packet-switched data service Operation between service and system information reception/surrounding cell measurement (step S1918 ). During the process of the above procedures (cell reselection procedure, cell change command procedure, group cell change command procedure), when the arbitration module 1630 receives a request from the protocol stack processing module 1620 for radio frequency resource allocation for paging operations (step S1919 and S1921), the request will be rejected because the 2G broadcast control channel has a higher priority than the 3G paging channel (steps S1920 and S1922). When the above procedures (cell reselection procedure, cell change command procedure, group cell change command procedure) end, the protocol stack processing module 1610 will notify the arbitration module 1630 that the 2G broadcast control channel is no longer needed (step S1923) . When receiving the notification from the protocol stack processing module 1610, the arbitration module 1630 knows that the protocol stack processing module 1610 only needs to perform packet-switched data services now, and radio frequency resource allocation only needs to be assigned to 2G packet data channels. Therefore, the arbitration module 1630 can grant the request of the protocol stack processing module 1620 to obtain the radio frequency resource allocation for the paging operation.

需注意的是,对本领域技术人员而言,当可根据图18A、18B、19A、19B所示的实施例想出如何由仲裁模块1630协调协议栈处理模块1610与1620在盲分组小区更动命令程序、盲分组交换交递程序、小区更动命令程序、或异无线存取技术间的小区重选程序中关于2G频率修正信道或同步信道的射频资源分配,以及在分组交换交递程序中关于2G分组数据信道的射频资源分配,故在此不作赘述。It should be noted that for those skilled in the art, according to the embodiments shown in FIGS. 18A, 18B, 19A, and 19B, it is possible to figure out how to use the arbitration module 1630 to coordinate the protocol stack processing modules 1610 and 1620 to change the command in the blind grouping cell. Procedure, blind packet switching handover procedure, cell change command procedure, or cell reselection procedure between different RATs regarding the radio frequency resource allocation of 2G frequency correction channel or synchronization channel, and in packet switching handover procedure about The radio frequency resource allocation of the 2G packet data channel is not described here.

图20A与图20B是显示仲裁模块1630以及协议栈处理模块1610与1620在图13的实施例中相互沟通的消息序列图。在此实施例,协议栈处理模块1610使用第一用户识别卡与UMTS系统进行通信以执行联机建立程序,而协议栈处理模块1620使用第二用户识别卡与GSM/GPRS/EDGE系统进行通信。特别是,协议栈处理模块1610处于3G闲置模式,然后再执行联机建立程序并进入小区转送存取信道模式/小区专用信道模式,而协议栈处理模块1620处于2G闲置模式。当处于2G闲置模式时,协议栈处理模块1620需要持续地执行寻呼作业,去收听2G寻呼信道以接收来自GSM/GPRS/EDGE系统的寻呼消息。明确来说,协议栈处理模块1620需要在每个非连续接收周期的寻呼时段收听寻呼信道。在协议栈处理模块1610需要执行联机建立程序之前,协议栈处理模块1620请求仲裁模块1630以取得寻呼作业用的射频资源分配(步骤S2001),由于当前有可用的射频资源分配,所以仲裁模块1630决定将当前的射频资源分配指派给2G的寻呼信道(步骤S2002)。然后,仲裁模块1630准予了协议栈处理模块1620的请求(步骤S2003)。因为请求获得准予,所以协议栈处理模块1620存取唯一的射频模块以收听2G的寻呼信道(步骤S2004)。之后,由于在当前的寻呼时段中没有收到任何寻呼消息、或所收到的寻呼消息不是针对此移动台的,于是协议栈处理模块1620在寻呼时段结束时通知仲裁模块1630已不再需要存取唯一的射频模块(步骤S2005)。在收到协议栈处理模块1620的通知时,仲裁模块1630便收回指派给2G寻呼信道的当前射频资源分配(步骤S2006)。20A and 20B are message sequence diagrams showing the communication between the arbitration module 1630 and the protocol stack processing modules 1610 and 1620 in the embodiment of FIG. 13 . In this embodiment, the protocol stack processing module 1610 uses the first SIM card to communicate with the UMTS system to perform the connection establishment procedure, and the protocol stack processing module 1620 uses the second SIM card to communicate with the GSM/GPRS/EDGE system. In particular, the protocol stack processing module 1610 is in the 3G idle mode, and then executes the connection establishment procedure and enters the cell transfer access channel mode/cell dedicated channel mode, while the protocol stack processing module 1620 is in the 2G idle mode. When in the 2G idle mode, the protocol stack processing module 1620 needs to continuously execute paging operations to listen to the 2G paging channel to receive paging messages from the GSM/GPRS/EDGE system. Specifically, the protocol stack processing module 1620 needs to listen to the paging channel during the paging period of each DRX cycle. Before the protocol stack processing module 1610 needs to execute the connection establishment procedure, the protocol stack processing module 1620 requests the arbitration module 1630 to obtain radio frequency resource allocation for paging operations (step S2001). Since there are currently available radio frequency resource allocations, the arbitration module 1630 It is decided to assign the current radio frequency resource allocation to the 2G paging channel (step S2002). Then, the arbitration module 1630 grants the request of the protocol stack processing module 1620 (step S2003 ). Since the request is granted, the protocol stack processing module 1620 accesses the only radio module to listen to the 2G paging channel (step S2004 ). Afterwards, because no paging message is received in the current paging period, or the received paging message is not for this mobile station, then the protocol stack processing module 1620 notifies the arbitration module 1630 when the paging period ends It is no longer necessary to access a unique radio frequency module (step S2005). Upon receiving the notification from the protocol stack processing module 1620, the arbitration module 1630 withdraws the current allocation of radio frequency resources assigned to the 2G paging channel (step S2006).

稍后,当协议栈处理模块1610需要执行联机建立程序时,会请求仲裁模块1630将射频资源分配指派给3G的转送存取信道与专用信道(步骤S2007),由于当前有可用的射频资源分配,所以仲裁模块1630决定将当前的射频资源分配指派给3G的转送存取信道与专用信道(步骤S2008)。然后,仲裁模块1630准予了协议栈处理模块1610的请求(步骤S2009)。因为请求获得准予,所以协议栈处理模块1610存取唯一的射频模块以通过3G随机存取信道传送无线资源控制的联机请求消息给UMTS系统并监控3G转送存取信道以接收无线资源控制的联机建立消息(步骤S2010)。在一实施例,协议栈处理模块1610可传送物理信道优先级调整请求(CPHY_CHANNEL_PRIORITY_ADJUSTMENT_REQ)消息给唯一的射频模块以请求保留3G转送存取信道。在联机建立程序进行的过程中,当接收到协议栈处理模块1620请求寻呼作业用的射频资源分配时(步骤S2011),由于3G转送存取信道相较于2G寻呼信道具有较高的优先级,所以仲裁模块1630回绝了该请求(步骤S2012)。接着,当通过3G转送存取信道接收到来自UMTS系统的无线资源控制的联机建立消息时,协议栈处理模块1610存取唯一的射频模块以保留3G专用信道用于进入小区专用信道模式的无线设定(意即,用于执行上述A同步程序)(步骤S2013)。在该无线设定完成后,协议栈处理模块1610通过3G专用信道传送无线资源控制的联机建立完成消息给UMTS系统,并通知仲裁模块1630关于联机建立程序已结束(步骤S2014)。在一实施例,可于接收到来自唯一的射频模块的物理下行初始同步指示(CPHY_DL_INIT_SYNC_IND)消息时表示完成该无线设定。当收到协议栈处理模块1610的通知时,仲裁模块1630将指派给3G转送存取信道与专用信道的当前射频资源分配设为可被重新指派(意即,协议栈处理模块1610正在进行的无线作业是可被中断的)(步骤S2015)。之后,当协议栈处理模块1620需要执行寻呼作业去收听2G的寻呼信道以接收来自GSM/GPRS/EDGE系统的寻呼消息时,会请求仲裁模块1630以取得寻呼作业用的射频资源分配(步骤S2016),由于非用在联机建立程序中的3G转送存取信道与专用信道相较于2G的寻呼信道具有较低的优先级,所以仲裁模块1630决定将当前的射频资源分配指派给2G的寻呼信道。明确来说,仲裁模块1630会先请求协议栈处理模块1610暂停通过3G转送存取信道与专用信道进行任何无线作业(步骤S2017)。当收到该请求时,由于协议栈处理模块1610当前并未进行任何无线作业,于是便立即传送响应给仲裁模块1630以指示该请求已完成(步骤S2018)。接着,仲裁模块1630在接收到协议栈处理模块1610的响应时,将当前的射频资源分配指派给2G的寻呼信道(步骤S2019),然后再准予协议栈处理模块1620的请求(步骤S2020)。因为请求获得准予,所以协议栈处理模块1620存取唯一的射频模块以收听2G的寻呼信道(步骤S2021)。之后,由于在当前的寻呼时段中没有收到任何寻呼消息、或所收到的寻呼消息不是针对此移动台的,于是协议栈处理模块1620在寻呼时段结束时通知仲裁模块1630已不再需要存取唯一的射频模块(步骤S2022)。在收到协议栈处理模块1620的通知时,仲裁模块1630再请求协议栈处理模块1610继续进行被暂停的无线作业(步骤S2023)。Later, when the protocol stack processing module 1610 needs to execute the connection establishment procedure, it will request the arbitration module 1630 to allocate radio frequency resources to the 3G transfer access channel and dedicated channel (step S2007). Since there are currently available radio frequency resource allocations, Therefore, the arbitration module 1630 decides to assign the current radio frequency resource allocation to the 3G TRACH and the dedicated channel (step S2008 ). Then, the arbitration module 1630 grants the request of the protocol stack processing module 1610 (step S2009 ). Since the request is granted, the protocol stack processing module 1610 accesses the only radio module to transmit the RRC connection request message to the UMTS system through the 3G random access channel and monitors the 3G forward access channel to receive the RRC connection establishment message (step S2010). In one embodiment, the protocol stack processing module 1610 may send a physical channel priority adjustment request (CPHY_CHANNEL_PRIORITY_ADJUSTMENT_REQ) message to the only radio frequency module to request to reserve the 3G TRACH. During the connection establishment process, when the protocol stack processing module 1620 receives a request for radio frequency resource allocation for paging operations (step S2011), since the 3G transfer access channel has a higher priority than the 2G paging channel level, so the arbitration module 1630 rejects the request (step S2012). Next, when receiving the connection establishment message from the radio resource control of the UMTS system through the 3G forwarding access channel, the protocol stack processing module 1610 accesses the only radio frequency module to reserve the 3G dedicated channel for the wireless device entering the cell dedicated channel mode set (that is, for executing the above-mentioned A synchronization program) (step S2013). After the wireless setting is completed, the protocol stack processing module 1610 transmits an RRC connection establishment complete message to the UMTS system through the 3G dedicated channel, and notifies the arbitration module 1630 that the connection establishment procedure has ended (step S2014 ). In one embodiment, the completion of the wireless setup may be indicated when a physical downlink initial synchronization indication (CPHY_DL_INIT_SYNC_IND) message is received from the only radio frequency module. When receiving the notification from the protocol stack processing module 1610, the arbitration module 1630 sets the current radio frequency resource allocation assigned to the 3G transfer access channel and the dedicated channel to be reassignable (that is, the ongoing wireless communication of the protocol stack processing module 1610 The job is interruptible) (step S2015). Afterwards, when the protocol stack processing module 1620 needs to perform a paging operation to listen to the 2G paging channel to receive paging messages from the GSM/GPRS/EDGE system, it will request the arbitration module 1630 to obtain radio frequency resource allocation for the paging operation (Step S2016), since the 3G transfer access channel and the dedicated channel not used in the connection establishment procedure have lower priority than the 2G paging channel, the arbitration module 1630 decides to assign the current radio frequency resource allocation to 2G paging channel. Specifically, the arbitration module 1630 first requests the protocol stack processing module 1610 to suspend any wireless operation through the 3G transfer access channel and the dedicated channel (step S2017 ). When receiving the request, since the protocol stack processing module 1610 is not currently performing any wireless operations, it immediately sends a response to the arbitration module 1630 to indicate that the request has been completed (step S2018 ). Next, when receiving the response from the protocol stack processing module 1610, the arbitration module 1630 assigns the current radio frequency resource allocation to the 2G paging channel (step S2019), and then grants the request of the protocol stack processing module 1620 (step S2020). Since the request is granted, the protocol stack processing module 1620 accesses the only radio module to listen to the 2G paging channel (step S2021 ). Afterwards, because no paging message is received in the current paging period, or the received paging message is not for this mobile station, then the protocol stack processing module 1620 notifies the arbitration module 1630 when the paging period ends It is no longer necessary to access a unique radio frequency module (step S2022). When receiving the notification from the protocol stack processing module 1620, the arbitration module 1630 requests the protocol stack processing module 1610 to continue the suspended wireless operation (step S2023).

图21A~21C是显示仲裁模块1630以及协议栈处理模块1610与1620在图15的实施例中相互沟通的消息序列图。在此实施例,协议栈处理模块1610使用第一用户识别卡与UMTS系统进行通信以执行联机建立程序,而协议栈处理模块1620使用第二用户识别卡与GSM/GPRS/EDGE系统进行通信。特别是,协议栈处理模块1610处于3G闲置模式,接着执行联机建立程序以进入小区转送存取信道模式,然后再执行硬式交递程序以进入小区专用信道模式;而协议栈处理模块1620处于2G闲置模式。当处于2G闲置模式时,协议栈处理模块1620需要持续地执行寻呼作业,去收听2G寻呼信道以接收来自GSM/GPRS/EDGE系统的寻呼消息。明确来说,协议栈处理模块1620需要在每个非连续接收周期的寻呼时段收听寻呼信道。在协议栈处理模块1610需要执行联机建立程序之前,协议栈处理模块1620请求仲裁模块1630以取得寻呼作业用的射频资源分配(步骤S2101),由于当前有可用的射频资源配置,所以仲裁模块1630决定将当前的射频资源分配指派给2G的寻呼信道(步骤S2102)。然后,仲裁模块1630准予了协议栈处理模块1620的请求(步骤S2103)。因为请求获得准予,所以协议栈处理模块1620存取唯一的射频模块以收听2G的寻呼信道(步骤S2104)。之后,由于在当前的寻呼时段中没有收到任何寻呼消息、或所收到的寻呼消息不是针对此移动台的,于是协议栈处理模块1620在寻呼时段结束时通知仲裁模块1630已不再需要存取唯一的射频模块(步骤S2105)。在收到协议栈处理模块1620的通知时,仲裁模块1630便收回指派给2G寻呼信道的当前射频资源分配(步骤S2106)。21A-21C are message sequence diagrams showing the communication between the arbitration module 1630 and the protocol stack processing modules 1610 and 1620 in the embodiment of FIG. 15 . In this embodiment, the protocol stack processing module 1610 uses the first SIM to communicate with the UMTS system to perform the connection establishment procedure, and the protocol stack processing module 1620 uses the second SIM to communicate with the GSM/GPRS/EDGE system. In particular, the protocol stack processing module 1610 is in the 3G idle mode, then executes the connection establishment procedure to enter the cell transfer access channel mode, and then executes the hard handover procedure to enter the cell dedicated channel mode; and the protocol stack processing module 1620 is in the 2G idle mode model. When in the 2G idle mode, the protocol stack processing module 1620 needs to continuously execute the paging operation to listen to the 2G paging channel to receive paging messages from the GSM/GPRS/EDGE system. Specifically, the protocol stack processing module 1620 needs to listen to the paging channel during the paging period of each DRX cycle. Before the protocol stack processing module 1610 needs to execute the connection establishment procedure, the protocol stack processing module 1620 requests the arbitration module 1630 to obtain the allocation of radio frequency resources for the paging operation (step S2101). Since there are currently available radio frequency resource configurations, the arbitration module 1630 It is decided to assign the current radio frequency resource allocation to the 2G paging channel (step S2102). Then, the arbitration module 1630 grants the request of the protocol stack processing module 1620 (step S2103 ). Since the request is granted, the protocol stack processing module 1620 accesses the only radio module to listen to the 2G paging channel (step S2104 ). Afterwards, because no paging message has been received in the current paging period, or the received paging message is not aimed at this mobile station, then the protocol stack processing module 1620 notifies the arbitration module 1630 when the paging period ends. It is no longer necessary to access a unique radio frequency module (step S2105). Upon receiving the notification from the protocol stack processing module 1620, the arbitration module 1630 withdraws the current allocation of radio frequency resources assigned to the 2G paging channel (step S2106).

稍后,当协议栈处理模块1610需要执行联机建立程序时,会请求仲裁模块1630将射频资源分配指派给3G的转送存取信道(步骤S2107),由于当前有可用的射频资源分配,所以仲裁模块1630决定将当前的射频资源分配指派给3G的转送存取信道(步骤S2108)。然后,仲裁模块1630准予了协议栈处理模块1610的请求(步骤S2109)。因为请求获得准予,所以协议栈处理模块1610存取唯一的射频模块以通过3G随机存取信道传送无线资源控制的联机请求消息给UMTS系统并监控3G转送存取信道以接收无线资源控制的联机建立消息(步骤S2110)。在一实施例,协议栈处理模块1610可传送物理信道优先级调整请求消息给唯一的射频模块以请求保留3G转送存取信道。在联机建立程序进行的过程中,当接收到协议栈处理模块1620请求寻呼作业用的射频资源分配时(步骤S2111),由于3G转送存取信道相较于2G寻呼信道具有较高的优先级,所以仲裁模块1630回绝了该请求(步骤S2112)。接着,当通过3G转送存取信道接收到来自UMTS系统的无线资源控制的联机建立消息时,协议栈处理模块1610存取唯一的射频模块以进行无线设定(意即,执行上述A同步程序),其中该无线设定还指示协议栈处理模块1610留在小区转送存取信道模式(步骤S2113)。在该无线设定完成后,协议栈处理模块1610通过3G转送存取信道传送无线资源控制的联机建立完成消息给UMTS系统,并通知仲裁模块1630关于联机建立程序已结束(步骤S2114)。在一实施例,可于接收到来自唯一的射频模块的物理下行初始同步指示消息时表示完成该无线设定。当收到协议栈处理模块1610的通知时,仲裁模块1630将指派给3G转送存取信道的当前射频资源分配设为可被重新指派(意即,协议栈处理模块1610正在进行的无线作业是可被中断的)(步骤S2115)。之后,当协议栈处理模块1620需要执行寻呼作业去收听2G的寻呼信道以接收来自GSM/GPRS/EDGE系统的寻呼消息时,会请求仲裁模块1630以取得寻呼作业用的射频资源分配(步骤S2116),由于非用在联机建立程序中的3G转送存取信道相较于2G的寻呼信道具有较低的优先级,所以仲裁模块1630决定将当前的射频资源分配指派给2G的寻呼信道。明确来说,仲裁模块1630会先请求协议栈处理模块1610暂停通过3G转送存取信道进行任何无线服务(步骤S2117)。当收到该请求时,由于协议栈处理模块1610当前并未进行任何无线作业,于是便立即传送响应给仲裁模块1630以指示该请求已完成(步骤S2118)。接着,仲裁模块1630在接收到协议栈处理模块1610的响应时,将当前的射频资源分配指派给2G的寻呼信道(步骤S2119),然后再准予协议栈处理模块1620的请求(步骤S2120)。因为请求获得准予,所以协议栈处理模块1620存取唯一的射频模块以收听2G的寻呼信道(步骤S2121)。之后,由于在当前的寻呼时段中没有收到任何寻呼消息、或所收到的寻呼消息不是针对此移动台的,于是协议栈处理模块1620在寻呼时段结束时通知仲裁模块1630已不再需要存取唯一的射频模块(步骤S2122)。在收到协议栈处理模块1620的通知时,仲裁模块1630再请求协议栈处理模块1610继续进行被中断的无线作业(步骤S2123)。Later, when the protocol stack processing module 1610 needs to execute the connection establishment procedure, it will request the arbitration module 1630 to allocate radio frequency resources to the 3G transfer access channel (step S2107). Since there are currently available radio frequency resource allocations, the arbitration module 1630 decides to assign the current radio resource allocation to the 3G TX channel (step S2108 ). Then, the arbitration module 1630 grants the request of the protocol stack processing module 1610 (step S2109 ). Since the request is granted, the protocol stack processing module 1610 accesses the only radio module to transmit the RRC connection request message to the UMTS system through the 3G random access channel and monitors the 3G forward access channel to receive the RRC connection establishment message (step S2110). In one embodiment, the protocol stack processing module 1610 may send a physical channel priority adjustment request message to the only radio frequency module to request to reserve the 3G TRACH. During the connection establishment process, when the protocol stack processing module 1620 receives a request for radio resource allocation for paging operations (step S2111), since the 3G transfer access channel has a higher priority than the 2G paging channel level, so the arbitration module 1630 rejects the request (step S2112). Next, when receiving the connection establishment message from the radio resource control of the UMTS system through the 3G forwarding access channel, the protocol stack processing module 1610 accesses the unique radio frequency module for wireless configuration (that is, executes the above-mentioned A synchronization procedure) , wherein the wireless setting also instructs the protocol stack processing module 1610 to stay in the cell forwarding access channel mode (step S2113 ). After the wireless setting is completed, the protocol stack processing module 1610 transmits a RRC connection establishment complete message to the UMTS system through the 3G forward access channel, and notifies the arbitration module 1630 that the connection establishment procedure has ended (step S2114 ). In one embodiment, the completion of the wireless configuration may be indicated when a physical downlink initial synchronization indication message is received from the only radio frequency module. When receiving the notification from the protocol stack processing module 1610, the arbitration module 1630 sets the current radio frequency resource allocation assigned to the 3G transfer access channel as re-assignable (that is, the ongoing wireless operation of the protocol stack processing module 1610 is available interrupted) (step S2115). Afterwards, when the protocol stack processing module 1620 needs to perform a paging operation to listen to the 2G paging channel to receive paging messages from the GSM/GPRS/EDGE system, it will request the arbitration module 1630 to obtain radio frequency resource allocation for the paging operation (Step S2116), since the 3G transfer access channel not used in the connection establishment procedure has a lower priority than the 2G paging channel, the arbitration module 1630 decides to assign the current radio frequency resource allocation to the 2G paging channel call channel. To be specific, the arbitration module 1630 will first request the protocol stack processing module 1610 to suspend any wireless service through the 3G transfer access channel (step S2117 ). When receiving the request, since the protocol stack processing module 1610 is not currently performing any wireless operations, it immediately sends a response to the arbitration module 1630 to indicate that the request has been completed (step S2118 ). Next, when receiving the response from the protocol stack processing module 1610, the arbitration module 1630 assigns the current radio frequency resource allocation to the 2G paging channel (step S2119), and then grants the request of the protocol stack processing module 1620 (step S2120). Since the request is granted, the protocol stack processing module 1620 accesses the only radio module to listen to the 2G paging channel (step S2121 ). Afterwards, because no paging message is received in the current paging period, or the received paging message is not for this mobile station, then the protocol stack processing module 1620 notifies the arbitration module 1630 when the paging period ends It is no longer necessary to access a unique radio frequency module (step S2122). When receiving the notification from the protocol stack processing module 1620, the arbitration module 1630 requests the protocol stack processing module 1610 to continue the interrupted wireless operation (step S2123).

接着,当协议栈处理模块1610需要执行硬式交递程序时(意即,当收到来自UMTS系统的硬式交递命令,例如:物理信道重设消息、无线乘载重设消息、无线乘载建立消息、无线乘载释放消息、或传输信道重设消息),会请求仲裁模块1630将射频资源分配指派给3G的专用信道(步骤S2124),而仲裁模块1630也决定将射频资源分配指派给3G的专用信道(步骤S2125),所以准予了协议栈处理模块1610的请求(步骤S2126)。因为请求获得准予,所以协议栈处理模块1610存取唯一的射频模块以进行无线设定(意即,执行上述A同步程序),其中该无线设定还指示协议栈处理模块1610进入小区专用信道模式(步骤S2127)。在该无线设定完成后,协议栈处理模块1610通过3G专用信道传送硬式交递响应(例如:物理信道重设完成消息、无线乘载重设完成消息、无线乘载建立完成消息、无线乘载释放完成消息、或传输信道重设完成消息)给UMTS系统,并通知仲裁模块1630关于硬式交递程序已结束(步骤S2128)。在一实施例,可于接收到来自唯一的射频模块的物理下行初始同步指示消息时表示完成该无线设定。当收到协议栈处理模块1610的通知时,仲裁模块1630将指派给3G专用信道的当前射频资源分配设为可被重新指派(意即,协议栈处理模块1610正在进行的无线作业是可被中断的)(步骤S2129)。Next, when the protocol stack processing module 1610 needs to perform a hard handover procedure (that is, when receiving a hard handover command from the UMTS system, such as: a physical channel reset message, a wireless bearer reset message, a wireless bearer setup message , wireless bearer release message, or transmission channel reset message), will request the arbitration module 1630 to assign the radio frequency resource allocation to the 3G dedicated channel (step S2124), and the arbitration module 1630 also decides to assign the radio frequency resource allocation to the 3G dedicated channel channel (step S2125), so the request of the protocol stack processing module 1610 is granted (step S2126). Because the request is granted, the protocol stack processing module 1610 accesses the unique radio frequency module for wireless setup (i.e., performing the A synchronization procedure described above), which also instructs the protocol stack processing module 1610 to enter cell-specific channel mode (step S2127). After the wireless setting is completed, the protocol stack processing module 1610 transmits a hard handover response through the 3G dedicated channel (for example: physical channel reset complete message, wireless bearer reset complete message, wireless bearer setup complete message, wireless bearer release Complete message, or transmission channel reset complete message) to the UMTS system, and notify the arbitration module 1630 that the hard handover procedure has ended (step S2128). In one embodiment, the completion of the wireless configuration may be indicated when a physical downlink initial synchronization indication message is received from the only radio frequency module. When receiving the notification from the protocol stack processing module 1610, the arbitration module 1630 sets the current radio frequency resource allocation assigned to the 3G dedicated channel as being able to be reassigned (that is, the ongoing wireless operation of the protocol stack processing module 1610 can be interrupted) of) (step S2129).

图22是根据本发明另一实施例所述的移动台的软件架构示意图。该软件架构的范例包括有协议栈处理模块2210与2220。协议栈处理模块2210在被处理单元或Baseband MCU执行时,是用以使用第一用户识别卡(例如:用户识别卡10)与第一服务网络(例如:服务网络120)进行通信;而协议栈处理模块2220在被处理单元或Baseband MCU执行时,是用以使用第二用户识别卡(例如:用户识别卡20)与第二服务网络(例如:服务网络130)进行通信。不同于图16所示的软件架构,协议栈处理模块2210与2220直接相互沟通以协调各自要进行的作业。明确来说,当协议栈处理模块2210与2220在同一时段皆请求取得唯一射频模块的控制权以进行无线通信时,表示发生作业冲突,接着才相互沟通以决定该时段的射频资源分配要指派给协议栈处理模块2210或2220。Fig. 22 is a schematic diagram of the software architecture of the mobile station according to another embodiment of the present invention. An example of the software architecture includes protocol stack processing modules 2210 and 2220 . When the protocol stack processing module 2210 is executed by the processing unit or Baseband MCU, it is used to communicate with the first service network (for example: service network 120) using the first subscriber identification card (for example: subscriber identity card 10); and the protocol stack When the processing module 2220 is executed by the processing unit or the Baseband MCU, it is used to communicate with the second service network (for example: the service network 130 ) by using the second subscriber identity card (for example: subscriber identity card 20 ). Different from the software architecture shown in FIG. 16 , the protocol stack processing modules 2210 and 2220 directly communicate with each other to coordinate their respective operations. To be clear, when the protocol stack processing modules 2210 and 2220 both request to obtain the control right of the only radio frequency module for wireless communication at the same time period, it means that an operation conflict occurs, and then they communicate with each other to determine the allocation of radio frequency resources for this time period. A protocol stack processing module 2210 or 2220.

图23是根据本发明一实施例所述由协议栈处理模块2210与2220协调作业的方法流程图。首先,协议栈处理模块2210与2220分别关联至不同的服务网络并处于闲置模式,且可发出请求给彼此以协商谁能取得射频资源分配以进行无线作业。在该通信作业协调方法一开始,当协议栈处理模块2210与2220中的一个需要与第一服务网络进行通信时,会发出请求给另一者,其中该请求指示了所欲使用的信道以及该信道是用于何程序或作业(步骤S2301),在一实施例,如果上述欲进行的无线作业为寻呼作业,则该请求可指示所欲使用的信道为寻呼信道且寻呼信道用于寻呼作业。在另一实施例,如果上述欲进行的无线作业为分组存取程序,则该请求可指示所欲使用的信道为准许接入信道且而准许接入信道用于分组存取程序。当收到该请求时,协议栈处理模块2210与2220中的另一个会判断该请求是否会与自己正与第二服务网络进行的无线作业发生冲突(步骤S2302),若是,则进一步判断自己正在进行中的无线作业是否可被中断(步骤S2303)。明确来说,协议栈处理模块2210与2220中的另一个可先判断该请求所指示的信道是否用于拥有特权的程序,若是,则进一步判断该请求所指示的信道相较于自己正在进行中的无线作业所使用的信道具有较高的优先级。如果判断为是,则可将自己正在进行中的无线作业所使用的信道视为可被中断,于是协议栈处理模块2210与2220中的另一个暂停自己正在进行中的无线作业(步骤S2304),然后再发出响应给对方以指示该请求已被接受(步骤S2305),使得协议栈处理模块2210与2220中的一个能够取得当前的射频资源分配以与第一服务网络进行通信。接着,当收到协议栈处理模块2210与2220中的一个通知已不再需要使用射频资源分配时,协议栈处理模块2210与2220中的另一个再继续进行被暂停的无线作业(步骤S2306)。在步骤S2303,如果协议栈处理模块2210与2220中的另一个正在进行中的无线作业不可被中断,则发出响应给对方以指示该请求已被拒绝(步骤S2307)。在步骤S2302,如果该请求不会造成作业冲突,则协议栈处理模块2210与2220中的另一个可发出响应给对方以指示该请求已被接受(步骤S2308),然后在收到协议栈处理模块2210与2220中的一个通知已不再需要使用射频资源分配时,再收回当前的射频资源分配(步骤S2309)。FIG. 23 is a flowchart of a method for coordinating operations by the protocol stack processing modules 2210 and 2220 according to an embodiment of the present invention. Firstly, the protocol stack processing modules 2210 and 2220 are respectively associated with different service networks and are in an idle mode, and can send requests to each other to negotiate who can obtain radio frequency resource allocation for wireless operations. At the beginning of the communication operation coordination method, when one of the protocol stack processing modules 2210 and 2220 needs to communicate with the first service network, it will send a request to the other, wherein the request indicates the channel to be used and the What program or operation is the channel used for (step S2301). In one embodiment, if the wireless operation to be performed above is a paging operation, the request may indicate that the channel to be used is a paging channel and the paging channel is used for paging job. In another embodiment, if the wireless operation to be performed is a packet access procedure, the request may indicate that the channel to be used is a granted access channel and that the permitted access channel is used for the packet access procedure. When receiving the request, the other of the protocol stack processing modules 2210 and 2220 will judge whether the request will conflict with the wireless operation it is performing with the second service network (step S2302), and if so, further judge that it is Whether the ongoing wireless operation can be interrupted (step S2303). Specifically, the other of the protocol stack processing modules 2210 and 2220 can first determine whether the channel indicated by the request is used for a program with privileges, and if so, then further determine that the channel indicated by the request is in progress compared with itself. The channel used by the wireless job has a higher priority. If it is judged to be yes, the channel used by the wireless operation in progress can be regarded as interrupted, so the other of the protocol stack processing modules 2210 and 2220 suspends the wireless operation in progress (step S2304), Then send a response to the other party to indicate that the request has been accepted (step S2305 ), so that one of the protocol stack processing modules 2210 and 2220 can obtain the current radio frequency resource allocation to communicate with the first service network. Next, when receiving a notification from one of the protocol stack processing modules 2210 and 2220 that radio resource allocation is no longer required, the other of the protocol stack processing modules 2210 and 2220 resumes the suspended wireless operation (step S2306 ). In step S2303, if another ongoing wireless operation in the protocol stack processing modules 2210 and 2220 cannot be interrupted, a response is sent to the other party indicating that the request has been rejected (step S2307). In step S2302, if the request will not cause a job conflict, the other of the protocol stack processing modules 2210 and 2220 may send a response to the other party to indicate that the request has been accepted (step S2308), and then the protocol stack processing module When one of 2210 and 2220 notifies that radio frequency resource allocation is no longer needed, the current radio frequency resource allocation is withdrawn (step S2309 ).

在一实施例,可使用特权程序列表以指示拥有特权的程序,包括:关联至GSM/GPRS/EDGE系统的寻呼作业、分组存取程序、同无线存取技术内的小区重选程序、异无线存取技术间的小区重选程序、小区更动命令程序、分组小区更动命令程序、盲分组小区更动命令程序、或分组交换交递程序,或关联至UMTS系统的寻呼作业、联机建立程序、或硬式交递程序。而相应地,信道优先清单可用以指示在上述拥有特权的程序中需要被保护的信道优先级顺序。明确来说,用于特权程序中的2G准许接入信道、广播控制信道、频率修正信道、同步信道、以及分组数据信道相较于3G的寻呼信道/寻呼指示信道具有较高的优先级;用于特权程序中的3G转送存取信道与专用信道相较于2G的寻呼信道具有较高的优先级;而不是用于特权程序的3G转送存取信道与专用信道则相较于2G的寻呼信道具有较低的优先级;不是用于特权程序的2G准许接入信道、广播控制信道、频率修正信道、同步信道、以及分组数据信道则相较于3G的寻呼信道/寻呼指示信道具有较低的优先级。In one embodiment, a list of privileged procedures can be used to indicate privileged procedures, including: paging operations associated with GSM/GPRS/EDGE systems, packet access procedures, cell reselection procedures within the same RAT, different Cell reselection procedures, cell change command procedures, packet cell change command procedures, blind packet cell change command procedures, or packet switching handover procedures between RATs, or paging operations associated with UMTS systems, connection Build procedures, or hard handover procedures. Correspondingly, the channel priority list can be used to indicate the priority order of the channels that need to be protected in the above-mentioned privileged program. Specifically, the 2G Granted Access Channel, Broadcast Control Channel, Frequency Correction Channel, Synchronization Channel, and Packet Data Channel used in privileged procedures have higher priority than the 3G Paging Channel/Page Indicator Channel ;3G FACHs and dedicated channels used in privileged programs have higher priority than 2G paging channels; 3G FACHs and dedicated channels not used in privileged programs have higher priority than 2G The paging channel has lower priority; the 2G grant access channel, broadcast control channel, frequency correction channel, synchronization channel, and packet data channel that are not used for privileged procedures are compared to the 3G paging channel/paging channel Indicates that the channel has a lower priority.

需注意的是,在图22所示的软件架构中,协议栈处理模块2210与2220皆可包括多个协议层(未绘示),而为了实施本发明所述的信道保护,上述特权程序列表与信道优先列表的信息可由上层协议层提供给第一层协议层(例如:由无线资源控制层提供给第一层)。It should be noted that, in the software architecture shown in FIG. 22 , both the protocol stack processing modules 2210 and 2220 can include multiple protocol layers (not shown), and in order to implement the channel protection described in the present invention, the above-mentioned privileged program list The information related to the channel priority list can be provided by the upper layer protocol layer to the first layer protocol layer (for example: provided by the radio resource control layer to the first layer).

图24是显示协议栈处理模块2210与2220在图7的实施例中相互沟通的消息序列图。在此实施例,协议栈处理模块2210使用第一用户识别卡与GPRS/EDGE系统进行通信以执行分组存取程序,而协议栈处理模块2220使用第二用户识别卡与UMTS系统进行通信。特别是,协议栈处理模块2220处于3G闲置模式,且当处于3G闲置模式时,协议栈处理模块2220需要持续地执行寻呼作业,去收听3G寻呼信道以接收来自UMTS系统的寻呼消息。针对一寻呼时段,协议栈处理模块2220发出请求给协议栈处理模块2210,其中该请求指示了所欲使用的信道为3G寻呼信道、以及该信道用于寻呼作业(步骤S2401),由于协议栈处理模块2210当前尚不需执行分组存取程序,所以决定接受该请求(步骤S2402)。因为请求被接受了,所以协议栈处理模块2220存取唯一的射频模块以收听3G的寻呼信道(步骤S2403)。之后,由于在当前的寻呼时段中没有收到任何寻呼消息、或所收到的寻呼消息不是针对此移动台的,于是协议栈处理模块2220在寻呼时段结束时停止存取唯一的射频模块(步骤S2404)。接着,当协议栈处理模块2210需要执行分组存取程序时,会发出请求给协议栈处理模块2220,其中该请求指示了所欲使用的信道为2G的准许接入信道、以及该信道用于分组存取程序(步骤S2405),由于协议栈处理模块2220当前不需要执行任何作业或程序,所以决定接受该请求(步骤S2406)。因为请求被接受了,所以协议栈处理模块2210存取唯一的射频模块以监控2G的准许接入信道(步骤S2407)。如图7所示,针对接下来的两个寻呼时段,协议栈处理模块2220都会发出请求给协议栈处理模块2210以取得寻呼作业用的射频资源分配(步骤S2408与S2410),然而,由于当前的射频资源分配已指派给2G的准许接入信道、且用于分组存取程序的2G准许接入信道相较于3G寻呼信道具有较高的优先级,所以协议栈处理模块2210回绝了协议栈处理模块2220的请求(步骤S2409与S2411)。接着,当分组存取程序结束时,协议栈处理模块2210便停止存取唯一的射频模块(步骤S2412)。之后,当收到协议栈处理模块2220请求寻呼作业用的射频资源分配时(步骤S2413),由于协议栈处理模块2210当前不需要执行任何作业或程序,所以决定接受该请求(步骤S2414)。然后,协议栈处理模块2220存取唯一的射频模块以收听3G的寻呼信道(步骤S2415),并且因为在当前的寻呼时段中没有收到任何寻呼消息、或所收到的寻呼消息不是针对此移动台的,所以协议栈处理模块2220在寻呼时段结束时停止存取唯一的射频模块(步骤S2416)。FIG. 24 is a message sequence diagram showing the communication between the protocol stack processing modules 2210 and 2220 in the embodiment of FIG. 7 . In this embodiment, the protocol stack processing module 2210 uses the first SIM to communicate with the GPRS/EDGE system to perform the packet access procedure, and the protocol stack processing module 2220 uses the second SIM to communicate with the UMTS system. In particular, the protocol stack processing module 2220 is in the 3G idle mode, and when in the 3G idle mode, the protocol stack processing module 2220 needs to continuously execute the paging operation to listen to the 3G paging channel to receive paging messages from the UMTS system. For a paging period, the protocol stack processing module 2220 sends a request to the protocol stack processing module 2210, wherein the request indicates that the channel to be used is a 3G paging channel and that the channel is used for paging operations (step S2401), because The protocol stack processing module 2210 does not need to execute the packet access program at present, so it decides to accept the request (step S2402). Since the request is accepted, the protocol stack processing module 2220 accesses the only radio frequency module to listen to the 3G paging channel (step S2403 ). Afterwards, because no paging message is received in the current paging period, or the received paging message is not for this mobile station, the protocol stack processing module 2220 stops accessing the unique radio frequency module (step S2404). Then, when the protocol stack processing module 2210 needs to perform the packet access program, a request will be sent to the protocol stack processing module 2220, wherein the request indicates that the channel to be used is a 2G access channel and that the channel is used for grouping To access the program (step S2405), since the protocol stack processing module 2220 does not need to execute any operation or program at present, it decides to accept the request (step S2406). Since the request is accepted, the protocol stack processing module 2210 accesses the only radio frequency module to monitor the 2G access channel (step S2407). As shown in Figure 7, for the next two paging periods, the protocol stack processing module 2220 will send a request to the protocol stack processing module 2210 to obtain radio frequency resource allocation for paging operations (steps S2408 and S2410), however, due to The current radio frequency resource allocation has been assigned to the 2G grant access channel, and the 2G grant access channel for the packet access procedure has a higher priority than the 3G paging channel, so the protocol stack processing module 2210 rejects The protocol stack processes the request of the module 2220 (steps S2409 and S2411). Next, when the packet access procedure ends, the protocol stack processing module 2210 stops accessing the unique radio frequency module (step S2412 ). Afterwards, when receiving the request from the protocol stack processing module 2220 for allocation of radio frequency resources for the paging operation (step S2413), since the protocol stack processing module 2210 does not need to execute any operation or program at present, it decides to accept the request (step S2414). Then, the protocol stack processing module 2220 accesses the only radio frequency module to listen to the 3G paging channel (step S2415), and because no paging message is received in the current paging period, or the received paging message Not for this mobile station, so the protocol stack processing module 2220 stops accessing the unique radio frequency module at the end of the paging period (step S2416).

图25是显示协议栈处理模块2210与2220在图8的实施例中相互沟通的消息序列图。在此实施例,协议栈处理模块2210使用第一用户识别卡与GPRS/EDGE系统进行通信以执行分组存取程序,而协议栈处理模块2220使用第二用户识别卡与UMTS系统进行通信。特别是,协议栈处理模块2210处于2G分组传输模式以进行分组交换数据服务,而协议栈处理模块2220处于3G闲置模式。由于处于2G分组传输模式,协议栈处理模块2210发出请求给协议栈处理模块2220,其中该请求指示了所欲使用的信道为2G的分组数据信道、且该信道用于分组交换数据服务(步骤S2501),由于协议栈处理模块2220当前不需要执行任何作业或程序,所以决定接受协议栈处理模块2210的请求(步骤S2502)。因为请该求被接受了,所以协议栈处理模块2210存取唯一的射频模块以通过2G的分组数据信道进行分组交换数据服务(步骤S2503)。稍后,当协议栈处理模块2220需要执行寻呼作业去收听3G的寻呼信道以接收来自UMTS系统的寻呼消息时,会发出请求给协议栈处理模块2210,其中该请求指示了所欲使用的信道为3G的寻呼信道、且该信道用于寻呼作业(步骤S2504),由于3G的寻呼信道相较于2G的分组数据信道具有较高的优先级,所以协议栈处理模块2210停止存取唯一的射频模块以暂停进行中的分组交换数据服务(步骤S2505),然后接受协议栈处理模块2220的请求(步骤S2506)。因为该请求被接受了,所以协议栈处理模块2220存取唯一的射频模块以收听3G的寻呼信道(步骤S2507)。之后,由于在当前的寻呼时段中没有收到任何寻呼消息、或所收到的寻呼消息不是针对此移动台的,于是协议栈处理模块2220在寻呼时段结束时停止存取唯一的射频模块(步骤S2508),然后通知协议栈处理模块2210已不再需要存取唯一的射频模块(步骤S2509)。在收到协议栈处理模块2220的通知时,协议栈处理模块2210则继续进行暂停的分组交换数据服务(步骤S2510)。FIG. 25 is a message sequence diagram showing the communication between the protocol stack processing modules 2210 and 2220 in the embodiment of FIG. 8 . In this embodiment, the protocol stack processing module 2210 uses the first SIM to communicate with the GPRS/EDGE system to perform the packet access procedure, and the protocol stack processing module 2220 uses the second SIM to communicate with the UMTS system. In particular, the protocol stack processing module 2210 is in the 2G packet transfer mode for packet switched data services, while the protocol stack processing module 2220 is in the 3G idle mode. Because it is in the 2G packet transmission mode, the protocol stack processing module 2210 sends a request to the protocol stack processing module 2220, wherein the request indicates that the channel to be used is a 2G packet data channel, and the channel is used for packet switching data services (step S2501 ), since the protocol stack processing module 2220 does not need to execute any job or program at present, it decides to accept the request of the protocol stack processing module 2210 (step S2502 ). Because the request is accepted, the protocol stack processing module 2210 accesses the only radio frequency module to perform packet-switched data service through the 2G packet data channel (step S2503 ). Later, when the protocol stack processing module 2220 needs to perform the paging operation to listen to the paging channel of 3G to receive the paging message from the UMTS system, it will send a request to the protocol stack processing module 2210, wherein the request indicates the desired The channel is a 3G paging channel, and this channel is used for paging operations (step S2504), since the 3G paging channel has a higher priority than the 2G packet data channel, the protocol stack processing module 2210 stops Access the only radio frequency module to suspend the ongoing packet switched data service (step S2505), and then accept the request of the protocol stack processing module 2220 (step S2506). Since the request is accepted, the protocol stack processing module 2220 accesses the only radio frequency module to listen to the 3G paging channel (step S2507 ). Afterwards, because no paging message is received in the current paging period, or the received paging message is not for this mobile station, the protocol stack processing module 2220 stops accessing the unique The radio frequency module (step S2508 ), and then notifies the protocol stack processing module 2210 that it no longer needs to access the unique radio frequency module (step S2509 ). When receiving the notification from the protocol stack processing module 2220, the protocol stack processing module 2210 continues the suspended packet switching data service (step S2510).

接着,在分组交换数据服务进行的过程中,当需要为了小区重选程序(包括:同无线存取技术内的小区重选程序、以及异无线存取技术间的小区重选程序)、小区更动命令程序、或分组小区更动命令程序而通过2G广播控制信道接收系统信息以及/或测量周遭小区时,协议栈处理模块2210会协调分组交换数据服务以及系统信息接收/周遭小区测量之间的作业,明确来说,由于用在上述程序中的2G广播控制信道相较于2G的分组数据信道具有较高的优先级,所以协议栈处理模块2210出让与分组交换数据服务关联的部分数据收发去通过2G的广播控制信道接收GPRS/EDGE系统的系统信息或测量周遭小区(步骤S2511)。在上述程序(小区重选程序、小区更动命令程序、或分组小区更动命令程序)进行的过程中,当收到协议栈处理模块2220请求寻呼作业用的射频资源分配时(步骤S2512与S2514),协议栈处理模块2210会因为2G的广播控制信道相较于3G的寻呼信道具有较高的优先级而回绝该请求(步骤S2513与S2515)。当上述程序(小区重选程序、小区更动命令程序、或分组小区更动命令程序)结束时,协议栈处理模块2210则停止出让与分组交换数据服务关联的部分数据收发去通过2G的广播控制信道接收GPRS/EDGE系统的系统信息或测量周遭小区(步骤S2516)。之后,从协议栈处理模块2220收到寻呼作业用的射频资源分配的请求则可中断协议栈处理模块2210所进行的分组交换数据服务。Then, during the process of packet switched data service, when it is necessary for the cell reselection procedure (including: the cell reselection procedure within the same RAT and the cell reselection procedure between different RATs), the cell reselection procedure When receiving system information and/or measuring surrounding cells through the 2G broadcast control channel through a command program or a packet cell change command program, the protocol stack processing module 2210 will coordinate packet-switched data services and system information reception/surrounding cell measurement Operation, specifically speaking, since the 2G broadcast control channel used in the above procedure has a higher priority than the 2G packet data channel, the protocol stack processing module 2210 transfers part of the data associated with the packet switched data service to send and receive Receive system information of the GPRS/EDGE system or measure surrounding cells through the 2G broadcast control channel (step S2511 ). During the process of the above procedure (cell reselection procedure, cell change command procedure, or packet cell change command procedure), when receiving a request from the protocol stack processing module 2220 for radio frequency resource allocation for paging operations (steps S2512 and S2514), the protocol stack processing module 2210 rejects the request because the 2G broadcast control channel has a higher priority than the 3G paging channel (steps S2513 and S2515). When the above procedure (cell reselection procedure, cell change command procedure, or packet cell change command procedure) ends, the protocol stack processing module 2210 stops sending and receiving part of the data associated with the packet switched data service to the broadcast control of 2G The channel receives system information of the GPRS/EDGE system or measures surrounding cells (step S2516). Afterwards, the packet-switched data service performed by the protocol stack processing module 2210 may be interrupted upon receiving a request for allocation of radio frequency resources for paging operations from the protocol stack processing module 2220 .

需注意的是,对本领域技术人员而言,当可根据图24、图25所示的实施例想出如何由协议栈处理模块2210与2220去协调在盲分组小区更动命令程序、盲分组交换交递程序、小区更动命令程序、或异无线存取技术间的小区重选程序中关于2G频率修正信道或同步信道的射频资源分配,以及在分组交换交递程序中关于2G分组数据信道的射频资源分配,故在此不作赘述。It should be noted that those skilled in the art can figure out how to use the protocol stack processing modules 2210 and 2220 to coordinate the command procedure of changing the blind packet cell and blind packet switching according to the embodiments shown in FIG. 24 and FIG. 25 . RF resource allocation for 2G frequency correction channel or synchronization channel in handover procedure, cell change order procedure, or cell reselection procedure between different RATs, and 2G packet data channel in packet switching handover procedure The allocation of radio frequency resources is omitted here.

图26A与图26B是显示协议栈处理模块2210与2220在图13的实施例中相互沟通的消息序列图。在此实施例,协议栈处理模块2210使用第一用户识别卡与UMTS系统进行通信以执行联机建立程序,而协议栈处理模块2220使用第二用户识别卡与GSM/GPRS/EDGE系统进行通信。特别是,协议栈处理模块2210处于3G闲置模式,然后再执行联机建立程序并进入小区转送存取信道模式/小区专用信道模式,而协议栈处理模块2220处于2G闲置模式。当处于2G闲置模式时,协议栈处理模块2220需要持续地执行寻呼作业,去收听2G寻呼信道以接收来自GSM/GPRS/EDGE系统的寻呼消息。明确来说,协议栈处理模块2220需要在每个非连续接收周期的寻呼时段收听寻呼信道。在协议栈处理模块2210需要执行联机建立程序之前,协议栈处理模块2220发出请求给协议栈处理模块2210,其中该请求指示了所欲使用的信道为2G的寻呼信道、以及该信道用于寻呼作业(步骤S2601),由于协议栈处理模块2210当前尚不需执行分组存取程序,所以决定接受该请求(步骤S2602)。因为请求被接受了,所以协议栈处理模块2220存取唯一的射频模块以收听2G的寻呼信道(步骤S2603)。之后,由于在当前的寻呼时段中没有收到任何寻呼消息、或所收到的寻呼消息不是针对此移动台的,于是协议栈处理模块2220在寻呼时段结束时停止存取唯一的射频模块(步骤S2604)。26A and 26B are message sequence diagrams showing the communication between the protocol stack processing modules 2210 and 2220 in the embodiment of FIG. 13 . In this embodiment, the protocol stack processing module 2210 uses the first SIM card to communicate with the UMTS system to perform the connection establishment procedure, and the protocol stack processing module 2220 uses the second SIM card to communicate with the GSM/GPRS/EDGE system. In particular, the protocol stack processing module 2210 is in the 3G idle mode, and then executes the connection establishment procedure and enters the cell transfer access channel mode/cell dedicated channel mode, while the protocol stack processing module 2220 is in the 2G idle mode. When in the 2G idle mode, the protocol stack processing module 2220 needs to continuously execute the paging operation to listen to the 2G paging channel to receive paging messages from the GSM/GPRS/EDGE system. Specifically, the protocol stack processing module 2220 needs to listen to the paging channel during the paging period of each DRX cycle. Before the protocol stack processing module 2210 needs to perform the online establishment procedure, the protocol stack processing module 2220 sends a request to the protocol stack processing module 2210, wherein the request indicates that the channel to be used is a 2G paging channel and that the channel is used for paging call operation (step S2601), since the protocol stack processing module 2210 does not need to execute the packet access program at present, it decides to accept the request (step S2602). Since the request is accepted, the protocol stack processing module 2220 accesses the only radio frequency module to listen to the 2G paging channel (step S2603 ). Afterwards, because no paging message is received in the current paging period, or the received paging message is not for this mobile station, the protocol stack processing module 2220 stops accessing the unique radio frequency module (step S2604).

稍后,当协议栈处理模块2210需要执行联机建立程序时,会发出请求给协议栈处理模块2220,其中该请求指示了所欲使用的信道为3G的转送存取信道与专用信道、以及该信道用于联机建立程序(步骤S2605),由于协议栈处理模块2220当前尚不需执行分组存取程序,所以决定接受该请求(步骤S2606)。因为该请求被接受了,所以协议栈处理模块2210存取唯一的射频模块以通过3G随机存取信道传送无线资源控制的联机请求消息给UMTS系统并监控3G转送存取信道以接收无线资源控制的联机建立消息(步骤S2607)。在一实施例,协议栈处理模块2210可传送物理信道优先级调整请求消息给唯一的射频模块以请求保留3G转送存取信道。在联机建立程序进行的过程中,当接收到协议栈处理模块2220请求寻呼作业用的射频资源分配时(步骤S2608),由于用在联机建立程序的3G转送存取信道相较于2G寻呼信道具有较高的优先级,所以协议栈处理模块2210拒绝该请求(步骤S2609)。接着,当通过3G转送存取信道接收到来自UMTS系统的无线资源控制的联机建立消息时,协议栈处理模块2210存取唯一的射频模块以保护3G专用信道用于进入小区专用信道模式的无线设定(意即,用于执行上述A同步程序)(步骤S2610)。在该无线设定完成后,协议栈处理模块2210通过3G专用信道传送无线资源控制的联机建立完成消息给UMTS系统,并停止保护3G专用信道不受协议栈处理模块2220的特定作业(例如:寻呼作业、测量作业、小区扫描作业等等)所中断,于是结束联机建立程序(步骤S2611)。在一实施例,可于接收到来自唯一的射频模块的物理下行初始同步指示消息时表示完成该无线设定。Later, when the protocol stack processing module 2210 needs to perform the connection establishment program, a request will be sent to the protocol stack processing module 2220, wherein the request indicates that the channel to be used is the transfer access channel and the dedicated channel of 3G, and the channel For the connection establishment procedure (step S2605), since the protocol stack processing module 2220 does not need to execute the packet access procedure at present, it decides to accept the request (step S2606). Because the request is accepted, the protocol stack processing module 2210 accesses the only radio module to transmit the RRC connection request message to the UMTS system through the 3G random access channel and monitor the 3G forward access channel to receive the RRC request message Online establishment message (step S2607). In one embodiment, the protocol stack processing module 2210 may send a physical channel priority adjustment request message to the only radio frequency module to request to reserve the 3G TX access channel. During the connection establishment process, when the protocol stack processing module 2220 requests radio resource allocation for paging operations (step S2608), since the 3G transfer access channel used in the connection establishment process is compared with the 2G paging The channel has a higher priority, so the protocol stack processing module 2210 rejects the request (step S2609). Next, when receiving the connection establishment message from the radio resource control of the UMTS system through the 3G forwarding access channel, the protocol stack processing module 2210 accesses the only radio frequency module to protect the 3G dedicated channel for the wireless device entering the cell dedicated channel mode. determined (that is, for executing the above-mentioned A synchronization program) (step S2610). After the wireless setting is completed, the protocol stack processing module 2210 transmits the connection establishment completion message of radio resource control to the UMTS system through the 3G dedicated channel, and stops protecting the 3G dedicated channel from the specific operation of the protocol stack processing module 2220 (for example: seeking call operation, measurement operation, cell scanning operation, etc.), and then end the connection establishment procedure (step S2611). In one embodiment, the completion of the wireless setup can be indicated when a physical downlink initial synchronization indication message is received from the only radio frequency module.

之后,当协议栈处理模块2220需要执行寻呼作业去收听2G的寻呼信道以接收来自GSM/GPRS/EDGE系统的寻呼消息时,会发出请求给协议栈处理模块2210,其中该请求指示了所欲使用的信道为2G的寻呼信道、以及该信道用于寻呼作业(步骤S2612),由于非用在联机建立程序中的3G转送存取信道与专用信道相较于2G的寻呼信道具有较低的优先级,所以协议栈处理模块2210停止存取唯一的射频模块以暂停通过3G专用信道进行的无线服务(步骤S2613),然后接受协议栈处理模块2220的请求(步骤S2614)。因为该请求被接受了,所以协议栈处理模块2220存取唯一的射频模块以收听2G的寻呼信道(步骤S2615)。之后,由于在当前的寻呼时段中没有收到任何寻呼消息、或所收到的寻呼消息不是针对此移动台的,于是协议栈处理模块2220在寻呼时段结束时停止存取唯一的射频模块(步骤S2616),然后通知协议栈处理模块2210已不需要存取唯一的射频模块(步骤S2617)。在收到协议栈处理模块2220的通知时,协议栈处理模块2210则继续进行被暂停的无线作业(步骤S2618)。Afterwards, when the protocol stack processing module 2220 needs to perform the paging operation to listen to the paging channel of 2G to receive the paging message from the GSM/GPRS/EDGE system, it will send a request to the protocol stack processing module 2210, wherein the request indicates The channel to be used is the paging channel of 2G, and this channel is used for paging operation (step S2612), because the 3G transfer access channel and the dedicated channel not used in the connection establishment procedure are compared with the paging channel of 2G It has a lower priority, so the protocol stack processing module 2210 stops accessing the only radio frequency module to suspend the wireless service through the 3G dedicated channel (step S2613), and then accepts the request of the protocol stack processing module 2220 (step S2614). Since the request is accepted, the protocol stack processing module 2220 accesses the only radio frequency module to listen to the 2G paging channel (step S2615). Afterwards, because no paging message is received in the current paging period, or the received paging message is not for this mobile station, the protocol stack processing module 2220 stops accessing the unique The radio frequency module (step S2616 ), and then notifies the protocol stack processing module 2210 that it no longer needs to access the unique radio frequency module (step S2617 ). When receiving the notification from the protocol stack processing module 2220, the protocol stack processing module 2210 continues the suspended wireless operation (step S2618).

图27A与图27B是显示协议栈处理模块2210与2220在图15的实施例中相互沟通的消息序列图。在此实施例,协议栈处理模块2210使用第一用户识别卡与UMTS系统进行通信以执行联机建立程序,而协议栈处理模块2220使用第二用户识别卡与GSM/GPRS/EDGE系统进行通信。特别是,协议栈处理模块2210处于3G闲置模式,接着执行联机建立程序以进入小区转送存取信道模式,然后再执行硬式交递程序以进入小区专用信道模式;而协议栈处理模块2220处于2G闲置模式。当处于2G闲置模式时,协议栈处理模块2220需要持续地执行寻呼作业,去收听2G寻呼信道以接收来自GSM/GPRS/EDGE系统的寻呼消息。明确来说,协议栈处理模块2220需要在每个非连续接收周期的寻呼时段收听寻呼信道。在协议栈处理模块2210需要执行联机建立程序之前,协议栈处理模块2220发出请求给协议栈处理模块2210,其中该请求指示了所欲使用的信道为2G的寻呼信道、以及该信道用于寻呼作业(步骤S2701),由于协议栈处理模块2210当前尚不需执行分组存取程序,所以决定接受该请求(步骤S2702)。因为请求被接受了,所以协议栈处理模块2220存取唯一的射频模块以收听2G的寻呼信道(步骤S2703)。之后,由于在当前的寻呼时段中没有收到任何寻呼消息、或所收到的寻呼消息不是针对此移动台的,于是协议栈处理模块2220在寻呼时段结束时停止存取唯一的射频模块(步骤S2704)。27A and 27B are message sequence diagrams showing the communication between the protocol stack processing modules 2210 and 2220 in the embodiment of FIG. 15 . In this embodiment, the protocol stack processing module 2210 uses the first SIM card to communicate with the UMTS system to perform the connection establishment procedure, and the protocol stack processing module 2220 uses the second SIM card to communicate with the GSM/GPRS/EDGE system. In particular, the protocol stack processing module 2210 is in the 3G idle mode, then executes the connection establishment procedure to enter the cell transfer access channel mode, and then executes the hard handover procedure to enter the cell dedicated channel mode; and the protocol stack processing module 2220 is in the 2G idle mode model. When in the 2G idle mode, the protocol stack processing module 2220 needs to continuously execute the paging operation to listen to the 2G paging channel to receive paging messages from the GSM/GPRS/EDGE system. Specifically, the protocol stack processing module 2220 needs to listen to the paging channel during the paging period of each DRX cycle. Before the protocol stack processing module 2210 needs to perform the online establishment program, the protocol stack processing module 2220 sends a request to the protocol stack processing module 2210, wherein the request indicates that the channel to be used is a 2G paging channel, and the channel is used for paging Call operation (step S2701), since the protocol stack processing module 2210 does not need to execute the packet access program at present, it decides to accept the request (step S2702). Since the request is accepted, the protocol stack processing module 2220 accesses the only radio frequency module to listen to the 2G paging channel (step S2703 ). Afterwards, because no paging message is received in the current paging period, or the received paging message is not for this mobile station, the protocol stack processing module 2220 stops accessing the unique radio frequency module (step S2704).

稍后,当协议栈处理模块2210需要执行联机建立程序时,会发出请求给协议栈处理模块2220,其中该请求指示了所欲使用的信道为3G的转送存取信道、以及该信道用于联机建立程序(步骤S2705),由于协议栈处理模块2220当前尚不需执行分组存取程序,所以决定接受该请求(步骤S2706)。因为该请求被接受了,所以协议栈处理模块2210存取唯一的射频模块以通过3G随机存取信道传送无线资源控制的联机请求消息给UMTS系统并监控3G转送存取信道以接收无线资源控制的联机建立消息(步骤S2707)。在一实施例,协议栈处理模块2210可传送物理信道优先级调整请求消息给唯一的射频模块以请求保留3G转送存取信道。在联机建立程序进行的过程中,当接收到协议栈处理模块2220请求寻呼作业用的射频资源分配时(步骤S2708),由于用在联机建立程序的3G转送存取信道相较于2G寻呼信道具有较高的优先级,所以协议栈处理模块2210拒绝该请求(步骤S2709)。接着,当通过3G转送存取信道接收到来自UMTS系统的无线资源控制的联机建立消息时,协议栈处理模块2210存取唯一的射频模块以继续保护3G转送存取信道用于进入小区转送存取信道模式的无线设定(意即,用于执行上述A同步程序)(步骤S2710)。在该无线设定完成后,协议栈处理模块2210通过3G专用信道传送无线资源控制的联机建立完成消息给UMTS系统,并停止保护3G专用信道不被协议栈处理模块2220的特定作业(例如:寻呼作业、测量作业、小区扫描作业等等)所中断,于是结束联机建立程序(步骤S2711)。在一实施例,可于接收到来自唯一的射频模块的物理下行初始同步指示消息时表示完成该无线设定。Later, when the protocol stack processing module 2210 needs to perform the connection establishment program, a request will be sent to the protocol stack processing module 2220, wherein the request indicates that the channel to be used is the transfer access channel of 3G and that the channel is used for connection Establish the program (step S2705), and because the protocol stack processing module 2220 does not need to execute the packet access program at present, it decides to accept the request (step S2706). Because the request is accepted, the protocol stack processing module 2210 accesses the only radio module to transmit the RRC connection request message to the UMTS system through the 3G random access channel and monitor the 3G forward access channel to receive the RRC request message Online establishment message (step S2707). In one embodiment, the protocol stack processing module 2210 may send a physical channel priority adjustment request message to the only radio frequency module to request to reserve the 3G TX access channel. During the process of establishing the connection, when the protocol stack processing module 2220 requests the allocation of radio frequency resources for the paging operation (step S2708), since the 3G transfer access channel used in the connection establishment process is compared with the 2G paging The channel has a higher priority, so the protocol stack processing module 2210 rejects the request (step S2709). Next, when receiving the RRC connection establishment message from the UMTS system through the 3G FACH, the protocol stack processing module 2210 accesses the unique radio frequency module to continue protecting the 3G FACH for entering cell FACH Wireless setting of channel mode (ie, for performing the above-mentioned A synchronization procedure) (step S2710 ). After the wireless setting is completed, the protocol stack processing module 2210 transmits the connection establishment completion message of the radio resource control to the UMTS system through the 3G dedicated channel, and stops protecting the 3G dedicated channel from being used by the specific operation of the protocol stack processing module 2220 (for example: seeking call operation, measurement operation, cell scanning operation, etc.), so the connection establishment procedure ends (step S2711). In one embodiment, the completion of the wireless setup can be indicated when a physical downlink initial synchronization indication message is received from the only radio frequency module.

之后,当协议栈处理模块2220需要执行寻呼作业去收听2G的寻呼信道以接收来自GSM/GPRS/EDGE系统的寻呼消息时,会发出请求给协议栈处理模块2210,其中该请求指示了所欲使用的信道为2G的寻呼信道、以及该信道用于寻呼作业(步骤S2712),由于非用在联机建立程序中的3G转送存取信道相较于2G的寻呼信道具有较低的优先级,所以协议栈处理模块2210停止存取唯一的射频模块以暂停通过3G转送存取信道进行的无线服务(步骤S2713),然后接受协议栈处理模块2220的请求(步骤S2714)。因为该请求接受了,所以协议栈处理模块2220存取唯一的射频模块以收听2G的寻呼信道(步骤S2715)。之后,由于在当前的寻呼时段中没有收到任何寻呼消息、或所收到的寻呼消息不是针对此移动台的,于是协议栈处理模块2220在寻呼时段结束时停止存取唯一的射频模块(步骤S2716),然后通知协议栈处理模块2210已不需要存取唯一的射频模块(步骤S2717)。在收到协议栈处理模块2220的通知时,协议栈处理模块2210则继续进行被暂停的无线作业(步骤S2718)。Afterwards, when the protocol stack processing module 2220 needs to perform the paging operation to listen to the paging channel of 2G to receive the paging message from the GSM/GPRS/EDGE system, it will send a request to the protocol stack processing module 2210, wherein the request indicates The channel to be used is the 2G paging channel, and the channel is used for paging operations (step S2712), since the 3G forward access channel not used in the connection establishment procedure has a lower priority, so the protocol stack processing module 2210 stops accessing the only radio frequency module to suspend the wireless service through the 3G transfer access channel (step S2713), and then accepts the request of the protocol stack processing module 2220 (step S2714). Since the request is accepted, the protocol stack processing module 2220 accesses the only radio frequency module to listen to the 2G paging channel (step S2715 ). Afterwards, because no paging message is received in the current paging period, or the received paging message is not for this mobile station, the protocol stack processing module 2220 stops accessing the unique The radio frequency module (step S2716 ), and then notifies the protocol stack processing module 2210 that it no longer needs to access the unique radio frequency module (step S2717 ). When receiving the notification from the protocol stack processing module 2220, the protocol stack processing module 2210 continues the suspended wireless operation (step S2718).

接着,当协议栈处理模块2210需要执行硬式交递程序时(意即,当收到来自UMTS系统的硬式交递命令,例如:物理信道重设消息、无线乘载重设消息、无线乘载建立消息、无线乘载释放消息、或传输信道重设消息),则存取唯一的射频模块以保护3G专用信道用于进入小区专用信道模式的无线设定(意即,用于执行上述A同步程序),使3G专用信道不会被协议栈处理模块2220的特定作业(例如:寻呼作业、测量作业、小区扫描作业等等)所中断(步骤S2719)。在硬式交递程序进行的过程中,当协议栈处理模块2220需要执行寻呼作业去收听2G的寻呼信道以接收来自GSM/GPRS/EDGE系统的寻呼消息时,会发出请求给协议栈处理模块2210,其中该请求指示了所欲使用的信道为2G的寻呼信道、以及该信道用于寻呼作业(步骤S2720),由于用在硬式交递程序中的3G专用信道相较于2G的寻呼信道具有较高的优先级,所以协议栈处理模块2210拒绝该请求(步骤S2721)。稍后,在进入小区专用信道模式的无线设定完成后,协议栈处理模块2210通过3G专用信道传送硬式交递响应(例如:物理信道重设完成消息、无线乘载重设完成消息、无线乘载建立完成消息、无线乘载释放完成消息、或传输信道重设完成消息)给UMTS系统,并停止保护3G专用信道不受协议栈处理模块2220的特定作业(例如:寻呼作业、测量作业、小区扫描作业等等)所中断,于是结束硬式交递程序(步骤S2722)。在一实施例,可于接收到来自唯一的射频模块的物理下行初始同步指示消息时表示完成该无线设定。Next, when the protocol stack processing module 2210 needs to execute the hard handover procedure (that is, when receiving a hard handover command from the UMTS system, for example: a physical channel reset message, a wireless bearer reset message, a wireless bearer setup message , wireless bearer release message, or transmission channel reset message), then access the only radio frequency module to protect the 3G dedicated channel for wireless setting of entering the cell dedicated channel mode (that is, for performing the above-mentioned A synchronization procedure) , so that the 3G dedicated channel will not be interrupted by specific operations of the protocol stack processing module 2220 (eg, paging operations, measurement operations, cell scanning operations, etc.) (step S2719 ). During the hard handover process, when the protocol stack processing module 2220 needs to perform paging operations to listen to the 2G paging channel to receive paging messages from the GSM/GPRS/EDGE system, it will send a request to the protocol stack for processing Module 2210, wherein the request indicates that the channel to be used is a 2G paging channel, and the channel is used for paging operations (step S2720), since the 3G dedicated channel used in the hard handover procedure is compared with the 2G The paging channel has a higher priority, so the protocol stack processing module 2210 rejects the request (step S2721). Later, after the wireless setting for entering the cell-dedicated channel mode is completed, the protocol stack processing module 2210 transmits a hard handover response (for example: a physical channel reset complete message, a wireless bearer reset complete message, a wireless bearer Set up a complete message, a wireless bearer release complete message, or a transmission channel reset complete message) to the UMTS system, and stop protecting the 3G dedicated channel from the specific operations of the protocol stack processing module 2220 (for example: paging operations, measurement operations, cell scan job, etc.), so the hard handover process ends (step S2722). In one embodiment, the completion of the wireless setup can be indicated when a physical downlink initial synchronization indication message is received from the only radio frequency module.

再来,当协议栈处理模块2220需要执行寻呼作业时,会发出请求给协议栈处理模块2210,其中该请求指示了所欲使用的信道为2G的寻呼信道、以及该信道用于寻呼作业(步骤S2723),由于非用在硬式交递程序的3G专用信道相较于2G寻呼信道具有较低的优先级,所以协议栈处理模块2210停止存取唯一的射频模块以暂停通过3G专用信道进行的无线作业(步骤S2724),然后接受协议栈处理模块2220的请求(步骤S2725)。因为请求被接受了,所以协议栈处理模块2220存取唯一的射频模块以收听2G的寻呼信道(步骤S2726)。之后,由于在当前的寻呼时段中没有收到任何寻呼消息、或所收到的寻呼消息不是针对此移动台的,于是协议栈处理模块2220在寻呼时段结束时停止存取唯一的射频模块(步骤S2727),然后通知协议栈处理模块2210已不需要存取唯一的射频模块(步骤S2728)。在收到协议栈处理模块2220的通知时,协议栈处理模块2210则继续进行被暂停的无线作业(步骤S2729)。Next, when the protocol stack processing module 2220 needs to perform a paging operation, it will send a request to the protocol stack processing module 2210, wherein the request indicates that the channel to be used is a 2G paging channel and that the channel is used for the paging operation (Step S2723), since the 3G dedicated channel not used in the hard handover procedure has a lower priority than the 2G paging channel, the protocol stack processing module 2210 stops accessing the only radio frequency module to suspend passing through the 3G dedicated channel Perform the wireless operation (step S2724), and then accept the request of the protocol stack processing module 2220 (step S2725). Since the request is accepted, the protocol stack processing module 2220 accesses the only radio frequency module to listen to the 2G paging channel (step S2726). Afterwards, because no paging message is received in the current paging period, or the received paging message is not for this mobile station, the protocol stack processing module 2220 stops accessing the unique The radio frequency module (step S2727 ), and then notifies the protocol stack processing module 2210 that it no longer needs to access the unique radio frequency module (step S2728 ). When receiving the notification from the protocol stack processing module 2220, the protocol stack processing module 2210 continues the suspended wireless operation (step S2729).

除了图16与图22所示的软件架构之外,本发明亦可适用于独立型的软件架构,其中协议栈处理模块之间不需沟通也没有仲裁模块的存在。进一步说明,可在唯一的射频模块中维持一寄存器(register),并且当协议栈处理模块需要存取射频模块时,会尝试对寄存器进行写入,如果寄存器已被写入,则拒绝该协议栈处理模块的存取;反之,如果寄存器未被写入,则接受该协议栈处理模块的存取。在一实施例,寄存器用以记录关于射频模块是否被占用的信息,以及记录如果射频模块被占用,又是用于哪个信道。或者,在每次写入发生时,如果寄存器已被写入且射频模块现被占用予一较高优先级的信道时,则拒绝该协议栈处理模块的存取;反之,如果寄存器已被写入且射频模块现被占用予一较低优先级的信道时,则接受该协议栈处理模块的存取。对本领域技术人员而言,当可根据图16与图22所示的软件架构、以及图17-19与图23-27所述的实施例想出如何在上述独立型的软件架构中处理协议栈处理模块的写入作业,故在此不作赘述。In addition to the software architectures shown in FIG. 16 and FIG. 22 , the present invention is also applicable to an independent software architecture, where there is no communication between the protocol stack processing modules and no arbitration module exists. To further illustrate, a register (register) can be maintained in the only radio frequency module, and when the protocol stack processing module needs to access the radio frequency module, it will try to write to the register, and if the register has been written, the protocol stack will be rejected The access of the processing module; otherwise, if the register is not written, the access of the protocol stack processing module is accepted. In one embodiment, the register is used to record information about whether the radio frequency module is occupied, and to record which channel the radio frequency module is used for if it is occupied. Or, when each writing occurs, if the register has been written and the radio frequency module is now occupied by a channel with a higher priority, then deny the access of the protocol stack processing module; otherwise, if the register has been written When the radio frequency module is currently occupied by a lower priority channel, the access of the protocol stack processing module is accepted. For those skilled in the art, when they can figure out how to process the protocol stack in the above-mentioned independent software architecture according to the software architecture shown in FIG. 16 and FIG. 22 and the embodiments described in FIGS. 17-19 and FIG. The writing operation of the processing module is not repeated here.

需注意的是,上述的每个软件架构皆可通过程序代码的型式实现并存在机器可读取的储存媒体中,例如:磁盘、半导体、磁盘、光盘或其它,其中光盘可例如:只读记忆光盘(CD-ROM)、只读数字影音光盘(DVD-ROM)等等。而机器可读取的储存媒体可维护于网站服务器中,以供客户端计算机能够通过网络下载其中的程序代码,该程序代码在被处理单元或Baseband MCU执行时,即可执行本发明的通信作业协调方法(例如:图17与图23所示的方法)。It should be noted that each of the above-mentioned software structures can be implemented in the form of program code and stored in a machine-readable storage medium, such as: magnetic disk, semiconductor, magnetic disk, optical disk or others, wherein the optical disk can be, for example: read-only memory Compact disc (CD-ROM), digital read-only video disc (DVD-ROM), etc. The machine-readable storage medium can be maintained in the website server, so that the client computer can download the program code therein through the network. When the program code is executed by the processing unit or Baseband MCU, the communication operation of the present invention can be performed. Coordination method (eg: the method shown in Figure 17 and Figure 23).

以上所述仅为本发明的较佳实施例,且本发明不在此限。本领域技术人员在不脱离本发明的精神和范围内,当可做些许的更动与润饰而得到本发明其他附加的特征与优点。虽然在上述实施例中使用了以GSM/GPRS/EDGE以及UMTS为基准的无线通信技术,但本发明不在此限。举例来说,本发明亦可适用于其它无线通信技术,例如:CDMA-2000、TD-SCDMA、WiMAX、LTE以及TD-LTE。因此,本发明的保护范围当视后附的权利要求所界定者为准。The above descriptions are only preferred embodiments of the present invention, and the present invention is not limited thereto. Those skilled in the art can obtain other additional features and advantages of the present invention by making some changes and modifications without departing from the spirit and scope of the present invention. Although wireless communication technologies based on GSM/GPRS/EDGE and UMTS are used in the above embodiments, the present invention is not limited thereto. For example, the present invention is also applicable to other wireless communication technologies, such as: CDMA-2000, TD-SCDMA, WiMAX, LTE and TD-LTE. Therefore, the scope of protection of the present invention should be defined by the appended claims.

需注意的是,权利要求中所使用的序数“第一”、“第二”、以及“第三”等等并非表示其所描述的组件之间存在任何时间先后次序、优先等级的差别、或其它关系上的先后次序,而是用以区别具有相同名称的不同组件。It should be noted that the ordinal numbers "first", "second", and "third" etc. used in the claims do not mean that there is any chronological order, priority difference, or The order of other relations is used to distinguish different components with the same name.

Claims (24)

1. radio communication device comprises:
Baseband chip, monitor first channel relevant to the first service network, a plurality of candidate cells that are positioned at above-mentioned first service network with incoming call or the measurement that receives from above-mentioned first service network, by second channel carry out and the second service network between wireless receiving and dispatching, and be when carrying out for preset program in above-mentioned wireless receiving and dispatching, keep above-mentioned wireless receiving and dispatching not interrupted by the monitoring of above-mentioned the first channel.
2. according to claim 1 radio communication device, it is characterized in that above-mentioned baseband chip keeps above-mentioned wireless receiving and dispatching more not comprised by the step that the monitoring of above-mentioned the first channel is interrupted: above-mentioned wireless receiving and dispatching carry out process in suspend the monitoring of above-mentioned the first channel, wherein above-mentioned baseband chip more continues the monitoring of above-mentioned the first channel when above-mentioned wireless receiving and dispatching finishes.
3. according to claim 1 radio communication device is characterized in that above-mentioned baseband chip is not more when carrying out for above-mentioned preset program in above-mentioned wireless receiving and dispatching, and the above-mentioned wireless receiving and dispatching of sacrificial section is to monitor above-mentioned the first channel.
4. according to claim 1 radio communication device, is characterized in that above-mentioned second service network is global system for mobile communications, general packet radio service system or global enhanced data transmission system.
5. according to claim 4 radio communication device, it is characterized in that above-mentioned preset program is the packet access program, and above-mentioned second channel is Access granted Channel AGCH.
6. according to claim 4 radio communication device, it is characterized in that above-mentioned preset program is to change command program or packet cell change command program with the cell reselection procedures between the cell reselection procedures in the radio access technology, different radio access technology, residential quarter, and above-mentioned second channel is Broadcast Control Channel.
7. according to claim 4 radio communication device, it is characterized in that above-mentioned preset program is that blind packet cell is changed the cell reselection procedures between command program, blind packet switching handover procedure, residential quarter change command program or different radio access technology, and above-mentioned second channel is frequency correction channel or synchronizing channel.
8. according to claim 4 radio communication device, it is characterized in that above-mentioned preset program is the packet switching handover procedure, and above-mentioned second channel is Packet Data Channel.
9. according to claim 1 radio communication device, is characterized in that above-mentioned second service network is universal mobile telecommunications system.
10. according to claim 9 radio communication device, it is characterized in that above-mentioned preset program is online creation facilities program (CFP) or rigid handover procedure, and above-mentioned second channel is for passing on access channel or dedicated channel.
11. radio communication device according to claim 9 is characterized in that above-mentioned the first channel is paging channel, in order to receive above-mentioned incoming call.
12. radio communication device according to claim 1, the monitoring that it is characterized in that above-mentioned the first channel are to use the first user identification card and carry out, and above-mentioned wireless receiving and dispatching is to use the second Subscriber Identity Module and carry out.
13. a communication operations coordination approach is applicable to coordination and the communication operations that different service networks carries out in radio communication device, comprising:
Monitor first channel relevant to the first service network to receive from the incoming call of above-mentioned first service network or to be positioned at a plurality of candidate cells of above-mentioned first service network with measurement;
By second channel carry out and the second service network between wireless receiving and dispatching; And
Be when carrying out for preset program in above-mentioned wireless receiving and dispatching, keep above-mentioned wireless receiving and dispatching not interrupted by the monitoring of above-mentioned the first channel.
14. described communication operations coordination approach according to claim 13, it is characterized in that keeping step that above-mentioned wireless receiving and dispatching is not interrupted by the monitoring of above-mentioned the first channel more to be included in the monitoring of carrying out suspending in process above-mentioned the first channel of above-mentioned wireless receiving and dispatching, and above-mentioned communication operations coordination approach more comprises:
When finishing, continues above-mentioned wireless receiving and dispatching the monitoring of above-mentioned the first channel.
15. described communication operations coordination approach according to claim 13 is characterized in that more comprising:
Be not when carrying out for above-mentioned preset program in above-mentioned wireless receiving and dispatching, the above-mentioned wireless receiving and dispatching of sacrificial section is to monitor above-mentioned the first channel.
16. described communication operations coordination approach, is characterized in that above-mentioned second service network is global system for mobile communications, general packet radio service system or global enhanced data transmission system according to claim 13.
17. described communication operations coordination approach, it is characterized in that above-mentioned preset program is the packet access program, and above-mentioned second channel is Access granted Channel AGCH according to claim 16.
18. described communication operations coordination approach according to claim 16, it is characterized in that above-mentioned preset program is to change command program or packet cell change command program with the cell reselection procedures between the cell reselection procedures in the radio access technology, different radio access technology, residential quarter, and above-mentioned second channel is Broadcast Control Channel.
19. described communication operations coordination approach according to claim 16, it is characterized in that above-mentioned preset program is that blind packet cell is changed the cell reselection procedures between command program, blind packet switching handover procedure, residential quarter change command program or different radio access technology, and above-mentioned second channel is frequency correction channel or synchronizing channel.
20. described communication operations coordination approach, it is characterized in that above-mentioned preset program is the packet switching handover procedure, and above-mentioned second channel is Packet Data Channel according to claim 16.
21. described communication operations coordination approach, is characterized in that above-mentioned second service network is universal mobile telecommunications system according to claim 13.
22. described communication operations coordination approach, it is characterized in that above-mentioned preset program is online creation facilities program (CFP) or rigid handover procedure, and above-mentioned second channel is for passing on access channel or dedicated channel according to claim 21.
23. described communication operations coordination approach, is characterized in that above-mentioned the first channel is paging channel, in order to receive above-mentioned incoming call according to claim 21.
24. described communication operations coordination approach according to claim 13, the monitoring that it is characterized in that above-mentioned the first channel are to use the first user identification card and carry out, and above-mentioned wireless receiving and dispatching is to use the second Subscriber Identity Module and carry out.
CN2012104316555A 2011-11-08 2012-11-01 Wireless communication device and communication operation coordination method Pending CN103096482A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN3160MU2011 2011-11-08
IN3160/MUM/2011 2011-11-08

Publications (1)

Publication Number Publication Date
CN103096482A true CN103096482A (en) 2013-05-08

Family

ID=48208452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012104316555A Pending CN103096482A (en) 2011-11-08 2012-11-01 Wireless communication device and communication operation coordination method

Country Status (2)

Country Link
CN (1) CN103096482A (en)
TW (1) TWI510121B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104822163A (en) * 2014-02-03 2015-08-05 马维尔国际有限公司 General scheduling system and method used for single-antenna multi-mode multi-card terminal
CN105656988A (en) * 2014-12-02 2016-06-08 三星电子株式会社 Electronic device and method of providing service in electronic device
CN106067827A (en) * 2015-04-22 2016-11-02 苹果公司 The system of access of multiple antennas in controlling the mobile device with multiple SIM, apparatus and method
CN107078920A (en) * 2014-08-26 2017-08-18 T移动美国公司 Cross-layer link failure is alerted
CN109643220A (en) * 2016-09-07 2019-04-16 斑马技术公司 Method and apparatus for communicating data associated with a media processing device
WO2019109309A1 (en) * 2017-12-07 2019-06-13 Qualcomm Incorporated User equipment-specified discontinuous reception value
CN111741497A (en) * 2018-03-27 2020-10-02 联发科技股份有限公司 Communication operation coordination method and mobile communication device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11337120B2 (en) * 2017-03-24 2022-05-17 Qualcomm Incorporated Beam-aware handover procedure for multi-beam access systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101534562A (en) * 2008-03-10 2009-09-16 联发科技股份有限公司 Channel scheduling method of time division multiple access system and mobile device thereof
CN101902834A (en) * 2009-05-28 2010-12-01 联发科技股份有限公司 System and method for coordinating protocol stack entities to share a single radio resource
US20110096706A1 (en) * 2009-10-23 2011-04-28 Venkatasubramanian Ramasamy Methods and apparatus for paging reception in multimode wireless networks

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1492611A (en) * 2002-10-24 2004-04-28 北京三星通信技术研究有限公司 Timing method for searching GSM frequency correction channel from CDMA2000 system
TWI386012B (en) * 2007-06-20 2013-02-11 Inventec Appliances Corp Method for mobile phone with gsm and cdma modes to control two gsm subscriber identify modules
CN101827463B (en) * 2009-03-03 2013-08-21 展讯通信(上海)有限公司 Dual-mode dual-card dual-standby single-pass wireless terminal and communication method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101534562A (en) * 2008-03-10 2009-09-16 联发科技股份有限公司 Channel scheduling method of time division multiple access system and mobile device thereof
CN101902834A (en) * 2009-05-28 2010-12-01 联发科技股份有限公司 System and method for coordinating protocol stack entities to share a single radio resource
US20110096706A1 (en) * 2009-10-23 2011-04-28 Venkatasubramanian Ramasamy Methods and apparatus for paging reception in multimode wireless networks

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104822163A (en) * 2014-02-03 2015-08-05 马维尔国际有限公司 General scheduling system and method used for single-antenna multi-mode multi-card terminal
CN107078920A (en) * 2014-08-26 2017-08-18 T移动美国公司 Cross-layer link failure is alerted
CN105656988B (en) * 2014-12-02 2020-12-11 三星电子株式会社 Electronic device and method for providing service in electronic device
US10637934B2 (en) 2014-12-02 2020-04-28 Samsung Electronics Co., Ltd. Electronic device and method of providing service in electronic device
CN105656988A (en) * 2014-12-02 2016-06-08 三星电子株式会社 Electronic device and method of providing service in electronic device
CN106067827A (en) * 2015-04-22 2016-11-02 苹果公司 The system of access of multiple antennas in controlling the mobile device with multiple SIM, apparatus and method
CN106067827B (en) * 2015-04-22 2019-02-01 苹果公司 For controlling the systems, devices and methods of the access to the mutiple antennas in the mobile device with multiple SIM
CN109643220A (en) * 2016-09-07 2019-04-16 斑马技术公司 Method and apparatus for communicating data associated with a media processing device
CN109643220B (en) * 2016-09-07 2022-08-09 斑马技术公司 Method and apparatus for communicating data associated with a media processing device
WO2019109309A1 (en) * 2017-12-07 2019-06-13 Qualcomm Incorporated User equipment-specified discontinuous reception value
CN111741497A (en) * 2018-03-27 2020-10-02 联发科技股份有限公司 Communication operation coordination method and mobile communication device
US11382003B2 (en) 2018-03-27 2022-07-05 Mediatek Inc. Apparatuses and methods for coordinating communication operations associated with a plurality of subscriber identities
CN111741497B (en) * 2018-03-27 2023-03-10 联发科技股份有限公司 Communication operation coordination method and mobile communication device

Also Published As

Publication number Publication date
TW201320799A (en) 2013-05-16
TWI510121B (en) 2015-11-21

Similar Documents

Publication Publication Date Title
TWI510121B (en) Wireless communication devices and methods for coordinating communication operations with respective service networks
CN102938895B (en) Wireless communication device and method
US8917661B2 (en) Apparatuses and methods for enhancing data rate for packet-switched (PS) data service
US9949310B2 (en) Apparatuses and methods for coordinating operations between circuit switched (CS) and packet switched (PS) services with different subscriber identity cards, and machine-readable storage medium
EP2123011B1 (en) Method and arrangements for paging a user equipment for circuit switched services via a packet switched lte communication network
CN102833727B (en) Method and Communication Device for Selecting Subscriber Identification Card
CN102917456B (en) A kind of communication means, multimode terminal and base station and system
TWI384897B (en) Methods for transmitting mobile originated requests and systems utilizing the same
US20120327790A1 (en) Apparatuses and methods for coordinating circuit switched (cs) services in packet transfer mode (ptm)
JP5072963B2 (en) Method for operating a dual SIM wireless communication device
CN113411848B (en) Mobility management method, user equipment and base station
JP5210368B2 (en) Radio base station and method
EP2285158A1 (en) Method of handling system information reception with measurement gap configuration and related communication device
JP2015008505A (en) Method for controlling channel activity related to multiplex radio communication technology sharing common radio resources and apparatus using the same
CN103249117B (en) Method and user terminal for reporting frequency scanning information
WO2022089850A1 (en) Mobile terminated service enhancements for musim user equipment
KR20110070391A (en) Method and system for providing circuit switched service to multiband multimode terminal connected to WiBro system in heterogeneous communication environment

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130508