CN103117245A - Formation method of air-gap interconnection structure - Google Patents
Formation method of air-gap interconnection structure Download PDFInfo
- Publication number
- CN103117245A CN103117245A CN201110365145.8A CN201110365145A CN103117245A CN 103117245 A CN103117245 A CN 103117245A CN 201110365145 A CN201110365145 A CN 201110365145A CN 103117245 A CN103117245 A CN 103117245A
- Authority
- CN
- China
- Prior art keywords
- layer
- air
- dielectric layer
- formation method
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 75
- 230000015572 biosynthetic process Effects 0.000 title claims description 20
- 230000004888 barrier function Effects 0.000 claims abstract description 42
- 239000004065 semiconductor Substances 0.000 claims abstract description 32
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 35
- 239000010949 copper Substances 0.000 claims description 28
- 229910052802 copper Inorganic materials 0.000 claims description 26
- 239000003989 dielectric material Substances 0.000 claims description 23
- 238000005516 engineering process Methods 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 14
- 238000005498 polishing Methods 0.000 claims description 14
- 238000005530 etching Methods 0.000 claims description 11
- 238000005229 chemical vapour deposition Methods 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 5
- 239000011368 organic material Substances 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 5
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 238000001020 plasma etching Methods 0.000 claims description 4
- 239000012808 vapor phase Substances 0.000 claims description 4
- 229910020177 SiOF Inorganic materials 0.000 claims description 3
- 238000004544 sputter deposition Methods 0.000 claims description 2
- IGELFKKMDLGCJO-UHFFFAOYSA-N xenon difluoride Chemical compound F[Xe]F IGELFKKMDLGCJO-UHFFFAOYSA-N 0.000 claims description 2
- 238000009713 electroplating Methods 0.000 claims 1
- 238000000151 deposition Methods 0.000 abstract description 17
- 238000007517 polishing process Methods 0.000 abstract description 6
- 230000000717 retained effect Effects 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 8
- 230000000903 blocking effect Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- YRGLXIVYESZPLQ-UHFFFAOYSA-I tantalum pentafluoride Chemical compound F[Ta](F)(F)(F)F YRGLXIVYESZPLQ-UHFFFAOYSA-I 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
Images
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
本发明揭示了一种空气隙互联结构的形成方法,该方法包括在半导体集成电路的基底层上淀积第一介质层;在第一介质层上淀积第二介质层;在第二介质层上形成沟槽,相邻两沟槽由第二介质层隔离开;在第二介质层的表面和沟槽内依次淀积阻挡层和主导电层;对主导电层进行表面平坦化,并保留一定厚度的主导电层;采用无应力抛光工艺去除除沟槽内的主导电层以外的所有主导电层;采用无应力去除阻挡层工艺去除裸露于沟槽外的所有阻挡层;去除第二介质层,在相邻两沟槽之间形成一凹槽;在凹槽壁和裸露的主导电层及阻挡层上淀积第三介质层;在第三介质层和凹槽内淀积第四介质层,空气隙被形成于凹槽内。本发明通过采用无应力抛光工艺和无应力去除阻挡层工艺,使得所述空气隙互联结构可以形成于具有超微细特征尺寸结构的半导体集成电路中。
The invention discloses a method for forming an air-gap interconnection structure, the method comprising depositing a first dielectric layer on a base layer of a semiconductor integrated circuit; depositing a second dielectric layer on the first dielectric layer; depositing a second dielectric layer on the second dielectric layer Grooves are formed on the upper surface, and two adjacent trenches are separated by the second dielectric layer; a barrier layer and a main conductive layer are sequentially deposited on the surface of the second dielectric layer and in the groove; the surface of the main conductive layer is planarized and retained A certain thickness of the main conductive layer; use a stress-free polishing process to remove all the main conductive layers except the main conductive layer in the trench; use a stress-free removal barrier layer process to remove all barrier layers exposed outside the trench; remove the second dielectric Layer, a groove is formed between two adjacent grooves; a third dielectric layer is deposited on the groove wall and the exposed main conductive layer and barrier layer; a fourth dielectric layer is deposited in the third dielectric layer and the groove layers, air gaps are formed in the grooves. In the present invention, by adopting a stress-free polishing process and a stress-free barrier layer removal process, the air-gap interconnection structure can be formed in a semiconductor integrated circuit with an ultra-fine feature size structure.
Description
技术领域 technical field
本发明关于半导体集成电路的制造方法,尤其关于一种用以降低半导体集成电路中的电容值的空气隙互联结构的形成方法。The present invention relates to a manufacturing method of a semiconductor integrated circuit, in particular to a method for forming an air-gap interconnection structure for reducing capacitance in the semiconductor integrated circuit.
背景技术 Background technique
随着半导体工业的发展,极大规模集成电路(VLSI)以及超大规模集成电路(ULSI)已经被广泛的应用。相比以往的集成电路,极大规模集成电路和超大规模集成电路具有更复杂的多层结构,更小的特征尺寸。众所周知,在阻容电路中,电路电阻和电路电容决定了电路的阻容迟滞(RCdelay),以及电路的能量消耗(E=CV2f)。所以集成电路的电阻值和电容值直接决定了集成电路的性能,尤其是超微细特征尺寸集成电路。现有极大和超大规模集成电路的性能发展受限于电路中的阻容迟滞和能量消耗。为了降低电路中的阻容迟滞和能量消耗,铜(Cu)由于其更高的电导率,已经逐步取代了铝(Al)来构成集成电路中的金属结构,低介电常数材料(loW-k material,k<2.5),例如aromatics hydrocarbon thermosettingpolymer(SILK),也被用来代替传统的介质材料如SiO2(k>4.0)。With the development of the semiconductor industry, Very Large Scale Integration (VLSI) and Ultra Large Scale Integration (ULSI) have been widely used. Compared with previous integrated circuits, VLSI and VLSI have more complex multi-layer structures and smaller feature sizes. As we all know, in a resistance-capacitance circuit, the circuit resistance and circuit capacitance determine the resistance-capacitance hysteresis (RCdelay) of the circuit and the energy consumption (E=CV 2 f) of the circuit. Therefore, the resistance value and capacitance value of the integrated circuit directly determine the performance of the integrated circuit, especially the ultra-fine feature size integrated circuit. The performance development of existing very large and very large scale integrated circuits is limited by the resistance and capacitance hysteresis and energy consumption in the circuit. In order to reduce the resistance-capacitance hysteresis and energy consumption in the circuit, copper (Cu) has gradually replaced aluminum (Al) to form the metal structure in the integrated circuit due to its higher conductivity, and the low dielectric constant material (loW-k material, k<2.5), such as aromatics hydrocarbon thermosetting polymer (SILK), is also used to replace traditional dielectric materials such as SiO 2 (k>4.0).
但是由于low-k介质材料的机械强度很弱,相对于铜的杨氏模量差异巨大,且铜互联结构的机械强度与其线宽成正比(如图1所示),当使用化学机械平坦化(CMP)工艺对多余的铜结构进行平坦化至阻挡层时,其下压力会破坏low-k介质材料的介质层结构,造成铜线短路或者断路,使集成电路失效,low-k介质材料的机械性能缺陷阻碍了其在集成电路中的广泛使用。However, due to the weak mechanical strength of low-k dielectric materials, there is a huge difference in Young's modulus relative to copper, and the mechanical strength of the copper interconnect structure is proportional to its line width (as shown in Figure 1), when using chemical mechanical planarization When the (CMP) process planarizes the excess copper structure to the barrier layer, the downward pressure will destroy the dielectric layer structure of the low-k dielectric material, causing short circuit or open circuit of the copper wire, making the integrated circuit invalid, and the low-k dielectric material Mechanical performance deficiencies have hindered their widespread use in integrated circuits.
为了克服low-k介质材料存在的缺陷,空气隙(air-gap)互联技术被引入集成电路互联结构中。空气隙技术,准确而言空气隙内的空间是没有空气的真空,因为普通的空气必然包含湿气,可能会导致周围铜导线的腐蚀和退化。空气隙技术恰好能在不改变现有介质层材料,不改变现有工艺技术和设备的前提下,利用真空介电常数为1的特性,来显著的降低介质层的介电常数,间接的达到了low-k介质材料的功能,含有空气隙的介质层结构可以被认为是含有多孔结构的介电质材料结构。但是目前的空气隙技术如美国专利号为US 7,501,347、US 7,629,268和US 7,361,991等所公开的,只能应用于特征尺寸为90nm以上的集成电路中,当集成电路的特征尺寸降低时,传统的大马士革工艺(damascene process)也面临着对铜互联结构平坦化时机械应力对铜互联结构造成损伤的技术瓶颈,如何突破平坦化工艺中的应力损伤瓶颈成为形成空气隙技术的关键。In order to overcome the defects of low-k dielectric materials, air-gap (air-gap) interconnection technology is introduced into the interconnection structure of integrated circuits. Air-gap technology, to be precise, the space inside the air-gap is a vacuum without air, because ordinary air must contain moisture, which may cause corrosion and degradation of the surrounding copper wires. The air gap technology can reduce the dielectric constant of the dielectric layer significantly by using the vacuum dielectric constant of 1 without changing the existing dielectric layer material, and without changing the existing process technology and equipment. In order to understand the function of the low-k dielectric material, the dielectric layer structure containing air gaps can be considered as a dielectric material structure containing a porous structure. However, the current air gap technology, as disclosed in US Patent No. US 7,501,347, US 7,629,268 and US 7,361,991, can only be applied to integrated circuits with a feature size of 90nm or more. When the feature size of the integrated circuit is reduced, the traditional Damascus The damascene process also faces the technical bottleneck of mechanical stress causing damage to the copper interconnection structure when the copper interconnection structure is planarized. How to break through the stress damage bottleneck in the planarization process becomes the key to the formation of air gap technology.
为了解决化学机械平坦化工艺中的机械应力对介质层结构的破坏,在现有空气隙的形成工艺中,通常会在牺牲层上淀积一层硬遮挡膜用来保护牺牲层材料,利用硬遮挡膜具有很高的机械强度来抵抗化学机械平坦化工艺带来的机械应力,随后硬遮挡膜被去除。此种工艺增加了空气隙的形成步骤,使得空气隙的形成工艺变得复杂。In order to solve the damage to the structure of the dielectric layer caused by the mechanical stress in the chemical mechanical planarization process, in the existing air gap formation process, a layer of hard mask film is usually deposited on the sacrificial layer to protect the material of the sacrificial layer. The masking film has high mechanical strength to resist the mechanical stress caused by the chemical mechanical planarization process, and the hard masking film is subsequently removed. This kind of process increases the steps of forming the air gap, which makes the process of forming the air gap more complicated.
同时,为了避免化学机械平坦化工艺对铜线造成潜在的伤害,一部分介质材料会被保留下来以保护铜线的两翼。因此导致空气隙无法在狭窄的铜线间距区域内形成,或者只能在狭窄的铜线间距区域内形成体积较小的空气隙。基于此原因,现有的空气隙互联结构形成工艺无法运用在极小特征尺寸的集成电路中,然而集成电路的特征尺寸越小,介电常数对电路的电学性能影响越为显著,例如互联结构中最下层的第一金属互联结构,因此,该技术难题需要迫切解决。At the same time, in order to avoid potential damage to the copper wire caused by the chemical mechanical planarization process, a part of the dielectric material will be reserved to protect the two wings of the copper wire. Therefore, the air gap cannot be formed in the narrow copper wire spacing region, or only a small air gap can be formed in the narrow copper wire spacing region. For this reason, the existing air-gap interconnect structure formation process cannot be used in integrated circuits with extremely small feature sizes. However, the smaller the feature size of integrated circuits, the more significant the dielectric constant has on the electrical performance of the circuit. Therefore, this technical problem needs to be solved urgently.
发明内容 Contents of the invention
本发明的目的是针对上述背景技术存在的缺陷提供一种可以在具有超微细特征尺寸结构的半导体集成电路中形成空气隙互联结构的方法。The object of the present invention is to provide a method for forming an air-gap interconnection structure in a semiconductor integrated circuit with an ultra-fine feature size structure in view of the defects in the above-mentioned background technology.
为实现上述目的,本发明提出一种空气隙互联结构的形成方法,包括如下步骤:In order to achieve the above object, the present invention proposes a method for forming an air-gap interconnection structure, which includes the following steps:
在半导体集成电路的基底层上淀积第一介质层;Depositing a first dielectric layer on the base layer of the semiconductor integrated circuit;
在第一介质层上淀积第二介质层;depositing a second dielectric layer on the first dielectric layer;
在第二介质层上形成沟槽,相邻两沟槽由第二介质层隔离开;Forming trenches on the second dielectric layer, two adjacent trenches are separated by the second dielectric layer;
在第二介质层的表面和沟槽内依次淀积阻挡层和主导电层;sequentially depositing a barrier layer and a main conductive layer on the surface of the second dielectric layer and in the groove;
对主导电层进行表面平坦化,并保留一定厚度的主导电层;Planarizing the surface of the main conductive layer and retaining a certain thickness of the main conductive layer;
采用无应力抛光工艺去除除沟槽内的主导电层以外的所有主导电层;Using a stress-free polishing process to remove all the main conductive layers except the main conductive layer in the trench;
采用无应力去除阻挡层工艺去除裸露于沟槽外的所有阻挡层;Using a stress-free barrier removal process to remove all barrier layers exposed outside the trench;
去除第二介质层,在相邻两沟槽之间形成一凹槽;removing the second dielectric layer to form a groove between two adjacent grooves;
在凹槽壁和裸露的主导电层及阻挡层上淀积第三介质层;Depositing a third dielectric layer on the groove wall and the exposed main conductive layer and barrier layer;
在第三介质层和凹槽内淀积第四介质层,空气隙被形成于凹槽内。A fourth dielectric layer is deposited over the third dielectric layer and in the groove, and an air gap is formed in the groove.
优选的,所述第一介质层可以由SiCN、SiC、SiN和SiOC之一或者它们的混合物构成。Preferably, the first dielectric layer may be made of one of SiCN, SiC, SiN and SiOC or a mixture thereof.
优选的,所述第二介质层可以由超低K介质材料或者低K介质材料或者介质材料构成。Preferably, the second dielectric layer may be made of an ultra-low K dielectric material or a low K dielectric material or a dielectric material.
优选的,所述介质材料可以是有机材料。Preferably, the dielectric material may be an organic material.
优选的,所述有机材料可以是SiLK。Preferably, the organic material may be SiLK.
优选的,所述阻挡层可以由钽、氮化钽、钛、氮化钛之一或者它们的混合物构成。Preferably, the barrier layer may be made of one of tantalum, tantalum nitride, titanium, titanium nitride or a mixture thereof.
优选的,所述阻挡层是采用溅射工艺被淀积在第二介质层的表面和沟槽内壁上。Preferably, the barrier layer is deposited on the surface of the second dielectric layer and the inner wall of the trench by sputtering.
优选的,所述主导电层是由铜构成。Preferably, the main conductive layer is made of copper.
优选的,在所述阻挡层上采用化学气相淀积法淀积一层薄种子层,再采用电化学镀铜工艺将铜层淀积在所述薄种子层上及沟槽内。Preferably, a thin seed layer is deposited on the barrier layer by chemical vapor deposition, and then a copper layer is deposited on the thin seed layer and in the trench by an electrochemical copper plating process.
优选的,采用低下压力的化学机械抛光平坦化工艺对主导电层进行表面平坦化,并保留100nm至200nm厚度的主导电层。Preferably, the surface of the main conductive layer is planarized by using a chemical mechanical polishing planarization process with low down pressure, and the main conductive layer with a thickness of 100nm to 200nm is retained.
优选的,采用XeF2气相蚀刻工艺去除裸露于沟槽外的所有阻挡层。Preferably, XeF2 vapor phase etching process is used to remove all barrier layers exposed outside the trench.
优选的,采用等离子蚀刻工艺去除第二介质层以形成所述凹槽,所述第一介质层作为蚀刻停止层。Preferably, the second dielectric layer is removed by a plasma etching process to form the groove, and the first dielectric layer serves as an etching stop layer.
优选的,所述凹槽的特征尺寸在10nm至250nm之间。Preferably, the characteristic size of the groove is between 10nm and 250nm.
优选的,所述第三介质层可以由SiCN、SiC、SiN、SiOC之一或者它们的混合物构成。Preferably, the third dielectric layer may be made of one of SiCN, SiC, SiN, SiOC or a mixture thereof.
优选的,采用非共形化学气相淀积工艺淀积第四介质层。Preferably, the fourth dielectric layer is deposited using a non-conformal chemical vapor deposition process.
优选的,所述第四介质层可以由SiOF、SiOC之一或者它们的混合物构成。Preferably, the fourth dielectric layer may be made of one of SiOF, SiOC or a mixture thereof.
综上所述,本发明一种空气隙互联结构的形成方法通过采用无应力抛光去除多余的主导电层和无应力去除多余的阻挡层,由于均无机械应力产生,因而不会对半导体集成电路尤其是半导体集成电路中剩余的主导电层、阻挡层和介质层造成任何损伤,因此,所述空气隙互联结构可以形成于具有超微细特征尺寸结构的半导体集成电路中,例如特征尺寸小于65nm及以下的半导体集成电路中。通过形成相对较大的所述空气隙,进一步降低半导体集成电路中介质层的介电常数,进而降低半导体集成电路中的电容值,以提高半导体集成电路的性能。相对于现有工艺而言,本发明工艺简单,不需要开发新材料,而且通过淀积第四介质层,使得半导体集成电路的整体结构具有很好的机械强度,可以承受后续封装的压力。To sum up, the method for forming an air-gap interconnection structure of the present invention removes the redundant main conductive layer and the redundant barrier layer by using stress-free polishing, since there is no mechanical stress, thus it will not affect the semiconductor integrated circuit. In particular, the remaining main conductive layer, barrier layer and dielectric layer in the semiconductor integrated circuit cause any damage. Therefore, the air gap interconnection structure can be formed in a semiconductor integrated circuit with an ultra-fine feature size structure, for example, the feature size is less than 65nm and In the following semiconductor integrated circuits. By forming the relatively large air gap, the dielectric constant of the dielectric layer in the semiconductor integrated circuit is further reduced, thereby reducing the capacitance value in the semiconductor integrated circuit, so as to improve the performance of the semiconductor integrated circuit. Compared with the existing technology, the invention has simple technology and does not need to develop new materials, and by depositing the fourth dielectric layer, the overall structure of the semiconductor integrated circuit has good mechanical strength and can withstand the pressure of subsequent packaging.
附图说明 Description of drawings
图1所示为铜线宽度与其机械强度的关系示意图。Figure 1 shows a schematic diagram of the relationship between copper wire width and its mechanical strength.
图2所示为本发明按工序依次在半导体集成电路的基底层上淀积第一介质层、第二介质层、防反射膜和光刻阻挡掩膜后的横切面示意图。FIG. 2 is a cross-sectional schematic view of the present invention after sequentially depositing a first dielectric layer, a second dielectric layer, an anti-reflection film and a photolithographic blocking mask on the base layer of a semiconductor integrated circuit according to the process.
图3所示为本发明按工序对光刻阻挡掩膜进行图形曝光,并形成有图形的防反射膜后的横切面示意图。FIG. 3 is a cross-sectional schematic view of the present invention after performing pattern exposure on a photolithography blocking mask according to the process and forming a patterned anti-reflection film.
图4所示为本发明按工序在第二介质层上形成沟槽后的横切面示意图。FIG. 4 is a schematic cross-sectional view of the present invention after forming trenches on the second dielectric layer according to the process.
图5所示为本发明按工序依次淀积阻挡层和主导电层后的横切面示意图。FIG. 5 is a cross-sectional schematic view of the present invention after sequentially depositing a barrier layer and a main conductive layer according to the procedures.
图6所示为本发明按工序对主导电层表面初步平坦化后的横切面示意图。FIG. 6 is a cross-sectional schematic view of the present invention after preliminary planarization of the surface of the main conductive layer according to the process.
图7所示为本发明按工序对主导电层表面无应力抛光平坦化后的横切面示意图。FIG. 7 is a cross-sectional schematic view of the present invention after stress-free polishing and planarization of the surface of the main conductive layer according to the process.
图8所示为本发明按工序将裸露于沟槽外的阻挡层蚀刻后的横切面示意图。FIG. 8 is a schematic diagram of a cross-section after etching the barrier layer exposed outside the trench according to the process of the present invention.
图9所示为本发明按工序将第二介质层去除,并淀积第三介质层后的横切面示意图。FIG. 9 is a schematic cross-sectional view of the present invention after removing the second dielectric layer and depositing the third dielectric layer according to the process.
图10所示为本发明按工序淀积第四介质层,并形成空气隙后的横切面示意图。FIG. 10 is a cross-sectional schematic diagram of depositing a fourth dielectric layer and forming an air gap according to the process of the present invention.
具体实施方式 Detailed ways
为详细说明本发明的技术内容、构造特征、所达成目的及功效,下面将结合实施例并配合图式予以详细说明。In order to describe the technical content, structural features, achieved goals and effects of the present invention in detail, the following will be described in detail in conjunction with the embodiments and accompanying drawings.
请依次参阅图2至图10,本发明一种空气隙互联结构的形成方法包括如下步骤:Please refer to FIG. 2 to FIG. 10 in sequence. The method for forming an air-gap interconnection structure of the present invention includes the following steps:
步骤1:在半导体集成电路的基底层301上淀积第一介质层302。所述第一介质层302可以由SiCN、SiC、SiN和SiOC之一或者它们的混合物构成。Step 1: Deposit a first
步骤2:在所述第一介质层302上淀积第二介质层303作为牺牲层。所述第二介质层303可以由超低K介质材料或者低K介质材料或者介质材料构成,所述介质材料可以是有机材料,例如SiLK材料。Step 2: depositing a
步骤3:在所述第二介质层303上淀积防反射膜304。Step 3: depositing an
步骤4:在所述防反射膜304上淀积光刻阻挡掩膜305。Step 4: depositing a
步骤5:对所述光刻阻挡掩膜305进行图形曝光,形成有图形的光刻阻挡掩膜,再采用干法蚀刻工艺将所述防反射膜304选择性去除,使图形形成于防反射膜304上(如图3所示)。Step 5: Perform pattern exposure on the
步骤6:将具有图形的光刻阻挡掩膜305作为蚀刻掩膜,采用干法蚀刻工艺选择性去除所述第二介质层303,在第二介质层303上形成沟槽100,相邻两沟槽100由所述第二介质层303隔离开,然后将所述光刻阻挡掩膜305和所述防反射膜304全部去除(如图4所示)。Step 6: Using the patterned
步骤7:在所述第二介质层303的表面及沟槽100内壁上溅射淀积阻挡层306,所述阻挡层306可以由钽、氮化钽、钛、氮化钛之一或者它们的混合物构成,然后在所述阻挡层306上及沟槽100内淀积主导电层307(如图5所示),所述主导电层307可以由铜构成,当选择金属铜作为主导电层307时,需要先在所述阻挡层306上采用化学气相淀积法淀积一层薄种子层,再采用电化学镀铜工艺将铜层淀积在所述薄种子层上及沟槽100内。Step 7: Sputter-deposit a
步骤8:采用低下压力的化学机械抛光平坦化工艺对所述主导电层307进行抛光,使主导电层307部分平坦化,并保留一定厚度的主导电层307(如图6所示),在本实施例中,优选的主导电层307为铜层,相应的,保留的铜层的厚度为100nm-200nm为最佳。Step 8: Polish the main
步骤9:采用无应力抛光工艺去除除沟槽100内的铜层以外的所有铜层(如图7所示),所述无应力抛光工艺是基于电化学抛光原理,将需被抛光的半导体集成电路表面的铜结构作为阳极,抛光液喷头作为阴极,在阳极与阴极之间施加一电压,抛光液喷头将抛光液喷射至铜表面,铜溶解于抛光液中并被去除。无应力抛光工艺可以选择性去除多余的铜结构,并且对介质层和阻挡层不会产生侵蚀和形变,彻底避免了机械应力对铜、低k介质层和超低k介质层的损坏,从根本上解决了低K介质材料或者超低K介质材料与铜整合的工艺难题,同时,在无应力抛光系统中,由于抛光液可以被循环利用,既降低了成本又减少了环境污染。Step 9: Remove all copper layers except the copper layer in the trench 100 (as shown in FIG. 7 ) by using a stress-free polishing process. The stress-free polishing process is based on the principle of electrochemical polishing, and the semiconductor to be polished is integrated The copper structure on the surface of the circuit is used as the anode, and the polishing liquid nozzle is used as the cathode. A voltage is applied between the anode and the cathode, and the polishing liquid nozzle sprays the polishing liquid onto the copper surface, and the copper is dissolved in the polishing liquid and removed. The stress-free polishing process can selectively remove the redundant copper structure, and will not cause erosion and deformation to the dielectric layer and barrier layer, completely avoiding the damage of copper, low-k dielectric layer and ultra-low-k dielectric layer by mechanical stress, fundamentally Above all, it solves the process problem of integrating low-K dielectric materials or ultra-low-K dielectric materials with copper. At the same time, in the stress-free polishing system, since the polishing liquid can be recycled, it not only reduces the cost but also reduces environmental pollution.
步骤10:采用无应力去除阻挡层工艺去除裸露于沟槽100外的所有阻挡层306,而仅保留沟槽100内的阻挡层306(如图8所示),在本实施例中,所述阻挡层306由钽、氮化钽、钛、氮化钛之一或者它们的混合物构成,因此,本实施例采用了XeF2气相蚀刻工艺去除裸露于沟槽100外的所有阻挡层306,XeF2能够与由钽、氮化钽、钛、氮化钛之一或者它们的混合物构成的阻挡层306在一定温度和压力条件下自发的并选择性的发生蚀刻化学反应。在本实施例中,蚀刻工艺的温度可在0℃至300℃,25℃至200℃为最佳反应温度,XeF2气体压力可在0.1Torr至100Torr,0.5Torr至20Torr为最佳反应压强。XeF2对于铜和由介质材料构成的第二介质层303具有良好的选择性,尤其对于以Si-C-O-H作为基础材料且介电常数为1.2至4.2,其中又以介电常数为1.3至2.4为最佳构成的第二介质层303具有更好的选择性。在整个气相蚀刻过程中,无机械应力施加在阻挡层306和第二介质层303上,所以对于铜膜和第二介质层303无任何伤害。并且,XeF2与阻挡层306反应后得到气相反应物,例如Xe和在一定反应温度和压强下产生的挥发物氟化钽,因此,没有任何残留物质附着在半导体集成电路的表面。Step 10: Remove all the
步骤11:采用等离子蚀刻工艺去除第二介质层303,在所述相邻两沟槽100之间形成一凹槽1007,所述第一介质层302作为蚀刻停止层,所述凹槽1007的特征尺寸可以介于10nm至250nm之间。等离子蚀刻工艺中选用的等离子还原气体可以为NH3或者H2或者N2。在蚀刻过程中,阻挡层306和主导电层307不会受到任何损伤。接着,在整个半导体集成电路的表面淀积第三介质层308,所述第三介质层308作为密封介质层覆盖在整个半导体集成电路的表面,所述第三介质层308可以由SiCN、SiC、SiN、SiOC之一或者它们的混合物构成(如图9所示)。Step 11: Remove the
步骤12:在所述第三介质层308上采用非共形化学气相淀积法淀积第四介质层309,在所述凹槽1007内形成空气隙200。所述空气隙200的大小和形状可以根据半导体集成电路的特征尺寸的大小而得到优化,以降低半导体集成电路的介质层的介电常数。所述第四介质层309可以由SiOF、SiOC之一或者它们的混合物构成。Step 12: Depositing a fourth
由上述可知,本发明采用无应力抛光技术去除多余铜层和无应力去除多余阻挡层306,在实施该两工艺步骤过程中,均无机械应力产生,因此不会对半导体集成电路尤其是半导体集成电路中剩余的铜膜、阻挡层和介质层造成任何损伤,因此,所述空气隙200可以形成于具有超微细特征尺寸结构的半导体集成电路中,例如特征尺寸小于65nm及以下的半导体集成电路中。通过形成相对较大的所述空气隙200,进一步降低半导体集成电路中介质层的介电常数,进而降低半导体集成电路中的电容值,以提高半导体集成电路的性能。相对于现有工艺而言,本发明工艺简单,不需要开发新材料,而且通过淀积第四介质层309,使得半导体集成电路的整体结构具有很好的机械强度,可以承受后续封装的压力。As can be seen from the above, the present invention adopts stress-free polishing technology to remove excess copper layer and stress-free removal of
综上所述,本发明一种空气隙互联结构的形成方法通过上述实施方式及相关图式说明,己具体、详实的揭露了相关技术,使本领域的技术人员可以据以实施。而以上所述实施例只是用来说明本发明,而不是用来限制本发明的,本发明的权利范围,应由本发明的权利要求来界定。至于本文中所述元件数目的改变或等效元件的代替等仍都应属于本发明的权利范围。To sum up, the method for forming an air-gap interconnection structure of the present invention has disclosed the relevant technology in detail and in detail through the above-mentioned embodiments and related drawings, so that those skilled in the art can implement it accordingly. The above-mentioned embodiments are only used to illustrate the present invention, rather than to limit the present invention, and the scope of rights of the present invention should be defined by the claims of the present invention. Changes in the number of elements described herein or substitution of equivalent elements should still fall within the scope of the present invention.
Claims (16)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201110365145.8A CN103117245A (en) | 2011-11-17 | 2011-11-17 | Formation method of air-gap interconnection structure |
| TW101102572A TWI608541B (en) | 2011-11-17 | 2012-01-20 | Method for forming air gap interconnection structure |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201110365145.8A CN103117245A (en) | 2011-11-17 | 2011-11-17 | Formation method of air-gap interconnection structure |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN103117245A true CN103117245A (en) | 2013-05-22 |
Family
ID=48415584
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201110365145.8A Pending CN103117245A (en) | 2011-11-17 | 2011-11-17 | Formation method of air-gap interconnection structure |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN103117245A (en) |
| TW (1) | TWI608541B (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103633021A (en) * | 2013-12-02 | 2014-03-12 | 上海华力微电子有限公司 | Method for manufacturing air gap copper interconnecting structure |
| CN104637862A (en) * | 2013-11-14 | 2015-05-20 | 盛美半导体设备(上海)有限公司 | Method for forming semiconductor structures |
| CN104916578A (en) * | 2014-03-12 | 2015-09-16 | 台湾积体电路制造股份有限公司 | Air-gap scheme for BEOL process |
| CN105321871A (en) * | 2014-07-29 | 2016-02-10 | 盛美半导体设备(上海)有限公司 | Integration technology of copper and low K dielectric material |
| CN105990131A (en) * | 2015-02-15 | 2016-10-05 | 盛美半导体设备(上海)有限公司 | Integrated processing method for semiconductor structure |
| CN106340504A (en) * | 2015-07-07 | 2017-01-18 | 旺宏电子股份有限公司 | Semiconductor device with a plurality of semiconductor chips |
| CN106463455A (en) * | 2014-07-08 | 2017-02-22 | 盛美半导体设备(上海)有限公司 | Method for forming metal interconnection |
| CN108321118A (en) * | 2018-04-04 | 2018-07-24 | 睿力集成电路有限公司 | The preparation method and semiconductor devices in conductive inter-level dielectric cavity |
| WO2022048212A1 (en) * | 2020-09-02 | 2022-03-10 | 长鑫存储技术有限公司 | Semiconductor device and manufacturing method therefor |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI571999B (en) * | 2015-07-03 | 2017-02-21 | 旺宏電子股份有限公司 | Semiconductor device |
| JP6434877B2 (en) | 2015-08-26 | 2018-12-05 | 東芝メモリ株式会社 | Semiconductor device |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7544606B2 (en) * | 2005-06-01 | 2009-06-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method to implement stress free polishing |
| US7560380B2 (en) * | 2006-10-27 | 2009-07-14 | Intel Corporation | Chemical dissolution of barrier and adhesion layers |
| JP5329786B2 (en) * | 2007-08-31 | 2013-10-30 | 株式会社東芝 | Polishing liquid and method for manufacturing semiconductor device |
| JP5412517B2 (en) * | 2008-08-20 | 2014-02-12 | エーシーエム リサーチ (シャンハイ) インコーポレーテッド | Barrier layer removal method and apparatus |
| CN101882595B (en) * | 2009-05-08 | 2014-07-09 | 盛美半导体设备(上海)有限公司 | Method and device for removing barrier layer |
| US7956463B2 (en) * | 2009-09-16 | 2011-06-07 | International Business Machines Corporation | Large grain size conductive structure for narrow interconnect openings |
| DE102010001400B4 (en) * | 2010-01-29 | 2019-12-05 | GLOBALFOUNDRIES Dresden Module One Ltd. Liability Company & Co. KG | SOI semiconductor device with reduced topography over a substrate window area |
-
2011
- 2011-11-17 CN CN201110365145.8A patent/CN103117245A/en active Pending
-
2012
- 2012-01-20 TW TW101102572A patent/TWI608541B/en active
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104637862A (en) * | 2013-11-14 | 2015-05-20 | 盛美半导体设备(上海)有限公司 | Method for forming semiconductor structures |
| CN103633021B (en) * | 2013-12-02 | 2015-12-30 | 上海华力微电子有限公司 | A kind of method preparing air gap copper interconnection structure |
| CN103633021A (en) * | 2013-12-02 | 2014-03-12 | 上海华力微电子有限公司 | Method for manufacturing air gap copper interconnecting structure |
| US10062603B2 (en) | 2014-03-12 | 2018-08-28 | Taiwan Semiconductor Manufacturing Co., Ltd. | Air-gap scheme for BEOL process |
| CN104916578A (en) * | 2014-03-12 | 2015-09-16 | 台湾积体电路制造股份有限公司 | Air-gap scheme for BEOL process |
| CN104916578B (en) * | 2014-03-12 | 2018-08-28 | 台湾积体电路制造股份有限公司 | Air gap scheme for BEOL techniques |
| CN106463455B (en) * | 2014-07-08 | 2019-02-15 | 盛美半导体设备(上海)有限公司 | A method of forming a metal interconnect structure |
| CN106463455A (en) * | 2014-07-08 | 2017-02-22 | 盛美半导体设备(上海)有限公司 | Method for forming metal interconnection |
| KR20170030522A (en) * | 2014-07-08 | 2017-03-17 | 에이씨엠 리서치 (상하이) 인코포레이티드 | Method for forming metal interconnection |
| KR102247940B1 (en) | 2014-07-08 | 2021-05-07 | 에이씨엠 리서치 (상하이) 인코포레이티드 | Method for forming metal interconnection |
| CN105321871A (en) * | 2014-07-29 | 2016-02-10 | 盛美半导体设备(上海)有限公司 | Integration technology of copper and low K dielectric material |
| CN105990131A (en) * | 2015-02-15 | 2016-10-05 | 盛美半导体设备(上海)有限公司 | Integrated processing method for semiconductor structure |
| CN106340504A (en) * | 2015-07-07 | 2017-01-18 | 旺宏电子股份有限公司 | Semiconductor device with a plurality of semiconductor chips |
| CN106340504B (en) * | 2015-07-07 | 2019-03-15 | 旺宏电子股份有限公司 | Semiconductor device with a plurality of semiconductor chips |
| CN108321118A (en) * | 2018-04-04 | 2018-07-24 | 睿力集成电路有限公司 | The preparation method and semiconductor devices in conductive inter-level dielectric cavity |
| CN108321118B (en) * | 2018-04-04 | 2023-10-13 | 长鑫存储技术有限公司 | Method for preparing dielectric cavity between conductive layers and semiconductor device |
| WO2022048212A1 (en) * | 2020-09-02 | 2022-03-10 | 长鑫存储技术有限公司 | Semiconductor device and manufacturing method therefor |
Also Published As
| Publication number | Publication date |
|---|---|
| TWI608541B (en) | 2017-12-11 |
| TW201322334A (en) | 2013-06-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI608541B (en) | Method for forming air gap interconnection structure | |
| US10978389B2 (en) | Semiconductor device and manufacturing method thereof | |
| TWI485806B (en) | Air gap formation and integration using patterned cap layers | |
| CN101188223B (en) | Interconnection structure and its forming method | |
| US9768031B2 (en) | Semiconductor device manufacturing methods | |
| US20060019485A1 (en) | Multi-layer wiring structure, semiconductor apparatus having multi-layer wiring structure, and methods of manufacturing them | |
| JP5263482B2 (en) | Multilayer wiring structure and method for manufacturing multilayer wiring | |
| US7670947B2 (en) | Metal interconnect structure and process for forming same | |
| KR101842903B1 (en) | Method for forming air gap interconnect structure | |
| US8293638B2 (en) | Method of fabricating damascene structures | |
| TW567530B (en) | Manufacturing method semiconductor integrated circuit including simultaneous formation of via hole reaching metal wiring and concave groove in interlayer film and semiconductor integrated circuit manufactured with the manufacturing method | |
| US9911648B2 (en) | Interconnects based on subtractive etching of silver | |
| CN104022070B (en) | The forming method of interconnection structure | |
| CN106463455A (en) | Method for forming metal interconnection | |
| CN100561681C (en) | Method for Improving Defects of Insulating Dielectric Layer and Forming Dual Damascene Structure | |
| US20130161798A1 (en) | Graded density layer for formation of interconnect structures | |
| CN1684244B (en) | Method for manufacturing semiconductor device with air gap damascene structure | |
| US20090191706A1 (en) | Method for fabricating a semiconductor device | |
| JP2009004633A (en) | Multilayer wiring structure and manufacturing method | |
| JP2010165760A (en) | Semiconductor device and method for manufacturing the semiconductor device | |
| TWI697983B (en) | Method for forming metal interconnection structure | |
| US7326632B2 (en) | Method for fabricating metal wirings of semiconductor device | |
| CN107078065A (en) | Method for removing barrier layer and method for forming semiconductor structure | |
| CN106971973B (en) | Semiconductor device, manufacturing method thereof and electronic device | |
| TWI621234B (en) | Method of forming interconnect structure |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130522 |