CN103177092A - Data updating method and system of knowledge base and knowledge base - Google Patents
Data updating method and system of knowledge base and knowledge base Download PDFInfo
- Publication number
- CN103177092A CN103177092A CN2013100759008A CN201310075900A CN103177092A CN 103177092 A CN103177092 A CN 103177092A CN 2013100759008 A CN2013100759008 A CN 2013100759008A CN 201310075900 A CN201310075900 A CN 201310075900A CN 103177092 A CN103177092 A CN 103177092A
- Authority
- CN
- China
- Prior art keywords
- credibility
- data information
- knowledge base
- data
- feedback
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000012545 processing Methods 0.000 claims description 18
- 230000008030 elimination Effects 0.000 description 5
- 238000003379 elimination reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
一种知识库数据更新方法,获取用户对数据信息的反馈信息,读取数据信息对应的可信度及反馈次数,再根据数据信息对应的可信度、反馈次数及反馈信息更新可信度。因此,知识库中数据信息的可信度不是固定不变的,而是参照使用者即用户的反馈信息进行更新,从而使得知识库中的数据信息可随着人们认识水平的提高而得到优化。由于上述知识库数据更新方法及系统使知识库中数据信息的可信度更加准确,故对上述知识库进行数据访问时,可有效提高数据访问的准确率。此外,本发明还提供一种知识库数据更新方法及知识库。
A method for updating knowledge base data, which acquires user feedback information on data information, reads the corresponding credibility and feedback times of the data information, and then updates the credibility according to the corresponding credibility, feedback times and feedback information of the data information. Therefore, the credibility of the data information in the knowledge base is not fixed, but updated with reference to the feedback information of users, so that the data information in the knowledge base can be optimized with the improvement of people's awareness. Since the above knowledge base data update method and system make the credibility of the data information in the knowledge base more accurate, the accuracy of data access can be effectively improved when performing data access to the above knowledge base. In addition, the present invention also provides a knowledge base data update method and a knowledge base.
Description
技术领域technical field
本发明涉及数据处理技术,特别是涉及一种知识库数据更新方法、系统及知识库。The invention relates to data processing technology, in particular to a knowledge base data updating method, system and knowledge base.
背景技术Background technique
知识库(Knowledge Base),又称为智能数据库或人工智能数据库。知识库是知识工程中结构化、易操作、易利用、全面有组织的知识集群,是针对某一(或某些)领域问题求解的需要,采用某种(或若干)知识表示方式在计算机存储器中存储、组织、管理和使用的互相联系的知识片集合。这些知识片包括与领域相关的理论知识、事实数据,由专家经验得到的启发式知识,如某领域内有关的定义、定理和运算法则以及常识性知识等。Knowledge Base, also known as intelligent database or artificial intelligence database. The knowledge base is a structured, easy-to-operate, easy-to-use, comprehensive and organized knowledge cluster in knowledge engineering. It is aimed at the needs of solving problems in a certain (or some) fields, and uses certain (or several) knowledge representation methods in computer memory. A collection of interconnected pieces of knowledge stored, organized, managed, and used in . These pieces of knowledge include domain-related theoretical knowledge, factual data, and heuristic knowledge obtained from expert experience, such as definitions, theorems, algorithms, and common sense knowledge related to a certain domain.
知识库中的数据信息都对应一个可信度,可信度用于表示数据信息的准确性。在调用知识库中的数据信息时,一般选取可信度最高的。传统的知识库都是由专家根据经验,预先输入相关的数据信息。因此,知识库中的数据信息的内容及存储结构在使用过程中是不变的。而由于人们认识水平有限,预先输入知识库中的数据信息不一定最准确,从而导致知识库中的数据信息真实的可信度会发生变化。然而,由于数据信息的内容及存储结构为固定的,在访问知识库中的数据信息时,依然按照数据信息原先对应的可信度进行搜索和筛选,从而使得数据访问的准确率不高。The data information in the knowledge base corresponds to a degree of credibility, which is used to represent the accuracy of the data information. When invoking the data information in the knowledge base, generally select the one with the highest reliability. Traditional knowledge bases are pre-entered by experts with relevant data information based on experience. Therefore, the content and storage structure of the data information in the knowledge base remain unchanged during use. However, due to people's limited level of understanding, the data information pre-input in the knowledge base may not be the most accurate, resulting in changes in the authenticity of the data information in the knowledge base. However, since the content and storage structure of the data information are fixed, when accessing the data information in the knowledge base, the search and screening are still carried out according to the original corresponding credibility of the data information, so that the accuracy of data access is not high.
发明内容Contents of the invention
基于此,有必要提供一种可有效提高数据访问的准确率的知识库数据更新方法、系统及知识库。Based on this, it is necessary to provide a knowledge base data update method, system and knowledge base that can effectively improve the accuracy of data access.
一种知识库数据更新方法,用于对知识库中的数据信息进行更新,所述数据信息对应一个可信度及反馈次数,所述方法包括以下步骤:A knowledge base data update method, used to update data information in the knowledge base, the data information corresponds to a degree of credibility and feedback times, the method includes the following steps:
获取用户对所述数据信息的反馈信息;Obtain user feedback on the data information;
读取所述数据信息对应的可信度及反馈次数;Read the reliability and feedback times corresponding to the data information;
根据所述数据信息对应的可信度、反馈次数及所述反馈信息更新所述可信度。The credibility is updated according to the credibility corresponding to the data information, the number of feedbacks, and the feedback information.
在其中一个实施例中,所述根据所述数据信息对应的可信度、反馈次数及所述反馈信息更新所述可信度的方式为:In one of the embodiments, the manner of updating the credibility according to the credibility corresponding to the data information, the number of feedbacks and the feedback information is:
B=(b*k+c)/(k+1)B=(b*k+c)/(k+1)
其中,b和k分别为读取到的所述数据信息对应的可信度及反馈次数,c为用户对所述数据信息的反馈信息,B为更新后的可信度。Wherein, b and k are respectively the credibility and the number of feedbacks corresponding to the read data information, c is the user's feedback information on the data information, and B is the updated credibility.
在其中一个实施例中,在所述根据所述数据信息对应的可信度、反馈次数及所述反馈信息更新所述可信度的步骤之后,所述方法还包括:In one of the embodiments, after the step of updating the credibility according to the credibility, the number of feedbacks and the feedback information corresponding to the data information, the method further includes:
根据所述可信度的大小,对所述数据信息进行重新排序。The data information is reordered according to the degree of credibility.
在其中一个实施例中,在所述根据所述数据信息对应的可信度、反馈次数及所述反馈信息更新所述可信度的步骤之后,所述方法还包括:In one of the embodiments, after the step of updating the credibility according to the credibility, the number of feedbacks and the feedback information corresponding to the data information, the method further includes:
将所述可信度与预设的阈值相比较,并将可信度小于所述阈值的数据信息删除。The credibility is compared with a preset threshold, and the data information whose credibility is smaller than the threshold is deleted.
一种知识库更新系统,用于对知识库中的数据信息进行更新,所述数据信息对应一个可信度及反馈次数,所述系统包括:A knowledge base update system, used to update data information in the knowledge base, the data information corresponds to a degree of credibility and feedback times, the system includes:
反馈接收模块,用于获取用户对所述数据信息的反馈信息;a feedback receiving module, configured to obtain user feedback on the data information;
读取模块,用于读取所述数据信息对应的可信度及反馈次数;A reading module, configured to read the reliability and the number of feedbacks corresponding to the data information;
可信度更新模块,用于根据所述数据信息对应的可信度、反馈次数及所述反馈信息更新所述可信度。A credibility updating module, configured to update the credibility according to the credibility corresponding to the data information, the number of feedbacks, and the feedback information.
在其中一个实施例中,所述可信度更新模块更新所述可信度的方式为:In one of the embodiments, the way for the credibility update module to update the credibility is:
B=(b*k+c)/(k+1)B=(b*k+c)/(k+1)
其中,b和k分别为读取到的所述数据信息对应的可信度及反馈次数,c为用户对所述数据信息的反馈信息,B为更新后的可信度。Wherein, b and k are respectively the credibility and the number of feedbacks corresponding to the read data information, c is the user's feedback information on the data information, and B is the updated credibility.
在其中一个实施例中,还包括重排序模块,重排序模块用于根据所述可信度的大小,对所述数据信息进行重新排序。In one of the embodiments, a reordering module is further included, and the reordering module is used to reorder the data information according to the degree of credibility.
在其中一个实施例中,还包括数据剔除模块,所述数据剔除模块用于将所述可信度与预设的阈值相比较,并将可信度小于所述阈值的数据信息删除。In one of the embodiments, a data elimination module is further included, the data elimination module is configured to compare the credibility with a preset threshold, and delete data information whose credibility is lower than the threshold.
一种知识库,包括:A knowledge base comprising:
如上述优选实施例中任一项所述的知识库更新系统;The knowledge base updating system as described in any one of the above preferred embodiments;
请求处理模块,用于接收用户的处理请求,并获取与所述处理请求匹配且可信度最大的数据信息;A request processing module, configured to receive a processing request from a user, and obtain data information that matches the processing request and has the highest reliability;
数据输出模块,用于将获取的所述数据信息返回至用户。A data output module, configured to return the obtained data information to the user.
在其中一个实施例中,所述请求处理模块包括:In one of the embodiments, the request processing module includes:
匹配单元,用于在知识库中查找与所述处理请求匹配的数据信息;a matching unit, configured to search the knowledge base for data information matching the processing request;
选择单元,用于从所述匹配的数据信息进行筛选,选取其中可信度最大的数据信息。The selection unit is configured to screen the matched data information and select the data information with the highest reliability.
上述知识库数据更新方法及系统,获取用户对数据信息的反馈信息,读取数据信息对应的可信度及反馈次数,再根据数据信息对应的可信度、反馈次数及反馈信息更新可信度。因此,知识库中数据信息的可信度不是固定不变的,而是参照使用者即用户的反馈信息进行更新,从而使得知识库中的数据信息可随着人们认识水平的提高而得到优化。由于上述知识库数据更新方法及系统使知识库中数据信息的可信度更加准确,故对上述知识库进行数据访问时,可有效提高数据访问的准确率。The above method and system for updating knowledge base data obtains user feedback information on data information, reads the credibility and feedback times corresponding to the data information, and then updates the credibility according to the credibility, feedback times and feedback information corresponding to the data information . Therefore, the credibility of the data information in the knowledge base is not fixed, but updated with reference to the feedback information of users, so that the data information in the knowledge base can be optimized with the improvement of people's awareness. Since the above knowledge base data update method and system make the credibility of the data information in the knowledge base more accurate, the accuracy of data access can be effectively improved when performing data access to the above knowledge base.
附图说明Description of drawings
图1为本发明一个实施例中知识库数据更新方法的流程示意图;Fig. 1 is a schematic flow diagram of a method for updating knowledge base data in an embodiment of the present invention;
图2为本发明一个实施例中知识库数据更新系统的模块示意图;Fig. 2 is a schematic diagram of modules of the knowledge base data update system in one embodiment of the present invention;
图3为本发明另一个实施例中知识库数据更新系统的模块示意图;Fig. 3 is a schematic diagram of modules of a knowledge base data updating system in another embodiment of the present invention;
图4为本发明一个实施例中知识库的模块示意图。Fig. 4 is a schematic diagram of modules of a knowledge base in an embodiment of the present invention.
具体实施方式Detailed ways
请参阅图1,在一个实施例中,一种知识库数据更新方法,包括以下步骤:Referring to Fig. 1, in one embodiment, a method for updating knowledge base data includes the following steps:
步骤S110,获取用户对数据信息的反馈信息。Step S110, acquiring user feedback information on data information.
在一个实施例中,可在向用户提供数据信息时,提示用户输入对该数据信息的反馈信息。反馈信息为用户对该数据信息准确性(即可信度)的评价。例如,在用户界面上显示输入框,并提示用户输入0~100%之间的数值。若获得用户的输入数值为60%,则表示该用户认为该数据信息的可信度为60%。此外,还可在用户界面上显示多个选项(如可信、不可信、不确定等,并为每个选项对应设置量化的表示可信度的数值),从而便可通过获取用户与特定选项的交互操作获取用户对该数据信息的反馈信息。In one embodiment, when data information is provided to the user, the user may be prompted to input feedback information on the data information. Feedback information is the user's evaluation of the accuracy (that is, credibility) of the data information. For example, display an input box on the user interface and prompt the user to enter a value between 0 and 100%. If the value input by the user is 60%, it means that the user believes that the reliability of the data information is 60%. In addition, multiple options (such as credible, untrustworthy, uncertain, etc.) can be displayed on the user interface, and a quantified numerical value representing the credibility can be set for each option, so that users and specific options can be obtained. The interactive operation obtains the user's feedback information on the data information.
步骤S120,读取数据信息对应的可信度及反馈次数。Step S120, read the reliability and feedback times corresponding to the data information.
在一个实施例中,知识库中的数据信息均对应一个可信度,在构建知识库时,设计人员根据现有经验对每个数据信息的可信度赋予一个初始值。每个数据信息的可信度均为变量,可根据针对该数据信息的反馈信息进行更新。知识库中的数据信息还对应反馈次数,反馈次数即获取用户对该数据信息的反馈信息的次数,反馈次数的初始值均为0。反馈次数也为变量,每获取一次对该数据信息的反馈信息,则该数据信息对应的反馈次数在原有基础上加1。In one embodiment, the data information in the knowledge base corresponds to a degree of credibility, and when constructing the knowledge base, the designer assigns an initial value to the degree of credibility of each data information according to existing experience. The reliability of each data information is a variable, which can be updated according to the feedback information for the data information. The data information in the knowledge base also corresponds to the number of feedback times, which is the number of times to obtain the user's feedback information on the data information, and the initial value of the number of feedback times is 0. The number of times of feedback is also a variable, and each time the feedback information of the data information is obtained, the number of times of feedback corresponding to the data information is increased by 1 on the original basis.
因此,通过数据信息在知识库中进行查询,便可得到该数据信息的可信度及反馈次数。Therefore, by querying the data information in the knowledge base, the credibility and feedback times of the data information can be obtained.
步骤S130,根据数据信息对应的可信度、反馈次数及反馈信息更新可信度。Step S130, updating the credibility according to the credibility, feedback times and feedback information corresponding to the data information.
具体的,由于反馈信息是对数据信息可信度的评价,因此,在获取针对该数据信息的反馈信息后,需要对该数据信息对应的可信度进行重新设置,以使可信度保持有效。在一个实施例中,根据数据信息对应的可信度、反馈次数及反馈信息更新可信度的方式为:Specifically, since the feedback information is an evaluation of the credibility of the data information, after obtaining the feedback information for the data information, it is necessary to reset the corresponding credibility of the data information so that the credibility remains valid . In one embodiment, the manner of updating the credibility according to the credibility, feedback times, and feedback information corresponding to the data information is as follows:
B=(b*k+c)/(k+1)B=(b*k+c)/(k+1)
其中,b和k分别为读取到的数据信息对应的可信度及反馈次数,c为用户对数据信息的反馈信息,B为更新后的可信度。Wherein, b and k are the credibility and feedback times corresponding to the read data information respectively, c is the feedback information of the user to the data information, and B is the updated credibility.
进一步的,在得到新的可信度B后,将数据信息对应的可信度更新为B,并将该数据信息对应的反馈次数更新为k+1。在下一次更新可信度时,读取的可信度及反馈次数便为更新后的可信度及反馈次数。在后续可信度更新时,以此类推。Further, after the new credibility B is obtained, the credibility corresponding to the data information is updated to B, and the number of feedbacks corresponding to the data information is updated to k+1. When the reliability is updated next time, the read reliability and feedback times will be the updated reliability and feedback times. And so on for subsequent credibility updates.
需要指出的是,更新可信度的方式不限于上述一种。例如,在一个实施例中,根据数据信息对应的可信度、反馈次数及反馈信息更新可信度的方式为:It should be noted that, the way of updating the credibility is not limited to the above one. For example, in one embodiment, the way to update the credibility according to the credibility, feedback times and feedback information corresponding to the data information is as follows:
B=(b*k*c1+c*c2)/(k*c1+c2),其中,b、k、c、B的含义同上,c1、c2为权值。B=(b*k*c1+c*c2)/(k*c1+c2), where the meanings of b, k, c, and B are the same as above, and c1, c2 are weights.
在一个实施例中,在上述步骤S130之后,上述知识库数据更新方法还包括:根据可信度的大小,对数据信息进行重新排序。In one embodiment, after the above step S130, the above knowledge base data updating method further includes: reordering the data information according to the degree of credibility.
具体的,在知识库中,将数据信息按照可信度由大到小依次存储,从而使知识库中的数据信息有序。当访问知识库中的数据信息时,可按照可信度由大到小的顺序依次查询数据信息,当首次查找到匹配的数据信息后,该数据信息便为所有匹配的数据信息中可信度最大的数据信息。因此,不需要将所有匹配的数据信息全部查找到后再进行筛选,从而有效提高数据访问的效率。Specifically, in the knowledge base, the data information is stored in descending order of reliability, so that the data information in the knowledge base is ordered. When accessing the data information in the knowledge base, the data information can be queried in descending order of the credibility. When the matching data information is found for the first time, the data information will be the credibility of all the matching data information. Maximum data information. Therefore, it is not necessary to find all matching data information and then perform screening, thereby effectively improving the efficiency of data access.
在一个实施例中,在上述步骤S130之后,上述知识库数据更新方法还包括:将可信度与预设的阈值相比较,并将可信度小于阈值的数据信息删除。In one embodiment, after the above step S130, the knowledge base data update method further includes: comparing the credibility with a preset threshold, and deleting data information whose credibility is lower than the threshold.
具体的,阈值预先设定,表示临界点。当数据信息的可信度低于阈值时,则表示该数据信息可能为错误。当数据信息的可信度发生更新时,将更新后的可信度与阈值相比较,若该数据信息对应的可信度低于阈值,则将该数据信息从知识库中删除。Specifically, the threshold is preset and represents a critical point. When the reliability of the data information is lower than the threshold, it indicates that the data information may be wrong. When the credibility of the data information is updated, the updated credibility is compared with the threshold, and if the corresponding credibility of the data information is lower than the threshold, the data information is deleted from the knowledge base.
将可信度低于阈值的数据信息从知识库中删除,可剔除错误的数据信息,从而使知识库中的数据信息始终保持有效。而且,将错误的数据信息删除,可减小知识库的冗余度,并进一步节省存储空间。Deleting the data information whose credibility is lower than the threshold from the knowledge base can eliminate wrong data information, so that the data information in the knowledge base is always valid. Moreover, deleting wrong data information can reduce the redundancy of the knowledge base and further save storage space.
请参阅图2,本发明中,一种知识库更新系统100,包括反馈接收模块110、读取模块120和可信度更新模块130。其中:Referring to FIG. 2 , in the present invention, a knowledge
反馈接收模块110用于获取用户对数据信息的反馈信息。The
在一个实施例中,反馈接收模块110可在向用户提供数据信息时,提示用户输入对该数据信息的反馈信息。反馈信息为用户对该数据信息准确性(即可信度)的评价。例如,反馈接收模块110在用户界面上显示输入框,并提示用户输入0~100%之间的数值。若获得用户的输入数值为60%,则表示该用户认为该数据信息的可信度为60%。此外,反馈接收模块110还可在用户界面上显示多个选项(如可信、不可信、不确定等,并为每个选项对应设置量化的表示可信度的数值),从而便可通过获取用户与特定选项的交互操作获取用户对该数据信息的反馈信息。In one embodiment, the
读取模块120用于读取数据信息对应的可信度及反馈次数。The
在一个实施例中,知识库中的数据信息均对应一个可信度,在构建知识库时,设计人员根据现有经验对每个数据信息的可信度赋予一个初始值。每个数据信息的可信度均为变量,可根据针对该数据信息的反馈信息进行更新。知识库中的数据信息还对应反馈次数,反馈次数即获取用户对该数据信息的反馈信息的次数,反馈次数的初始值均为0。反馈次数也为变量,每获取一次对该数据信息的反馈信息,则该数据信息对应的反馈次数在原有基础上加1。In one embodiment, the data information in the knowledge base corresponds to a degree of credibility, and when constructing the knowledge base, the designer assigns an initial value to the degree of credibility of each data information according to existing experience. The reliability of each data information is a variable, which can be updated according to the feedback information for the data information. The data information in the knowledge base also corresponds to the number of feedback times, which is the number of times to obtain the user's feedback information on the data information, and the initial value of the number of feedback times is 0. The number of times of feedback is also a variable, and each time the feedback information of the data information is obtained, the number of times of feedback corresponding to the data information is increased by 1 on the original basis.
因此,读取模块120通过数据信息在知识库中进行查询,便可得到该数据信息的可信度及反馈次数。Therefore, the
可信度更新模块130用于根据数据信息对应的可信度、反馈次数及反馈信息更新可信度。The
具体的,由于反馈信息是对数据信息可信度的评价,因此,在获取针对该数据信息的反馈信息后,可信度更新模块130需要对该数据信息对应的可信度进行重新设置,以使可信度保持有效。在一个实施例中,可信度更新模块130更新可信度的方式为:Specifically, since the feedback information is an evaluation of the credibility of the data information, after obtaining the feedback information for the data information, the
B=(b*k+c)/(k+1)B=(b*k+c)/(k+1)
其中,b和k分别为读取到的数据信息对应的可信度及反馈次数,c为用户对数据信息的反馈信息,B为更新后的可信度。Wherein, b and k are the credibility and feedback times corresponding to the read data information respectively, c is the feedback information of the user to the data information, and B is the updated credibility.
进一步的,在得到新的可信度B后,可信度更新模块130将数据信息对应的可信度更新为B,并将该数据信息对应的反馈次数更新为k+1。在下一次更新可信度时,读取的可信度及反馈次数便为更新后的可信度及反馈次数。在后续可信度更新时,以此类推。Further, after obtaining the new credibility B, the
需要指出的是,可信度更新模块130更新可信度的方式不限于上述一种。例如,在一个实施例中,可信度更新模块130更新可信度的方式为:It should be noted that, the manner of updating the credibility by the
B=(b*k*c1+c*c2)/(k*c1+c2),其中,b、k、c、B的含义同上,c1、c2为权值。B=(b*k*c1+c*c2)/(k*c1+c2), where the meanings of b, k, c, and B are the same as above, and c1, c2 are weights.
请参阅图3,在另一个实施例中,知识库数据更新系统100还包括重排序模块140和数据剔除模块150。其中:Please refer to FIG. 3 , in another embodiment, the knowledge base
重排序模块140用于根据可信度的大小,对数据信息进行重新排序。The
具体的,在知识库中,重排序模块140将数据信息按照可信度由大到小依次存储,从而使知识库中的数据信息有序。当访问知识库中的数据信息时,可按照可信度由大到小的顺序依次查询数据信息,当首次查找到匹配的数据信息后,该数据信息便为所有匹配的数据信息中可信度最大的数据信息。因此,不需要将所有匹配的数据信息全部查找到后再进行筛选,从而有效提高数据访问的效率。Specifically, in the knowledge base, the
数据剔除模块150用于将可信度与预设的阈值相比较,并将可信度小于阈值的数据信息删除。The
具体的,阈值预先设定,表示临界点。当数据信息的可信度低于阈值时,则表示该数据信息可能为错误。当数据信息的可信度发生更新时,数据剔除模块150将更新后的可信度与阈值相比较,若该数据信息对应的可信度低于阈值,则将该数据信息从知识库中删除。Specifically, the threshold is preset and represents a critical point. When the reliability of the data information is lower than the threshold, it indicates that the data information may be wrong. When the credibility of the data information is updated, the
数据剔除模块150可剔除错误的数据信息,从而使知识库中的数据信息始终保持有效。而且,将错误的数据信息删除,可减小知识库的冗余度,并进一步节省存储空间。The
请参阅图4,本发明还提供一种知识库,知识库包括知识库更新系统100、请求处理模块200及数据输出模块300。其中:Referring to FIG. 4 , the present invention also provides a knowledge base, which includes a knowledge
请求处理模块200用于接收用户的处理请求,并获取与处理请求匹配且可信度最大的数据信息。The
在一个实施例中,请求处理模块200包括匹配单元(图中未示出)及选择单元(图中未示出)。其中:匹配单元用于在知识库中查找与处理请求匹配的数据信息;选择单元用于从匹配的数据信息进行筛选,选取其中可信度最大的数据信息。In one embodiment, the
在另一个实施例中,知识库更新系统100包括重排序模块140,请求处理模块200可按照可信度由大到小的顺序依次查询数据信息,当首次查找到匹配的数据信息后,该数据信息便为所有匹配的数据信息中可信度最大的数据信息。因此,不需要将所有匹配的数据信息全部查找到后再进行筛选,从而有效提高数据访问的效率。In another embodiment, the knowledge
数据输出模块300用于将获取的数据信息返回至用户。The
上述知识库数据更新方法及系统,获取用户对数据信息的反馈信息,读取数据信息对应的可信度及反馈次数,再根据数据信息对应的可信度、反馈次数及反馈信息更新可信度。因此,知识库中数据信息的可信度不是固定不变的,而是参照使用者即用户的反馈信息进行更新,从而使得知识库中的数据信息可随着人们认识水平的提高而得到优化。由于上述知识库数据更新方法及系统使知识库中数据信息的可信度更加准确,故对上述知识库进行数据访问时,可有效提高数据访问的准确率。The above method and system for updating knowledge base data obtains user feedback information on data information, reads the credibility and feedback times corresponding to the data information, and then updates the credibility according to the credibility, feedback times and feedback information corresponding to the data information . Therefore, the credibility of the data information in the knowledge base is not fixed, but updated with reference to the feedback information of users, so that the data information in the knowledge base can be optimized with the improvement of people's awareness. Since the above knowledge base data update method and system make the credibility of the data information in the knowledge base more accurate, the accuracy of data access can be effectively improved when performing data access to the above knowledge base.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310075900.8A CN103177092B (en) | 2013-03-08 | 2013-03-08 | Knowledge base data-updating method, system and knowledge base |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310075900.8A CN103177092B (en) | 2013-03-08 | 2013-03-08 | Knowledge base data-updating method, system and knowledge base |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103177092A true CN103177092A (en) | 2013-06-26 |
| CN103177092B CN103177092B (en) | 2017-06-23 |
Family
ID=48636953
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310075900.8A Active CN103177092B (en) | 2013-03-08 | 2013-03-08 | Knowledge base data-updating method, system and knowledge base |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103177092B (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103838886A (en) * | 2014-03-31 | 2014-06-04 | 辽宁四维科技发展有限公司 | Text content classification method based on representative word knowledge base |
| CN105808769A (en) * | 2016-03-21 | 2016-07-27 | 华南师范大学 | Data acquisition method and system facing big data and generic data |
| CN105843889A (en) * | 2016-03-21 | 2016-08-10 | 华南师范大学 | Credibility based big data and general data oriented data collection method and system |
| CN107220326A (en) * | 2017-05-23 | 2017-09-29 | 至本医疗科技(上海)有限公司 | The information updating method and system of a kind of biomedical knowledge base |
| CN108932261A (en) * | 2017-05-25 | 2018-12-04 | 株式会社日立制作所 | The method and apparatus that the business data processing information table of knowledge base is updated |
| CN110188183A (en) * | 2019-06-04 | 2019-08-30 | 软通智慧科技有限公司 | Method, device, equipment and storage medium for updating intelligent question-answering knowledge base |
| CN112784267A (en) * | 2021-01-05 | 2021-05-11 | 航天信息股份有限公司 | Method and system for optimizing and preventing knowledge of knowledge base from being maliciously attacked |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060161991A1 (en) * | 2005-01-14 | 2006-07-20 | I Anson Colin | Provision of services over a common delivery platform such as a mobile telephony network |
| CN102164149A (en) * | 2011-05-17 | 2011-08-24 | 北京交通大学 | Method for guarding against mapping cheat based on identifying separation mapping network |
| CN102222305A (en) * | 2011-06-13 | 2011-10-19 | 北京理工大学 | Creditworthiness evaluation method under distributed environment |
-
2013
- 2013-03-08 CN CN201310075900.8A patent/CN103177092B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060161991A1 (en) * | 2005-01-14 | 2006-07-20 | I Anson Colin | Provision of services over a common delivery platform such as a mobile telephony network |
| CN102164149A (en) * | 2011-05-17 | 2011-08-24 | 北京交通大学 | Method for guarding against mapping cheat based on identifying separation mapping network |
| CN102222305A (en) * | 2011-06-13 | 2011-10-19 | 北京理工大学 | Creditworthiness evaluation method under distributed environment |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103838886A (en) * | 2014-03-31 | 2014-06-04 | 辽宁四维科技发展有限公司 | Text content classification method based on representative word knowledge base |
| CN105808769A (en) * | 2016-03-21 | 2016-07-27 | 华南师范大学 | Data acquisition method and system facing big data and generic data |
| CN105843889A (en) * | 2016-03-21 | 2016-08-10 | 华南师范大学 | Credibility based big data and general data oriented data collection method and system |
| CN105843889B (en) * | 2016-03-21 | 2020-08-25 | 华南师范大学 | Data collection method and system for big data and ordinary data based on reliability |
| CN107220326A (en) * | 2017-05-23 | 2017-09-29 | 至本医疗科技(上海)有限公司 | The information updating method and system of a kind of biomedical knowledge base |
| CN107220326B (en) * | 2017-05-23 | 2018-09-18 | 至本医疗科技(上海)有限公司 | A kind of information updating method and system of biomedical knowledge base |
| CN108932261A (en) * | 2017-05-25 | 2018-12-04 | 株式会社日立制作所 | The method and apparatus that the business data processing information table of knowledge base is updated |
| CN108932261B (en) * | 2017-05-25 | 2023-08-15 | 株式会社日立制作所 | Method and device for updating business data processing information table of knowledge base |
| CN110188183A (en) * | 2019-06-04 | 2019-08-30 | 软通智慧科技有限公司 | Method, device, equipment and storage medium for updating intelligent question-answering knowledge base |
| CN112784267A (en) * | 2021-01-05 | 2021-05-11 | 航天信息股份有限公司 | Method and system for optimizing and preventing knowledge of knowledge base from being maliciously attacked |
| CN112784267B (en) * | 2021-01-05 | 2024-09-06 | 航天信息股份有限公司 | Method and system for optimizing and preventing knowledge base knowledge from being attacked maliciously |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103177092B (en) | 2017-06-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103177092B (en) | Knowledge base data-updating method, system and knowledge base | |
| CN111247518B (en) | Method and system for database sharding | |
| US10055509B2 (en) | Constructing an in-memory representation of a graph | |
| US10621493B2 (en) | Multiple record linkage algorithm selector | |
| CN103902698B (en) | A kind of data-storage system and storage method | |
| US8219575B2 (en) | Method and system for specifying, preparing and using parameterized database queries | |
| CN103995879B (en) | Data query method, apparatus and system based on OLAP system | |
| US12045734B2 (en) | Optimizing gradient boosting feature selection | |
| US20140032517A1 (en) | System and methods to configure a profile to rank search results | |
| US10838963B2 (en) | Optimized access for hierarchical low cardinality value synopsis in analytical databases | |
| US11074242B2 (en) | Bulk data insertion in analytical databases | |
| CN108491326B (en) | Test behavior a recombination process apparatus and storage medium | |
| US10915533B2 (en) | Extreme value computation | |
| CN107016115B (en) | Data export method and device, computer readable storage medium and electronic equipment | |
| WO2017095413A1 (en) | Incremental automatic update of ranked neighbor lists based on k-th nearest neighbors | |
| CN107451280B (en) | Data communication method and device and electronic equipment | |
| KR20140038441A (en) | Compression match enumeration | |
| WO2015142169A1 (en) | A method and system for determining a measure of overlap between data entries | |
| US20190087156A1 (en) | Sorting a table in analytical databases | |
| CN108959584A (en) | A kind of method and device of the processing diagram data based on community structure | |
| CN104537016B (en) | A kind of method and device of determining file place subregion | |
| US10803053B2 (en) | Automatic selection of neighbor lists to be incrementally updated | |
| CN115408547A (en) | Dictionary tree construction method, device, equipment and storage medium | |
| JP2013196205A (en) | Data model conversion program, data model conversion method and data model conversion device | |
| CN112783888A (en) | Multidimensional data query method and device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20211206 Address after: 518000 A-301, office building, Shenzhen Institute of advanced technology, No. 1068, Xue Yuan Avenue, Shenzhen University Town, Shenzhen, Guangdong, Nanshan District, China Patentee after: Shenzhen shen-tech advanced Cci Capital Ltd. Address before: 1068 No. 518055 Guangdong city in Shenzhen Province, Nanshan District City Xili University School Avenue Patentee before: SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY |
|
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20220120 Address after: 518000 b402, blocks a and B, Nanshan medical device Industrial Park, No. 1019, Nanhai Avenue, Yanshan community, merchants street, Nanshan District, Shenzhen, Guangdong Patentee after: Shenzhen hongzhituoxin venture capital enterprise (L.P.) Address before: 518000 A-301, office building, Shenzhen Institute of advanced technology, No. 1068, Xue Yuan Avenue, Shenzhen University Town, Shenzhen, Guangdong, Nanshan District, China Patentee before: Shenzhen shen-tech advanced Cci Capital Ltd. |