[go: up one dir, main page]

CN103164555B - A kind of optimization method of artificial electromagnetic material design data - Google Patents

A kind of optimization method of artificial electromagnetic material design data Download PDF

Info

Publication number
CN103164555B
CN103164555B CN201110418386.4A CN201110418386A CN103164555B CN 103164555 B CN103164555 B CN 103164555B CN 201110418386 A CN201110418386 A CN 201110418386A CN 103164555 B CN103164555 B CN 103164555B
Authority
CN
China
Prior art keywords
individuals
objective function
adjacent
sorting
penalty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110418386.4A
Other languages
Chinese (zh)
Other versions
CN103164555A (en
Inventor
刘若鹏
季春霖
刘斌
牛攀峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuang-Chi Institute of Advanced Technology
Original Assignee
Kuang-Chi Institute of Advanced Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuang-Chi Institute of Advanced Technology filed Critical Kuang-Chi Institute of Advanced Technology
Priority to CN201110418386.4A priority Critical patent/CN103164555B/en
Publication of CN103164555A publication Critical patent/CN103164555A/en
Application granted granted Critical
Publication of CN103164555B publication Critical patent/CN103164555B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Complex Calculations (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种人工电磁材料设计数据的优化方法,该方法包括:提取人工电磁材料设计的仿真数据,形成种群;对种群中的个体进行曲线拟合,形成目标函数;将目标函数构造成增广目标函数;预设比较参数;产生随机参数;比较两个相邻个体的惩罚函数值的大小或者随机参数和比较参数的大小对两个相邻个体进行排序;重复产生随机参数和对两个相邻个体进行排序的步骤,直至种群中的所有个体完成排序为止;根据最终排序结果得出最优数据。本发明的人工电磁材料设计数据的优化方法可以简化人工电磁材料设计数据优化的处理过程,能够较快、较准确地得到人工电磁材料设计数据中满足条件的最优数据,对促进人工电磁材料的产业化进程有着十分积极的作用。

The invention discloses a method for optimizing design data of artificial electromagnetic materials. The method comprises: extracting simulation data of artificial electromagnetic material design to form a population; performing curve fitting on individuals in the population to form an objective function; constructing the objective function as Augmented objective function; preset comparison parameters; generate random parameters; compare the size of the penalty function value of two adjacent individuals or the size of the random parameter and the comparison parameter to sort two adjacent individuals; repeatedly generate random parameters and compare the two adjacent individuals The step of sorting adjacent individuals until all individuals in the population are sorted; the optimal data is obtained according to the final sorting results. The optimization method of artificial electromagnetic material design data of the present invention can simplify the processing process of artificial electromagnetic material design data optimization, can obtain the optimal data satisfying the conditions in the artificial electromagnetic material design data quickly and accurately, and promote the artificial electromagnetic material design. The process of industrialization has a very positive effect.

Description

一种人工电磁材料设计数据的优化方法An Optimization Method for Design Data of Artificial Electromagnetic Materials

技术领域 technical field

本发明涉及人工电磁材料设计领域,特别是涉及一种人工电磁材料设计数据的优化方法。The invention relates to the field of artificial electromagnetic material design, in particular to an optimization method for artificial electromagnetic material design data.

背景技术 Background technique

人工电磁材料技术是一个前沿性交叉科技,人工电磁材料是指一些具有天然材料所不具备的超常物理性质的人工复合结构或复合材料。通过在材料的关键物理尺度上的结构有序设计,可以突破某些表观自然规律的限制,从而获得超出自然界固有的普通性质的超常材料功能。Artificial electromagnetic material technology is a cutting-edge cross-technology. Artificial electromagnetic material refers to some artificial composite structures or composite materials with extraordinary physical properties that natural materials do not have. Through the orderly design of the structure on the key physical scale of the material, the limitation of some apparent natural laws can be broken through, so as to obtain the supernormal material function beyond the ordinary nature inherent in nature.

在人工电磁材料设计阶段,所建立的单元结构模型需要进行大量的数据仿真工作来得到所设计模型的一些物理性质。仿真完成之后,将会得到人工电磁材料的一系列数据,对这些数据要进行大量的数据处理工作,来获取人工电磁材料的特性。如果由人工来完成,这将是一个十分庞大的工程。人工电磁材料仿真结果的相关数据的优化设计目前停留在手动调节的阶段,其中对人工电磁材料结构对应的响应曲线的拟合是实现人工电磁材料优化的必要途径。当前的算法是用统计学模型对响应曲线进行拟合,对于相关数据,其模型的数据优化过程往往比较繁琐,耗时巨大,因而找出对人工电磁材料设计相关数据处理的优化方法是急需解决的问题。In the design stage of artificial electromagnetic materials, the established unit structure model requires a lot of data simulation work to obtain some physical properties of the designed model. After the simulation is completed, a series of data of artificial electromagnetic materials will be obtained, and a large amount of data processing work will be performed on these data to obtain the characteristics of artificial electromagnetic materials. If it is done manually, it will be a very huge project. The optimization design of the relevant data of the simulation results of artificial electromagnetic materials is currently at the stage of manual adjustment, and the fitting of the response curve corresponding to the structure of artificial electromagnetic materials is a necessary way to realize the optimization of artificial electromagnetic materials. The current algorithm is to use a statistical model to fit the response curve. For relevant data, the data optimization process of the model is often cumbersome and time-consuming. Therefore, it is urgent to find an optimization method for data processing related to the design of artificial electromagnetic materials. The problem.

因此,需要提供一种人工电磁材料设计数据的优化方法,以解决现有技术对人工电磁材料设计相关数据处理的优化过程任务繁重、繁琐且耗时巨大的问题,另一方面也对促进人工电磁材料的产业化进程有着十分积极的作用。Therefore, it is necessary to provide an optimization method for artificial electromagnetic material design data to solve the problem of heavy, cumbersome and time-consuming optimization process of the prior art on artificial electromagnetic material design-related data processing. The industrialization process of materials has a very positive effect.

发明内容Contents of the invention

本发明主要解决的技术问题是提供一种人工电磁材料设计数据的优化方法,能够较快、较准确地得出人工电磁材料设计数据中满足条件的最优数据。The technical problem mainly solved by the present invention is to provide an optimization method of artificial electromagnetic material design data, which can quickly and accurately obtain the optimal data satisfying conditions in the artificial electromagnetic material design data.

为解决上述技术问题,本发明提供了一种人工电磁材料设计数据的优化方法,该优化方法包括:提取人工电磁材料设计的仿真数据,形成种群;对种群中的个体进行曲线拟合,形成目标函数,并给定约束条件;对目标函数增加惩罚因子和惩罚函数来构造增广目标函数;预设比较参数;产生随机参数;根据两个相邻个体的惩罚函数值的比较结果或者随机参数和比较参数的大小的比较结果对两个相邻个体进行排序;重复上述产生随机参数和上述对两个相邻个体进行排序的步骤,直至种群中的所有个体完成排序为止;根据上述重复步骤的排序结果得出满足目标函数的约束条件的最优数据。In order to solve the above technical problems, the present invention provides a method for optimizing the design data of artificial electromagnetic materials. The optimization method includes: extracting the simulation data of artificial electromagnetic material design to form a population; performing curve fitting on individuals in the population to form a target Function, and given constraints; add penalty factor and penalty function to the objective function to construct an augmented objective function; preset comparison parameters; generate random parameters; according to the comparison results of the penalty function values of two adjacent individuals or random parameters and According to the comparison result of comparing the size of the parameters, sort the two adjacent individuals; repeat the above steps of generating random parameters and sorting the two adjacent individuals until all the individuals in the population are sorted; according to the sorting of the above repeated steps The result is optimal data that satisfies the constraints of the objective function.

根据本发明的一优选实施例,对种群中的个体进行曲线拟合所形成的目标函数的公式如下表示:According to a preferred embodiment of the present invention, the formula of the objective function formed by performing curve fitting on individuals in the population is expressed as follows:

minf(x),其中,xi≤x≤xn minf(x), where x i ≤ x ≤ x n

Ff == {{ xx == (( xx ii ,, .. .. .. ,, xx nno )) ∈∈ RR nno || gg jj (( xx )) ≤≤ 00 ∀∀ jj ∈∈ (( 11 ,, .. .. .. ,, mm )) }}

其中,f(x)为目标函数,x=(x1,....,xn)∈Rn为种群,x1,....,xn为种群中的个体,n和m为正整数,给定xmin≤x≤xmax为目标函数的约束条件,xmin为x中的最小值,xmax为x中的最大值,gj(x)为x的约束函数,F为目标函数的可行域。Among them, f(x) is the objective function, x=(x 1 ,...,x n )∈R n is the population, x 1 ,...,x n are the individuals in the population, n and m are A positive integer, given that x min ≤ x ≤ x max is the constraint condition of the objective function, x min is the minimum value of x, x max is the maximum value of x, g j (x) is the constraint function of x, and F is Feasible region of the objective function.

根据本发明的一优选实施例,对目标函数增加惩罚因子和惩罚函数所构造的增广目标函数公式如下表示:According to a preferred embodiment of the present invention, the augmented objective function formula constructed by increasing the penalty factor and the penalty function to the objective function is expressed as follows:

Ψ(x)=f(x)+rgφ(gj(x);j=1,...,m)Ψ(x)=f(x)+r g φ(g j (x); j=1,...,m)

φφ (( gg jj (( xx )) ;; jj == 11 ,, .. .. .. ,, mm )) == ΣΣ jj == 11 mm maxmax {{ 00 ,, gg jj (( xx )) }} 22

其中,rg为惩罚因子,φ为惩罚函数。Among them, r g is the penalty factor, and φ is the penalty function.

根据本发明的一优选实施例,比较参数和随机参数介于0到1之间。According to a preferred embodiment of the present invention, the comparison parameter and the random parameter are between 0 and 1.

根据本发明的一优选实施例,比较参数的值预先设定为0.45。According to a preferred embodiment of the present invention, the value of the comparison parameter is preset as 0.45.

根据本发明的一优选实施例,根据两个相邻个体的惩罚函数值的比较结果或者随机参数和比较参数的大小的比较结果对两个相邻个体进行排序的步骤包括:According to a preferred embodiment of the present invention, the step of sorting two adjacent individuals according to the comparison result of the penalty function value of the two adjacent individuals or the comparison result between the random parameter and the size of the comparison parameter includes:

当两个相邻个体的惩罚函数值相等且等于零时,得出两个相邻个体都为增广目标函数的可行解,比较两个相邻个体的目标函数值,根据目标函数值的大小将两个相邻个体交换顺序。When the penalty function values of two adjacent individuals are equal and equal to zero, it is concluded that both adjacent individuals are feasible solutions of the augmented objective function, and comparing the objective function values of the two adjacent individuals, according to the size of the objective function value, the Two adjacent individuals exchange order.

根据本发明的一优选实施例,根据两个相邻个体的惩罚函数值的比较结果或者随机参数和比较参数的大小的比较结果对两个相邻个体进行排序的步骤包括:According to a preferred embodiment of the present invention, the step of sorting two adjacent individuals according to the comparison result of the penalty function value of the two adjacent individuals or the comparison result between the random parameter and the size of the comparison parameter includes:

当两个相邻个体的惩罚函数值不满足相等且等于零时,比较随机参数和比较参数的大小,若随机参数小于比较参数,则比较两个相邻个体的惩罚函数值,根据惩罚函数值的大小将两个相邻个体交换顺序;若随机参数大于比较参数,则执行重复上述产生随机参数和上述对两个相邻个体进行排序的步骤。When the penalty function values of two adjacent individuals are not equal and equal to zero, compare the size of the random parameter and the comparison parameter. If the random parameter is smaller than the comparison parameter, then compare the penalty function values of the two adjacent individuals. According to the penalty function value Size Exchange the order of two adjacent individuals; if the random parameter is greater than the comparison parameter, repeat the above steps of generating random parameters and sorting two adjacent individuals.

根据本发明的一优选实施例,根据两个相邻个体的惩罚函数值的比较结果或者随机参数和比较参数的大小的比较结果对两个相邻个体进行排序的步骤进一步包括:According to a preferred embodiment of the present invention, the step of sorting the two adjacent individuals according to the comparison result of the penalty function value of the two adjacent individuals or the comparison result of the size of the random parameter and the comparison parameter further includes:

根据目标函数值或惩罚函数值的大小将两个相邻个体进行升序排序,即将两个相邻个体中的目标函数值或惩罚函数值小的个体排在两个相邻个体中的目标函数值或惩罚函数值大的另一个体之前,并在排序完成后执行重复上述产生随机参数和上述对两个相邻个体进行排序的步骤。According to the size of the objective function value or penalty function value, the two adjacent individuals are sorted in ascending order, that is, the individual with the smaller objective function value or penalty function value in the two adjacent individuals is ranked in the objective function value of the two adjacent individuals Or before another individual with a large penalty function value, and after the sorting is completed, repeat the above steps of generating random parameters and sorting two adjacent individuals.

根据本发明的一优选实施例,根据两个相邻个体的惩罚函数值的比较结果或者随机参数和比较参数的大小的比较结果对两个相邻个体进行排序的步骤进一步包括:According to a preferred embodiment of the present invention, the step of sorting the two adjacent individuals according to the comparison result of the penalty function value of the two adjacent individuals or the comparison result of the size of the random parameter and the comparison parameter further includes:

根据目标函数值或惩罚函数值的大小将两个相邻个体进行降序排序,即将两个相邻个体中的目标函数值或惩罚函数值大的个体排在两个相邻个体中的目标函数值或惩罚函数值小的另一个体之前,并在排序完成后执行重复上述产生随机参数和上述对两个相邻个体进行排序的步骤。According to the size of the objective function value or penalty function value, the two adjacent individuals are sorted in descending order, that is, the individual with the larger objective function value or penalty function value in the two adjacent individuals is ranked in the objective function value of the two adjacent individuals or before another individual with a small penalty function value, and repeat the above steps of generating random parameters and sorting two adjacent individuals after the sorting is completed.

根据本发明的一优选实施例,根据上述重复步骤的排序结果得出满足目标函数的约束条件的最优数据的步骤包括:According to a preferred embodiment of the present invention, the step of obtaining the optimal data satisfying the constraints of the objective function according to the sorting results of the above-mentioned repeated steps includes:

根据升序排序结果或者降序排序结果得出满足目标函数的约束条件的最优数据。According to the results of ascending order or descending order, the optimal data satisfying the constraints of the objective function are obtained.

本发明的有益效果是:区别于现有技术的情况,本发明的人工电磁材料设计数据的优化方法在应用惩罚函数法处理人工电磁材料设计数据约束优化问题基础上,提出一种随机排序法处理数据结果,可以简化人工电磁材料设计数据优化的处理过程,能够较快、较准确地得到人工电磁材料设计数据中满足条件的最优数据,对促进人工电磁材料的产业化进程有着十分积极的作用。The beneficial effects of the present invention are: different from the situation of the prior art, the artificial electromagnetic material design data optimization method of the present invention is based on the application of the penalty function method to deal with the artificial electromagnetic material design data constraint optimization problem, and proposes a random sorting method for processing The data results can simplify the processing process of artificial electromagnetic material design data optimization, and can quickly and accurately obtain the optimal data that meets the conditions in the artificial electromagnetic material design data, which has a very positive effect on promoting the industrialization process of artificial electromagnetic materials .

附图说明 Description of drawings

图1是本发明实施例的人工电磁材料结构单元的立体结构示意图;Fig. 1 is the three-dimensional structure schematic diagram of the artificial electromagnetic material structural unit of the embodiment of the present invention;

图2是本发明实施例的人工电磁材料设计数据的优化方法流程图。Fig. 2 is a flowchart of a method for optimizing design data of artificial electromagnetic materials according to an embodiment of the present invention.

具体实施方式 detailed description

下面结合附图和实施例对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.

图1本发明实施例的人工电磁材料结构单元的立体结构示意图。Fig. 1 is a schematic diagram of the three-dimensional structure of the artificial electromagnetic material structural unit of the embodiment of the present invention.

人工电磁材料的结构单元的信息包括长度ax、跨度ay、厚度hs、衰减度、频率、介电常数、磁导率等,在人工电磁材料设计阶段,针对每一种信息都需要进行大量的数据仿真工作,仿真完成之后,每一种信息就会得出一组数据,这些数据是异常庞大和复杂的。The information of the structural unit of artificial electromagnetic materials includes length ax, span ay, thickness hs, attenuation, frequency, dielectric constant, magnetic permeability, etc. In the design stage of artificial electromagnetic materials, a large amount of data is required for each type of information Simulation work, after the simulation is completed, a set of data will be obtained for each type of information, and these data are extremely large and complex.

图2是本发明实施例的人工电磁材料设计数据的优化方法流程图,如图2所示,一种人工电磁材料设计数据的优化方法200包括如下步骤:Fig. 2 is a flowchart of an optimization method for artificial electromagnetic material design data according to an embodiment of the present invention. As shown in Fig. 2, a method 200 for optimizing artificial electromagnetic material design data includes the following steps:

步骤201:提取人工电磁材料设计的仿真数据,形成种群。Step 201: Extracting simulation data of artificial electromagnetic material design to form a population.

步骤201中的仿真数据是对图1中的人工电磁材料的结构单元数据进行仿真工作得出,这些仿真数据就是形成的种群的个体,记为x1,x2...,xn,其中,n为正整数。The simulation data in step 201 is obtained by simulating the structural unit data of the artificial electromagnetic material in Fig. 1, and these simulation data are the individuals of the formed population, denoted as x 1 , x 2 ..., x n , where , n is a positive integer.

步骤202:对种群中的个体进行曲线拟合,形成目标函数,并给定约束条件。Step 202: Carry out curve fitting on the individuals in the population to form an objective function and give constraints.

步骤202中的目标函数由对种群中的个体进行曲线拟合形成,记为:The objective function in step 202 is formed by performing curve fitting on the individuals in the population, which is recorded as:

minf(x),其中,xi≤x≤xn minf(x), where x i ≤ x ≤ x n

Ff == {{ xx == (( xx ii ,, .. .. .. ,, xx nno )) ∈∈ RR nno || gg jj (( xx )) ≤≤ 00 ∀∀ jj ∈∈ (( 11 ,, .. .. .. ,, mm )) }}

其中,f(x)为目标函数,x=(x1,....,xn)∈Rn为种群,x1,....,xn为种群中的个体,n和m为正整数,给定xmin≤x≤xmax为目标函数的约束条件,xmin为x中的最小值,xmax为x中的最大值,gj(x)为x的约束函数,F为目标函数的可行域。Among them, f(x) is the objective function, x=(x 1 ,...,x n )∈R n is the population, x 1 ,...,x n are the individuals in the population, n and m are A positive integer, given that x min ≤ x ≤ x max is the constraint condition of the objective function, x min is the minimum value of x, x max is the maximum value of x, g j (x) is the constraint function of x, and F is Feasible region of the objective function.

通过步骤202将求取目标函数最小值或最大值的问题变成了处理约束优化问题。Through step 202, the problem of finding the minimum or maximum value of the objective function is transformed into a problem of processing constraint optimization.

步骤203:对目标函数增加惩罚因子和惩罚函数来构造增广目标函数。Step 203: Adding a penalty factor and a penalty function to the objective function to construct an augmented objective function.

步骤203是通过惩罚函数法将约束优化问题转换为无约束优化问题的过程,增广目标函数由对目标函数增加惩罚因子和惩罚函数构造而成,记为:Step 203 is the process of converting the constrained optimization problem into an unconstrained optimization problem through the penalty function method. The augmented objective function is constructed by adding a penalty factor and a penalty function to the objective function, which is recorded as:

Ψ(x)=f(x)+rgφ(gj(x);j=1,...,m)Ψ(x)=f(x)+r g φ(g j (x); j=1,...,m)

φφ (( gg jj (( xx )) ;; jj == 11 ,, .. .. .. ,, mm )) == ΣΣ jj == 11 mm maxmax {{ 00 ,, gg jj (( xx )) }} 22

其中,rg为惩罚因子,φ为惩罚函数,惩罚函数是以约束函数为变量,求取0和约束函数平方值的最大值,然后逐项求和的函数。Among them, r g is the penalty factor, φ is the penalty function, and the penalty function is a function that takes the constraint function as a variable, calculates the maximum value of 0 and the square value of the constraint function, and then sums them item by item.

惩罚函数法在处理约束优化问题时因为执行简单而得到广泛应用,它的主要思想是通过对目标函数增加惩罚项来构造增广目标函数,将约束优化问题转化为无约束优化问题进行处理,目标函数的解称为可行解,它在约束条件范围内,惩罚函数的解称为不可行解,它在约束条件范围外。The penalty function method is widely used because of its simple execution when dealing with constrained optimization problems. Its main idea is to construct an augmented objective function by adding a penalty term to the objective function, and transform the constrained optimization problem into an unconstrained optimization problem for processing. The objective The solution of the function is called a feasible solution, which is within the range of constraints, and the solution of the penalty function is called an infeasible solution, which is outside the range of constraints.

步骤204:预设比较参数。Step 204: Preset comparison parameters.

步骤204中的比较参数为预先设定,记为Pf|Pf∈U(0,1),表示在不可行域中仅使用目标函数比较个体的概率,即比较参数Pf将决定是否采用目标函数或约束违反程度来比较个体。在本实施例中,Pf取值0.45。在其他实施例中,可根据需要选取0到1中的任意值。The comparison parameter in step 204 is preset, denoted as P f |P f ∈ U(0, 1), which means that in the infeasible domain, only the objective function is used to compare the probability of individuals, that is, the comparison parameter P f will decide whether to use Objective function or degree of constraint violation to compare individuals. In this embodiment, P f takes a value of 0.45. In other embodiments, any value from 0 to 1 can be selected as required.

步骤205:产生随机参数。Step 205: Generate random parameters.

在本实施例中,步骤205中的随机参数为随机产生,记为 每次进行步骤205时,都会重新产生一个随机参数。In this embodiment, the random parameter in step 205 is randomly generated, denoted as Every time step 205 is performed, a random parameter will be regenerated.

步骤206:根据两个相邻个体的惩罚函数值的比较结果或者随机参数和比较参数的大小的比较结果对两个相邻个体进行排序。Step 206: sort the two adjacent individuals according to the comparison result of the penalty function values of the two adjacent individuals or the comparison result between the random parameter and the comparison parameter.

步骤206包括:对于两个相邻个体xi和xi+1,当xi和xi+1的惩罚函数值φ(xi)=φ(xi+1)=0时,得出xi和xi+1都为增广目标函数的可行解,比较它们的目标函数的概率是1,即比较f(xi)和f(xi+1),根据f(xi)和f(xi+1)的大小将xi和xi+1交换顺序。Step 206 includes: for two adjacent individuals x i and x i+1 , when the penalty function values of x i and x i+1 φ( xi )=φ( xi+1 )=0, obtain x Both i and x i+1 are feasible solutions of the augmented objective function, and the probability of comparing their objective functions is 1, that is, comparing f( xi ) and f( xi+1 ), according to f( xi ) and f The size of ( xi+1 ) swaps the order of x i and x i+1 .

当xi和xi+1的惩罚函数值不满足φ(xi)=φ(xi+1)=0时,比较随机参数和比较参数的大小。,若u<Pf,则比较φ(xi)和φ(xi+1),根据φ(xi)和φ(xi+1)的大小将xi和xi+1交换顺序;若u>Pf,则进行步骤207。When the penalty function values of x i and x i+1 do not satisfy φ( xi )=φ( xi+1 )=0, compare the size of the random parameter and the comparison parameter. , if u<P f , then compare φ(x i ) and φ(x i+1 ), and exchange order of xi and xi+1 according to the size of φ(x i ) and φ(x i+1 ); If u>P f , go to step 207 .

步骤206进一步包括:对xi和xi+1根据f(xi)和f(xi+1)的大小进行升序排序,即当f(xi)>f(xi+1)或φ(xi)>φ(xi+1)时,交换xi和xi+1的顺序,并在排序完成后,执行步骤207;对xi和xi+1根据f(xi)和f(xi+1)的大小进行降序排序,即当f(xi)<f(xi+1)或φ(xi)<φ(xi+1)时,交换xi和xi+1的顺序,并在排序完成后,执行步骤207。Step 206 further includes: sorting xi and xi + 1 in ascending order according to the size of f( xi ) and f( xi+1 ), that is, when f( xi )>f( xi+1 ) or φ When (x i )>φ(x i+1 ), exchange the order of x i and x i+1 , and after the sorting is completed, execute step 207; for x i and x i+1 according to f(x i ) and The size of f(x i+1 ) is sorted in descending order, that is, when f(x i )<f(x i+1 ) or φ(x i )<φ(x i+1 ), exchange xi and xi +1 , and after the sorting is complete, go to step 207.

步骤207:重复上述产生随机参数和上述对两个相邻个体进行排序的步骤,直至种群中的所有个体完成排序为止。Step 207: Repeat the above steps of generating random parameters and sorting two adjacent individuals until all individuals in the population are sorted.

在本实施例中,当交换完xi和xi+1后,继续重新产生一个随机数u,根据前述排序方法,对下一对相邻个体xi+1和xi+2进行排序,直至所有个体完成排序为止,此处不再赘述。In this embodiment, after exchanging xi and xi+1 , continue to regenerate a random number u, and sort the next pair of adjacent individuals xi+1 and xi+2 according to the aforementioned sorting method, Until all individuals are sorted, no further details will be given here.

步骤208:根据上述重复步骤的排序结果得出满足目标函数的约束条件的最优数据。Step 208: Obtain the optimal data satisfying the constraints of the objective function according to the sorting results of the above repeated steps.

仿真数据中的最优数据并不一定分布在可行域中,因为对仿真数据进行曲线拟合时囊括了可行域和不可行域中所有的数据,对于不可行域中的不可行解,有些不可行解却比可行解更接近于仿真数据的最优数据,但并非对所有不可行解都要进行处理,这样就加大了工作量,可能还得不到最优数据,得不偿失。通过设定一个比较参数来表示在不可行域中比较个体的概率,这样就将是否处理不可行解转换为概率问题。为了找到最优数据,本方法在采用惩罚函数法处理约束优化问题基础上,通过设置随机参数来和比较参数作比较,根据比较结果来判断是否对种群中的个体进行排序。The optimal data in the simulation data is not necessarily distributed in the feasible region, because the curve fitting of the simulation data includes all the data in the feasible region and the infeasible region, and some infeasible solutions in the infeasible region are not feasible. The row solution is closer to the optimal data of the simulation data than the feasible solution, but not all infeasible solutions have to be processed, which increases the workload, and the optimal data may not be obtained, which is not worth the loss. By setting a comparison parameter to indicate the probability of comparing individuals in the infeasible domain, it turns whether to deal with infeasible solutions into a probability problem. In order to find the optimal data, on the basis of using the penalty function method to deal with the constrained optimization problem, this method compares with the comparison parameters by setting random parameters, and judges whether to sort the individuals in the population according to the comparison results.

在本实施例中,满足目标函数的约束条件的最优数据将从上述升序排序结果或者降序排序结果中得出。In this embodiment, the optimal data satisfying the constraints of the objective function will be obtained from the above sorting results in ascending order or in descending order.

本发明的人工电磁材料设计数据的优化方法在应用惩罚函数法处理人工电磁材料设计数据约束优化问题基础上,提出一种随机排序法处理数据结果,可以简化人工电磁材料设计数据优化的处理过程,能够较快、较准确地得到人工电磁材料设计数据中满足条件的最优数据,对促进人工电磁材料的产业化进程有着十分积极的作用。The optimization method of artificial electromagnetic material design data of the present invention is on the basis of applying the penalty function method to deal with the constraint optimization problem of artificial electromagnetic material design data, and proposes a random sorting method to process data results, which can simplify the processing process of artificial electromagnetic material design data optimization, Being able to quickly and accurately obtain the optimal data that meets the conditions in the design data of artificial electromagnetic materials has a very positive effect on promoting the industrialization of artificial electromagnetic materials.

以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above is only an embodiment of the present invention, and does not limit the patent scope of the present invention. Any equivalent structure or equivalent process transformation made by using the description of the present invention and the contents of the accompanying drawings, or directly or indirectly used in other related technologies fields, all of which are equally included in the scope of patent protection of the present invention.

Claims (8)

1.一种人工电磁材料设计数据的优化方法,其特征在于,该方法包括如下步骤:1. an optimization method of artificial electromagnetic material design data, is characterized in that, the method comprises the steps: 提取人工电磁材料设计的仿真数据,形成种群;Extract the simulation data of artificial electromagnetic material design to form a population; 对所述种群中的个体进行曲线拟合,形成目标函数,并给定约束条件;Carry out curve fitting on the individuals in the population to form an objective function and give constraints; 对所述目标函数增加惩罚因子和惩罚函数来构造增广目标函数;Adding a penalty factor and a penalty function to the objective function to construct an augmented objective function; 预设比较参数;比较参数为预先设定,表示在不可行域中仅使用目标函数比较个体的概率,即比较参数将决定是否采用目标函数或约束违反程度来比较个体;Preset comparison parameters; the comparison parameters are preset, indicating the probability of using only the objective function to compare individuals in the infeasible domain, that is, the comparison parameters will determine whether to use the objective function or the degree of constraint violation to compare individuals; 产生随机参数;generate random parameters; 根据两个相邻个体的惩罚函数值的比较结果或者所述随机参数和所述比较参数的大小的比较结果对所述两个相邻个体进行排序;sorting the two adjacent individuals according to a comparison result of the penalty function values of the two adjacent individuals or a comparison result of the size of the random parameter and the comparison parameter; 重复上述产生随机参数和上述对两个相邻个体进行排序的步骤,直至所述种群中的所有个体完成排序为止;Repeat the above steps of generating random parameters and sorting two adjacent individuals until all individuals in the population are sorted; 根据上述重复步骤的排序结果得出满足所述目标函数的约束条件的最优数据;Obtaining the optimal data satisfying the constraints of the objective function according to the sorting results of the above repeated steps; 所述根据两个相邻个体的惩罚函数值的比较结果或者所述随机参数和所述比较参数的大小的比较结果对所述两个相邻个体进行排序的步骤包括:The step of sorting the two adjacent individuals according to the comparison result of the penalty function value of the two adjacent individuals or the comparison result of the size of the random parameter and the comparison parameter comprises: 当所述两个相邻个体的惩罚函数值相等且等于零时,得出所述两个相邻个体都为所述增广目标函数的可行解,比较所述两个相邻个体的目标函数值,根据所述目标函数值的大小将所述两个相邻个体交换顺序;When the penalty function values of the two adjacent individuals are equal and equal to zero, the two adjacent individuals are both feasible solutions of the augmented objective function, and the objective function values of the two adjacent individuals are compared , exchanging the order of the two adjacent individuals according to the value of the objective function; 当所述两个相邻个体的惩罚函数值不满足相等且等于零时,比较所述随机参数和所述比较参数的大小,若所述随机参数小于所述比较参数,则比较所述两个相邻个体的惩罚函数值,根据所述惩罚函数值的大小将所述两个相邻个体交换顺序;若所述随机参数大于所述比较参数,则执行所述重复上述产生随机参数和上述对两个相邻个体进行排序的步骤。When the penalty function values of the two adjacent individuals are not equal and equal to zero, compare the size of the random parameter and the comparison parameter, if the random parameter is smaller than the comparison parameter, then compare the two phases The penalty function value of the adjacent individual, according to the size of the penalty function value, the order of the two adjacent individuals is exchanged; if the random parameter is greater than the comparison parameter, then perform the repetition of the above generated random parameter and the above pair of two The step of sorting adjacent individuals. 2.根据权利要求1所述的方法,其特征在于,所述对所述种群中的个体进行曲线拟合所形成的目标函数的公式如下表示:2. method according to claim 1, is characterized in that, the formula of the objective function formed by curve fitting is carried out to the individual in described population is as follows: minf(x),其中,x1≤x≤xn minf(x), where x 1 ≤ x ≤ x n Ff == {{ xx == (( xx 11 ,, ...... ,, xx nno )) &Element;&Element; RR nno || gg jj (( xx )) &le;&le; 00 &ForAll;&ForAll; jj &Element;&Element; (( 11 ,, ...... ,, mm )) }} 其中,f(x)为目标函数,x=(x1,....,xn)∈Rn为种群,x1,....,xn为种群中的个体,n和m为正整数,给定xmin≤x≤xmax为目标函数的约束条件,xmin为x中的最小值,xmax为x中的最大值,gj(x)为x的约束函数,F为目标函数的可行域。Among them, f(x) is the objective function, x=(x 1 ,...,x n )∈R n is the population, x 1 ,...,x n are the individuals in the population, n and m are A positive integer, given that x min ≤ x ≤ x max is the constraint condition of the objective function, x min is the minimum value of x, x max is the maximum value of x, g j (x) is the constraint function of x, and F is Feasible region of the objective function. 3.根据权利要求2所述的方法,其特征在于,所述对所述目标函数增加惩罚因子和惩罚函数所构造的增广目标函数公式如下表示:3. method according to claim 2, is characterized in that, described objective function increases the augmented objective function formula that penalty factor and penalty function are constructed are as follows: Ψ(x)=f(x)+rgφ(gj(x);j=1,...,m)Ψ(x)=f(x)+r g φ(g j (x); j=1,...,m) &phi;&phi; (( gg jj (( xx )) ;; jj == 11 ,, ...... ,, mm )) == &Sigma;&Sigma; jj == 11 mm maxmax {{ 00 ,, gg jj (( xx )) }} 22 其中,rg为惩罚因子,φ为惩罚函数。Among them, r g is the penalty factor, and φ is the penalty function. 4.根据权利要求1所述的方法,其特征在于,所述比较参数和所述随机参数介于0到1之间。4. The method according to claim 1, wherein the comparison parameter and the random parameter are between 0 and 1. 5.根据权利要求4所述的方法,其特征在于,所述比较参数的值预先设定为0.45。5. The method according to claim 4, characterized in that, the value of the comparison parameter is preset as 0.45. 6.根据权利要求1所述的方法,其特征在于,所述根据两个相邻个体的惩罚函数值的比较结果或者所述随机参数和所述比较参数的大小的比较结果对所述两个相邻个体进行排序的步骤进一步包括:6. The method according to claim 1, characterized in that, the comparison result of the penalty function value according to two adjacent individuals or the comparison result of the size of the random parameter and the comparison parameter is to the two The step of sorting adjacent individuals further includes: 根据所述目标函数值或惩罚函数值的大小将所述两个相邻个体进行升序排序,即将所述两个相邻个体中的目标函数值或惩罚函数值小的个体排在所述两个相邻个体中的目标函数值或惩罚函数值大的另一个体之前,并在排序完成后执行所述重复上述产生随机参数和上述对两个相邻个体进行排序的步骤。According to the size of the objective function value or the penalty function value, the two adjacent individuals are sorted in ascending order, that is, the individual with the smaller objective function value or penalty function value among the two adjacent individuals is arranged in the two adjacent individuals. Before another individual with a larger objective function value or penalty function value in the adjacent individual, and after the sorting is completed, repeat the above steps of generating random parameters and the above steps of sorting two adjacent individuals. 7.根据权利要求1所述的方法,其特征在于,所述根据两个相邻个体的惩罚函数值的比较结果或者所述随机参数和所述比较参数的大小的比较结果对所述两个相邻个体进行排序的步骤进一步包括:7. The method according to claim 1, characterized in that, the comparison result of the penalty function value according to two adjacent individuals or the comparison result of the size of the random parameter and the comparison parameter is to the two The step of sorting adjacent individuals further includes: 根据所述目标函数值或惩罚函数值的大小将所述两个相邻个体进行降序排序,即将所述两个相邻个体中的目标函数值或惩罚函数值大的个体排在所述两个相邻个体中的目标函数值或惩罚函.数值小的另一个体之前,并在排序完成后执行所述重复上述产生随机参数和上述对两个相邻个体进行排序的步骤。According to the size of the objective function value or penalty function value, the two adjacent individuals are sorted in descending order, that is, the individual with a larger objective function value or penalty function value among the two adjacent individuals is arranged in the two adjacent individuals. The objective function value or penalty function in the adjacent individual. Before another individual with a small value, and after the sorting is completed, perform the steps of repeating the above steps of generating random parameters and sorting the two adjacent individuals. 8.根据权利要求1所述的方法,其特征在于,所述根据上述重复步骤的排序结果得出满足所述目标函数的约束条件的最优数据的步骤包括:8. The method according to claim 1, wherein the step of obtaining the optimal data satisfying the constraints of the objective function according to the sorting results of the above-mentioned repeated steps comprises: 根据升序排序结果或者降序排序结果得出满足所述目标函数的约束条件的最优数据。The optimal data satisfying the constraint condition of the objective function is obtained according to the ascending sorting result or the descending sorting result.
CN201110418386.4A 2011-12-14 2011-12-14 A kind of optimization method of artificial electromagnetic material design data Active CN103164555B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110418386.4A CN103164555B (en) 2011-12-14 2011-12-14 A kind of optimization method of artificial electromagnetic material design data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110418386.4A CN103164555B (en) 2011-12-14 2011-12-14 A kind of optimization method of artificial electromagnetic material design data

Publications (2)

Publication Number Publication Date
CN103164555A CN103164555A (en) 2013-06-19
CN103164555B true CN103164555B (en) 2016-03-09

Family

ID=48587640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110418386.4A Active CN103164555B (en) 2011-12-14 2011-12-14 A kind of optimization method of artificial electromagnetic material design data

Country Status (1)

Country Link
CN (1) CN103164555B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3853602B2 (en) * 2001-03-27 2006-12-06 富士通株式会社 Method and apparatus for creating input data to electromagnetic field intensity calculation device
TWI263063B (en) * 2004-12-31 2006-10-01 Ind Tech Res Inst A super-resolution optical component and a left-handed material thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
基于粒子群优化算法的研究;张利彪;《中国优秀博硕士学位论文全文数据库(硕士).信息科技辑》;20041215;第2004(年)卷(第04期);第I140-115页 *
基于遗传算法的自动组卷系统研究与实现;周文举;《中国优秀博硕士学位论文全文数据库(硕士).信息科技辑》;20090915;第2006(年)卷(第09期);第I138-357页 *
惩罚函数法的改进算法及应用研究;王兴举;《中国优秀硕士学位论文全文数据库(电子期刊).工程科技I辑》;20110415;第2011(年)卷(第04期);第B022-450页 *
新型人工电磁材料器件的设计、制作和应用研究;邹勇卓;《中国博士学位论文全文数据库(电子期刊).工程科技I辑》;20070815;第2007(年)卷(第02期);第B020-12页 *

Also Published As

Publication number Publication date
CN103164555A (en) 2013-06-19

Similar Documents

Publication Publication Date Title
CN103812729B (en) Network protocol fuzz testing method and device
CN110705762A (en) A method for repairing missing data in ubiquitous power Internet of things perception based on matrix filling
CN104469374B (en) Method for compressing image
Weber et al. Generation of arbitrarily two-point-correlated random networks
Xiao et al. An improved graph convolutional networks for fault diagnosis of rolling bearing with limited labeled data
Zhou et al. An imbalance aware lithography hotspot detection method based on HDAM and pre-trained GoogLeNet
CN106503279A (en) A kind of modeling method for transient stability evaluation in power system
CN105446954A (en) Project duplicate checking method for science and technology big data
Li et al. Adaptive single-mode variational mode decomposition and its applications in wheelset bearing fault diagnosis
CN103164555B (en) A kind of optimization method of artificial electromagnetic material design data
Privault et al. Probability approximation by Clark-Ocone covariance representation
CN103984675A (en) Orthogonal successive approximation method for solving global optimization problem
CN114462447B (en) Voltage sag identification method and device, computer equipment and storage medium
Wang et al. An efficient nondominated sorting algorithm
Ben-Naim et al. Persistence of random walk records
Ding et al. Definition of multi-state weighted k-out-of-n: F systems
Wang et al. Application of data denoising and classification algorithm based on rpca and multigroup random walk random forest in engineering
Vigdergauz Stress-smoothing holes in an elastic plate: From the square lattice to the checkerboard
Wang et al. Exploring transitions in finite-size Potts model: comparative analysis using Wang–Landau sampling and parallel tempering
Freericks et al. Spectral moment sum rules for the retarded Green's function and self-energy of the inhomogeneous Bose-Hubbard model in equilibrium and nonequilibrium
CN107170443A (en) A kind of parameter optimization method of model training layer AdaBoost algorithms
CN105320845A (en) Time sequence forecast method based on quantum gravity algorithm
CN105282011A (en) Social group finding method based on cluster fusion algorithm
CN117874497B (en) A method, device, equipment and medium for extracting load characteristics
Cheng et al. Convergence Analysis of Stochastic Collocation Methods for Maxwell Equations with Random Inputs

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant