CN103116379A - Self-calibrating current source system - Google Patents
Self-calibrating current source system Download PDFInfo
- Publication number
- CN103116379A CN103116379A CN2013100314678A CN201310031467A CN103116379A CN 103116379 A CN103116379 A CN 103116379A CN 2013100314678 A CN2013100314678 A CN 2013100314678A CN 201310031467 A CN201310031467 A CN 201310031467A CN 103116379 A CN103116379 A CN 103116379A
- Authority
- CN
- China
- Prior art keywords
- self
- current source
- array
- switching device
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Landscapes
- Analogue/Digital Conversion (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
技术领域 technical field
本发明涉及电流源相关技术,更具体地,涉及电流源参考电阻的相关设计。 The present invention relates to the technology related to the current source, and more specifically, relates to the related design of the reference resistance of the current source.
背景技术 Background technique
集成电路工业的发展满足摩尔定律,即工艺尺寸以每代30%的速率减小,集成电路的密度以2倍速率增长,并保证晶体管性能稳步增长。但是,工艺尺寸的缩小带来了更大的工艺波动,这种工艺波动主要源于制造流程。 The development of the integrated circuit industry satisfies Moore's Law, that is, the process size decreases at a rate of 30% per generation, the density of integrated circuits increases at a rate of 2 times, and the steady growth of transistor performance is guaranteed. However, shrinking process dimensions have brought greater process fluctuations, which are mainly due to the manufacturing process.
图1是常规的高精度电流源,其例如应用在低压差分信号数字输出模数转换(ADC)芯片中。在所示的常规电流源中,VGB是该ADC芯片内部带隙电路输出电压,Rexternal12为高精度电阻,其设置电流源外部作为参考电阻。实际应用中,并不是所有的情况都允许在芯片引脚外部设置外部电阻Rexternal12。如果不能设置Rexternal12,则不得不以该芯片的内部电阻代替这个外部电阻Rexternal12,从而造成电流源的输出Iout对工艺、电压和温度(PVT:Process,Voltage,Temperature)异常敏感。
FIG. 1 is a conventional high-precision current source, which is used, for example, in a low-voltage differential signal digital output analog-to-digital conversion (ADC) chip. In the conventional current source shown, V GB is the output voltage of the internal bandgap circuit of the ADC chip, and
因此,对于涉及到CMOS工艺的电流源而言,在没有外部参考电阻的情况下,其特性将随着工艺、温度、电压的变化而波动。某些情况下,应用了该电流源的高速、高精度模数转换器的模拟核心模块,例如采样保持电路等将面临严重的性能下降。 Therefore, for a current source involving a CMOS process, without an external reference resistor, its characteristics will fluctuate with changes in process, temperature, and voltage. In some cases, the analog core modules of high-speed, high-precision analog-to-digital converters that use this current source, such as sample-and-hold circuits, will face serious performance degradation.
发明内容 Contents of the invention
有鉴于此,本发明提供一种自校准电流源系统,可以应用在低压差分信号数字输出模数转换芯片中,该自校准电流源系统包括电流源,还包括:自校准电阻阵列,其以与所述电流源的内部电阻阵列关联的方式设置;比较器,将所述自校准电阻阵列的电压与所述芯片的输出终端电阻的电压进行比较;控制模块,其接收所述比较器的比较结果,据此输出控制信号以控制自校准电阻阵列及与所述自校准电阻阵列关联的所述内部电阻阵列。 In view of this, the present invention provides a self-calibration current source system, which can be applied in low-voltage differential signal digital output analog-to-digital conversion chips. The self-calibration current source system includes a current source, and also includes: a self-calibration resistor array, which is connected to The internal resistance array of the current source is set in an associated manner; the comparator compares the voltage of the self-calibration resistance array with the voltage of the output terminal resistance of the chip; the control module receives the comparison result of the comparator , whereby a control signal is output to control the self-calibrating resistor array and the internal resistor array associated with the self-calibrating resistor array.
优选地,本发明所述的自校准电流源系统中,所述自校准电阻阵列中的单元电阻与所述内部电阻阵列中的单元电阻一一对应。 Preferably, in the self-calibrating current source system of the present invention, the unit resistances in the self-calibration resistance array correspond to the unit resistances in the internal resistance array one-to-one.
优选地,本发明所述的自校准电流源系统中,所述内部电阻阵列中的各单元电阻的电阻值是与其对应的自校准电阻阵列中的单元电阻的电阻值的k倍。 Preferably, in the self-calibrating current source system of the present invention, the resistance value of each unit resistor in the internal resistor array is k times the resistance value of the corresponding unit resistor in the self-calibrating resistor array.
优选地,本发明所述的自校准电流源系统还包括第一开关器件组,其设置在所述内部电阻阵列与所述控制模块之间,并依据所述控制信号通或断;以及第二开关器件组,其设置在所述自校准电阻阵列和所述控制模块之间,并依据所述控制信号通或断。 Preferably, the self-calibrating current source system of the present invention further includes a first switching device group, which is arranged between the internal resistance array and the control module, and is turned on or off according to the control signal; and a second A switch device group is arranged between the self-calibration resistor array and the control module, and is turned on or off according to the control signal.
优选地,本发明所述的自校准电流源系统中,所述第一开关器件组中的各开关器件分别设置在所述内部电阻阵列的一个单元电阻与所述控制模块之间,所述第二开关器件组中的各开关器件分别设置在自校准电阻阵列的一个单元电阻与控制模块之间,从而使得第一开关器件组中的开关器件与第二开关器件中的开关器件一一对应。 Preferably, in the self-calibrating current source system of the present invention, each switching device in the first switching device group is respectively arranged between a unit resistance of the internal resistance array and the control module, and the second Each switching device in the two switching device groups is respectively arranged between a unit resistor of the self-calibrating resistance array and the control module, so that the switching devices in the first switching device group correspond to the switching devices in the second switching device.
优选地,本发明所述的校准电流源系统中,到所述第一开关器件组中的各开关器件的控制信号与到第二开关器件组中与该开关器件对应的开关器件的控制信号相同。 Preferably, in the calibration current source system of the present invention, the control signal to each switching device in the first switching device group is the same as the control signal to the switching device corresponding to the switching device in the second switching device group .
优选地,本发明所述的校准电流源系统中,所述控制模块由可逆计数器和控制逻辑构成。 Preferably, in the calibration current source system of the present invention, the control module is composed of an up-down counter and control logic.
优选地,本发明所述的校准电流源系统中,所述比较器为双差分时钟锁存比较器。 Preferably, in the calibration current source system of the present invention, the comparator is a double differential clock latch comparator.
本发明所述的电流源系统中,将已有的标准端口即输出终端电阻作为参考电阻,并将其电压与所设置的关联于电流源的内部电阻阵列的自校准电阻阵列的电压值进行比较,从而通过该比较结果调整电流源内部电阻,由此可控制和保持一个对PVT不敏感的电流源系统而无需额外在芯片端口设置外部电阻。 In the current source system of the present invention, the existing standard port, that is, the output terminal resistance, is used as a reference resistance, and its voltage is compared with the voltage value of the self-calibrating resistance array of the internal resistance array associated with the current source. , so as to adjust the internal resistance of the current source through the comparison result, thereby controlling and maintaining a current source system that is insensitive to PVT without additionally setting an external resistance at the chip port. the
附图说明 Description of drawings
图1是常规的高精度电流源。 Figure 1 is a conventional high-precision current source.
图2是根据本发明的一个实施例的自校准电流源系统的结构示意图。 FIG. 2 is a schematic structural diagram of a self-calibrating current source system according to an embodiment of the present invention.
图3是图2所示自校准电流源系统的一个具体示例的电路示意图。 FIG. 3 is a schematic circuit diagram of a specific example of the self-calibrating current source system shown in FIG. 2 .
具体实施方式 Detailed ways
现结合附图进一步说明本发明。本领域技术人员可以理解到,以下只是结合具体实施方式对本发明的主旨进行非限制性说明,本发明所主张的范围由所附的权利要求确定,任何不脱离本发明精神的修改、变更都应由本发明的权利要求所涵盖。 Now further illustrate the present invention in conjunction with accompanying drawing. Those skilled in the art can understand that the following is a non-restrictive description of the gist of the present invention in conjunction with specific embodiments, the scope of the present invention is determined by the appended claims, and any modifications and changes that do not depart from the spirit of the present invention should be covered by the claims of the present invention.
本发明的重点在于利用芯片现有的输出终端电阻作为参考电阻,而在电流源内部设置自校准电阻阵列,从而使得电流源的内部总电阻逐渐逼近参考电阻。 The focus of the present invention is to use the existing output terminal resistance of the chip as a reference resistance, and set a self-calibration resistance array inside the current source, so that the internal total resistance of the current source gradually approaches the reference resistance. the
图2是根据本发明的一个实施例的自校准电流源系统的结构示意图。作为示例,本文以该电流源系统应用在低压差分信号(LVDS)数字输出模数转换(ADC)芯片中进行说明,但不以此为限。为简洁起见,下文将“低压差分信号(LVDS)数字输出模数转换(ADC)芯片”称为LVDS ADC芯片。 FIG. 2 is a schematic structural diagram of a self-calibrating current source system according to an embodiment of the present invention. As an example, this article uses the application of the current source system in a low-voltage differential signal (LVDS) digital output analog-to-digital conversion (ADC) chip for illustration, but not limited thereto. For the sake of brevity, the "low voltage differential signal (LVDS) digital output analog-to-digital conversion (ADC) chip" is referred to as the LVDS ADC chip below.
如图2所示,应用在LVDS ADC芯片的自校准电流源系统20包括电流源基本结构、自校准电阻阵列201、电压比较器204和控制模块206。电流源基本结构与常规电流源基本相同,且其本身并非本发明重点所在,便不在此多加描述。自校准电阻阵列201与电流源的内部电阻阵列202相关联,由此使得控制模块206对自校准电阻阵列201的控制作用可关联性地作用于内部电阻阵列202。自校准电路阵列201的电压201V及LVDS ADC芯片的输出终端电阻203的电压203V馈送到电压比较器204。电压比较器204对电压202V和203V进行比较,并将比较结果传送给控制模块206。控制模块206依据该比较结果控制自校准电阻阵列,并同时控制与该自校准电阻阵列201关联的内部电阻阵列202,使得该内部电阻阵列的总电阻值逐渐逼近LVDS ADC芯片的输出终端电阻203的电阻值。
As shown in FIG. 2 , a self-calibrating current source system 20 applied to an LVDS ADC chip includes a basic structure of a current source, a self-calibrating
作为示例,控制模块206通过第一开关器件组501与内部电阻阵列202电性连接,通过第二开关器件组502与自校准电阻阵列201电性连接。第一开关器件组501及第二开关器件组502均接收来自控制模块206的控制信号,并依据该信号接通或断开。根据本发明的一个示例,自校准电阻阵列201以与内部电阻阵列202对应的方式设置,该对应方式使得控制模块控制自校准电阻阵列中的任意一个单元电阻便会同样控制内部电阻阵列中与该单元电阻对应的单元电阻。自校准电阻阵列201中的单元电阻可以是一个电阻、也可以是由多个电阻并联或串联而形成的单元。本文各示例中,单元电阻即为构成电阻阵列的单元阵列。
As an example, the
图3是图2所示自校准电流源系统的一个具体示例的电路示意图。在该示例中,电压比较器204实现为双差分时钟锁存比较器304,控制模块206由可逆计数器和控制逻辑构成。如图所示,内部电阻阵列202包括并联的电阻kR1、kR2、kR3、kR4和kR5,电阻kR2、kR3、kR4和kR5通过第一开关器件组501与控制模块206电性连接,示例地,电阻kR2、kR3、kR4和kR5分别通过例如为PMOS管的第一开关器件5012、5013、5014和5015与控制模块206电性连接。自校准电阻阵列201在本例中以如下方式实现:其以对应于内部电阻阵列202的方式设置在电流源基本结构的接地端,包括五个并联的单元电阻,依次是校准电阻R1、R2、R3、R4和R5;内部电阻阵列202的电阻kR1的电阻值是自校准电阻阵列201的电阻R1的k倍、电阻kR2的电阻值是自校准电阻阵列201的电阻R2的k倍、依次类推,电阻kR3是R3的k倍、电阻kR4是R4的k倍、电阻kR5是R5的k倍。自校准电阻阵列201中的电阻R2、R3、R4和R5通过第二开关器件组502与控制模块206电性连接,示例地,自校准电阻阵列201中的电阻R2、R3、R4和R5分别通过例如为PMOS管的第二开关器件5022、5023、5024和50255与控制模块206电连接。第一开关器件组501的开关器件5012与第二开关器件组502的开关器件5022均电性连接到控制模块206的第一控制端00,第一开关器件组501的开关器件5013与第二开关器件组502的开关器件5023均电性连接到控制模块206的第二控制端01,第一开关器件组501的开关器件5014与第二开关器件组502的开关器件5024均电性连接到控制模块206的第三控制端02,第一开关器件组501的开关器件5015与第二开关器件组502的开关器件5025均电性连接到控制模块206的第三控制端03,由此控制模块206可同时控制自校准电阻阵列201和内部电阻阵列202。该示例中,电阻kR1、kR2、kR3、kR4和kR5即为构成内部电阻阵列的单元电阻,而电阻R2、R3、R4和R5即为构成自校准电阻阵列的单元电阻。
FIG. 3 is a schematic circuit diagram of a specific example of the self-calibrating current source system shown in FIG. 2 . In this example, the
自校准电阻阵列201的电压为I0×RT,其中I0是LVDS直流输出驱动电流,RT为自校准电阻阵列201的总电阻值。LVDS ADC芯片的外部输出终端电阻203为RL,其电压为I0×RL,其中I0是LVDS直流输出驱动电流,RL为终端电阻203的电阻值。将自校准电阻阵列201的电压201V和终端电阻203的电压203V馈送到双差分时钟锁存比较器304。双差分时钟锁存比较器304的比较结果馈送到控制模块206。
The voltage of the self-calibrating
示例但非限制性地,电流源系统上电后,初始时钟周期中,在clock为0的情况下,双差分时钟锁存比较器304的输出为Q保持其状态;在clock=1,双差分时钟锁存比较器304比较自校准电阻阵列201的电压201V和终端电阻203的电压203V,并将比较结果Q馈送到控制模块206。在Q=1包括了两个连续时钟周期时,控制模块206中的计数器加1;在Q=0保持两个连续时钟周期时,该计数器减1;在Q=1包括一个时钟周期时而在下一个时钟周期Q=0时,控制模块206的输出端00、01、02和03保持不变。在控制模块206的内部逻辑电路发现这种输出端00、01、02和03保持不变的情况下,即标记一个控制信号锁定开关的状态并禁用自校准电阻阵列201以节约电源。
By way of example but not limitation, after the current source system is powered on, in the initial clock cycle, when the clock is 0, the output of the double differential
在控制模块206的输出端00、01、02和03控制之下,例如为PMOS开关的各开关器件接通,内部电阻阵列kR1、kR2、kR3、kR4和kR5所构成的总电阻值逐渐接近外部电阻RL。在本发明中,电阻RT与电阻RL的比较精度,亦即双差分时钟锁存比较器304的精度越高,则电阻阵列中的电阻数目及控制模块206的输出端就越多。
Under the control of the
如上所述,由于自校准电阻阵列与内部电阻阵列的关联关系,使得对自校准电阻阵列与终端电阻RL的比较结果可通过控制模块206作用于内部电阻阵列。而内部电阻阵列在受到调整的同时,自校准回路同时受到控制模块206的作用,且受到控制的自校准回路将进一步与终端电阻RL进行比较,从而依据该比较结果,调整内部电阻阵列,直到内部电阻阵列的电阻值与终端电阻RL相当。
As mentioned above, due to the association between the self-calibration resistor array and the internal resistor array, the comparison result of the self-calibration resistor array and the terminal resistor RL can be applied to the internal resistor array through the
尽管已经结合具体示例描述了本发明,但是本领域技术人员可以理解到,示例中的各部件并不以在此所述的部件为限,只需可达成相应功能即可。例如,第一开关器件组和第二开关器件组可以采用其它可达成通断功能的器件。 Although the present invention has been described in conjunction with specific examples, those skilled in the art can understand that the components in the examples are not limited to the components described here, as long as the corresponding functions can be achieved. For example, the first switching device group and the second switching device group may use other devices capable of achieving on-off functions.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310031467.8A CN103116379B (en) | 2013-01-28 | 2013-01-28 | Self-calibration current source system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310031467.8A CN103116379B (en) | 2013-01-28 | 2013-01-28 | Self-calibration current source system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103116379A true CN103116379A (en) | 2013-05-22 |
| CN103116379B CN103116379B (en) | 2015-04-01 |
Family
ID=48414788
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310031467.8A Expired - Fee Related CN103116379B (en) | 2013-01-28 | 2013-01-28 | Self-calibration current source system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103116379B (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014114004A1 (en) * | 2013-01-28 | 2014-07-31 | 香港中国模拟技术有限公司 | Self-calibration current source system |
| CN104181473A (en) * | 2014-08-25 | 2014-12-03 | 长沙瑞达星微电子有限公司 | Current source calibrating circuit |
| CN105119594A (en) * | 2015-07-30 | 2015-12-02 | 中国电子科技集团公司第五十八研究所 | High-speed serial port load automatic calibration circuit |
| CN107229302A (en) * | 2017-06-30 | 2017-10-03 | 西安理工大学 | The on-chip system of voltage controlled current source drive circuit and put forward high-precision method using it |
| CN112485499A (en) * | 2020-12-29 | 2021-03-12 | 深圳市芯天下技术有限公司 | Test method and device for automatic calibration of reference current, storage medium and terminal |
| CN113342100A (en) * | 2020-03-03 | 2021-09-03 | 瑞昱半导体股份有限公司 | Bias current generating circuit |
| CN116578156A (en) * | 2023-05-06 | 2023-08-11 | 西安电子科技大学 | A Low Temperature Drift Bandgap Reference Circuit Based on ADC Self-calibration |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH02288616A (en) * | 1989-04-28 | 1990-11-28 | Hitachi Ltd | Self-calibration type d/a converter and self-calibration type a/d converter using the d/a converter |
| CN101320278A (en) * | 2008-06-25 | 2008-12-10 | 苏州中科半导体集成技术研发中心有限公司 | CMOS reference source |
| CN101571709A (en) * | 2009-06-11 | 2009-11-04 | 和芯微电子(四川)有限公司 | Method and circuit for regulating loads of dynamic self-adaptation terminal |
| TW201041317A (en) * | 2009-05-15 | 2010-11-16 | Realtek Semiconductor Corp | Self-calibrated current source and DAC using the same and operation method thereof |
| CN203191868U (en) * | 2013-01-28 | 2013-09-11 | 香港中国模拟技术有限公司 | Self-calibrating current source system |
-
2013
- 2013-01-28 CN CN201310031467.8A patent/CN103116379B/en not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH02288616A (en) * | 1989-04-28 | 1990-11-28 | Hitachi Ltd | Self-calibration type d/a converter and self-calibration type a/d converter using the d/a converter |
| CN101320278A (en) * | 2008-06-25 | 2008-12-10 | 苏州中科半导体集成技术研发中心有限公司 | CMOS reference source |
| TW201041317A (en) * | 2009-05-15 | 2010-11-16 | Realtek Semiconductor Corp | Self-calibrated current source and DAC using the same and operation method thereof |
| CN101571709A (en) * | 2009-06-11 | 2009-11-04 | 和芯微电子(四川)有限公司 | Method and circuit for regulating loads of dynamic self-adaptation terminal |
| CN203191868U (en) * | 2013-01-28 | 2013-09-11 | 香港中国模拟技术有限公司 | Self-calibrating current source system |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014114004A1 (en) * | 2013-01-28 | 2014-07-31 | 香港中国模拟技术有限公司 | Self-calibration current source system |
| CN104181473A (en) * | 2014-08-25 | 2014-12-03 | 长沙瑞达星微电子有限公司 | Current source calibrating circuit |
| CN105119594A (en) * | 2015-07-30 | 2015-12-02 | 中国电子科技集团公司第五十八研究所 | High-speed serial port load automatic calibration circuit |
| CN107229302A (en) * | 2017-06-30 | 2017-10-03 | 西安理工大学 | The on-chip system of voltage controlled current source drive circuit and put forward high-precision method using it |
| CN113342100A (en) * | 2020-03-03 | 2021-09-03 | 瑞昱半导体股份有限公司 | Bias current generating circuit |
| CN113342100B (en) * | 2020-03-03 | 2023-03-14 | 瑞昱半导体股份有限公司 | Bias current generating circuit |
| CN112485499A (en) * | 2020-12-29 | 2021-03-12 | 深圳市芯天下技术有限公司 | Test method and device for automatic calibration of reference current, storage medium and terminal |
| CN116578156A (en) * | 2023-05-06 | 2023-08-11 | 西安电子科技大学 | A Low Temperature Drift Bandgap Reference Circuit Based on ADC Self-calibration |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103116379B (en) | 2015-04-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103116379A (en) | Self-calibrating current source system | |
| TWI451697B (en) | Very low power analog compensation circuit | |
| CN102955492B (en) | Reference current generating circuit | |
| TWI644518B (en) | Charge compensation circuit and analog digital converter | |
| CN105676933B (en) | A kind of quick-starting direct numeral low-dropout regulator | |
| JP5684080B2 (en) | Analog / digital converter | |
| TWI578740B (en) | Converged adaptive compensation scheme | |
| JP2013070275A (en) | Analog/digital converter | |
| CN109643139B (en) | Impedance adjusting circuit, chip and reference voltage generating circuit | |
| CN105183059B (en) | A kind of circuit for eliminating the ringing in digital low-dropout regulator | |
| JP2010171781A (en) | Impedance adjustment circuit | |
| CN103123510A (en) | Adjustable constant current source circuit | |
| CN107342757A (en) | A kind of electrification reset circuit based on improved band-gap reference structure | |
| WO2014114004A1 (en) | Self-calibration current source system | |
| CN102594300A (en) | Light-operated signal generating circuit | |
| CN108650755B (en) | Linear constant-current driving chip and multi-chip parallel LED lighting driving circuit | |
| CN104935321B (en) | Input/output impedance correction circuit and method | |
| CN105676939B (en) | Adjustable and accurate over-temperature protection circuit applied to wireless charging control chip | |
| CN108572687B (en) | Over-temperature compensation circuit and method | |
| CN203191868U (en) | Self-calibrating current source system | |
| CN102386920B (en) | Threshold Offset Calibration Method Applied to Time Domain Comparator | |
| TWI641253B (en) | Network driving circuit and method of driving network device | |
| TW201444275A (en) | Differential signaling driver | |
| CN102317798B (en) | Resistance detection device and method | |
| CN106953629A (en) | Isolated digital input circuit |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| ASS | Succession or assignment of patent right |
Owner name: XINFENG QUANTEL TECHNOLOGIES (BEIJING) CO., LTD. Free format text: FORMER OWNER: CHINA HONGKONG CHINA SIMULATION TECHNOLOGY CO., LTD. Effective date: 20150108 |
|
| C41 | Transfer of patent application or patent right or utility model | ||
| COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: HONG KONG, CHINA TO: 100084 HAIDIAN, BEIJING |
|
| TA01 | Transfer of patent application right |
Effective date of registration: 20150108 Address after: 100084. Room 4, floor 1, building No. 88, Nongda South Road, Beijing, Haidian District. 430 Applicant after: The core front Kuantai Technology (Beijing) Co., Ltd. Address before: Hongkong China des Voeux Road No. 141, China Insurance Group Building Room 1906 Applicant before: China Hongkong China Analog Technology Co., Ltd. |
|
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150401 Termination date: 20170128 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |