[go: up one dir, main page]

CN103091535A - Proximity current sensing device and method - Google Patents

Proximity current sensing device and method Download PDF

Info

Publication number
CN103091535A
CN103091535A CN2011104016289A CN201110401628A CN103091535A CN 103091535 A CN103091535 A CN 103091535A CN 2011104016289 A CN2011104016289 A CN 2011104016289A CN 201110401628 A CN201110401628 A CN 201110401628A CN 103091535 A CN103091535 A CN 103091535A
Authority
CN
China
Prior art keywords
wire
magnetic flux
sensing
unit
sensing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011104016289A
Other languages
Chinese (zh)
Other versions
CN103091535B (en
Inventor
郑世贤
杜明哲
卓连益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN103091535A publication Critical patent/CN103091535A/en
Application granted granted Critical
Publication of CN103091535B publication Critical patent/CN103091535B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/146Measuring arrangements for current not covered by other subgroups of G01R15/14, e.g. using current dividers, shunts, or measuring a voltage drop
    • G01R15/148Measuring arrangements for current not covered by other subgroups of G01R15/14, e.g. using current dividers, shunts, or measuring a voltage drop involving the measuring of a magnetic field or electric field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/181Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using coils without a magnetic core, e.g. Rogowski coils

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

A proximity current sensing device and method includes a body, a first adjusting element, a second adjusting element, a first sensing unit, a second sensing unit, a third sensing unit and a processing unit. The body has an opening adapted for a wire to pass through the body. The first and second adjusting elements are respectively arranged on the first side and the second side of the body and used for adjusting the first position and the second position of the lead. The first, second and third sensing units are respectively disposed on the body and adjacent to the first, second and third sides of the conductive wire for sensing the first, second and third magnetic fluxes of the conductive wire. The processing unit rotates the adjusting element to ensure that the third sensing unit is positioned above the center point of the conducting wire according to the first magnetic flux and the second magnetic flux, estimates the installation position according to the third magnetic flux and calculates the current amount.

Description

近接式电流感测装置与方法Proximity current sensing device and method

技术领域 technical field

一种电流感测器,特别有关于一种近接式电流感测装置。A current sensor, in particular to a proximity current sensing device.

背景技术 Background technique

近年来,产业自动化的迅速发展,对于高可靠度、高性能的控制仪器的需求日益增加。各式感测器在自动化的监控功能上,占有绝对重要的角色,其中电流感测器在仪表侦测、控制等工业或家庭自动化产业上都是不可或缺的一环。In recent years, with the rapid development of industrial automation, the demand for high-reliability and high-performance control instruments is increasing. Various sensors play an absolutely important role in the monitoring function of automation, among which current sensors are an indispensable part in industrial or home automation industries such as instrument detection and control.

目前电流感测器可依据原理分为四类,例如1.欧姆定律--电阻分流式、2.法拉第感应定律--CT变流器、3.磁场感测--霍耳元件及4.法拉第光电效应--光纤电流感测器。前两者在使用上或为直接量测、或为体积大而笨重,故有不便之处。霍耳元件因形小体轻、且为近接量测的特点,格外受到瞩目。而光纤电流感测器由于维修困难及构造复杂,因而使得应用范围较小。At present, current sensors can be divided into four categories according to the principle, such as 1. Ohm's law--resistive shunt type, 2. Faraday's law of induction--CT converter, 3. Magnetic field sensing--Hall element and 4. Faraday Photoelectric effect - fiber optic current sensor. The former two are either directly measured or bulky and heavy in use, so they are inconvenient. The Hall element has attracted special attention because of its small size, light weight, and proximity measurement. However, due to the difficulty in maintenance and the complicated structure of the fiber optic current sensor, the scope of application is relatively small.

根据安培原理,导体在电流通过时,会在周围形成磁场,其大小正比于导体的电流而反比于相隔的距离。因此通过磁场大小的侦测,可获知导体内所通过电流的大小。然而,目前近接式电流感测器大都有因为安装位置而造成量测误差过大的问题,而造成使用的不便利性,因此近接式电流感测器仍有改善的空间。According to Ampere's principle, when a current passes through a conductor, a magnetic field will be formed around it, and its magnitude is proportional to the current of the conductor and inversely proportional to the distance between them. Therefore, by detecting the magnitude of the magnetic field, the magnitude of the current passing through the conductor can be known. However, most of the current proximity current sensors have the problem of excessive measurement error due to the installation position, which causes inconvenience in use. Therefore, there is still room for improvement in the proximity current sensors.

发明内容 Contents of the invention

鉴于以上的问题,本发明在于提供一种近接式电流感测装置与方法,从而准确校正导线的位置,以降低电流量测误差量。In view of the above problems, the present invention is to provide a proximity current sensing device and method, so as to accurately correct the position of the wire and reduce the current measurement error.

本发明的一种近接式电流感测装置,包括本体、第一调整元件、第二调整元件、第一感测单元、第二感测单元、第三感测单元与处理单元。本体具有开孔,开孔适于导线穿过本体。第一调整元件配置于本体的第一侧边,用以调整导线的第一位置。第二调整元件配置于本体的第二侧边,用以调整导线的第二位置。第一感测单元配置于本体上且邻近于导线的第一侧边,用以感测导线的第一磁通量。第二感测单元配置于本体上且邻近于导线的第二侧边,用以感测导线的第二磁通量。第三感测单元配置于本体上且邻近于导线的第三侧边,用以感测导线的第三磁通量。处理单元耦接第一感测单元、第二感测单元与第三感测单元,用以依据第一磁通量与第二磁通量,以判断出导线的位置,以及依据第三磁通量计算出电流量。A proximity current sensing device of the present invention includes a body, a first adjusting element, a second adjusting element, a first sensing unit, a second sensing unit, a third sensing unit and a processing unit. The body has an opening, and the opening is suitable for a wire to pass through the body. The first adjusting element is arranged on the first side of the body, and is used for adjusting the first position of the wire. The second adjusting element is arranged on the second side of the body, and is used for adjusting the second position of the wire. The first sensing unit is disposed on the body and adjacent to the first side of the wire for sensing the first magnetic flux of the wire. The second sensing unit is disposed on the body and adjacent to the second side of the wire for sensing the second magnetic flux of the wire. The third sensing unit is disposed on the body and adjacent to the third side of the wire for sensing the third magnetic flux of the wire. The processing unit is coupled to the first sensing unit, the second sensing unit and the third sensing unit for determining the position of the wire according to the first magnetic flux and the second magnetic flux, and calculating the current amount according to the third magnetic flux.

本发明的一种近接式电流感测方法,包括下列步骤。利用第一感测单元感测导线的第一磁通量,其中第一感测单元邻近于导线的第一侧边。利用第二感测单元感测导线的第二磁通量,其中第二感测单元邻近于导线的第二侧边。利用第三感测单元感测导线的第三磁通量,其中第三感测单元邻近于导线的第三侧边。依据第一磁通量与第二磁通量,以计算出导线的位置。依据第三磁通量计算出电流量。A proximity current sensing method of the present invention includes the following steps. The first magnetic flux of the wire is sensed by the first sensing unit, wherein the first sensing unit is adjacent to the first side of the wire. The second magnetic flux of the wire is sensed by the second sensing unit, wherein the second sensing unit is adjacent to the second side of the wire. The third sensing unit is used to sense the third magnetic flux of the wire, wherein the third sensing unit is adjacent to the third side of the wire. The position of the wire is calculated according to the first magnetic flux and the second magnetic flux. The current amount is calculated according to the third magnetic flux.

本发明的一种近接式电流感测装置与方法,其通过感测单元(第一感测单元与第二感测单元)感测导线的磁通量,以确定导线的位置是否位于电流感测装置本体内置中的位置。若否,则利用调整元件(第一调整元件与第二调整元件)调整导线的位置,使导线位于装置本体内置中的位置,再通过第三感测单元感测导线的磁通量,以计算出流经导线的电流量。如此一来,可有效降低电流量测的误差。A proximity current sensing device and method of the present invention, which senses the magnetic flux of the wire through the sensing unit (the first sensing unit and the second sensing unit) to determine whether the position of the wire is located in the body of the current sensing device position in the builtin. If not, use the adjustment elements (first adjustment element and second adjustment element) to adjust the position of the wire, so that the wire is located in the built-in position of the device body, and then sense the magnetic flux of the wire through the third sensing unit to calculate the current flow. The amount of current flowing through the wire. In this way, the error of current measurement can be effectively reduced.

附图说明 Description of drawings

图1为本发明的近接式电流感测装置的示意图。FIG. 1 is a schematic diagram of a proximity current sensing device of the present invention.

图2为本发明的感测单元140、150、160的配置关系示意图。FIG. 2 is a schematic diagram of the arrangement relationship of the sensing units 140 , 150 , 160 of the present invention.

图3为本发明的近接式电流感测器的电路方块图。FIG. 3 is a circuit block diagram of the proximity current sensor of the present invention.

图4为本发明的另一近接式电流感测装置的示意图。FIG. 4 is a schematic diagram of another proximity current sensing device of the present invention.

图5为本发明的感测单元462、464、466、468的配置示意图。FIG. 5 is a schematic configuration diagram of the sensing units 462 , 464 , 466 , 468 of the present invention.

图6为本发明的另一近接式电流感测装置的电路方块图。FIG. 6 is a circuit block diagram of another proximity current sensing device of the present invention.

图7为本发明的近接式电流感测方法的流程图。FIG. 7 is a flow chart of the proximity current sensing method of the present invention.

图8为本发明的另一近接式电流感测方法的流程图。FIG. 8 is a flowchart of another proximity current sensing method of the present invention.

主要元件符号说明Description of main component symbols

100、400 近接式电流感测装置100, 400 Proximity current sensing device

110、410 本体110, 410 body

111、411 开孔111, 411 opening

112、412 导线112, 412 wire

120、130、420、430、440、450 调整元件120, 130, 420, 430, 440, 450 Adjustment elements

121、131、421、431、441、451 顶杆121, 131, 421, 431, 441, 451 Ejector

122、132、422、432、442、452 旋钮122, 132, 422, 432, 442, 452 Knobs

140、150、160、462、464、466、468 感测单元140, 150, 160, 462, 464, 466, 468 sensing units

170、470 处理单元170, 470 processing unit

180、480 显示单元180, 480 display unit

210、220 感测线圈210, 220 sensing coil

310、610、620 比较单元310, 610, 620 comparison unit

320、630 计算单元。320, 630 computing units.

具体实施方式 Detailed ways

有关本发明的特征与实施,配合附图作实施例详细说明如下。The features and implementation of the present invention will be described in detail as follows with reference to the accompanying drawings.

请参考图1所示,其为本发明的近接式电流感测装置的方块图。近接式电流感测装置100包括本体110、调整元件120、130、感测单元140、150、160、处理单元170与显示单元180。本体110具有开孔111。此开孔111适于导线112穿过本体110。也就是说,使用者可以将导线112通过开孔111穿过本体110,以便量测导线112的电流量。在本实施例中,导线112为双心电源线。Please refer to FIG. 1 , which is a block diagram of the proximity current sensing device of the present invention. The proximity current sensing device 100 includes a main body 110 , adjustment elements 120 , 130 , sensing units 140 , 150 , 160 , a processing unit 170 and a display unit 180 . The body 110 has an opening 111 . The opening 111 is suitable for the wire 112 to pass through the body 110 . That is to say, the user can pass the wire 112 through the body 110 through the opening 111 to measure the current of the wire 112 . In this embodiment, the wire 112 is a double-core power wire.

调整元件120配置于本体110的第一侧边,用以调整导线112的第一位置。调整元件130配置于本体110的第二侧边,用以调整导线112的第二位置。在本实施例中,调整元件120可包括顶杆121与旋钮122。旋钮122连接于顶杆121,且旋钮122旋转以带动顶杆121产生往复运动,以使顶杆121穿入或退出本体110。The adjustment element 120 is disposed on the first side of the body 110 for adjusting the first position of the wire 112 . The adjusting element 130 is disposed on the second side of the body 110 for adjusting the second position of the wire 112 . In this embodiment, the adjustment element 120 may include a push rod 121 and a knob 122 . The knob 122 is connected to the push rod 121 , and the rotation of the knob 122 drives the push rod 121 to generate a reciprocating motion, so that the push rod 121 penetrates or exits the body 110 .

另外,调整元件130包括顶杆131与旋钮132。旋钮132连接于顶杆131,且旋钮132旋转以带动顶杆131产生往复运动,以使顶杆131穿入或退出本体110。如此一来,使用者可通过旋转旋钮122或132,使得导线112以水平的方式向左移动或向右移动,进而将导线112调整至位于本体110内置中的位置,以进行导线112的电流量的量测。In addition, the adjustment element 130 includes a push rod 131 and a knob 132 . The knob 132 is connected to the push rod 131 , and the rotation of the knob 132 drives the push rod 131 to generate a reciprocating motion, so that the push rod 131 penetrates or exits the body 110 . In this way, the user can rotate the knob 122 or 132 to make the wire 112 move left or right in a horizontal manner, and then adjust the wire 112 to a position inside the body 110 to control the current flow of the wire 112 measurement.

感测单元140配置于本体110上且邻近于导线112的第一侧边,用以感测导线112的第一磁通量。若导线112较接近感测单元140,则感测单元140所感测到的第一磁通量较大。反之,若导线112较远离感测单元140,则感测单元140所感测到的第一磁通量较小。The sensing unit 140 is disposed on the body 110 and adjacent to the first side of the wire 112 for sensing a first magnetic flux of the wire 112 . If the wire 112 is closer to the sensing unit 140 , the first magnetic flux sensed by the sensing unit 140 is larger. On the contrary, if the wire 112 is farther away from the sensing unit 140 , the first magnetic flux sensed by the sensing unit 140 is smaller.

感测单元150配置于本体110上且邻近于导线112的第二侧边,用以感测导线112的第二磁通量。若导线112较接近测元件150,则感测单元150所感测到的第二磁通量较大。反之,若导线112较远离感测单元150,则感测单元150所感测到的第二磁通量较小。The sensing unit 150 is disposed on the body 110 and adjacent to the second side of the wire 112 for sensing the second magnetic flux of the wire 112 . If the wire 112 is closer to the sensing element 150 , the second magnetic flux sensed by the sensing unit 150 is larger. On the contrary, if the wire 112 is farther away from the sensing unit 150 , the second magnetic flux sensed by the sensing unit 150 is smaller.

感测单元160配置于本体110上且邻近于导线112的第三侧边,用以感测导线112的第三磁通量。处理单元170耦接感测单元140、150与160,用以依据第一磁通量与第二磁通量,以判断出导线112的位置,以及依据第三磁通量计算出流经导线112的电流量。另外,处理单元170更可依据第三磁通量估算出导线112的安装位置,即导线112与感测单元160之间的距离。显示单元180耦接处理单元170,用以显示导线112的位置以及流经导线112的电流量。The sensing unit 160 is disposed on the body 110 and adjacent to the third side of the wire 112 for sensing a third magnetic flux of the wire 112 . The processing unit 170 is coupled to the sensing units 140 , 150 and 160 for determining the position of the wire 112 according to the first magnetic flux and the second magnetic flux, and calculating the current flowing through the wire 112 according to the third magnetic flux. In addition, the processing unit 170 can further estimate the installation position of the wire 112 according to the third magnetic flux, that is, the distance between the wire 112 and the sensing unit 160 . The display unit 180 is coupled to the processing unit 170 for displaying the position of the wire 112 and the amount of current flowing through the wire 112 .

如此,使用者可通过显示单元180所显示的导线112的位置,以得知导线112的位置的偏移状况,进而观察感测器160是否确实位于导线112的中心上方位置,即导线112是否位于本体110内置中的位置。接着,利用调整单元120与130调整导线112的位置,以确保感测器160位于导线112的中心上方位置,进而减少电流量测时的误差。In this way, the user can know the deviation of the position of the wire 112 through the position of the wire 112 displayed on the display unit 180, and then observe whether the sensor 160 is indeed located above the center of the wire 112, that is, whether the wire 112 is located at the center of the wire 112. The position where the main body 110 is built. Then, the adjustment units 120 and 130 are used to adjust the position of the wire 112 to ensure that the sensor 160 is located above the center of the wire 112 , thereby reducing errors in current measurement.

请参考图2所示,其为本发明的感测单元140、150与160的配置关系示意图。其中,感测单元140与150分别可以是感测线圈。而感测单元160还包括有感测线圈210与220。感测线圈210配置于本体110上且邻近于导线112的第三侧边。感测线圈220配置于本体110上且以预设距离d邻近于感测线圈210。在本实施例中,预设距离d为已知的固定距离。Please refer to FIG. 2 , which is a schematic diagram of the configuration relationship of the sensing units 140 , 150 and 160 of the present invention. Wherein, the sensing units 140 and 150 may be sensing coils respectively. The sensing unit 160 further includes sensing coils 210 and 220 . The sensing coil 210 is disposed on the body 110 and adjacent to the third side of the wire 112 . The sensing coil 220 is disposed on the body 110 and adjacent to the sensing coil 210 with a predetermined distance d. In this embodiment, the preset distance d is a known fixed distance.

根据安培定律,流经一长直导线的电流,在其邻近空间会产生环形磁场。通过本实施例的感测单元160感测导线112上的电流,可根据法拉第感应定律而获得感测电压According to Ampere's law, a current flowing through a long straight wire will generate a circular magnetic field in its adjacent space. Sensing the current on the wire 112 through the sensing unit 160 of this embodiment can obtain a sensing voltage according to Faraday's law of induction

emf ( v ) = - Σ n = 1 N d Φ n dt = ωμ 0 I sin ωt 2 π Σ n = 1 N c n ln ( b n 2 + g 2 a n 2 + g 2 ) , 其中 emf ( v ) = - Σ no = 1 N d Φ no dt = ωμ 0 I sin ωt 2 π Σ no = 1 N c no ln ( b no 2 + g 2 a no 2 + g 2 ) , in

ΦΦ nno == ∫∫ BB →&Right Arrow; ·· dd AA →&Right Arrow; == μμ 00 II coscos ωtωt ππ cc nno ∫∫ aa nno bb nno xx xx 22 ++ gg 22 dxdx

aa nno == dd 22 -- 11 22 [[ ww cc -- 22 nno ·· ww dd -- 22 (( nno -- 11 )) ·· ww sthe s ]] ,,

bb nno == dd 22 ++ 11 22 [[ ww cc -- 22 nno ·· ww dd -- 22 (( nno -- 11 )) ·· ww sthe s ]]

cn=L-2n·wd-2(n-1)·ws c n =L-2n·w d -2(n-1)·w s

wc为感应线圈210、220的线宽,wd为感应线圈210、220的绕线的线宽,ws为感应线圈210、220的绕线之间的线距,μ0为导磁率,I为导线112上的电流,g为感应线圈210与导线112之间的距离,N为感应线圈210、220的绕线的线圈数。并且,通过本实施例的感应线圈210、220感测导线112上的电流,可以获得的感应电压如下:w c is the line width of the induction coils 210, 220, w d is the line width of the winding wires of the induction coils 210, 220, w s is the line distance between the winding wires of the induction coils 210, 220, μ 0 is the magnetic permeability, I is the current on the wire 112 , g is the distance between the induction coil 210 and the wire 112 , and N is the coil number of the induction coil 210 , 220 . Moreover, by sensing the current on the wire 112 through the induction coils 210 and 220 of this embodiment, the induced voltage that can be obtained is as follows:

VV 11 == ωμωμ 00 II sinsin ωtωt 22 ππ ΣΣ nno == 11 NN cc nno lnln (( bb nno 22 ++ gg 22 aa nno 22 ++ gg 22 )) VV 22 == ωμωμ 00 II sinsin ωtωt 22 ππ ΣΣ nno == 11 NN cc nno lnln (( bb nno 22 ++ (( gg ++ dd )) 22 aa nno 22 ++ (( gg ++ dd )) 22 ))

其中,参数an、bn、cn、N、d等皆为已知参数,而I与g为未知数,V1为感应线圈210所感测的电压,V2为感应线圈220所感测的电压。因此,可通过上述两方程式获得I和g的参数,使得本实施例的近接式电流感测装置100可准确的感测出导线112的电流量,以及导线112的安装位置(即导线112与感测单元160之间的距离)。Among them, the parameters a n , b n , c n , N, d, etc. are all known parameters, while I and g are unknowns, V 1 is the voltage sensed by the induction coil 210 , and V 2 is the voltage sensed by the induction coil 220 . Therefore, the parameters of I and g can be obtained through the above two equations, so that the proximity current sensing device 100 of this embodiment can accurately sense the current amount of the wire 112 and the installation position of the wire 112 (that is, the distance between the wire 112 and the sensor). measuring unit 160).

请参考图3所示,其为本发明的近接式电流感测装置的电路方块图。近接式电流感测装置100包括感测单元140、150、160、处理单元170与显示单元180,而其耦接关系请参考图3,故在此不再赘述。其中,处理单元170包括比较单元310与计算单元320。比较单元310耦接感测单元140与150,用以接收并比较第一磁通量与第二磁通量,以产生第一比较结果。计算单元320耦接比较单元310与感测单元160,用以依据第一比较结果,判断出导线112的位置,以及依据第三磁通量,计算出流经导线112的电流量。Please refer to FIG. 3 , which is a circuit block diagram of the proximity current sensing device of the present invention. The proximity current sensing device 100 includes sensing units 140 , 150 , 160 , a processing unit 170 , and a display unit 180 , and the coupling relationship thereof is shown in FIG. 3 , so details are not repeated here. Wherein, the processing unit 170 includes a comparison unit 310 and a calculation unit 320 . The comparison unit 310 is coupled to the sensing units 140 and 150 for receiving and comparing the first magnetic flux and the second magnetic flux to generate a first comparison result. The calculation unit 320 is coupled to the comparison unit 310 and the sensing unit 160 for determining the position of the wire 112 according to the first comparison result, and calculating the current flowing through the wire 112 according to the third magnetic flux.

举例来说,当第一磁通量大于第二磁通量时,比较单元310输出的第一比较结果例如为正,则计算单元320会判断出导线112的位置较接近感测单元140,并于显示单元180上显示。当第一磁通量小于第二磁通量时,比较单元310输出的第一比较结果例如为负,则计算单元320会判断出导线112的位置较接近感测单元150,并于显示单元180上显示。当第一磁通量等于第二磁通量时,比较单元310输出的第一比较结果例如为零,则计算单元320会计算出导线112的位置位于感测单元140与150之间,即位于本体110内置中的位置,并于显示单元180上显示。For example, when the first magnetic flux is greater than the second magnetic flux, and the first comparison result output by the comparison unit 310 is, for example, positive, then the calculation unit 320 will determine that the position of the wire 112 is closer to the sensing unit 140, and display it on the display unit 180 on display. When the first magnetic flux is smaller than the second magnetic flux, the first comparison result output by the comparison unit 310 is negative, and the calculation unit 320 determines that the position of the wire 112 is closer to the sensing unit 150 and displays it on the display unit 180 . When the first magnetic flux is equal to the second magnetic flux, the first comparison result output by the comparison unit 310 is, for example, zero, and the calculation unit 320 will calculate that the position of the wire 112 is located between the sensing units 140 and 150, that is, located inside the main body 110. The location is displayed on the display unit 180.

以下将进一步说明近接式电流感测装置100的操作。首先,使用者可将导线112经由开孔111穿过本体110。接着,通过感应元件140与150感测导线112的第一磁通量与第二磁通量,而处理单元170据此判断导线112的位置,并于显示单元180上显示。若导线112的位置较接近于感测单元140,则使用者可通过调整单元120将导线112向左调整,使导线112远离感测单元140而接近感测单元150。若导线112的位置较接近感测单元150,则使用者可通过调整单元130将导线112向右调整,使导线112远离感测单元150而接近感测单元140。通过上述的调整,使得导线112的位置位于本体110内置中的位置。The operation of the proximity current sensing device 100 will be further described below. First, the user can pass the wire 112 through the body 110 through the opening 111 . Then, the first magnetic flux and the second magnetic flux of the wire 112 are sensed by the inductive elements 140 and 150 , and the processing unit 170 determines the position of the wire 112 accordingly, and displays it on the display unit 180 . If the wire 112 is closer to the sensing unit 140 , the user can adjust the wire 112 to the left through the adjustment unit 120 so that the wire 112 is far away from the sensing unit 140 and close to the sensing unit 150 . If the wire 112 is closer to the sensing unit 150 , the user can adjust the wire 112 to the right through the adjustment unit 130 so that the wire 112 is far away from the sensing unit 150 and close to the sensing unit 140 . Through the above-mentioned adjustments, the position of the wire 112 is located in the built-in position of the main body 110 .

此时,通过感测单元160感测导线112的第三磁通量,而处理单元170依据前述法拉第定律来计算第三磁通量,以获得流经导线112上的电流。如此一来,可准确地量测出导线112上的电流,进而减少电流量测的误差。At this time, the sensing unit 160 senses the third magnetic flux of the wire 112 , and the processing unit 170 calculates the third magnetic flux according to Faraday's law to obtain the current flowing through the wire 112 . In this way, the current on the wire 112 can be accurately measured, thereby reducing errors in current measurement.

上述说明为本发明的一种实施范例,以下将举另一例来说明。请参考图4所示,其为本发明的近接式电流感测装置的方块图。近接式电流感测装置400包括本体410、调整元件420、430、440、450、感测单元462、464、466、468、处理单元470与显示单元480。The above description is an implementation example of the present invention, and another example will be given below for illustration. Please refer to FIG. 4 , which is a block diagram of the proximity current sensing device of the present invention. The proximity current sensing device 400 includes a body 410 , adjustment elements 420 , 430 , 440 , 450 , sensing units 462 , 464 , 466 , 468 , a processing unit 470 and a display unit 480 .

本体410具有开孔411。此开孔411适于导线412穿过本体410。也就是说,使用者可以将导线412通过开孔411穿过本体410,以便量测导线412的电流量。在本实施例中,导线412为双心电源线。The body 410 has an opening 411 . The opening 411 is suitable for the wire 412 to pass through the body 410 . That is to say, the user can pass the wire 412 through the body 410 through the opening 411 to measure the current of the wire 412 . In this embodiment, the wire 412 is a double-core power wire.

调整元件420配置于本体410的第一侧边,用以调整导线412的第一位置。调整元件430配置于本体410的第二侧边,用以调整导线412的第二位置。在本实施例中,调整元件420可包括顶杆421与旋钮422。旋钮422连接于顶杆421,且旋钮422旋转以带动顶杆421产生往复运动,以使顶杆421穿入或退出本体410。The adjustment element 420 is disposed on the first side of the body 410 for adjusting the first position of the wire 412 . The adjusting element 430 is disposed on the second side of the body 410 for adjusting the second position of the wire 412 . In this embodiment, the adjustment element 420 may include a push rod 421 and a knob 422 . The knob 422 is connected to the push rod 421 , and the rotation of the knob 422 drives the push rod 421 to generate a reciprocating motion, so that the push rod 421 penetrates or exits the body 410 .

另外,调整元件430包括顶杆431与旋钮432。旋钮432连接于顶杆431,且旋钮432旋转以带动顶杆431产生往复运动,以使顶杆431穿入或退出本体410。而调整单元420与430的操作方式可参照图1的调整单元120与130的实施方式,故在此不再赘述。In addition, the adjustment element 430 includes a push rod 431 and a knob 432 . The knob 432 is connected to the push rod 431 , and the rotation of the knob 432 drives the push rod 431 to generate a reciprocating motion, so that the push rod 431 penetrates or exits the body 410 . The operation of the adjustment units 420 and 430 can refer to the implementation of the adjustment units 120 and 130 in FIG. 1 , so it will not be repeated here.

调整元件440配置于本体410的第三侧边,用以调整导线412的第三位置。调整元件450配置于本体410的第四侧边,用以调整导线412的第四位置。在本实施例中,调整元件440可包括顶杆441与旋钮442。旋钮442连接于顶杆441,且旋钮442旋转以带动顶杆441产生往复运动,以使顶杆441穿入或退出本体410。The adjusting element 440 is disposed on the third side of the body 410 for adjusting the third position of the wire 412 . The adjusting element 450 is disposed on the fourth side of the body 410 for adjusting the fourth position of the wire 412 . In this embodiment, the adjustment element 440 may include a push rod 441 and a knob 442 . The knob 442 is connected to the push rod 441 , and the rotation of the knob 442 drives the push rod 441 to generate a reciprocating motion, so that the push rod 441 penetrates or exits the body 410 .

另外,调整元件450包括顶杆451与旋钮452。旋钮452连接于顶杆451,且旋钮452旋转以带动顶杆451产生往复运动,以使顶杆451穿入或退出本体410。如此一来,使用者可通过旋转旋钮442或452,使得导线412以垂直的方式向上移动或向下移动,进而将导线412调整至位于本体410内置中的位置,以进行导线412的电流量的量测。In addition, the adjustment element 450 includes a push rod 451 and a knob 452 . The knob 452 is connected to the push rod 451 , and the rotation of the knob 452 drives the push rod 451 to generate a reciprocating motion, so that the push rod 451 penetrates or exits the body 410 . In this way, the user can rotate the knob 442 or 452 to make the wire 412 move up or down in a vertical manner, and then adjust the wire 412 to a position inside the body 410 to adjust the amount of current of the wire 412 Measure.

感测单元462配置于本体410上且邻近于导线412的第一侧边,用以感测导线412的第一磁通量。若导线412较接近感测单元462,则感测单元462所感测到的第一磁通量较大。反之,若导线412较远离感测单元462,则感测单元462所感测到的第一磁通量较小。The sensing unit 462 is disposed on the body 410 and adjacent to the first side of the wire 412 for sensing the first magnetic flux of the wire 412 . If the wire 412 is closer to the sensing unit 462 , the first magnetic flux sensed by the sensing unit 462 is larger. Conversely, if the wire 412 is farther away from the sensing unit 462 , the first magnetic flux sensed by the sensing unit 462 is smaller.

感测单元464配置于本体410上且邻近于导线412的第二侧边,用以感测导线412的第二磁通量。若导线412较接近感测单元464,则感测单元464所感测到的第二磁通量较大。反之,若导线412较远离感测单元464,则感测单元464所感测到的第二磁通量较小。The sensing unit 464 is disposed on the body 410 and adjacent to the second side of the wire 412 for sensing the second magnetic flux of the wire 412 . If the wire 412 is closer to the sensing unit 464 , the second magnetic flux sensed by the sensing unit 464 is larger. On the contrary, if the wire 412 is farther away from the sensing unit 464 , the second magnetic flux sensed by the sensing unit 464 is smaller.

感测单元466配置于本体410上且邻近于导线412的第三侧边,用以感测导线412的第三磁通量。若导线412较接近感测单元466,则感测单元466所感测到的第三磁通量较大。反之,若导线412较远离感测单元466,则感测单元466所感测到的第三磁通量较小。The sensing unit 466 is disposed on the body 410 and adjacent to the third side of the wire 412 for sensing the third magnetic flux of the wire 412 . If the wire 412 is closer to the sensing unit 466 , the third magnetic flux sensed by the sensing unit 466 is larger. On the contrary, if the wire 412 is farther away from the sensing unit 466 , the third magnetic flux sensed by the sensing unit 466 is smaller.

感测单元468配置于本体410上且邻近于导线412的第四侧边,用以感测导线的第四磁通量。若导线412较接近感测单元468,则感测单元468所感测到的第三磁通量较大。反之,若导线412较远离感测单元468,则感测单元468所感测到的第三磁通量较小。The sensing unit 468 is disposed on the body 410 and adjacent to the fourth side of the wire 412 for sensing the fourth magnetic flux of the wire. If the wire 412 is closer to the sensing unit 468 , the third magnetic flux sensed by the sensing unit 468 is larger. Conversely, if the wire 412 is farther away from the sensing unit 468 , the third magnetic flux sensed by the sensing unit 468 is smaller.

处理单元470耦接感测单元462、464、466与468,用以依据第一磁通量与第二磁通量,以判断出导线412的一位置(例如水平方向的位置),依据第三磁通量与第四磁通量,以判断出导线412的另一位置(例如垂直方向的位置),且依据第三磁通量计算出流经导线412的电流量。The processing unit 470 is coupled to the sensing units 462, 464, 466, and 468, and is used to determine a position (such as a position in the horizontal direction) of the wire 412 according to the first magnetic flux and the second magnetic flux, and to determine a position (such as a position in the horizontal direction) of the wire 412 according to the third magnetic flux and the fourth magnetic flux. The magnetic flux is used to determine another position of the wire 412 (for example, the position in the vertical direction), and the amount of current flowing through the wire 412 is calculated according to the third magnetic flux.

如此,使用者可通过显示单元480所显示的导线112的位置(即水平方向的位置)与另一位置(即垂直方向的位置),得知导线112的位置的偏移状况。接着,利用调整单元420、430、440与450调整导线112的位置,以确保导线112位于本体410内置中的位置,进而减少电流量测时的误差。In this way, the user can know the deviation of the position of the wire 112 through the position of the wire 112 displayed on the display unit 480 (ie, the position in the horizontal direction) and another position (ie, the position in the vertical direction). Then, the position of the wire 112 is adjusted by using the adjustment units 420 , 430 , 440 and 450 to ensure that the wire 112 is located in the built-in position of the body 410 , thereby reducing errors in current measurement.

请参考图5所示,其为本发明的感测单元462、464、466与468的配置关系示意图。其中,感测单元462、464、466与468分别可以是感测线圈。由于导线412位于本体410内置中的位置,得感应线圈466与导线412之间的距离g为本体410的高度的1/2,因此通过本实施例的感应单元466感测导线412上的电流,可以获得的感应电压如下:Please refer to FIG. 5 , which is a schematic diagram of the configuration relationship of the sensing units 462 , 464 , 466 and 468 of the present invention. Wherein, the sensing units 462 , 464 , 466 and 468 may be sensing coils respectively. Since the wire 412 is located in the built-in position of the main body 410, the distance g between the induction coil 466 and the wire 412 is 1/2 of the height of the main body 410, so the current on the wire 412 is sensed by the sensing unit 466 of this embodiment, The induced voltages that can be obtained are as follows:

emfemf (( vv )) == -- ΣΣ nno == 11 NN dΦdΦ nno dtdt == ωμωμ 00 II sinsin ωtωt 22 ππ ΣΣ nno == 11 NN cc nno lnln (( bb nno 22 ++ gg 22 aa nno 22 ++ gg 22 ))

其中,参数an、bn、cn、N、g等皆为已知参数,而I为未知数。因此,可通过上述方程式获得I的参数,使得本实施例的近接式电流感测装置400可准确的感测出导线412的电流量。Among them, the parameters a n , b n , c n , N, g, etc. are all known parameters, and I is an unknown number. Therefore, the parameter I can be obtained through the above equation, so that the proximity current sensing device 400 of this embodiment can accurately sense the current of the wire 412 .

请参考图6所示,其为本发明的另一近接式电流感测装置的电路方块图。近接式电流感测装置400包括感测单元462、464、466、468、处理单元470与显示单元480,而其耦接关系请参考图6,故在此不再赘述。其中,处理单元470包括比较单元610、620与计算单元630。比较单元610耦接感测单元462与464,用以接收并比较第一磁通量与第二磁通量,以产生第二比较结果。比较单元620耦接感测单元466与感测单元468,用以接收并比较第三磁通量与第四磁通量,以产生第三比较结果。计算单元630耦接比较单元610、620与感测单元466,用以依据第二比较结果,判断出导线412的位置,依据第三比较结果判断出导线412的另一位置,以及依据第三磁通量,计算出流经导线412的电流量。Please refer to FIG. 6 , which is a circuit block diagram of another proximity current sensing device of the present invention. The proximity current sensing device 400 includes sensing units 462 , 464 , 466 , 468 , a processing unit 470 , and a display unit 480 , and the coupling relationship thereof is referred to FIG. 6 , so details are not repeated here. Wherein, the processing unit 470 includes comparison units 610 , 620 and a calculation unit 630 . The comparison unit 610 is coupled to the sensing units 462 and 464 for receiving and comparing the first magnetic flux and the second magnetic flux to generate a second comparison result. The comparison unit 620 is coupled to the sensing unit 466 and the sensing unit 468 for receiving and comparing the third magnetic flux and the fourth magnetic flux to generate a third comparison result. The calculation unit 630 is coupled to the comparison units 610, 620 and the sensing unit 466, and is used to determine the position of the wire 412 according to the second comparison result, determine another position of the wire 412 according to the third comparison result, and determine the position of the wire 412 according to the third comparison result, and determine the position of the wire 412 according to the third magnetic flux. , calculate the amount of current flowing through the wire 412 .

举例来说,当第一磁通量大于第二磁通量时,比较单元610输出的第二比较结果例如为正,则计算单元630会判断出导线412的位置较接近感测单元462,并于显示单元480上显示。当第一磁通量小于第二磁通量时,比较单元610输出的第二比较结果例如为负,则计算单元630会判断出导线412的位置较接近感测单元464,并于显示单元480上显示。当第一磁通量等于第二磁通量时,比较单元610输出的第二比较结果例如为零,则计算单元630会判断出导线412的位置位于感测单元462与464之间,即位于本体410内水平置中的位置,并于显示单元480上显示。For example, when the first magnetic flux is greater than the second magnetic flux, and the second comparison result output by the comparison unit 610 is, for example, positive, then the calculation unit 630 will determine that the position of the wire 412 is closer to the sensing unit 462, and display it on the display unit 480 on display. When the first magnetic flux is smaller than the second magnetic flux, the second comparison result output by the comparison unit 610 is eg negative, and the calculation unit 630 determines that the position of the wire 412 is closer to the sensing unit 464 and displays it on the display unit 480 . When the first magnetic flux is equal to the second magnetic flux, the second comparison result output by the comparison unit 610 is, for example, zero, and the calculation unit 630 will judge that the position of the wire 412 is between the sensing units 462 and 464, that is, at the level inside the body 410 centered position and displayed on the display unit 480 .

当第三磁通量大于第四磁通量时,比较单元620输出的第三比较结果例如为正,则计算单元630会判断出导线412的位置较接近感测单元466,并于显示单元480上显示。当第三磁通量小于第四磁通量时,比较单元620输出的第三比较结果例如为负,则计算单元630会判断出导线412的位置较接近感测单元468,并于显示单元480上显示。当第三磁通量等于第四磁通量时,比较单元620输出的第三比较结果例如为零,则计算单元630会判断出导线412的位置位于感测单元466与468之间,即位于本体410内垂直置中的位置,并于显示单元480上显示。When the third magnetic flux is greater than the fourth magnetic flux, the third comparison result output by the comparison unit 620 is, for example, positive, and the calculation unit 630 determines that the position of the wire 412 is closer to the sensing unit 466 and displays it on the display unit 480 . When the third magnetic flux is smaller than the fourth magnetic flux, the third comparison result output by the comparison unit 620 is eg negative, and the calculation unit 630 determines that the position of the wire 412 is closer to the sensing unit 468 and displays it on the display unit 480 . When the third magnetic flux is equal to the fourth magnetic flux, the third comparison result output by the comparison unit 620 is, for example, zero, and the calculation unit 630 will judge that the position of the wire 412 is between the sensing units 466 and 468, that is, it is vertically located in the body 410 centered position and displayed on the display unit 480 .

以下将进一步说明近接式电流感测装置400的操作。首先,使用者可将导线412经由开孔411穿过本体410。接着,通过感应元件462与464感测导线412的第一磁通量与第二磁通量,且通过感测单元466与468感测导线412的第三磁通量与第四磁通量,而处理单元470据此判断导线412的位置,并于显示单元480上显示。若导线412的位置较接近于感测单元462,则使用者可通过调整单元420将导线412向左调整,使导线412远离感测单元462而接近感测单元464。若导线412的位置较接近感测单元464,则使用者可通过调整单元430将导线412向右调整,使导线412远离感测单元464而接近感测单元462。通过上述的调整,使得导线412的位置位于本体410内水平置中的位置。The operation of the proximity current sensing device 400 will be further described below. First, the user can pass the wire 412 through the body 410 through the opening 411 . Then, the first magnetic flux and the second magnetic flux of the wire 412 are sensed by the sensing elements 462 and 464, and the third magnetic flux and the fourth magnetic flux of the wire 412 are sensed by the sensing units 466 and 468, and the processing unit 470 judges the wire accordingly. 412 and displayed on the display unit 480. If the wire 412 is closer to the sensing unit 462 , the user can adjust the wire 412 to the left through the adjustment unit 420 so that the wire 412 is far away from the sensing unit 462 and close to the sensing unit 464 . If the wire 412 is closer to the sensing unit 464 , the user can adjust the wire 412 to the right through the adjusting unit 430 so that the wire 412 is far away from the sensing unit 464 and close to the sensing unit 462 . Through the above adjustments, the position of the wire 412 is located at a horizontally centered position in the body 410 .

另外,若导线412的位置较接近于感测单元466,则使用者可通过调整单元440将导线412向左调整,使导线412远离感测单元466而接近感测单元468。若导线412的位置较接近感测单元468,则使用者可通过调整单元450将导线412向右调整,使导线412远离感测单元468而接近感测单元466。通过上述的调整,使得导线412的位置位于本体410内垂直置中的位置。In addition, if the wire 412 is closer to the sensing unit 466 , the user can adjust the wire 412 to the left through the adjusting unit 440 so that the wire 412 is far away from the sensing unit 466 and close to the sensing unit 468 . If the position of the wire 412 is closer to the sensing unit 468 , the user can adjust the wire 412 to the right through the adjusting unit 450 so that the wire 412 is away from the sensing unit 468 and close to the sensing unit 466 . Through the above adjustments, the position of the wire 412 is vertically centered in the body 410 .

此时,通过感测单元466感测导线412的第三磁通量,而处理单元470依据前述法拉第定律来计算第三磁通量,以获得流经导线412上的电流。如此一来,可准确地量测出导线412上的电流,进而减少电流量测的误差。At this time, the sensing unit 466 senses the third magnetic flux of the wire 412 , and the processing unit 470 calculates the third magnetic flux according to Faraday's law to obtain the current flowing through the wire 412 . In this way, the current on the wire 412 can be accurately measured, thereby reducing errors in current measurement.

通过图1的实施的说明,可以归纳出一种近接式电流感测方法。请参考图7所示,其为本发明的近接式电流感测方法的流程图。在步骤S710中,利用第一感测单元感测导线的第一磁通量,其中第一感测单元邻近于导线的第一侧边。在步骤S720中,利用第二感测单元感测导线的第二磁通量,其中第二感测单元邻近于导线的第二侧边。在步骤S730中,利用第三感测单元感测导线的第三磁通量,其中第三感测单元邻近于导线的第三侧边。在步骤S740中,依据第一磁通量与第二磁通量,以判断出导线的位置。在步骤S750中,依据第三磁通量计算出电流量。在步骤S760中,显示导线的位置与电流量。如此,使用者便可通过显示导线的位置(例如水平方向的位置),得知导线于本体内的偏移状况。Through the description of the implementation in FIG. 1 , a proximity current sensing method can be summarized. Please refer to FIG. 7 , which is a flowchart of the proximity current sensing method of the present invention. In step S710, a first sensing unit is used to sense a first magnetic flux of the wire, wherein the first sensing unit is adjacent to a first side of the wire. In step S720, the second magnetic flux of the wire is sensed by the second sensing unit, wherein the second sensing unit is adjacent to the second side of the wire. In step S730, a third magnetic flux of the wire is sensed by a third sensing unit, wherein the third sensing unit is adjacent to a third side of the wire. In step S740, the position of the wire is determined according to the first magnetic flux and the second magnetic flux. In step S750, the current amount is calculated according to the third magnetic flux. In step S760, the position and current flow of the wire are displayed. In this way, the user can know the deviation of the wire in the main body by displaying the position of the wire (for example, the position in the horizontal direction).

前述步骤S740进一步包括下列步骤。比较第一磁通量与第二磁通量,以产生第一比较结果。接着,依据第一比较结果,判断出导线的位置。The aforementioned step S740 further includes the following steps. The first magnetic flux is compared with the second magnetic flux to generate a first comparison result. Then, according to the first comparison result, the position of the wire is determined.

通过图4的实施的说明,可以归纳出一种近接式电流感测方法。请参考图8所示,其为本发明的近接式电流感测方法的流程图。在步骤S810中,利用第一感测单元感测导线的第一磁通量,其中第一感测单元邻近于导线的第一侧边。在步骤S820中,利用第二感测单元感测导线的第二磁通量,其中第二感测单元邻近于导线的第二侧边。在步骤S830中,利用第三感测单元感测导线的第三磁通量,其中第三感测单元邻近于导线的第三侧边。在步骤S840中,依据第一磁通量与第二磁通量,以判断出导线的位置。Through the description of the implementation in FIG. 4 , a proximity current sensing method can be summarized. Please refer to FIG. 8 , which is a flowchart of the proximity current sensing method of the present invention. In step S810 , a first sensing unit is used to sense a first magnetic flux of the wire, wherein the first sensing unit is adjacent to a first side of the wire. In step S820, the second magnetic flux of the wire is sensed by the second sensing unit, wherein the second sensing unit is adjacent to the second side of the wire. In step S830, a third magnetic flux of the wire is sensed by a third sensing unit, wherein the third sensing unit is adjacent to a third side of the wire. In step S840, the position of the wire is determined according to the first magnetic flux and the second magnetic flux.

在步骤S850中,利用第四感测单元感测导线的第四磁通量,其中第四感测单元邻近于导线的一第四侧边。在步骤S860中,依据第三磁通量与第四磁通量,以判断出导线的另一位置。在步骤S870中,依据第三磁通量计算出电流量。在步骤S880中,显示导线的位置、另一位置与电流量。如此,使用者便可通过显示导线的位置(例如水平方向的位置)与另一位置(例如垂直方向的位置),得知导线于本体内的偏移状况。In step S850, the fourth sensing unit is used to sense the fourth magnetic flux of the wire, wherein the fourth sensing unit is adjacent to a fourth side of the wire. In step S860, another position of the wire is determined according to the third magnetic flux and the fourth magnetic flux. In step S870, the current amount is calculated according to the third magnetic flux. In step S880, the position of the wire, another position and the amount of current are displayed. In this way, the user can know the deviation of the wire in the main body by displaying the position of the wire (such as the position in the horizontal direction) and another position (such as the position in the vertical direction).

前述步骤S840进一步包括下列步骤。比较第一磁通量与第二磁通量,以产生第二比较结果。接着,依据第二比较结果,判断出导线的位置。前述步骤S860进一步包括下列步骤。比较第三磁通量与第四磁通量,以产生第三比较结果。依据第三比较结果,判断出导线的另一位置。The aforementioned step S840 further includes the following steps. The first magnetic flux is compared with the second magnetic flux to generate a second comparison result. Then, according to the second comparison result, the position of the wire is determined. The aforementioned step S860 further includes the following steps. The third magnetic flux is compared with the fourth magnetic flux to generate a third comparison result. According to the third comparison result, another position of the wire is determined.

本发明的实施例的近接式电流感测装置与方法,其通过感测单元(第一感测单元与第二感测单元;第一至第四感测单元)感测导线的磁通量,以确定导线的位置是否位于电流感测装置本体内置中的位置。若否,则利用调整元件(第一调整元件与第二调整元件;第一至第四调整元件)调整导线的位置,使导线位于装置本体内置中的位置,再通过第三感测单元感测导线的磁通量,以计算出流经导线的电流量。如此一来,可有效降低电流量测的误差。In the proximity current sensing device and method of the embodiments of the present invention, the magnetic flux of the wire is sensed by the sensing unit (the first sensing unit and the second sensing unit; the first to the fourth sensing unit) to determine Whether the position of the wire is located in the built-in position of the current sensing device body. If not, adjust the position of the wire by using the adjustment elements (the first adjustment element and the second adjustment element; the first to the fourth adjustment elements), so that the wire is located in the built-in position of the device body, and then sensed by the third sensing unit The magnetic flux of a wire to calculate the amount of current flowing through it. In this way, the error of current measurement can be effectively reduced.

Claims (17)

1.一种近接式电流感测装置,包括:1. A proximity current sensing device, comprising: 一本体,具有一开孔,该开孔适于一导线穿过该本体;a body having an opening adapted for a lead to pass through the body; 一第一调整元件,配置于该本体的一第一侧边,用以调整该导线的一第一位置;a first adjusting element, configured on a first side of the body, for adjusting a first position of the wire; 一第二调整元件,配置于该本体的一第二侧边,用以调整该导线的一第二位置;a second adjusting element, arranged on a second side of the body, for adjusting a second position of the wire; 一第一感测单元,配置于该本体上且邻近于该导线的一第一侧边,用以感测该导线的一第一磁通量;a first sensing unit, disposed on the body and adjacent to a first side of the wire, for sensing a first magnetic flux of the wire; 一第二感测单元,配置于该本体上且邻近于该导线的一第二侧边,用以感测该导线的一第二磁通量;a second sensing unit, disposed on the body and adjacent to a second side of the wire, for sensing a second magnetic flux of the wire; 一第三感测单元,配置于该本体上且邻近于该导线的一第三侧边,用以感测该导线的一第三磁通量;以及a third sensing unit, disposed on the body and adjacent to a third side of the wire, for sensing a third magnetic flux of the wire; and 一处理单元,耦接该第一感测单元、该第二感测单元与该第三感测单元,用以依据该第一磁通量与该第二磁通量,以判断出该导线的位置,以及依据该第三磁通量计算出一电流量。A processing unit, coupled to the first sensing unit, the second sensing unit, and the third sensing unit, is used to determine the position of the wire according to the first magnetic flux and the second magnetic flux, and to determine the position of the wire according to the The third magnetic flux calculates an electric current. 2.根据权利要求1所述的近接式电流感测装置,其中该第三感测单元包括:2. The proximity current sensing device according to claim 1, wherein the third sensing unit comprises: 一第一感测线圈,配置于该本体上且邻近于该导线的该第三侧边;以及a first sensing coil disposed on the body and adjacent to the third side of the wire; and 一第二感测线圈,配置于该本体上且以一预设距离邻近于该第一感测线圈。A second sensing coil is disposed on the body and adjacent to the first sensing coil with a predetermined distance. 3.根据权利要求1所述的近接式电流感测装置,其中该处理单元包括:3. The proximity current sensing device according to claim 1, wherein the processing unit comprises: 一第一比较单元,耦接该第一感测单元与该第二感测单元,用以接收并比较该第一磁通量与该第二磁通量,以产生一第一比较结果;以及a first comparison unit, coupled to the first sensing unit and the second sensing unit, for receiving and comparing the first magnetic flux and the second magnetic flux to generate a first comparison result; and 一第一计算单元,耦接该第一比较单元与该第三感测单元,用以依据该第一比较结果,判断出该导线的位置,以及依据该第三磁通量,计算出该电流量。A first calculation unit, coupled to the first comparison unit and the third sensing unit, is used for judging the position of the wire according to the first comparison result, and calculating the current amount according to the third magnetic flux. 4.根据权利要求1所述的近接式电流感测装置,还包括:4. The proximity current sensing device according to claim 1, further comprising: 一第三调整元件,配置于该本体的一第三侧边,用以调整该导线的一第三位置;a third adjusting element, arranged on a third side of the body, for adjusting a third position of the wire; 一第四调整元件,配置于该本体的一第四侧边,用以调整该导线的一第四位置;以及a fourth adjusting element, configured on a fourth side of the body, for adjusting a fourth position of the wire; and 一第四感测单元,配置于该本体上且邻近于该导线的一第四侧边,用以感测该导线的一第四磁通量;a fourth sensing unit, disposed on the body and adjacent to a fourth side of the wire, for sensing a fourth magnetic flux of the wire; 其中,该处理单元还耦接该第四感测单元,用以依据该第三磁通量与该第四磁通量,以判断出该导线的另一位置。Wherein, the processing unit is further coupled to the fourth sensing unit for determining another position of the wire according to the third magnetic flux and the fourth magnetic flux. 5.根据权利要求4所述的近接式电流感测装置,其中该处理单元包括:5. The proximity current sensing device according to claim 4, wherein the processing unit comprises: 一第二比较单元,耦接该第一感测单元与该第二感测单元,用以接收并比较该第一磁通量与该第二磁通量,以产生一第二比较结果;a second comparison unit, coupled to the first sensing unit and the second sensing unit, for receiving and comparing the first magnetic flux and the second magnetic flux to generate a second comparison result; 一第三比较单元,耦接该第三感测单元与该第四感测单元,用以接收并比较该第三磁通量与该第四磁通量,以产生一第三比较结果;以及a third comparison unit, coupled to the third sensing unit and the fourth sensing unit, for receiving and comparing the third magnetic flux and the fourth magnetic flux to generate a third comparison result; and 一第二计算单元,耦接该第二比较单元、该第三比较单元与该第三感测单元,用以依据该第二比较结果,判断出该导线的位置,依据该第三比较结果判断出该导线的另一位置,以及依据该第三磁通量,计算出该电流量。A second calculation unit, coupled to the second comparison unit, the third comparison unit and the third sensing unit, for judging the position of the wire according to the second comparison result, and judging according to the third comparison result Another position of the wire is obtained, and the current amount is calculated according to the third magnetic flux. 6.根据权利要求4所述的近接式电流感测装置,其中该第一调整元件、该第二调整元件、该第三调整元件与该第四调整元件分别包括:6. The proximity current sensing device according to claim 4, wherein the first adjusting element, the second adjusting element, the third adjusting element and the fourth adjusting element respectively comprise: 一第一顶杆;以及a first ejector pin; and 一第一旋钮,连接于该第一顶杆,且该第一旋钮旋转以带动该第一顶杆产生一往复运动,以使该第一顶杆穿入或退出该本体。A first knob is connected to the first push rod, and the rotation of the first knob drives the first push rod to produce a reciprocating motion, so that the first push rod penetrates into or withdraws from the body. 7.根据权利要求1所述的近接式电流感测装置,还包括:7. The proximity current sensing device according to claim 1, further comprising: 一第一显示单元,耦接该处理单元,用以显示该导线的位置、另一位置与该电流量。A first display unit, coupled to the processing unit, is used to display the position of the wire, another position and the amount of current. 8.根据权利要求1所述的近接式电流感测装置,其中该导线为双心电源线。8. The proximity current sensing device according to claim 1, wherein the wire is a double-core power wire. 9.根据权利要求1所述的近接式电流感测装置,其中该第一调整元件与该第二调整元件分别包括:9. The proximity current sensing device according to claim 1, wherein the first adjusting element and the second adjusting element respectively comprise: 一第二顶杆;以及a second ejector pin; and 一第二旋钮,连接于该第二顶杆,且该旋钮旋转以带动该第二顶杆产生一往复运动,以使该第二顶杆穿入或退出该本体。A second knob is connected to the second push rod, and the knob is rotated to drive the second push rod to produce a reciprocating motion, so that the second push rod penetrates or withdraws from the body. 10.根据权利要求1所述的近接式电流感测装置,还包括:10. The proximity current sensing device of claim 1, further comprising: 一显示单元,耦接该处理单元,用以显示该导线的位置与该电流量。A display unit, coupled to the processing unit, is used to display the position of the wire and the amount of current. 11.一种近接式电流感测方法,包括:11. A proximity current sensing method comprising: 利用一第一感测单元感测一导线的一第一磁通量,其中该第一感测单元邻近于该导线的一第一侧边;sensing a first magnetic flux of a wire by using a first sensing unit, wherein the first sensing unit is adjacent to a first side of the wire; 利用一第二感测单元感测该导线的一第二磁通量,其中该第二感测单元邻近于该导线的一第二侧边;sensing a second magnetic flux of the wire by using a second sensing unit, wherein the second sensing unit is adjacent to a second side of the wire; 利用一第三感测单元感测该导线的一第三磁通量,其中该第三感测单元邻近于该导线的一第三侧边;sensing a third magnetic flux of the wire by using a third sensing unit, wherein the third sensing unit is adjacent to a third side of the wire; 依据该第一磁通量与该第二磁通量,以判断出该导线的位置;以及determining the position of the wire according to the first magnetic flux and the second magnetic flux; and 依据该第三磁通量计算出一电流量。A current is calculated according to the third magnetic flux. 12.根据权利要求11所述的近接式电流感测方法,其中依据该第一磁通量与该第二磁通量,以判断出该导线的位置包括:12. The proximity current sensing method according to claim 11, wherein determining the position of the wire according to the first magnetic flux and the second magnetic flux comprises: 比较该第一磁通量与该第二磁通量,以产生一第一比较结果;以及comparing the first magnetic flux with the second magnetic flux to generate a first comparison result; and 依据该第一比较结果,判断出该导线的位置。According to the first comparison result, the position of the wire is determined. 13.根据权利要求11所述的近接式电流感测方法,还包括:13. The proximity current sensing method according to claim 11 , further comprising: 利用一第四感测单元感测该导线的一第四磁通量,其中该第四感测单元邻近于该导线的一第四侧边;以及sensing a fourth magnetic flux of the wire by using a fourth sensing unit, wherein the fourth sensing unit is adjacent to a fourth side of the wire; and 依据该第三磁通量与该第四磁通量,以判断出该导线的另一位置。Another position of the wire is determined according to the third magnetic flux and the fourth magnetic flux. 14.根据权利要求13所述的近接式电流感测方法,依据该第一磁通量与该第二磁通量,以计算出该导线的位置包括:14. The proximity current sensing method according to claim 13, calculating the position of the wire according to the first magnetic flux and the second magnetic flux comprises: 比较该第一磁通量与该第二磁通量,以产生一第二比较结果;以及comparing the first magnetic flux with the second magnetic flux to generate a second comparison result; and 依据该第二比较结果,判断出该导线的位置。According to the second comparison result, the position of the wire is determined. 15.根据权利要求13所述的近接式电流感测方法,依据该第三磁通量与该第四磁通量,以判断出该导线的另一位置包括:15. The proximity current sensing method according to claim 13, determining another position of the wire according to the third magnetic flux and the fourth magnetic flux comprises: 比较该第三磁通量与该第四磁通量,以产生一第三比较结果;以及comparing the third magnetic flux with the fourth magnetic flux to generate a third comparison result; and 依据该第三比较结果,判断出该导线的另一位置。According to the third comparison result, another position of the wire is determined. 16.根据权利要求13所述的近接式电流感测方法,还包括:16. The proximity current sensing method of claim 13, further comprising: 显示该导线的位置、另一位置与该电流量。Displays the position of the wire, the other position and the amount of current. 17.根据权利要求11所述的近接式电流感测方法,还包括:17. The proximity current sensing method of claim 11 , further comprising: 显示该导线的位置与该电流量。Displays the position of the wire and the amount of current.
CN201110401628.9A 2011-11-02 2011-12-06 Proximity current sensing device and method Active CN103091535B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW100140020 2011-11-02
TW100140020A TWI436083B (en) 2011-11-02 2011-11-02 Proximity current sensing apparatus and method

Publications (2)

Publication Number Publication Date
CN103091535A true CN103091535A (en) 2013-05-08
CN103091535B CN103091535B (en) 2015-10-14

Family

ID=45464273

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110401628.9A Active CN103091535B (en) 2011-11-02 2011-12-06 Proximity current sensing device and method

Country Status (4)

Country Link
US (1) US8836318B2 (en)
EP (1) EP2589971B1 (en)
CN (1) CN103091535B (en)
TW (1) TWI436083B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105527486A (en) * 2016-01-05 2016-04-27 深圳博科智能科技有限公司 Intelligent electricity detecting clip
CN108205085A (en) * 2016-12-19 2018-06-26 旺玖科技股份有限公司 Sensor for sensing use state of electrical equipment and sensing method thereof
US10601466B2 (en) 2016-03-27 2020-03-24 Prolific Technology Inc. Sensor for sensing usage status of electrical device and associated method
CN112639489A (en) * 2018-03-23 2021-04-09 亚德诺半导体国际无限责任公司 Contactless current measurement using magnetic sensors

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012322015A1 (en) * 2011-10-12 2014-05-15 Cequent Performance Products, Inc. Current sensing electrical converter
US10095659B2 (en) 2012-08-03 2018-10-09 Fluke Corporation Handheld devices, systems, and methods for measuring parameters
JP5866596B2 (en) * 2012-11-14 2016-02-17 アルプス・グリーンデバイス株式会社 Current sensor
EP2974266A4 (en) * 2013-03-15 2016-11-02 Fluke Corp VISIBLE AUDIOVISUAL ANNOTATION OF INFRARED IMAGES USING A SEPARATE WIRELESS MOBILE DEVICE
JP2014211379A (en) * 2013-04-19 2014-11-13 三菱電機株式会社 Current measuring device, and apparatus operation detection system
WO2015029736A1 (en) * 2013-08-29 2015-03-05 アルプス・グリーンデバイス株式会社 Current sensor
KR20150038988A (en) * 2013-10-01 2015-04-09 삼성전기주식회사 Touch sensor
TWI499791B (en) 2013-12-20 2015-09-11 Ind Tech Res Inst A compensating apparatus for a non-contact current sensor installing variation in two wire power cable
US9766270B2 (en) 2013-12-30 2017-09-19 Fluke Corporation Wireless test measurement
US9689903B2 (en) * 2014-08-12 2017-06-27 Analog Devices, Inc. Apparatus and methods for measuring current
TWI531800B (en) 2014-09-16 2016-05-01 財團法人工業技術研究院 Non-contact type voltage sensor for dual-wire power cable and method for compensating installtion position variation thereof
DE102015008516B4 (en) * 2015-06-30 2017-02-16 Testo Ag Measuring arrangement and method for non-contact current measurement
US10788517B2 (en) 2017-11-14 2020-09-29 Analog Devices Global Unlimited Company Current measuring apparatus and methods
US10557875B2 (en) * 2018-05-09 2020-02-11 Fluke Corporation Multi-sensor scanner configuration for non-contact voltage measurement devices
TWI685663B (en) * 2018-11-16 2020-02-21 旺玖科技股份有限公司 Current sensing device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4754218A (en) * 1985-02-21 1988-06-28 Soft Wire Ltd. Current sensing apparatus
US6731105B1 (en) * 2002-09-03 2004-05-04 Lockheed Martin Corporation Current sensor with correction for transverse installation misalignment
US20040201374A1 (en) * 2003-04-11 2004-10-14 Canon Denshi Kabushiki Kaisha Current sensor and current detection unit using the same
US7759931B2 (en) * 2005-03-14 2010-07-20 National University Corporation, Okayama University Device for measuring magnetic impedance

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057769A (en) 1989-07-27 1991-10-15 Sensorlink Corporation AC current sensor
US5767668A (en) 1996-01-18 1998-06-16 Case Western Reserve University Remote current sensor
US6184672B1 (en) 1997-08-15 2001-02-06 General Electric Company Current sensor assembly with electrostatic shield
JP2002131342A (en) 2000-10-19 2002-05-09 Canon Electronics Inc Current sensor
JP3896590B2 (en) 2002-10-28 2007-03-22 サンケン電気株式会社 Current detector
FR2863363B1 (en) 2003-12-05 2006-03-31 Abb Entrelec Sas AUXILIARY FIXING AND POSITIONING ELEMENT FOR USE BY PAIR TO FIX AND POSITION A CURRENT SENSOR IN RELATION TO AT LEAST ONE ELECTRICAL CONDUCTOR.
US7164263B2 (en) 2004-01-16 2007-01-16 Fieldmetrics, Inc. Current sensor
JP3896489B2 (en) * 2004-07-16 2007-03-22 国立大学法人 岡山大学 Magnetic detection device and substance determination device
JP4856916B2 (en) * 2005-09-12 2012-01-18 オンセミコンダクター・トレーディング・リミテッド Magnetic sensor signal detection circuit
WO2007061390A1 (en) 2005-11-28 2007-05-31 Ladislav Grno Precision flexible current sensor
GB0601383D0 (en) 2006-01-24 2006-03-01 Sentec Ltd Current Sensor
US7528592B2 (en) 2006-05-31 2009-05-05 Caterpillar Inc. Magnetoresistive sensor for current sensing
US20100148907A1 (en) 2008-12-17 2010-06-17 General Electric Company Current transformer and electrical monitoring system
US7605580B2 (en) * 2007-06-29 2009-10-20 Infineon Technologies Austria Ag Integrated hybrid current sensor
US8319491B2 (en) 2009-02-03 2012-11-27 Infineon Technologies Ag System including circuit that determines calibration values
US8212549B2 (en) 2009-02-18 2012-07-03 Hd Electric Company Ammeter with improved current sensing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4754218A (en) * 1985-02-21 1988-06-28 Soft Wire Ltd. Current sensing apparatus
US6731105B1 (en) * 2002-09-03 2004-05-04 Lockheed Martin Corporation Current sensor with correction for transverse installation misalignment
US20040201374A1 (en) * 2003-04-11 2004-10-14 Canon Denshi Kabushiki Kaisha Current sensor and current detection unit using the same
US7759931B2 (en) * 2005-03-14 2010-07-20 National University Corporation, Okayama University Device for measuring magnetic impedance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105527486A (en) * 2016-01-05 2016-04-27 深圳博科智能科技有限公司 Intelligent electricity detecting clip
US10601466B2 (en) 2016-03-27 2020-03-24 Prolific Technology Inc. Sensor for sensing usage status of electrical device and associated method
CN108205085A (en) * 2016-12-19 2018-06-26 旺玖科技股份有限公司 Sensor for sensing use state of electrical equipment and sensing method thereof
CN112639489A (en) * 2018-03-23 2021-04-09 亚德诺半导体国际无限责任公司 Contactless current measurement using magnetic sensors

Also Published As

Publication number Publication date
EP2589971A3 (en) 2014-05-21
US20130106400A1 (en) 2013-05-02
CN103091535B (en) 2015-10-14
TWI436083B (en) 2014-05-01
US8836318B2 (en) 2014-09-16
TW201319605A (en) 2013-05-16
EP2589971A2 (en) 2013-05-08
EP2589971B1 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
CN103091535B (en) Proximity current sensing device and method
US9689903B2 (en) Apparatus and methods for measuring current
CN109283379B (en) A wire current measurement method, device, equipment and readable storage medium
US9910070B2 (en) Compensating apparatus for a non-contact current sensor installing variation in two wire power cable
JP7605597B2 (en) Current Measuring Device
CN208207050U (en) Measuring device for line current
CN109283380A (en) Method, device, equipment and storage medium for measuring line current in power system
KR20230066595A (en) Non-contact electrical parameter measuring device with dual radially mounted sensors
JPWO2011090167A1 (en) Energization information measuring device
JP2011149827A (en) Energization information measuring device
CN112834805A (en) Tunneling magnetoresistive current sensor with position error calibration function and calibration method
JP2009069148A (en) Device for measuring magnetic field
JP2929158B2 (en) Area type flow meter
TW200415340A (en) Method and apparatus for measuring object thickness
US8922193B2 (en) Current meter
CN110174548B (en) Measuring method, measuring device and measuring system for long straight conductor potential
CN108761171A (en) Line current measuring method and device
CN109917172B (en) Measuring method, measuring device and measuring system for conductor potential
CN107202966B (en) The measurement method and system of a kind of alternate magnetic flux leakage of transformer winding
EP2848948B1 (en) Power factor measurement apparatus
JP6566188B2 (en) Current sensor
JP2013101129A (en) Eddy current sensor and detection object discrimination circuit
JP2013210216A (en) Current detection device and current detection method
JP2012098205A (en) Current measurement method and magnetic sensor device
KR101607025B1 (en) Fulxgate current sensing unit

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant