CN103186004A - Electrochromic device with nano-electrochromic material structure - Google Patents
Electrochromic device with nano-electrochromic material structure Download PDFInfo
- Publication number
- CN103186004A CN103186004A CN2011104487268A CN201110448726A CN103186004A CN 103186004 A CN103186004 A CN 103186004A CN 2011104487268 A CN2011104487268 A CN 2011104487268A CN 201110448726 A CN201110448726 A CN 201110448726A CN 103186004 A CN103186004 A CN 103186004A
- Authority
- CN
- China
- Prior art keywords
- electrochromic
- nano
- layer
- oxide
- nanometer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
Description
技术领域 technical field
本发明是有关于一种电致变色装置,特别是有关于一种具有纳米电致变色材料结构的电致变色装置,藉由该纳米材料可降低该电致变色元件所需的驱动电压、具有快速变色能力及延长使用寿命的优点。The present invention relates to an electrochromic device, in particular to an electrochromic device with a nanometer electrochromic material structure, the nanometer material can reduce the driving voltage required by the electrochromic element, has The advantages of rapid color change ability and extended service life.
背景技术 Background technique
一般而言,电致变色装置是指一种在提供一电场时,产生电化学的氧化还原反应,造成光线穿透特性的改变,进而造成颜色变化的装置。其中,该过程为一可逆过程,当无外加电场时,该电致色变材料即恢复原有特性。利用电致变色材料的特性,可制成电致色变显示设备。电致变色材料目前可应用于各种领域,例如:车辆镶嵌玻璃(如车窗、天窗)、大楼镶嵌玻璃、显示设备、光学元件、镜体及电磁波照射的遮蔽物等等,其功用在于可有效地阻隔外界(如光、热)的干扰。其中,电致变色材料被分类为还原呈色材料与氧化呈色材料。还原呈色材料是指因获得电子而呈色者,一般包括氧化钨;同时,氧化呈色材料是指因失去电子而呈色者,一般包括氧化镍与氧化钴;其他包括无机金属氧化物的电致发光材料如:Ir(OH)x,MoO3,V2O5,TiO2等等。值得注意的是,上述的电致发光材料皆必须在含有锂离子或氢离子的电解质环境中方能产生颜色的变化。Generally speaking, an electrochromic device refers to a device that produces an electrochemical oxidation-reduction reaction when an electric field is provided, resulting in a change in light penetration characteristics, thereby causing a color change. Wherein, the process is a reversible process, and when there is no external electric field, the electrochromic material recovers its original characteristics. Utilizing the characteristics of electrochromic materials, electrochromic display devices can be made. Electrochromic materials can be used in various fields at present, such as: vehicle inlaid glass (such as car windows, skylights), building inlaid glass, display equipment, optical components, mirror bodies and shields for electromagnetic wave irradiation, etc., its function is to be able to Effectively block the interference of the outside world (such as light, heat). Among them, electrochromic materials are classified into reduction color materials and oxidation color materials. Reduction coloring materials refer to those that develop color due to gaining electrons, generally including tungsten oxide; at the same time, oxidation coloring materials refer to those that develop color due to loss of electrons, generally including nickel oxide and cobalt oxide; others include inorganic metal oxides. Electroluminescence materials such as: Ir(OH)x, MoO 3 , V 2 O 5 , TiO 2 and so on. It is worth noting that the above electroluminescent materials must be in an electrolyte environment containing lithium ions or hydrogen ions to produce color changes.
申请人一本锲而不舍的精神,研究出一种电致变色元件,其电致变色层包含若干纳米材料。藉由该纳米材料,该电致变色元件具有较低的驱动电压、具有快速变色能力及延长使用寿命的优点。With perseverance, the applicant has developed an electrochromic element, the electrochromic layer of which contains several nanometer materials. With the nanometer material, the electrochromic element has the advantages of lower driving voltage, rapid discoloration ability and prolonged service life.
发明内容 Contents of the invention
本发明的主要目的是在于一种电致变色元件,其电致变色层包含若干纳米材料,藉由该纳米材料,该电致变色元件具有较低的驱动电压、具有快速变色能力及延长使用寿命的优点。The main purpose of the present invention is an electrochromic element, the electrochromic layer of which contains several nanometer materials, by which the electrochromic element has a lower driving voltage, has fast color changing ability and prolongs the service life The advantages.
为解决上述的问题,本发明提供一种具有纳米电致变色材料结构的电致变色装置,包含:一第一透明基材,其上表面有一透明导电层;一电致变色层,形成于该第一透明基材的透明导电层之上,该电致变色层包含若干纳米线;一导离电解质层,形成于该电致变色层上;一离子储存层,形成于该该电解质层上;以及一第二透明基材,其下表面有一透明导电层,位于该离子储存层上,使该导电层夹置于该离子储存层与该第二透明基材之间。In order to solve the above problems, the present invention provides an electrochromic device with a nano-electrochromic material structure, comprising: a first transparent substrate with a transparent conductive layer on its upper surface; an electrochromic layer formed on the On the transparent conductive layer of the first transparent substrate, the electrochromic layer includes a plurality of nanowires; an ion-conducting electrolyte layer is formed on the electrochromic layer; an ion storage layer is formed on the electrolyte layer; And a second transparent substrate, the lower surface of which has a transparent conductive layer on the ion storage layer, so that the conductive layer is sandwiched between the ion storage layer and the second transparent substrate.
根据本发明的一特征,其中该电致变色层中的该纳米线是选自氧化锌纳米线、氧化钨纳米线、氧化钼纳米线或氧化钨钼纳米线之一或多者组合。According to a feature of the present invention, the nanowires in the electrochromic layer are selected from one or a combination of zinc oxide nanowires, tungsten oxide nanowires, molybdenum oxide nanowires, or tungsten molybdenum oxide nanowires.
本发明具有下列的功效:The present invention has following effect:
1.该电致变色装置的驱动电压为1伏特至4伏特之间。比较一般驱动电压40伏特至80伏特,有相当大幅度明显的差距,可达到降低作业电压又节省能源的功能。1. The driving voltage of the electrochromic device is between 1 volt and 4 volts. Compared with the general driving voltage of 40 volts to 80 volts, there is a large and obvious gap, which can achieve the function of reducing the operating voltage and saving energy.
2.氧化还原次数高,寿命长。电致变色层、透明导电膜、离子储存层均为纳米材料,经氧化还原实验,其还原次数可高达一万次到一万二千次左右,使用寿命也较长。2. High redox times and long service life. The electrochromic layer, transparent conductive film, and ion storage layer are all nano-materials. After redox experiments, the reduction times can be as high as 10,000 to 12,000 times, and the service life is also long.
3.明暗对比度佳。可有效增加离子传导速度,并缩短去/着色时间,在可见光谱500nm波长照射下,氧化钨钼纳米线退色穿透率70.2%,变色穿透率43.2%,穿透率变化27%。3. Good light and dark contrast. It can effectively increase the ion conduction speed and shorten the decolorization/coloring time. Under the irradiation of 500nm wavelength in the visible spectrum, the tungsten oxide molybdenum nanowires have a fading penetration rate of 70.2%, a discoloration penetration rate of 43.2%, and a penetration rate change of 27%.
4.导离电解质层为离子液体与一胶状聚合物所混合而成,明显改善习知技术的有机电解质挥发、耗尽、溢漏不环保及使用寿命短的缺点。4. The ion-conducting electrolyte layer is a mixture of ionic liquid and a colloidal polymer, which significantly improves the disadvantages of the conventional technology, such as volatilization, exhaustion, spillage, non-environmental protection and short service life of the organic electrolyte.
为让本发明的上述和其他目的、特征、和优点能更明显易懂,下文特举数个较佳实施例,并配合所附图式,作详细说明。In order to make the above and other objects, features, and advantages of the present invention more comprehensible, several preferred embodiments are specifically cited below and described in detail in conjunction with the accompanying drawings.
附图说明 Description of drawings
图1显示为本发明的一种具有纳米电致变色材料结构的电致变色装置的剖面图。FIG. 1 is a cross-sectional view of an electrochromic device having a nanometer electrochromic material structure according to the present invention.
图2显示为本发明的一种具有纳米电致变色材料结构的电致变色装置的立体图。Fig. 2 is a perspective view of an electrochromic device having a nanometer electrochromic material structure according to the present invention.
附图标记reference sign
1具有纳米电致变色材料结构的电致变色装置1 Electrochromic device with nanometer electrochromic material structure
11第一透明基材11 The first transparent substrate
12透明导电层12 transparent conductive layer
13纳米电致变色层13nm electrochromic layer
14导离电解质层14 Leading electrolyte layer
15离子储存层15 ion storage layers
16透明导电层16 transparent conductive layer
17第二透明基材17 second transparent substrate
具体实施方式 Detailed ways
请参阅图1及图2,本发明的具有纳米电致变色材料结构的电致变色装置(1)的结构示意图,其构件主要包含:一第一透明基材(11);一第一透明导电层(12);一纳米电致变色层(13);一导离电解质层(14);一离子储存层(15);一第二透明导电层(16);一第二透明基材(17)。其中,该第一透明导电层(12)被覆于该第一透明基材(11)的表面,形成一第一透明导电基材;该电致变色层(13)被覆于该第一透明导电基材的表面,该电致变色层是由一纳米线材料所组成;该第二透明导电层(16)被覆于该第二透明基材(17)的表面,形成一第二透明导电基材;该离子储存层(14)被覆于该第二透明基材的表面;以及该导离电解质(14),是由一离子液体与一胶状聚合物所混合而成,填充于含有该电致变色层(13)的该第一透明导电基材与含有该离子储存层(15)的该第二透明导电基材之间。Please refer to Fig. 1 and Fig. 2, the structural representation of the electrochromic device (1) that has the nanometer electrochromic material structure of the present invention, its member mainly comprises: a first transparent substrate (11); a first transparent conductive layer (12); a nanometer electrochromic layer (13); a conduction electrolyte layer (14); an ion storage layer (15); a second transparent conductive layer (16); a second transparent substrate (17 ). Wherein, the first transparent conductive layer (12) is coated on the surface of the first transparent conductive substrate (11) to form a first transparent conductive substrate; the electrochromic layer (13) is coated on the first transparent conductive substrate The surface of the material, the electrochromic layer is composed of a nanowire material; the second transparent conductive layer (16) is coated on the surface of the second transparent substrate (17), forming a second transparent conductive substrate; The ion storage layer (14) is coated on the surface of the second transparent substrate; and the ionizing electrolyte (14) is formed by mixing an ionic liquid and a colloidal polymer, and is filled with the electrochromic Between the first transparent conductive substrate of layer (13) and the second transparent conductive substrate containing the ion storage layer (15).
其中,该第一透明基材(11)与该第二透明基材(17)是选自于玻璃基板、塑料基板或合成树脂可挠性基板之一。其元件的不同点在于使用的导电基材不同。若基材皆为玻璃,即为穿透式元件,可应用于智能型窗户与滤光板,光线穿透量的多寡可由导电基材的电位决定。若基材一面为透明导电玻璃,另一面为具有反射性质的不透光基材,即为反射式元件,可应用于后视镜或显示器上。Wherein, the first transparent substrate (11) and the second transparent substrate (17) are selected from one of glass substrates, plastic substrates or synthetic resin flexible substrates. The difference between its components lies in the different conductive substrates used. If the substrates are all glass, it is a transmissive element, which can be applied to smart windows and filter plates. The amount of light penetration can be determined by the potential of the conductive substrate. If one side of the substrate is transparent conductive glass, and the other side is an opaque substrate with reflective properties, it is a reflective element, which can be applied to rearview mirrors or displays.
如上所述的第一透明导电层(12)与第二透明导电层(16)为氧化铟锡(ITO)、掺氟氧化锡(FTO)、氧化铝锌(AZO)、氧化铟锌(IZO)、氧化锌(ZnO)、氧化锗锌(GZO)或纳米碳管。The above-mentioned first transparent conductive layer (12) and second transparent conductive layer (16) are indium tin oxide (ITO), fluorine-doped tin oxide (FTO), aluminum zinc oxide (AZO), indium zinc oxide (IZO) , zinc oxide (ZnO), germanium zinc oxide (GZO) or carbon nanotubes.
氧化铟锡薄膜是由氧化铟(In2O3)掺杂氧化锡(SnO2)所组成,一般ITO在In2O3/SnO2=90/10时,拥有最低的电阻比及最高的光穿透率,可见光穿透率可达到80~90%之间。IZO(Indium Zinc Oxide)为In2O3加入7-10%的ZnO所组成的材料,其优点在于可以低温成膜,在室温制程下得到的IZO为非晶质,可用弱酸蚀刻,降低导线材的损伤,且IZO膜表面平滑,适合大面积面板的生产。ZnO为母材所组成的导电材料,因为Zn(锌)金属较In(铟)产量丰富而低廉,同时较无毒性且比ITO容易蚀刻。但因纯ZnO的电阻过高,当环境温度高于150℃以上,其电性的稳定度不佳,而为了得到低电阻,可掺杂微量元素如In、Al、Ga等。Indium tin oxide thin film is composed of indium oxide (In 2 O 3 ) doped with tin oxide (SnO 2 ). Generally, ITO has the lowest resistance ratio and the highest light emission when In 2 O 3 /SnO 2 =90/10. Transmittance, the visible light transmittance can reach between 80 and 90%. IZO (Indium Zinc Oxide) is a material composed of In 2 O 3 added with 7-10% ZnO. Its advantage is that it can form a film at low temperature. The IZO obtained at room temperature is amorphous and can be etched with weak acid to reduce the wire material. damage, and the surface of the IZO film is smooth, suitable for the production of large-area panels. ZnO is a conductive material composed of the base material, because Zn (zinc) metal is more abundant and cheaper than In (indium), and it is less toxic and easier to etch than ITO. However, due to the high resistance of pure ZnO, when the ambient temperature is higher than 150°C, its electrical stability is not good. In order to obtain low resistance, it can be doped with trace elements such as In, Al, Ga, etc.
该电致变色层13的该纳米线材料是选自氧化锌纳米线、氧化钨纳米线、氧化钼纳米线或氧化钨钼纳米线之一或多者组合。此处所定义的纳米线是指其结构中有二维的尺寸是介于1至100纳米之间,而于其长度方面可以超过100纳米。对纳米线材料的二维的尺寸通常以线径在介于1至100纳米之间作为纳米线材料的定义。在本发明的实施例中,该纳米线材料的线径是介于10至100纳米之间,较佳是介于30至60纳米之间。The nanowire material of the
需注意的是,在本发明中,电致变色层13的该纳米线材料是为一具有针状纳米结构的金属氧化物所组成。其中,该针状纳米结构是指结构类似纳米柱或纳米线的结构,其柱或线结构由底端到顶端的直径宽度可以逐渐地变小。It should be noted that, in the present invention, the nanowire material of the
在本发明中,作为电致变色层13的该纳米线材料较佳是采用纳米氧化钨所组成。然而需注意的是,并不限于纳米氧化钨层。具有纳米结构的氧化钨,其二维的线径大小是介于30纳米至60纳米之间,且是经由一溶胶-凝胶法制备而成。溶胶-凝胶是由一有机金属化合物与一碳氢化合物化合而成,此外,有机金属化合物与碳氢化合物的化合温度是在25℃至100℃之间。随着针状氧化钨的针状结构的直径变小,比表面积将会显著增大,也就是表面原子数所占的百分比将会显著的增加,直径10nm的颗粒大约有15%的原子位在颗粒表面,而直径1nm的纳米粒子上几乎所有的原子都是表面原子。纳米氧化钨层的比表面积S将可以提高至80m2/g以上,提高吸附于其上的电解液,进而提高其电子导通率,可降低该电致变色装置所需的驱动电压,使得电致变色元件具有快速变色能力及延长使用寿命的优点。。In the present invention, the nanowire material used as the
氧化钨为到目前为止最被广为研究的材料,而氧化钼也有相似的电致变色性质。虽然氧化钼的变色效果不及氧化钨,然而氧化钼变色时吸收光的最大值比较靠近可见光,人类对其变化较敏感,所以仍有多种用途。当材料纳米化之后,许多特性将被增强或改变。其中,氧化钨钼变色理论:Tungsten oxide is by far the most widely studied material, while molybdenum oxide has similar electrochromic properties. Although the color-changing effect of molybdenum oxide is not as good as that of tungsten oxide, the maximum value of light absorbed by molybdenum oxide is closer to visible light when it changes color, and humans are more sensitive to its changes, so there are still many uses. When materials are nanosized, many properties will be enhanced or changed. Among them, the discoloration theory of tungsten and molybdenum oxide:
带正电的离子(如H+或Li+)与电子同时注入MoO3并吸收光能而成变HMoO3,即电子由Mo5+跳到Mo6+的电化学反应,反应进行时需吸收光而产生变色效果,氧化钨与氧化钼反应简式:Positively charged ions (such as H + or Li + ) and electrons are injected into MoO 3 at the same time and absorb light energy to become HMoO 3 , that is, the electrochemical reaction in which electrons jump from Mo 5+ to Mo 6+ . Light produces discoloration effect, simple reaction formula of tungsten oxide and molybdenum oxide:
Mo6++e-+hv→Mo5+ Mo 6+ +e-+hv→Mo 5+
W6++e-+hv→W5+ W 6+ +e-+hv→W 5+
结合氧化与还原方程式后:After combining the oxidation and reduction equations:
W6+(A)+W5+(B)+hv→W5+(A)+W6+(B) EmmW 6+ (A)+W 5+ (B)+hv→W 5+ (A)+W 6+ (B) Emm
Mo6+(A)+Mo5+(B)+hv→Mo5+(A)+Mo6+(B) EwwMo 6+ (A)+Mo 5+ (B)+hv→Mo 5+ (A)+Mo 6+ (B) Eww
其中,Emm与Eww分别为氧化钼及氧化钨变色时所吸收的光子能量,现在将氧化钨与氧化钼共同成长,材料在未变色前就会有两个不相等的能阶位置Mo6+与W6+,在离子与电子同时注入材料之后,它们会停留在较低能阶的Mo6+上,然后再进行反应,在氧化钨钼中Mo6+位置的能量小于W6+位置的能量为ΔE:Among them, Emm and Eww are the photon energy absorbed by molybdenum oxide and tungsten oxide when they change color respectively. Now that tungsten oxide and molybdenum oxide are grown together, the material will have two unequal energy level positions Mo 6+ and W 6+ , after the ions and electrons are injected into the material at the same time, they will stay on the Mo 6+ of the lower energy level, and then react, the energy of the Mo 6+ position in tungsten and molybdenum oxide is less than the energy of the W 6+ position is ΔE:
EW+6-EMo+6=ΔEEW +6 -EMo +6 = ΔE
所以电子由钼跃迁到钨的能量(Emw),会较电子在钨中跃迁的能量(Eww)大ΔE的能量。Therefore, the energy (Emw) of electrons transitioning from molybdenum to tungsten will be greater than the energy (Eww) of electrons transitioning in tungsten by ΔE energy.
可知MoO3-WO3可以有效的提升变色时吸收光的能量(2.15ev),此能量比MoO(1.56ev)与WO3(1.4ev)都易于辨识,所以可以达到较佳的视觉变色效果。8.0cm×15.0cm面积的元件的电致色变测试周期超过10,000次,而且转换时间(着色和去色)小于245毫秒,着色效率为265cm2C-1,稳定态的电流(着色和去色)小于5uAcm-2,而且记忆时间超过650秒。It can be seen that MoO 3 -WO 3 can effectively increase the energy (2.15ev) of light absorbed during discoloration, which is easier to recognize than MoO (1.56ev) and WO 3 (1.4ev), so it can achieve a better visual discoloration effect. The electrochromic test cycle of an element with an area of 8.0cm×15.0cm exceeds 10,000 times, and the switching time (coloring and decolorization) is less than 245 milliseconds, the coloring efficiency is 265cm 2 C -1 , and the steady-state current (coloration and decolorization) ) is less than 5uAcm -2 , and the memory time exceeds 650 seconds.
该导离电解质层(14)由一离子液体与一胶状聚合物所组成。该离子液体为锂盐的1M LiClO4,以及混合有[EMIM][BF4]的离子液体(其中EMIM为乙基甲基咪唑离子【ethyl methyl imidazolium】);而该胶状聚合物改为聚氯乙烯(polyvinylchloride,PVC)。其中,形成的胶体聚合电解质的离子导电度约为10-2S/cm。其中,电解质与胶材混时,是使用直接涂布(网印)于玻璃后再加热烘干硬化。需注意的是,电解质与胶材混合时亦可以将含电解质的胶材制成薄膜后裁剪适当大小覆贴于玻璃后再经层压机加热压合两片玻璃,亦可以得到类似的特性。在另一实施中,混合有[EMIM][BF4]的离子液体改为使用[BMIM][TFSI](其中BMIM代表丁基甲基咪唑离子【butylmethyl imidazolium】);而该胶状聚合物改为聚乙烯醇(Polyvinyl alcohol,PVA)。其中,形成的胶体聚合电解质的离子导电度约为3×10-3S/cm。其中,电解质与胶材混合时是将含电解质的胶材制成薄膜后裁剪适当大小覆贴于玻璃后再经层压机加热压合两片玻璃。The ion-conducting electrolyte layer (14) is composed of an ionic liquid and a colloidal polymer. The ionic liquid is 1M LiClO 4 of lithium salt, and an ionic liquid mixed with [EMIM][BF 4 ] (wherein EMIM is ethyl methyl imidazolium ion [ethyl methyl imidazolium]); and the colloidal polymer is changed to poly Vinyl chloride (polyvinylchloride, PVC). Wherein, the ionic conductivity of the formed colloidal polyelectrolyte is about 10 −2 S/cm. Among them, when the electrolyte is mixed with the glue, it is directly coated (screen printed) on the glass and then heated and dried to harden. It should be noted that when the electrolyte is mixed with the glue, the glue containing the electrolyte can also be made into a film, cut to an appropriate size and pasted on the glass, and then heated and pressed by a laminator to bond two pieces of glass to obtain similar characteristics. In another implementation, the ionic liquid mixed with [EMIM][BF 4 ] was changed to [BMIM][TFSI] (where BMIM stands for butylmethyl imidazolium); and the colloidal polymer was changed to poly Vinyl alcohol (Polyvinyl alcohol, PVA). Wherein, the ionic conductivity of the formed colloidal polyelectrolyte is about 3×10 −3 S/cm. Among them, when the electrolyte is mixed with the adhesive material, the adhesive material containing the electrolyte is made into a film, cut to an appropriate size and pasted on the glass, and then heated and pressed by a laminator to bond two pieces of glass.
该离子储存层(15)的材料为纳米氧化镍薄膜、纳米氧化镍铁薄膜等。此处所定义的纳米薄膜是指其结构中有一维的尺寸是介于1至100纳米之间,通常是指在厚度方面介于1至100纳米之间。在本发明的实施例中,该纳米薄膜材料的厚度是介于1至100纳米之间,较佳是介于50至90纳米之间。The ion storage layer (15) is made of nano-nickel oxide film, nano-nickel-iron oxide film and the like. The nano-thin film defined here means that one dimension of its structure is between 1 and 100 nanometers, and generally refers to a thickness between 1 and 100 nanometers. In an embodiment of the present invention, the thickness of the nano-film material is between 1-100 nanometers, preferably between 50-90 nanometers.
利用反应性电浆离子溅镀技术制备厚度为80纳米的纳米氧化镍薄膜于透明导电玻璃上,在电解质为0.1M LiClO4水溶液中给予外加电位。在沉积薄膜时,通入电浆腔体中的氩气/氧气流量比为40sccm:10sccm时,有较大的穿透率变化,最大的光密度变化(Optical density change)ΔOD=0.45,其穿透率随着电致色变反应次数增加而上升,并有逐渐稳定的趋势。电源功率(150Watt)下溅镀时间,其ΔOD值较佳,在此条件下制备的纳米氧化镍薄膜寿命可达数千次以上。A nano-nickel oxide film with a thickness of 80 nm was prepared on a transparent conductive glass by reactive plasma ion sputtering technology, and an external potential was given in an electrolyte of 0.1M LiClO 4 aqueous solution. When depositing a thin film, when the flow ratio of argon/oxygen into the plasma chamber is 40sccm:10sccm, there is a large change in the transmittance, and the maximum optical density change (Optical density change) ΔOD=0.45, its penetration The transmittance increases with the increase of the number of electrochromic reactions, and tends to be stable gradually. Sputtering time under power supply (150Watt), its ΔOD value is better, and the life of the nano-nickel oxide film prepared under this condition can reach more than thousands of times.
另一种方式是使用常压电浆制备纳米氧化镍变色薄膜。此外,于氧化镍薄膜内加入氧化铁后,确实增加了氧化镍薄膜的电化学性质。Another way is to use atmospheric pressure plasma to prepare nano-nickel oxide color-changing film. In addition, after adding iron oxide into the nickel oxide film, the electrochemical properties of the nickel oxide film are indeed increased.
为使本领域技术人士更清楚本发明的特征,特以实施例说明本发明的具有纳米电致变色材料结构的电致变色装置。In order to make the characteristics of the present invention clearer to those skilled in the art, the electrochromic device with the nanometer electrochromic material structure of the present invention is illustrated with examples.
该透明导电层(12)(16)的实施方式为使用纳米碳质层作为该纳米材料之一。取SiO2分散液(购自长春化工,分散相为2-丁酮相(MEK),含量15至45wt%、平均粒径为10至20nm),再以线棒将其涂布于聚乙烯对苯二甲酸酯(PET)基材上,于78℃烘干。接着取纯度为65至75%、平均管束管径大小为10nm的单层纳米碳管(Single-walled carbon nanotube,SWCNT,购自Iljin,商品型号ASP-100F)、十二烷基苯磺酸钠(sodium dedocylbenzene sulfonate)及去离子水以重量比0.2/0.2/100方式混合,并以细胞粉碎机进行震荡分散一小时形成纳米碳管分散液,再以线棒将其涂布于SiO2层上,以78℃烘干即形成纳米碳质层。纳米碳质层的透光度是利用紫外线/可见光分光光谱仪(UV/Visible spectrometer)以波长500nm进行量测。以基材及无机层为背景(background),本实施例的纳米碳质层的透光度在扣除背景值后为96.1%。纳米碳质层经四点探针电阻计量测,其片电阻为1.37x103Ω。The embodiment of the transparent conductive layer ( 12 ) ( 16 ) is to use a nano-carbon layer as one of the nano-materials. Take the SiO2 dispersion (purchased from Changchun Chemical Industry, the dispersed phase is 2-butanone phase (MEK), the content is 15 to 45 wt%, and the average particle size is 10 to 20nm), and then it is coated on the polyethylene surface with a wire rod. On a phthalate (PET) substrate, dry at 78°C. Then take single-walled carbon nanotubes (Single-walled carbon nanotube, SWCNT, purchased from Iljin, commodity model ASP-100F) with a purity of 65 to 75%, and an average tube diameter of 10 nm, sodium dodecylbenzenesulfonate (sodium dedocylbenzene sulfonate) and deionized water were mixed at a weight ratio of 0.2/0.2/100, and dispersed for one hour with a cell pulverizer to form a carbon nanotube dispersion, and then coated on the SiO 2 layer with a wire rod , drying at 78 ° C to form a nano-carbon layer. The light transmittance of the nanocarbon layer is measured with a wavelength of 500 nm by using an ultraviolet/visible spectrometer (UV/Visible spectrometer). Taking the substrate and the inorganic layer as the background, the light transmittance of the carbon nano-layer in this embodiment is 96.1% after deducting the background value. The nano-carbon layer was measured by a four-point probe resistance meter, and its sheet resistance was 1.37x103Ω.
而该电致变色层(15)的纳米线较佳实施方式为使用氧化钨钼纳米线。利用炉管加热以物理气相传输法制备:实验中三氧化钨钼纳米线的成长不是气-液-固(VLS)成长机制,而是属于气-固(VS)成长机制。机制是先例用高温让材料蒸气压大于环境的压力,使材料气化并通入气体带动,通过低温区时,因为温度的骤将产生不稳定的环境,材料重新析出产生纳米结构。A preferred embodiment of the nanowires of the electrochromic layer (15) is to use tungsten oxide molybdenum nanowires. Prepared by physical vapor transport method using furnace tube heating: the growth of tungsten trioxide and molybdenum nanowires in the experiment is not a gas-liquid-solid (VLS) growth mechanism, but a gas-solid (VS) growth mechanism. The mechanism is a precedent for using high temperature to make the vapor pressure of the material greater than the pressure of the environment, so that the material is vaporized and driven by gas. When passing through the low temperature zone, the sudden temperature will create an unstable environment, and the material will re-precipitate to form a nanostructure.
首先,将表面镀有透明导电层的玻璃切成所需要的规格,置入盛有酒精溶液的容器中,以超音波震荡洗净器震荡清洗后取出,再以氮气枪吹干。取适当的氧化钨与氧化钼粉末,分别置于不同坩埚船上,将氧化钼(99.9%)、氧化钨(99.9%)与前处理过的纳米碳玻璃置于石英管中,然后锁紧不锈钢套将炉管密封。炉管密封后打开扩散帮浦系统抽真空至10-6torr,再通入制程气体流量以成长纳米氧化钨钼纳米线。First, cut the glass coated with a transparent conductive layer to the required specifications, put it into a container filled with alcohol solution, clean it with an ultrasonic vibration cleaner, take it out, and then blow it dry with a nitrogen gun. Take appropriate tungsten oxide and molybdenum oxide powders and place them on different crucible boats respectively, place molybdenum oxide (99.9%), tungsten oxide (99.9%) and pre-treated nano-carbon glass in the quartz tube, and then lock the stainless steel sleeve Seal the furnace tube. After the furnace tube is sealed, the diffusion pump system is opened to evacuate to 10 -6 torr, and then the process gas flow is introduced to grow nano-tungsten oxide molybdenum nanowires.
该导离电解质层(14)使用锂盐的1M LiClO4,以及混合有[EMIM][BF4]的离子液体(其中EMIM为乙基甲基咪唑离子【ethyl methyl imidazolium】);而该胶状聚合物为乙烯一乙酸乙烯酯共聚物(Ethylene vinyl accetate copolymer,EVA)。将此电解质注入上述制备完成的具有纳米钨钼纳米线的电致变色装置中。其中,形成的胶状聚合物电解质的离子导电度在室温下约为10-3S/cm。其中,电解质与胶材混时,使用直接涂布(网印)于玻璃后再加热烘干硬化。由于使用上述胶状电解质,因此没有因为电解质溢漏或挥发的问题。The ion-conducting electrolyte layer (14) uses 1M LiClO 4 of lithium salt, and an ionic liquid mixed with [EMIM][BF4] (wherein EMIM is ethyl methyl imidazolium ion [ethyl methyl imidazolium]); and the colloidal polymer The product is ethylene vinyl acetate copolymer (Ethylene vinyl acetate copolymer, EVA). The electrolyte is injected into the electrochromic device with nanometer tungsten and molybdenum nanowires prepared above. Wherein, the ionic conductivity of the formed colloidal polymer electrolyte is about 10 −3 S/cm at room temperature. Among them, when the electrolyte is mixed with the glue, it is directly coated (screen printed) on the glass and then heated and dried to harden. Since the above-mentioned gel electrolyte is used, there is no problem of leakage or volatilization of the electrolyte.
该离子储存层(13)采用安定性高的水性结晶型氧化镍溶胶溶液,其氧化镍的纳米粒子粒径10~30nm,固含量为0.1~2.0%,经均匀涂抹于该第二透明导电基材上,经烘烤形成一纳米薄膜。纳米氧化镍粒子的制备方式可以以液相法制备:例如由硝酸镍[Ni(NO3)2·6H2O]先驱物,加入氨水不断搅拌直至溶液达pH=7,所制得绿色氢氧化镍[Ni(OH)2]粉末(LP1)以加热可得到纳米氧化镍粒子。The ion storage layer (13) adopts a highly stable water-based crystalline nickel oxide sol solution, the nickel oxide nanoparticles have a particle size of 10-30nm and a solid content of 0.1-2.0%. On the material, a nanometer film is formed by baking. The preparation method of nano-nickel oxide particles can be prepared by liquid phase method: for example, from the precursor of nickel nitrate [Ni(NO 3 ) 2 6H 2 O], adding ammonia water and stirring continuously until the solution reaches pH=7, the green hydroxide Nickel [Ni(OH) 2 ] powder (LP1) can be heated to obtain nano-nickel oxide particles.
根据本发明的该电致变色装置具有下列的功效:The electrochromic device according to the present invention has the following effects:
1.该电致变色装置的驱动电压为1伏特至4伏特之间。比较一般驱动电压40伏特至80伏特,有相当大幅度明显的差距,可达到降低作业电压又节省能源的功能。1. The driving voltage of the electrochromic device is between 1 volt and 4 volts. Compared with the general driving voltage of 40 volts to 80 volts, there is a large and obvious gap, which can achieve the function of reducing the operating voltage and saving energy.
2.氧化还原次数高,寿命长。电致变色层、透明导电膜、离子储存层均可以为纳米材料,经氧化还原实验,其还原次数可高达一万次到一万二千次左右,使用寿命也较长。2. High redox times and long service life. The electrochromic layer, the transparent conductive film, and the ion storage layer can all be nanomaterials. After redox experiments, the reduction times can be as high as 10,000 to 12,000 times, and the service life is longer.
3.明暗对比度佳。可有效增加离子传导速度,并缩短去/着色时间,在可见光谱500nm波长照射下,氧化钨钼纳米线退色穿透率70.2%,变色穿透率43.2%,穿透率变化27%。3. Good light and dark contrast. It can effectively increase the ion conduction speed and shorten the decolorization/coloring time. Under the irradiation of 500nm wavelength in the visible spectrum, the tungsten oxide molybdenum nanowires have a fading penetration rate of 70.2%, a discoloration penetration rate of 43.2%, and a penetration rate change of 27%.
虽然本发明可表现为不同形式的实施例,但附图所示的内容及于上文中说明的内容是为本发明可之较佳实施例,并请了解本文所揭示的内容是考虑为本发明的一范例,且并非意图用以将本发明限制于图示及/或所描述的特定实施例中。Although the present invention can be embodied in different forms, the content shown in the drawings and the content described above are preferred embodiments of the present invention, and please understand that the content disclosed herein is considered as the present invention and are not intended to limit the invention to the particular embodiments shown and/or described.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2011104487268A CN103186004A (en) | 2011-12-28 | 2011-12-28 | Electrochromic device with nano-electrochromic material structure |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2011104487268A CN103186004A (en) | 2011-12-28 | 2011-12-28 | Electrochromic device with nano-electrochromic material structure |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN103186004A true CN103186004A (en) | 2013-07-03 |
Family
ID=48677256
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2011104487268A Pending CN103186004A (en) | 2011-12-28 | 2011-12-28 | Electrochromic device with nano-electrochromic material structure |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103186004A (en) |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103643873A (en) * | 2013-11-15 | 2014-03-19 | 成都市翻鑫家科技有限公司 | Window capable of automatically adjusting light |
| CN103643871A (en) * | 2013-11-15 | 2014-03-19 | 成都市翻鑫家科技有限公司 | Novel window capable of adjusting light rays automatically |
| CN104880884A (en) * | 2015-04-30 | 2015-09-02 | 游少雄 | Electrochromic intelligent glass and manufacturing method thereof |
| CN104898345A (en) * | 2015-04-30 | 2015-09-09 | 上方能源技术(杭州)有限公司 | Driving layout structure of electrochromic glass |
| CN105388676A (en) * | 2015-12-28 | 2016-03-09 | 苏州华一新能源科技有限公司 | ZnO-NiO combined basis electrically induced discoloration device and preparation method thereof |
| CN108351565A (en) * | 2015-08-26 | 2018-07-31 | 合利拓普技术公司 | Electrochromic device containing colour tunable nanostructure |
| CN108780258A (en) * | 2016-03-07 | 2018-11-09 | 巴斯夫欧洲公司 | Coating process using a premix printing formulation |
| CN109683416A (en) * | 2019-01-28 | 2019-04-26 | 青岛九维华盾科技研究院有限公司 | A kind of double-colored adjustable electrochromism thin-film device |
| CN109822996A (en) * | 2017-11-23 | 2019-05-31 | 宸美(厦门)光电有限公司 | Electrocontrolled color change vehicle glass |
| CN109854135A (en) * | 2018-11-09 | 2019-06-07 | 惠泽永利(北京)国际纺织品有限公司 | A kind of smart membranes and control system |
| EP3467582A4 (en) * | 2016-06-03 | 2020-01-22 | Industry-University Cooperation Foundation Hanyang University Erica Campus | ELECTROCHROMIC ELEMENT COMPRISING AN ELECTROCHROMIC LAYER AND AN ION STORAGE LAYER AND ITS PREPARATION METHOD |
| CN110723748A (en) * | 2018-07-17 | 2020-01-24 | 菲尔齐费尔公司 | Metal oxides, metal bronzes and polyoxometallates as charge storage materials in electrochromic devices |
| CN111596496A (en) * | 2020-05-28 | 2020-08-28 | 中国科学院上海硅酸盐研究所 | Visible-infrared independently-controlled electrochromic device |
| CN113621270A (en) * | 2021-08-27 | 2021-11-09 | 合肥工业大学 | Preparation method and application of nickel oxide nanocrystalline electrochromic ink |
| CN114578626A (en) * | 2022-03-21 | 2022-06-03 | 华南理工大学 | Electrochromic device, preparation method and application thereof |
| CN115128878A (en) * | 2021-03-25 | 2022-09-30 | 中国科学院上海硅酸盐研究所 | A kind of flexible electrochromic device based on in-situ zinc oxide nanorods and preparation method thereof |
| CN115308962A (en) * | 2022-08-24 | 2022-11-08 | 中建材玻璃新材料研究院集团有限公司 | Preparation method of electrochromic glass with adjustable reflection spectrum |
| TWI832093B (en) * | 2021-09-17 | 2024-02-11 | 崑山科技大學 | Preparation method of electrochromic ion storage membrane |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060139725A1 (en) * | 2004-12-29 | 2006-06-29 | Tsinghua Nano-Technology Co., Ltd. | Electrochromic device |
| CN1928685A (en) * | 2006-09-28 | 2007-03-14 | 同济大学 | Method for preparing full solid electrochromic device with sol-gel |
| CN101395244A (en) * | 2006-03-06 | 2009-03-25 | Skc株式会社 | Preparation of prussian blue coating film for electrochromic device |
| CN101445723A (en) * | 2007-11-27 | 2009-06-03 | 华东师范大学 | Novel nano-composite electrochromic material, device and preparation method thereof |
| CN101833211A (en) * | 2010-04-01 | 2010-09-15 | 中国科学院宁波材料技术与工程研究所 | Intelligent dimming glass |
-
2011
- 2011-12-28 CN CN2011104487268A patent/CN103186004A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060139725A1 (en) * | 2004-12-29 | 2006-06-29 | Tsinghua Nano-Technology Co., Ltd. | Electrochromic device |
| CN101395244A (en) * | 2006-03-06 | 2009-03-25 | Skc株式会社 | Preparation of prussian blue coating film for electrochromic device |
| CN1928685A (en) * | 2006-09-28 | 2007-03-14 | 同济大学 | Method for preparing full solid electrochromic device with sol-gel |
| CN101445723A (en) * | 2007-11-27 | 2009-06-03 | 华东师范大学 | Novel nano-composite electrochromic material, device and preparation method thereof |
| CN101833211A (en) * | 2010-04-01 | 2010-09-15 | 中国科学院宁波材料技术与工程研究所 | Intelligent dimming glass |
Cited By (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103643871A (en) * | 2013-11-15 | 2014-03-19 | 成都市翻鑫家科技有限公司 | Novel window capable of adjusting light rays automatically |
| CN103643873A (en) * | 2013-11-15 | 2014-03-19 | 成都市翻鑫家科技有限公司 | Window capable of automatically adjusting light |
| CN104880884B (en) * | 2015-04-30 | 2018-10-12 | 游少鑫 | A kind of electrochromic intelligent glass and its manufacturing method |
| CN104880884A (en) * | 2015-04-30 | 2015-09-02 | 游少雄 | Electrochromic intelligent glass and manufacturing method thereof |
| CN104898345A (en) * | 2015-04-30 | 2015-09-09 | 上方能源技术(杭州)有限公司 | Driving layout structure of electrochromic glass |
| CN104898345B (en) * | 2015-04-30 | 2017-12-22 | 浙江上方电子装备有限公司 | A kind of drive arrangement of electrochomeric glass |
| CN108351565A (en) * | 2015-08-26 | 2018-07-31 | 合利拓普技术公司 | Electrochromic device containing colour tunable nanostructure |
| CN108351565B (en) * | 2015-08-26 | 2021-08-10 | 合利拓普技术公司 | Electrochromic device containing color tunable nanostructures |
| CN105388676B (en) * | 2015-12-28 | 2018-08-31 | 苏州华一新能源科技有限公司 | A kind of ZnO-NiO composite bases electrochromic device and preparation method thereof |
| CN105388676A (en) * | 2015-12-28 | 2016-03-09 | 苏州华一新能源科技有限公司 | ZnO-NiO combined basis electrically induced discoloration device and preparation method thereof |
| CN108780258A (en) * | 2016-03-07 | 2018-11-09 | 巴斯夫欧洲公司 | Coating process using a premix printing formulation |
| EP3467582A4 (en) * | 2016-06-03 | 2020-01-22 | Industry-University Cooperation Foundation Hanyang University Erica Campus | ELECTROCHROMIC ELEMENT COMPRISING AN ELECTROCHROMIC LAYER AND AN ION STORAGE LAYER AND ITS PREPARATION METHOD |
| CN109822996A (en) * | 2017-11-23 | 2019-05-31 | 宸美(厦门)光电有限公司 | Electrocontrolled color change vehicle glass |
| CN110723748A (en) * | 2018-07-17 | 2020-01-24 | 菲尔齐费尔公司 | Metal oxides, metal bronzes and polyoxometallates as charge storage materials in electrochromic devices |
| US11859130B2 (en) | 2018-07-17 | 2024-01-02 | Furcifer Inc. | Metal oxide, metal bronze and polyoxometalate as charge storage materials in electrochromic device |
| CN110723748B (en) * | 2018-07-17 | 2022-07-08 | 菲尔齐费尔公司 | Metal oxides, metal bronzes and polyoxometallates as charge storage materials in electrochromic devices |
| CN109854135A (en) * | 2018-11-09 | 2019-06-07 | 惠泽永利(北京)国际纺织品有限公司 | A kind of smart membranes and control system |
| CN109683416A (en) * | 2019-01-28 | 2019-04-26 | 青岛九维华盾科技研究院有限公司 | A kind of double-colored adjustable electrochromism thin-film device |
| CN109683416B (en) * | 2019-01-28 | 2021-10-26 | 青岛九维华盾科技研究院有限公司 | Double-color adjustable electrochromic thin film device |
| CN111596496A (en) * | 2020-05-28 | 2020-08-28 | 中国科学院上海硅酸盐研究所 | Visible-infrared independently-controlled electrochromic device |
| CN111596496B (en) * | 2020-05-28 | 2021-08-06 | 中国科学院上海硅酸盐研究所 | A Visible-Infrared Independent Controlled Electrochromic Device |
| CN115128878A (en) * | 2021-03-25 | 2022-09-30 | 中国科学院上海硅酸盐研究所 | A kind of flexible electrochromic device based on in-situ zinc oxide nanorods and preparation method thereof |
| CN115128878B (en) * | 2021-03-25 | 2023-12-08 | 中国科学院上海硅酸盐研究所 | A flexible electrochromic device based on in-situ zinc oxide nanorods and its preparation method |
| CN113621270A (en) * | 2021-08-27 | 2021-11-09 | 合肥工业大学 | Preparation method and application of nickel oxide nanocrystalline electrochromic ink |
| TWI832093B (en) * | 2021-09-17 | 2024-02-11 | 崑山科技大學 | Preparation method of electrochromic ion storage membrane |
| CN114578626A (en) * | 2022-03-21 | 2022-06-03 | 华南理工大学 | Electrochromic device, preparation method and application thereof |
| CN115308962A (en) * | 2022-08-24 | 2022-11-08 | 中建材玻璃新材料研究院集团有限公司 | Preparation method of electrochromic glass with adjustable reflection spectrum |
| CN115308962B (en) * | 2022-08-24 | 2024-06-11 | 中建材玻璃新材料研究院集团有限公司 | Preparation method of electrochromic glass with adjustable reflection spectrum |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103186004A (en) | Electrochromic device with nano-electrochromic material structure | |
| Xie et al. | Energy storage smart window with transparent-to-dark electrochromic behavior and improved pseudocapacitive performance | |
| Wu et al. | Electrochromic metal oxides: recent progress and prospect | |
| Li et al. | Enhanced electrochromic properties of WO3 nanotree-like structures synthesized via a two-step solvothermal process showing promise for electrochromic window application | |
| Yao et al. | WO3 quantum-dots electrochromism | |
| Chaudhary et al. | Prussian blue-viologen inorganic–organic hybrid blend for improved electrochromic performance | |
| Guo et al. | Fast-switching WO3-based electrochromic devices: design, fabrication, and applications | |
| Rani et al. | Synthesis of nanocrystalline ZnO powder via sol–gel route for dye-sensitized solar cells | |
| Li et al. | Nanohybridization of molybdenum oxide with tungsten molybdenum oxide nanowires for solution-processed fully reversible switching of energy storing smart windows | |
| Bi et al. | Large-scale multifunctional electrochromic-energy storage device based on tungsten trioxide monohydrate nanosheets and prussian white | |
| Tian et al. | Unconventional aluminum ion intercalation/deintercalation for fast switching and highly stable electrochromism | |
| Wang et al. | A Facile Strategy To Construct Au@ V x O2 x+ 1 Nanoflowers as a Multicolor Electrochromic Material for Adaptive Camouflage | |
| Kalantar-zadeh et al. | Synthesis of atomically thin WO3 sheets from hydrated tungsten trioxide | |
| Huang et al. | Boosting the Zn2+-based electrochromic properties of tungsten oxide through morphology control | |
| Shi et al. | Rational design of oxygen deficiency-controlled tungsten oxide electrochromic films with an exceptional memory effect | |
| Kateb et al. | ZnO–PEDOT core–shell nanowires: An ultrafast, high contrast and transparent electrochromic display | |
| Wang et al. | Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods | |
| Chu et al. | Hydrothermal synthesis of vanadium oxide nanorods and their electrochromic performance | |
| Tong et al. | Recent progress in the preparation and application of quantum dots/graphene composite materials | |
| Chang et al. | Assembly of tungsten oxide nanobundles and their electrochromic properties | |
| Golsheikh et al. | Effect of calcination temperature on performance of ZnO nanoparticles for dye-sensitized solar cells | |
| Dutta et al. | Highly stable poly (o-methoxyaniline)/WO3-nanoflower composite-based electrochromic supercapacitors with real-time charge indication | |
| Luo et al. | Potential gradient-driven fast-switching electrochromic device | |
| Kathirvel et al. | Solvothermal synthesis of TiO2 nanorods to enhance photovoltaic performance of dye-sensitized solar cells | |
| Hossain et al. | Mesoporous SnO2 spheres synthesized by electrochemical anodization and their application in CdSe-sensitized solar cells |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130703 |