[go: up one dir, main page]

CN103116325B - Cluster module spacecraft system and control method thereof - Google Patents

Cluster module spacecraft system and control method thereof Download PDF

Info

Publication number
CN103116325B
CN103116325B CN201210555921.5A CN201210555921A CN103116325B CN 103116325 B CN103116325 B CN 103116325B CN 201210555921 A CN201210555921 A CN 201210555921A CN 103116325 B CN103116325 B CN 103116325B
Authority
CN
China
Prior art keywords
spacecraft
module
module spacecraft
cluster
vehicle system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210555921.5A
Other languages
Chinese (zh)
Other versions
CN103116325A (en
Inventor
曹喜滨
张锦绣
化金
兰盛昌
孙兆伟
邢雷
王峰
张志刚
侯振东
陈庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Shenzhen
Original Assignee
Harbin Institute of Technology Shenzhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Shenzhen filed Critical Harbin Institute of Technology Shenzhen
Priority to CN201210555921.5A priority Critical patent/CN103116325B/en
Publication of CN103116325A publication Critical patent/CN103116325A/en
Application granted granted Critical
Publication of CN103116325B publication Critical patent/CN103116325B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种集群飞行模块航天器系统及其控制方法,涉及一种航天器系统。为了解决目前航天器系统一旦发生故障或者寿命到期,无法正常工作,整个航天器系统就全部报废损失大的问题。它包括M个服务模块航天器和N个任务模块航天器;所述服务模块航天器是指能源供给模块航天器、数据处理模块航天器、遥测控与数据传输模块航天器和集群控制模块航天器;M个服务模块航天器中有m个能源供给模块航天器、n个数据处理模块航天器、x个遥测控与数据传输模块航天器和y个集群控制模块航天器的集合;m,n,x,y均为正整数,M=m+n+x+y;单一或多个任务模块航天器与服务模块航天器配对,启动任务模块航天器开始工作。它用于完成航天任务。

A cluster flight module spacecraft system and a control method thereof, relating to a spacecraft system. In order to solve the problem that once a spacecraft system fails or its lifespan expires and cannot work normally, the entire spacecraft system will be scrapped and the loss will be huge. It includes M service module spacecraft and N task module spacecraft; said service module spacecraft refers to energy supply module spacecraft, data processing module spacecraft, telemetry control and data transmission module spacecraft and cluster control module spacecraft ; Among the M service module spacecraft, there are m energy supply module spacecraft, n data processing module spacecraft, x telemetry control and data transmission module spacecraft and y swarm control module spacecraft; m,n, Both x and y are positive integers, M=m+n+x+y; single or multiple mission module spacecraft are paired with the service module spacecraft, and the mission module spacecraft is started to work. It is used to complete space missions.

Description

一种集群飞行模块航天器系统及其控制方法A cluster flight module spacecraft system and its control method

技术领域technical field

本发明涉及一种航天器系统,特别涉及一种集群飞行模块航天器系统及其控制方法。The invention relates to a spacecraft system, in particular to a cluster flight module spacecraft system and a control method thereof.

背景技术Background technique

随着空间科学技术的发展,尤其是卫星在军事侦查、通讯导航、天气预报、资源探测、科学考察等方面的突出贡献,卫星的种类越来多,应用越来越广泛。但是现在的卫星结构复杂,造价昂贵,一旦发生故障或者寿命到期,无法正常工作,整个航天器系统就全部报废,而没有故障的仪器与零部件未得到充分利用。因此就出现了,为了降低风险增加冗余度,成本提高,发生故障后损失变大的恶性循环。With the development of space science and technology, especially the outstanding contributions of satellites in military reconnaissance, communication and navigation, weather forecasting, resource detection, scientific investigation, etc., there are more and more types of satellites and their applications are becoming more and more extensive. However, the current satellite structure is complex and expensive. Once it fails or its lifespan expires and cannot work normally, the entire spacecraft system will be scrapped, and the instruments and parts that are not faulty are not fully utilized. Therefore, there is a vicious circle in which redundancy is increased in order to reduce risks, costs increase, and losses increase after failures occur.

发明内容Contents of the invention

本发明的目的是为了解决目前航天器系统一旦发生故障或者寿命到期,无法正常工作,整个航天器系统就全部报废损失大的问题,本发明提供一种集群飞行模块航天器系统及其控制方法。The purpose of the present invention is to solve the problem that once the current spacecraft system breaks down or its service life expires, it cannot work normally, and the entire spacecraft system will be scrapped and the loss will be large. The present invention provides a cluster flight module spacecraft system and its control method .

本发明的一种集群飞行模块航天器系统,A cluster flight module spacecraft system of the present invention,

它包括M个服务模块航天器和N个任务模块航天器,M、N均为正整数;It includes M service module spacecraft and N task module spacecraft, M and N are both positive integers;

所述服务模块航天器是指能源供给模块航天器、数据处理模块航天器、遥测控与数据传输模块航天器和集群控制模块航天器;The service module spacecraft refers to the energy supply module spacecraft, the data processing module spacecraft, the telemetry control and data transmission module spacecraft, and the cluster control module spacecraft;

M个服务模块航天器中有m个能源供给模块航天器、n个数据处理模块航天器、x个遥测控与数据传输模块航天器和y个集群控制模块航天器的集合;m,n,x,y均为正整数,M=m+n+x+y;Among the M service module spacecraft, there are m energy supply module spacecraft, n data processing module spacecraft, x telemetry control and data transmission module spacecraft and y swarm control module spacecraft; m,n,x , y are all positive integers, M=m+n+x+y;

能源供给模块航天器,用于收集能源,并为所述集群飞行模块航天器系统的各模块航天器提供能源;The energy supply module spacecraft is used to collect energy and provide energy for each module spacecraft of the cluster flight module spacecraft system;

数据处理模块航天器,用于接收处理所述集群飞行模块航天器系统的各模块航天器的状态数据及任务数据,并进行在轨图像生成和信息提取;The data processing module spacecraft is used to receive and process the status data and mission data of each module spacecraft of the cluster flight module spacecraft system, and perform on-orbit image generation and information extraction;

遥测控与数据传输模块航天器,用于接收地面站或中继卫星的指令,并将指令发送给集群飞行模块航天器系统的各模块航天器,同时将数据处理模块航天器处理后的数据、图像及信息传送至地面站或中继卫星;The telemetry control and data transmission module spacecraft is used to receive instructions from the ground station or relay satellite, and send the instructions to each module spacecraft of the cluster flight module spacecraft system, and at the same time transfer the data processed by the data processing module spacecraft, Images and information are transmitted to ground stations or relay satellites;

集群控制模块航天器,用于测量集群飞行模块航天器系统的各模块航天器之间的相对位置,还用于控制集群飞行模块航天器系统的各模块航天器的相对位置;The swarm control module spacecraft is used to measure the relative position of each module spacecraft of the swarm flight module spacecraft system, and is also used to control the relative position of each module spacecraft of the swarm flight module spacecraft system;

任务模块航天器,用于对地面遥感数据获取、电子侦查和空间探测。The mission module spacecraft is used for ground remote sensing data acquisition, electronic reconnaissance and space exploration.

基于上述一种集群飞行模块航天器系统的控制方法,它包括如下步骤:Based on the control method of the above-mentioned a kind of cluster flight module spacecraft system, it comprises the following steps:

根据待完成的任务选择N个任务模块航天器和M个服务模块航天器的步骤;The step of selecting N task module spacecraft and M service module spacecraft according to the task to be completed;

当运载器将N个任务模块航天器和M个服务模块航天器发射到指定轨道时,所述模块航天器和运载器分离的步骤;When the carrier launches N mission module spacecraft and M service module spacecraft into designated orbits, the step of separating the module spacecraft from the carrier;

控制M个服务模块航天器中的K个服务模块航天器与N个任务模块航天器配对,并利用L个集群控制模块航天器采用轨道控制方法调整集群飞行模块航天器系统中的各模块航天器的相对位置的步骤,L<K;Control K service module spacecraft among M service module spacecraft to pair with N task module spacecraft, and use L cluster control module spacecraft to adjust each module spacecraft in the cluster flight module spacecraft system by orbit control method The step of the relative position of L<K;

所述配对原则为:至少四个服务模块航天器与一个或多个任务模块航天器配对,所述4个服务模块航天器包括1个能源供给模块航天器、1个数据处理模块航天器、1个遥测控与数据传输模块航天器和1个集群控制模块航天器;The pairing principle is: at least four service module spacecraft are paired with one or more task module spacecraft, and the four service module spacecraft include 1 energy supply module spacecraft, 1 data processing module spacecraft, 1 A telemetry control and data transmission module spacecraft and a swarm control module spacecraft;

对N个服务模块航天器进行通讯链接、能量传输和星载仪器参数初始化,按照预定的构形调整各个模块航天器的轨道和姿态,启动任务模块航天器开始工作的步骤;Perform communication link, energy transmission and on-board instrument parameter initialization for N service module spacecraft, adjust the orbit and attitude of each module spacecraft according to the predetermined configuration, and start the steps of the task module spacecraft to start working;

对所述集群飞行模块航天器系统进行实时监控的步骤。A step of performing real-time monitoring on the cluster flight module spacecraft system.

所述集群飞行模块航天器系统的各模块航天器均设置备份模块航天器,所述系统的控制方法包括如下步骤:Each module spacecraft of the cluster flight module spacecraft system is provided with a backup module spacecraft, and the control method of the system includes the following steps:

根据待完成的任务选择N个任务模块航天器和M个服务模块航天器的步骤;The step of selecting N task module spacecraft and M service module spacecraft according to the task to be completed;

当运载器将N个任务模块航天器和M个服务模块航天器发射到指定轨道时,所述模块航天器和运载器分离的步骤;When the carrier launches N mission module spacecraft and M service module spacecraft into designated orbits, the step of separating the module spacecraft from the carrier;

控制M个服务模块航天器中的K个服务模块航天器与N个任务模块航天器配对,并利用L个集群控制模块航天器采用传统的轨道控制方法调整集群飞行模块航天器系统中的各模块航天器的相对位置的步骤,L<K;Control the K service module spacecraft in the M service module spacecraft to pair with the N task module spacecraft, and use the L cluster control module spacecraft to adjust each module in the cluster flight module spacecraft system using the traditional orbit control method The step of the relative position of the spacecraft, L<K;

所述配对原则为:至少四个服务模块航天器与一个或多个任务模块航天器配对,所述4个服务模块航天器包括1个能源供给模块航天器、1个数据处理模块航天器、1个遥测控与数据传输模块航天器和1个集群控制模块航天器;The pairing principle is: at least four service module spacecraft are paired with one or more task module spacecraft, and the four service module spacecraft include 1 energy supply module spacecraft, 1 data processing module spacecraft, 1 A telemetry control and data transmission module spacecraft and a swarm control module spacecraft;

对N个服务模块航天器进行通讯链接、能量传输和星载仪器参数初始化,按照预定的构形调整各个模块航天器的轨道和姿态,启动任务模块航天器开始工作的步骤;Perform communication link, energy transmission and on-board instrument parameter initialization for N service module spacecraft, adjust the orbit and attitude of each module spacecraft according to the predetermined configuration, and start the steps of the task module spacecraft to start working;

对所述集群飞行模块航天器系统进行实时监控的步骤;The step of performing real-time monitoring on the cluster flight module spacecraft system;

当监控到所述集群飞行模块航天器系统的某个模块航天器失效时,启动失效的模块航天器相应的备份模块航天器替换失效的模块航天器进行工作的步骤。When it is monitored that a module spacecraft of the cluster flight module spacecraft system fails, the step of starting the corresponding backup module spacecraft of the failed module spacecraft to replace the failed module spacecraft to work.

本发明的优点在于,由若干个服务模块航天器和若干个任务模块航天器组成,根据任务的需要自由组配服务模块和任务模块,从而实现功能多样化,快速响应。由于模块航天器之间无物理连接,当模块航天器故障或者需要提升性能时,可以独立发射和替换单个模块航天器,同时其他模块航天器继续使用,从而降低了卫星的成本,提高元器件的利用率,也减少了太空垃圾。将服务模块航天器和任务模块航天器分开,有利于卫星产业的商业化和国际化。对于卫星运营商,可以根据不用的客户需求,选择不同性能的任务模块航天器进入集群工作。The invention has the advantage that it consists of several service module spacecraft and several mission module spacecraft, and the service modules and mission modules can be freely assembled according to the needs of missions, so as to realize diversified functions and rapid response. Since there is no physical connection between the module spacecraft, when the module spacecraft fails or needs to be improved, a single module spacecraft can be launched and replaced independently, while other module spacecraft continue to use, thereby reducing the cost of the satellite and improving the cost of components. Utilization, also reduces space junk. Separating the service module spacecraft from the mission module spacecraft is conducive to the commercialization and internationalization of the satellite industry. For satellite operators, mission module spacecraft with different performances can be selected to work in the cluster according to different customer needs.

附图说明Description of drawings

图1为本发明所述的一种集群飞行模块航天器系统的结构示意图。Fig. 1 is a schematic structural diagram of a cluster flight module spacecraft system according to the present invention.

图2为本发明所述的一种集群飞行模块航天器系统的实施例的结构示意图。Fig. 2 is a schematic structural diagram of an embodiment of a swarm flight module spacecraft system according to the present invention.

图3为本发明所述的一种集群飞行模块航天器系统的实施例中用备份的模块航天器替换故障模块航天器的结构示意图。Fig. 3 is a structural schematic diagram of replacing a faulty module spacecraft with a backup module spacecraft in an embodiment of a cluster flight module spacecraft system according to the present invention.

图4为本发明所述的一种集群飞行模块航天器系统的实施例中更新任务模块航天器的结构示意图。Fig. 4 is a schematic structural diagram of an update mission module spacecraft in an embodiment of a swarm flight module spacecraft system according to the present invention.

图5为本发明所述的一种集群飞行模块航天器系统的实施例中根据任务增加服务模块航天器的数量的结构示意图。Fig. 5 is a schematic structural diagram of increasing the number of service module spacecraft according to tasks in an embodiment of a cluster flight module spacecraft system according to the present invention.

图6为本发明所述的一种集群飞行模块航天器系统的实施例中分成四个集群的结构示意图。Fig. 6 is a schematic structural diagram of four clusters in an embodiment of a cluster flight module spacecraft system according to the present invention.

具体实施方式Detailed ways

具体实施方式一:本实施方式所述的一种集群飞行模块航天器系统,它包括M个服务模块航天器和N个任务模块航天器,M、N均为正整数;Specific embodiment one: a kind of cluster flight module spacecraft system described in this embodiment, it comprises M service module spacecraft and N task module spacecraft, M, N are all positive integers;

所述服务模块航天器是指能源供给模块航天器、数据处理模块航天器、遥测控与数据传输模块航天器和集群控制模块航天器;The service module spacecraft refers to the energy supply module spacecraft, the data processing module spacecraft, the telemetry control and data transmission module spacecraft, and the cluster control module spacecraft;

M个服务模块航天器中有m个能源供给模块航天器、n个数据处理模块航天器、x个遥测控与数据传输模块航天器和y个集群控制模块航天器的集合;m,n,x,y均为正整数,M=m+n+x+y;Among the M service module spacecraft, there are m energy supply module spacecraft, n data processing module spacecraft, x telemetry control and data transmission module spacecraft and y swarm control module spacecraft; m,n,x , y are all positive integers, M=m+n+x+y;

能源供给模块航天器,用于收集能源,并为所述集群飞行模块航天器系统的各模块航天器提供能源;The energy supply module spacecraft is used to collect energy and provide energy for each module spacecraft of the cluster flight module spacecraft system;

数据处理模块航天器,用于接收处理所述集群飞行模块航天器系统的各模块航天器的状态数据及任务数据,并进行在轨图像生成和信息提取;The data processing module spacecraft is used to receive and process the status data and mission data of each module spacecraft of the cluster flight module spacecraft system, and perform on-orbit image generation and information extraction;

遥测控与数据传输模块航天器,用于接收地面站或中继卫星的指令,并将指令发送给集群飞行模块航天器系统的各模块航天器,同时将数据处理模块航天器处理后的数据、图像及信息传送至地面站或中继卫星;The telemetry control and data transmission module spacecraft is used to receive instructions from the ground station or relay satellite, and send the instructions to each module spacecraft of the cluster flight module spacecraft system, and at the same time transfer the data processed by the data processing module spacecraft, Images and information are transmitted to ground stations or relay satellites;

集群控制模块航天器,用于测量集群飞行模块航天器系统的各模块航天器之间的相对位置,还用于控制集群飞行模块航天器系统的各模块航天器的相对位置;The swarm control module spacecraft is used to measure the relative position of each module spacecraft of the swarm flight module spacecraft system, and is also used to control the relative position of each module spacecraft of the swarm flight module spacecraft system;

任务模块航天器,用于对地面遥感数据获取、电子侦查和空间探测。The mission module spacecraft is used for ground remote sensing data acquisition, electronic reconnaissance and space exploration.

对于航天技术相对薄弱的国家和地区,可以根据本国国情研发任务模块航天器,租用在轨飞行的服务模块。For countries and regions with relatively weak aerospace technology, they can develop mission module spacecraft according to their national conditions and rent service modules for in-orbit flight.

具体实施方式二:本实施方式是对具体实施方式一所述的一种集群飞行模块航天器系统的进一步限定,所述任务模块航天器为光学载荷模块航天器或电子侦察载荷模块航天器或雷达载荷模块航天器;Embodiment 2: This embodiment is a further limitation of the cluster flight module spacecraft system described in Embodiment 1. The mission module spacecraft is an optical payload module spacecraft or an electronic reconnaissance payload module spacecraft or a radar payload module spacecraft;

光学载荷模块航天器,用于对地面进行拍照,获得地面图像数据;The optical payload module spacecraft is used to take pictures of the ground and obtain ground image data;

电子侦察载荷模块航天器,用于收集电磁波信息,对目标进行侦查、监视和跟踪;The electronic reconnaissance payload module spacecraft is used to collect electromagnetic wave information to detect, monitor and track targets;

雷达载荷模块航天器,用于发射和接收雷达电磁波,获得地球的地物信息,具备全天候全天时获取信息的能力。The radar payload module spacecraft is used to transmit and receive radar electromagnetic waves, obtain the earth's ground object information, and have the ability to obtain information all-weather and all-weather.

具体实施方式三:本实施方式是对具体实施方式一所述的一种集群飞行模块航天器系统的进一步限定,所述能源供给模块航天器为所述集群飞行模块航天器系统提供能源方式包括聚束太阳能、微波能或激光能。Specific embodiment three: this embodiment is a further limitation of the cluster flight module spacecraft system described in specific embodiment one, and the energy supply module spacecraft provides energy for the cluster flight module spacecraft system. Beams of solar energy, microwave energy, or laser energy.

具体实施方式四:本实施方式是对具体实施方式一或二所述的一种集群飞行模块航天器系统的进一步限定,所述各模块航天器均采用统一的标准和协议,均采用近距离自由飞行的形式,通过无线链路进行信息和能量的交互。Embodiment 4: This embodiment is a further limitation of the cluster flight module spacecraft system described in Embodiment 1 or 2. Each module spacecraft adopts a unified standard and protocol, and all adopt short-distance free In the form of flight, information and energy are exchanged through wireless links.

服务模块航天器和任务模块航天器的多个模块航天器在轨飞行过程中没有物理连接,采用近距离自由飞行的形式,通过无线链路进行信息和能量的交互。The multiple module spacecraft of the service module spacecraft and the mission module spacecraft have no physical connection during the orbital flight, and use the form of close-range free flight to exchange information and energy through wireless links.

具体实施方式五:本实施方式是对具体实施方式一或二所述的一种集群飞行模块航天器系统的进一步限定,所述各模块航天器均设置备份模块航天器。Embodiment 5: This embodiment is a further limitation of the cluster flight module spacecraft system described in Embodiment 1 or 2, and each module spacecraft is equipped with a backup module spacecraft.

具体实施方式六:本实施方式是对具体实施方式一所述的一种集群飞行模块航天器系统的控制方法的进一步限定,它包括如下步骤:Embodiment 6: This embodiment is a further limitation of the control method of a cluster flight module spacecraft system described in Embodiment 1, which includes the following steps:

根据待完成的任务选择N个任务模块航天器和M个服务模块航天器的步骤;The step of selecting N task module spacecraft and M service module spacecraft according to the task to be completed;

当运载器将N个任务模块航天器和M个服务模块航天器发射到指定轨道时,所述模块航天器和运载器分离的步骤;When the carrier launches N mission module spacecraft and M service module spacecraft into designated orbits, the step of separating the module spacecraft from the carrier;

控制M个服务模块航天器中的K个服务模块航天器与N个任务模块航天器配对,并利用L个集群控制模块航天器采用轨道控制方法调整集群飞行模块航天器系统中的各模块航天器的相对位置的步骤,L<K;Control K service module spacecraft among M service module spacecraft to pair with N task module spacecraft, and use L cluster control module spacecraft to adjust each module spacecraft in the cluster flight module spacecraft system by orbit control method The step of the relative position of L<K;

所述配对原则为:至少四个服务模块航天器与一个或多个任务模块航天器配对,所述4个服务模块航天器包括1个能源供给模块航天器、1个数据处理模块航天器、1个遥测控与数据传输模块航天器和1个集群控制模块航天器;The pairing principle is: at least four service module spacecraft are paired with one or more task module spacecraft, and the four service module spacecraft include 1 energy supply module spacecraft, 1 data processing module spacecraft, 1 A telemetry control and data transmission module spacecraft and a swarm control module spacecraft;

对N个服务模块航天器进行通讯链接、能量传输和星载仪器参数初始化,按照预定的构形调整各个模块航天器的轨道和姿态,启动任务模块航天器开始工作的步骤;Perform communication link, energy transmission and on-board instrument parameter initialization for N service module spacecraft, adjust the orbit and attitude of each module spacecraft according to the predetermined configuration, and start the steps of the task module spacecraft to start working;

对所述集群飞行模块航天器系统进行实时监控的步骤。A step of performing real-time monitoring on the cluster flight module spacecraft system.

本实施方式可以采用现有轨道控制方法实现调整集群飞行模块航天器系统中的各模块航天器的相对位置。In this embodiment, the existing orbit control method can be used to adjust the relative position of each module spacecraft in the cluster flight module spacecraft system.

根据任务的具体需求,将一个大型集群分散成为若干小型集群,独立实现功能或组成编队和星座实现整体的功能扩展,还可以把若干小型集群集结成一个大型集群,共同完成单个小型集群不能完成的功能,每个小型集群都有一个集群控制模块航天器控制。According to the specific requirements of the task, a large cluster can be dispersed into several small clusters to realize functions independently or form formations and constellations to realize the overall function expansion. Several small clusters can also be assembled into a large cluster to jointly complete a single small cluster. function, each small cluster has a cluster control module spacecraft control.

具体实施方式七:本实施方式是对具体实施方式五所述的一种集群飞行模块航天器系统的控制方法的进一步限定,它还包括如下步骤:Embodiment 7: This embodiment is a further limitation of the control method of a cluster flight module spacecraft system described in Embodiment 5, and it also includes the following steps:

根据待完成的任务选择N个任务模块航天器和M个服务模块航天器的步骤;The step of selecting N task module spacecraft and M service module spacecraft according to the task to be completed;

当运载器将N个任务模块航天器和M个服务模块航天器发射到指定轨道时,所述模块航天器和运载器分离的步骤;When the carrier launches N mission module spacecraft and M service module spacecraft into designated orbits, the step of separating the module spacecraft from the carrier;

控制M个服务模块航天器中的K个服务模块航天器与N个任务模块航天器配对,并利用L个集群控制模块航天器采用轨道控制方法调整集群飞行模块航天器系统中的各模块航天器的相对位置的步骤,L<K;Control K service module spacecraft among M service module spacecraft to pair with N task module spacecraft, and use L cluster control module spacecraft to adjust each module spacecraft in the cluster flight module spacecraft system by orbit control method The relative position of the step, L<K;

所述配对原则为:至少四个服务模块航天器与一个或多个任务模块航天器配对,所述4个服务模块航天器包括1个能源供给模块航天器、1个数据处理模块航天器、1个遥测控与数据传输模块航天器和1个集群控制模块航天器;The pairing principle is: at least four service module spacecraft are paired with one or more task module spacecraft, and the four service module spacecraft include 1 energy supply module spacecraft, 1 data processing module spacecraft, 1 A telemetry control and data transmission module spacecraft and a swarm control module spacecraft;

对N个服务模块航天器进行通讯链接、能量传输和星载仪器参数初始化,按照预定的构形调整各个模块航天器的轨道和姿态,启动任务模块航天器开始工作的步骤;Perform communication link, energy transmission and on-board instrument parameter initialization for N service module spacecraft, adjust the orbit and attitude of each module spacecraft according to the predetermined configuration, and start the steps of the task module spacecraft to start working;

对所述集群飞行模块航天器系统进行实时监控的步骤;The step of performing real-time monitoring on the cluster flight module spacecraft system;

当监控到所述集群飞行模块航天器系统的某个模块航天器失效时,启动失效的模块航天器相应的备份模块航天器替换失效的模块航天器进行工作的步骤。When it is monitored that a module spacecraft of the cluster flight module spacecraft system fails, the step of starting the corresponding backup module spacecraft of the failed module spacecraft to replace the failed module spacecraft to work.

若发现某个部件故障,导致整个模块失效,则启动系统中的备份模块,交换故障模块和备份模块的位置,调整备份模块的姿态,使其取代原模块,正常工作。If a component is found to be faulty and causes the failure of the entire module, start the backup module in the system, exchange the positions of the faulty module and the backup module, and adjust the attitude of the backup module so that it can replace the original module and work normally.

具体实施方式八:本实施方式是对具体实施方式六或七所述的一种集群飞行模块航天器系统的控制方法的进一步限定,所述遥测控与数据传输模块航天器,还用于导引更新的模块航天器与所述集群飞行模块航天器系统交会,所述控制方法还包括如下步骤:Embodiment 8: This embodiment is a further limitation of the control method of a cluster flight module spacecraft system described in Embodiment 6 or 7. The remote measurement control and data transmission module spacecraft is also used for guidance The updated module spacecraft rendezvous with the cluster flight module spacecraft system, and the control method also includes the following steps:

当遥测控与数据传输模块航天器导引更新的模块航天器与所述集群飞行模块航天器系统交会时,对所述更新的模块航天器在所述集群飞行模块航天器系统中的轨道和姿态进行分配更新的步骤。When the telemetry control and data transmission module spacecraft guides the updated module spacecraft to rendezvous with the cluster flight module spacecraft system, the orbit and attitude of the updated module spacecraft in the cluster flight module spacecraft system Steps to make an assignment update.

根据任务的具体需求,对于同一类任务模块航天器,可以从地面发射更新的任务模块航天器进入系统,实现系统的性能提升。According to the specific requirements of the mission, for the same type of mission module spacecraft, an updated mission module spacecraft can be launched from the ground into the system to achieve system performance improvement.

服务模块航天器的扩展,提升系统的服务能力。根据任务的具体需求,配合任务模块航天器的功能扩展和性能提升,集群控制航天器重新选择适当的服务模块航天器或从地面发射性能更好的服务模块航天器与任务模块航天器配对,形成新的集群飞行模块航天器系统。The expansion of the service module spacecraft improves the service capability of the system. According to the specific needs of the mission, in conjunction with the function expansion and performance improvement of the mission module spacecraft, the cluster control spacecraft reselects the appropriate service module spacecraft or launches a service module spacecraft with better performance from the ground to pair with the mission module spacecraft to form a New swarm flight module spacecraft system.

具体实施方式九:本实施方式是对具体实施方式六或七所述的一种集群飞行模块航天器系统的控制方法的进一步限定,Embodiment 9: This embodiment is a further limitation of the control method of a cluster flight module spacecraft system described in Embodiment 6 or 7.

它还包括如下步骤:It also includes the following steps:

当某任务模块需要重新配对时,剩余的M-K个服务模块航天器中选择进行配对,并利用所述服务模块航天器中的集群控制模块航天器调整所述服务模块航天器与任务模块航天器的各模块航天器的相对位置的步骤。When a task module needs to be re-paired, the remaining M-K service module spacecraft are selected for pairing, and the cluster control module spacecraft in the service module spacecraft is used to adjust the relationship between the service module spacecraft and the task module spacecraft. Steps for the relative position of each module spacecraft.

具体实施方式十:本实施方式是对具体实施方式六或七所述的一种集群飞行模块航天器系统的控制方法的进一步限定,所述轨道控制方法为喷气控制或内部场力的控制。Embodiment 10: This embodiment is a further limitation of the control method of a swarm flight module spacecraft system described in Embodiment 6 or 7. The orbit control method is jet control or internal field force control.

每个模块按照一定的构形集群飞行,它们之间相对位置的控制可以采用现有的轨道控制方法,如喷气控制,也可以采用内部场力的控制,如电磁力或库仑力。如不需要相对位置控制时,集群采用被动稳定轨道自由飞行。Each module flies in clusters according to a certain configuration, and the relative positions among them can be controlled by existing orbital control methods, such as jet control, or internal field force control, such as electromagnetic force or Coulomb force. If relative position control is not required, the cluster adopts a passive stable orbit to fly freely.

本发明还提供一个实施例,本实施例所述的集群飞行模块航天器系统主要用于对地观测。如图2所示,其中任务模块航天器包括4个光学载荷模块航天器,光学载荷分别为分辨率10m、10m、3m、3m的CCD相机。4个能源供给模块航天器、4个数据处理模块航天器、4个遥测控与数据传输模块航天器和4个集群控制模块航天器。The present invention also provides an embodiment. The cluster flight module spacecraft system described in this embodiment is mainly used for earth observation. As shown in Figure 2, the mission module spacecraft includes four optical payload module spacecraft, and the optical payloads are CCD cameras with resolutions of 10m, 10m, 3m, and 3m, respectively. 4 energy supply module spacecraft, 4 data processing module spacecraft, 4 telemetry control and data transmission module spacecraft and 4 swarm control module spacecraft.

所述集群飞行模块航天器系统由运载器发射到指定轨道,系统与运载器分离。能源供给模块航天器太阳能电池翼展开,通过无线链路给系统供电,集群控制模块航天器通过无线链路控制所述系统。各模块航天器近距离飞行,采用轨道控制技术调整相对位置,形成一定的构形。The cluster flight module spacecraft system is launched to a designated orbit by the carrier, and the system is separated from the carrier. The energy supply module expands the solar battery wings of the spacecraft to supply power to the system through the wireless link, and the cluster control module controls the system through the wireless link. The spacecraft of each module flies at close range, and adopts orbit control technology to adjust the relative position to form a certain configuration.

当集群控制模块航天器发现分辨率为3m的光学载荷模块航天器故障,备份的3m光学载荷模块航天器开始工作,故障的3m光学载荷模块航天器报废,飞离系统,成为太空垃圾,如图3所示。When the swarm control module spacecraft finds that the optical payload module spacecraft with a resolution of 3m is faulty, the backup 3m optical payload module spacecraft starts to work, and the faulty 3m optical payload module spacecraft is scrapped, flies away from the system, and becomes space junk, as shown in the figure 3.

当需要更高分辨率为1m图像,则由地面发射分辨率为1m的光学载荷模块航天器更新分辨率为10m的光学载荷模块航天器,经集群控制模块航天器认证后,替代分辨率为10m的光学载荷模块航天器工作,10m的光学载荷模块航天器变为备份模块,如图4所示。When images with a higher resolution of 1m are required, the optical payload module spacecraft with a resolution of 1m is launched from the ground to update the optical payload module spacecraft with a resolution of 10m. After being certified by the swarm control module spacecraft, the replacement resolution is 10m The optical payload module spacecraft of 10m is working, and the 10m optical payload module spacecraft becomes a backup module, as shown in Figure 4.

当需要增加数据传输量则备份的1个能源供给模块航天器、1个数据处理模块航天器和1个遥测控与数据传输模块航天器工作,与工作的任务模块航天器配对,将数据传输时间从5min提升到10min,如图5所示。当需要立体图像,备份的10m光学载荷模块航天器工作,相应地增加1个能源供给模块航天器、1个数据处理模块航天器和1个遥测控与数据传输航天器配合任务模块航天器完成任务。两个10m光学载荷模块航天器调整相对位置,完成立体测绘任务,如图5所示。When it is necessary to increase the amount of data transmission, one backup energy supply module spacecraft, one data processing module spacecraft and one telemetry control and data transmission module spacecraft work, and pair with the working mission module spacecraft to reduce the data transmission time. From 5min to 10min, as shown in Figure 5. When a stereoscopic image is required, the backup 10m optical payload module spacecraft will work, and correspondingly add 1 energy supply module spacecraft, 1 data processing module spacecraft and 1 telemetry control and data transmission spacecraft to cooperate with the task module spacecraft to complete the task . The two 10m optical payload module spacecraft adjust their relative positions to complete the three-dimensional mapping task, as shown in Figure 5.

当需要对一个目标实现连续观测,则将系统分散成为4个小型集群。每个光学载荷模块航天器与1个能源供给模块航天器、1个数据处理模块航天器、1个遥测控与数据传输模块航天器和1个集群控制航天器组成一个小型集群。飞到轨道的指定位置,形成星座,实现对一个目标的连续观测,如图6所示。When continuous observation of a target is required, the system is dispersed into four small clusters. Each optical load module spacecraft forms a small cluster with 1 energy supply module spacecraft, 1 data processing module spacecraft, 1 telemetry control and data transmission module spacecraft and 1 cluster control spacecraft. Fly to the designated position of the orbit, form a constellation, and realize continuous observation of a target, as shown in Figure 6.

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进,这些改进也应视为本发明的保护范围。The above description is only a preferred embodiment of the present invention. It should be pointed out that for those of ordinary skill in the art, some improvements can be made without departing from the technical principle of the present invention. These improvements should also be regarded as protection scope of the present invention.

Claims (9)

1. a control method for cluster flight module Space Vehicle System, described system comprises M service module spacecraft and N task module spacecraft, M, N are positive integer;
Described service module spacecraft refers to energy resource supply module spacecraft, data processing module spacecraft, remote measurement control and data transmission module spacecraft and cluster control module spacecraft;
In M service module spacecraft, there is the set of m energy resource supply module spacecraft, a n data processing module spacecraft, an x remote measurement control and data transmission module spacecraft and y cluster control module spacecraft; M, n, x, y is positive integer, M=m+n+x+y;
Energy resource supply module spacecraft, for collecting the energy, and provides the energy for each module spacecraft of described cluster flight module Space Vehicle System;
Data processing module spacecraft, for status data and the task data of each module spacecraft of cluster flight module Space Vehicle System described in reception & disposal, and carries out image generation and information extraction in-orbit;
Remote measurement control and data transmission module spacecraft, for the instruction of satellite receiver or repeater satellite, and instruction is sent to each module spacecraft of cluster flight module Space Vehicle System, data after treatment data processing module spacecraft, image and information are sent to land station or repeater satellite simultaneously;
Cluster control module spacecraft, for the relative position between each module spacecraft of measuring set swarming row module Space Vehicle System, also for controlling the relative position of each module spacecraft of cluster flight module Space Vehicle System;
Task module spacecraft, for obtaining ground remotely-sensed data, electronics investigation and space exploration; It is characterized in that,
Described method comprises the steps:
According to the step of task choosing N to be completed a task module spacecraft and M service module spacecraft;
When vehicle is by N task module spacecraft and M service module Spacecraft Launch during to track designation, described M the step that service module spacecraft separates with vehicle with N task module spacecraft;
Control K service module spacecraft and N task module spacecraft pairing in M service module spacecraft, and utilize L cluster control module spacecraft to adopt method for controlling scrolling to adjust the step of the relative position of the each module spacecraft in cluster flight module Space Vehicle System, L<K;
Described pair principle is: the pairing of at least four service module spacecrafts and one or more task module spacecraft, and described four service module spacecrafts comprise 1 energy resource supply module spacecraft, 1 data processing module spacecraft, 1 remote measurement control and data transmission module spacecraft and 1 cluster control module spacecraft;
N service module spacecraft carried out to communication link, Energy Transfer and spaceborne instrument parameter initialization, according to track and the attitude of predetermined formation adjusting modules spacecraft, the step that initiating task module spacecraft is started working;
Described cluster flight module Space Vehicle System is carried out to the step of monitoring in real time.
2. the control method of a kind of cluster flight module Space Vehicle System according to claim 1, is characterized in that, described task module spacecraft is optics load module spacecraft or electronic reconnaissance load module spacecraft or radar load module spacecraft;
Optics load module spacecraft, for being taken pictures in ground, obtains ground image data;
Electronic reconnaissance load module spacecraft, for collecting electromagnetic wave information, to target carry out investigations, Monitor and track;
Radar load module spacecraft, for transmitting and receiving radar electromagnetic wave, obtains the terrestrial object information of the earth, possesses the ability of round-the-clock round-the-clock obtaining information.
3. the control method of a kind of cluster flight module Space Vehicle System according to claim 1, it is characterized in that, described energy resource supply module spacecraft provides energy mode to comprise pack sun power, microwave energy or laser energy for described cluster flight module Space Vehicle System.
4. the control method of a kind of cluster flight module Space Vehicle System according to claim 1 and 2, it is characterized in that, described each module spacecraft all adopts unified standard and agreement, all adopts the form of closely free flight, carries out the mutual of information and energy by wireless link.
5. the control method of a kind of cluster flight module Space Vehicle System according to claim 1 and 2, is characterized in that, described each module spacecraft all arranges backup module spacecraft.
6. the control method of a kind of cluster flight module Space Vehicle System according to claim 5, is characterized in that, it also comprises the steps:
In the time monitoring certain module spacecraft inefficacy of described cluster flight module Space Vehicle System, the step that the module spacecraft that the corresponding backup module spacecraft replacement of module spacecraft that startup was lost efficacy was lost efficacy carries out work.
7. the control method of a kind of cluster flight module Space Vehicle System according to claim 6, it is characterized in that, described remote measurement control and data transmission module spacecraft, also, for guiding module spacecraft and the intersection of described cluster flight module Space Vehicle System of renewal, described control method also comprises the steps:
The module spacecraft upgrading when the guiding of remote measurement control and data transmission module spacecraft is during with the intersection of described cluster flight module Space Vehicle System, and the track to the module spacecraft of described renewal in described cluster flight module Space Vehicle System and attitude are distributed the step of renewal.
8. the control method of a kind of cluster flight module Space Vehicle System according to claim 6, is characterized in that, it also comprises the steps:
In the time that certain task module need to match again, in remaining M-K service module spacecraft, select to match, and utilize cluster control module spacecraft in described service module spacecraft to adjust the step of the relative position of each module spacecraft of described service module spacecraft and task module spacecraft.
9. the control method of a kind of cluster flight module Space Vehicle System according to claim 6, is characterized in that, described method for controlling scrolling is the control of jet control or inner field force.
CN201210555921.5A 2012-12-19 2012-12-19 Cluster module spacecraft system and control method thereof Expired - Fee Related CN103116325B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210555921.5A CN103116325B (en) 2012-12-19 2012-12-19 Cluster module spacecraft system and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210555921.5A CN103116325B (en) 2012-12-19 2012-12-19 Cluster module spacecraft system and control method thereof

Publications (2)

Publication Number Publication Date
CN103116325A CN103116325A (en) 2013-05-22
CN103116325B true CN103116325B (en) 2014-12-10

Family

ID=48414736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210555921.5A Expired - Fee Related CN103116325B (en) 2012-12-19 2012-12-19 Cluster module spacecraft system and control method thereof

Country Status (1)

Country Link
CN (1) CN103116325B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103600852B (en) * 2013-11-25 2015-10-07 清华大学 Support the basic module spacecraft of cluster flight
CN103942363B (en) * 2014-03-21 2015-05-27 北京空间飞行器总体设计部 Deep space probe optical load configuration method
CN107065565B (en) * 2017-05-18 2019-03-01 中国人民解放军战略支援部队航天工程大学 A kind of Auto-disturbance-rejection Control pulled for cluster spacecraft electromagnetism
CN108173477B (en) * 2017-11-28 2020-02-21 南京航空航天大学 A swarm agent satellite space power generation system and power generation method
CN109189090B (en) * 2018-07-16 2021-04-20 南京航空航天大学 Global monitoring method for large spacecraft based on bionic micro-nano constellation
CN114415202B (en) * 2022-03-28 2022-07-01 北京中科飞鸿科技股份有限公司 Tracking system for laser investigation equipment based on image processing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2304070C2 (en) * 2005-10-11 2007-08-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Method of control of power supply systems of orbital spacecraft cluster equipped with electric jet engines
CN101694587A (en) * 2009-10-13 2010-04-14 清华大学 Cluster control system applied to microminiature aircrafts
CN102795350A (en) * 2012-07-06 2012-11-28 中国航天科技集团公司第五研究院第五一三研究所 Physical discrete type satellite system structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2304070C2 (en) * 2005-10-11 2007-08-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Method of control of power supply systems of orbital spacecraft cluster equipped with electric jet engines
CN101694587A (en) * 2009-10-13 2010-04-14 清华大学 Cluster control system applied to microminiature aircrafts
CN102795350A (en) * 2012-07-06 2012-11-28 中国航天科技集团公司第五研究院第五一三研究所 Physical discrete type satellite system structure

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
分离式集群航天器新概念及发展趋势研究;曹喜滨等;《2009中国空间科学学会空间机电与空间光学专业委员会、空间材料专业委员会联合学术交流会论文集》;20100831;第16-22页 *
分离模块集群航天器发展概况;胡敏等;《装备指挥技术学院学报》;20110831;第22卷(第4期);第61-66页 *
曹喜滨等.分离式集群航天器新概念及发展趋势研究.《2009中国空间科学学会空间机电与空间光学专业委员会、空间材料专业委员会联合学术交流会论文集》.2010,第16-22页. *
胡敏等.分离模块集群航天器发展概况.《装备指挥技术学院学报》.2011,第22卷(第4期),第61-66页. *

Also Published As

Publication number Publication date
CN103116325A (en) 2013-05-22

Similar Documents

Publication Publication Date Title
CN103116325B (en) Cluster module spacecraft system and control method thereof
US10454576B2 (en) UAV network
CN103600852B (en) Support the basic module spacecraft of cluster flight
CN102795350B (en) Physical discrete type satellite system structure
US20120018585A1 (en) medium earth orbit constellation with simple satellite network topology
CN103076808A (en) Autonomous and cooperated type aircraft cluster system and running method
CN103064392A (en) Satellite borne integrated electronic system
CN108494472A (en) A kind of space-based deep space trunking traffic Satellite Networking system
CN108557114A (en) A kind of distribution remote sensing satellite
CN108438254A (en) Spacecraft system and dispositions method
WO2022065256A1 (en) Satellite monitoring system, satellite information transmission system, ground facility, communication satellite, surveillance system, constituent satellite, artificial satellite, communication satellite constellation, satellite constellation, and satellite
Wu et al. The STU-2 CubeSat mission and in-orbit test results
Bayer et al. Europa clipper mission update: Preliminary design with selected instruments
Shangguang et al. The first verification test of space-ground collaborative intelligence via cloud-native satellites
Rose et al. The CYGNSS flight segment; a major NASA science mission enabled by micro-satellite technology
Walton et al. Passive CubeSats for remote inspection of space vehicles
Brown et al. Fractionated space architectures: Tracing the path to reality
Jahnavi et al. Artificial intelligence in space-limitations and its solutions to interplanetary CubeSats
US20240217676A1 (en) Communication satellite, satellite constellation, inter-satellite communication method, artificial satellite, and ground facility
Guo et al. From single to formation flying cubesats: An update from the delft programme
US11905045B1 (en) Deployable impactor payload
Bai et al. The CUAVA-2 CubeSat: A Second Attempt to Fly the Remote Sensing, Space Weather Study and Earth Observation Instruments
Routray et al. The Firstever LTE Network on the Moon: Challenges and Prospects
Friedman et al. ASUSat1: Low-cost, student-designed nanosatellite
Funase et al. Development of COTS-based pico-satellite bus and its application to quick and low cost on-orbit demonstration of novel space technology

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141210