[go: up one dir, main page]

CN103181014A - 采用不同的充电和放电单元的氧化还原流动电池系统 - Google Patents

采用不同的充电和放电单元的氧化还原流动电池系统 Download PDF

Info

Publication number
CN103181014A
CN103181014A CN2010800694027A CN201080069402A CN103181014A CN 103181014 A CN103181014 A CN 103181014A CN 2010800694027 A CN2010800694027 A CN 2010800694027A CN 201080069402 A CN201080069402 A CN 201080069402A CN 103181014 A CN103181014 A CN 103181014A
Authority
CN
China
Prior art keywords
unit
cells
metal
electrolyte solution
redox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800694027A
Other languages
English (en)
Inventor
K·卡姆帕纳特桑亚科恩
S·霍拉苏特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Squirrel Holdings Ltd
Original Assignee
Squirrel Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Squirrel Holdings Ltd filed Critical Squirrel Holdings Ltd
Publication of CN103181014A publication Critical patent/CN103181014A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

通过使用不同的单元群或单元组实现氧化还原流动系统的提高的储存效率、可靠性和耐久性,其中第一单元群的所有单元在该电池系统的充电过程中于各电解质溶液流经的隔室中均具有多孔金属电极,而第二单元群的所有单元在该电池系统的放电过程中于各电解质溶液流经的流动隔室中均具有多孔碳毡电极,或仅在带负电荷的电解质溶液流经的隔室中具有多孔碳毡电极并在其中带正电荷的电解质溶液流动的其它隔室中具有多孔金属电极。按照一般双极或单极单元堆构造,两组单元的所有单元可以通过可堆叠元件的重复序列来确定。

Description

采用不同的充电和放电单元的氧化还原流动电池系统
技术领域
本公开整体涉及使用多单元堆反应器的氧化还原流动电池系统。 
背景技术
所谓的氧化还原流动电池系统或简称氧化还原电池将能量储存在酸性电解质溶液,即正极溶液和负极溶液中,它们在充电和放电阶段的过程中流过多单元电化学反应器的单元各自的电极隔室。储存大体积的含有所谓氧化还原偶的离子的带正电荷与负电荷的电解质溶液的无限可能性使得这些系统格外适于发电和分配行业中的峰值削节(负荷调平),适于作为自立性风电场或太阳能光伏转换装置中的储存电池以及适于驱动车辆。大多数氧化还原流动电池系统采用多单元双极堆。 
氧化还原流动电池系统中使用的氧化还原偶通常为分别溶解在两种正极与负极电解质溶液中的多价金属,所述正极与负极电解质溶液通常是能够溶解所有氧化态下的一种或多种多价金属的酸性电解质。上面的考虑因素通常可应用于提供溶解在酸性水溶液中的可用的氧化还原偶的任何多价金属,其中该氧化还原偶金属离子维持阳极氧化反应和阴极还原反应,其产物在电化学充电过程中以及在电化学放电过程中均保持溶解在酸性电解质溶液中而不会发生任何相变。钒、铁、铬是构成在带正电荷电解质溶液中和在带负电荷电解质溶液中的可用的氧化还原偶的最常用的金属。 
由于与分别在带正电荷和在带负电荷的电解质溶液中使用不同金属的氧化还原偶的其它已知氧化还原流动系统相比对所谓“全钒”氧化还原流动电池系统所确认的许多优点,因此随后的示例性实施方案的描述将完全参照全钒氧化还原系统。应当清楚的是,本公开的电化学装置构造的考虑因素与优点加以必要变更仍适用于使用即使具有不同金属 的其它氧化还原偶。 
流动氧化还原电池系统的一个区别特征是(至少理想地)在放电过程中以及在充电过程中在单元电极处不存在气体物质析出。 
但是,如本公开中将要解释的那样,在单元运行的特定条件下会发生不想要的氢析出,鉴于以下事实:阴极的氢析出在酸性环境中是优势反应并为了对照在阴极极化电极处的这种热力学优势反应,在氧化还原流动单元中通常使用石墨或碳电极,由于碳基材料(通常是具有树脂粘合剂的碳颗粒的导电集合体)具有相对高的氢放电过电压。 
为了提高导电性相对较差和催化性较差的碳电极表面的性能,该电极或更具体为其活性电极表面通常为多孔碳纤维毡形式,所述多孔碳纤维毡可以轻易地被流动的电解质溶液浸渍,并背接触碳基双极电互连隔片(简称“互连”)的通常平坦的表面,所述碳基双极电互连隔片与相对的渗透离子膜片(permionic membrane)单元分隔体一同限定了各流动隔室。 
碳基导电板造成了对最大延伸的制造限制,石墨、玻璃碳或碳颗粒和/或纤维的集合体的板制品可以以必须确保可接受的机械坚固性的形式经济地制造并使用。 
氧化还原流动单元的另一典型特征在于在运行的放电与充电阶段的过程中,相对各自的电解质溶液,电极交替地反复从阳极极化切换至阴极极化。这实际上排除了在单元中使用金属基电极的可能性,因为它们不能承受两种极化条件或在两种极化条件下运行,并已经促使在单元的各个流动隔室中使用同样的碳基电极,虽然此类被迫选择伴随着许多缺点。 
例如,使用含有氧化还原偶V[V]/V[IV]的带正电荷的硫酸电解质溶液,该电池的正电极在充电循环过程中充当阳极,按照以下反应将钒由V[IV]氧化成V[V]而取出电子: 
2VO2++H2O=2VO2 ++2H++e-E0 Va=1.00伏(1) 
但是,这并非唯一发生的反应;竞争反应是水的氧化和氧的析出: 
H2O=1/2O2+2H++2e-E0 Ox=1.23伏特 (2) 
反应(1)在充电过程中是主导反应的原因是,反应(1)的标准电势仅为1伏特,而反应(2)的标准电势高于和等于1.23伏特。但是这些电势仅仅是标准电势,也就是说,在标准条件(25℃,1摩尔/升等)下发生反应时的电压。但是,当反应物质的浓度降低时,该电压按照能斯特(Nernst)方程对数地提高。因此,当在充电循环过程中钒(vanadile)离子浓度降低时,阳极反应(1)的相应电压将升高。在高充电状态下,两个竞争的阳极反应之间充电电流的分享(split)将不再有利于反应(1)(即所需的V[IV]氧化),而是一部分电流将支持伴生反应(2)。在极高的充电状态下,当几乎所有或所有V[IV]被氧化成V[V]时,能够发生且将要发生的唯一反应将是氧的析出。 
伴随的风险是,当使用碳或石墨电极和/或基于石墨的分配板时,析出的氧容易通过下列反应氧化所述碳,使该毡电极并甚至使分配背板或单元间互连劣化: 
2H2O+C=CO2+4H++4e-   (3) 
为了确保基于碳或石墨的正电极(毡和板)的长寿命,有必要在达到最大充电状态(可以假定通过带正电荷的电解质溶液)的大约85%至90%时阻止该充电过程。 
考虑到对该电池系统进行再充电时阳极极化时的碳基电极相对于各正极电解质溶液的脆弱性,使用碳基电极在实践中不允许将正极电解质溶液完全充电。当该电池系统的正极电解质溶液中的多价离子氧化接近完全氧化状态(100%充电)时,由于跨电极表面双层降低的传质(显著耗竭),在阳极表面的析氧开始与多价离子的氧化竞争。此外,如上所述,在这些条件下,氧排放可以通过与初生态氧的燃烧过程而实际上被碳“去极化”,这会迅速破坏该碳基电极(通常为碳纤维毡),并甚至可劣化碳基导电单元间互连或该单元的流动隔室的分配/集流背壁(back wall)。 
氧化还原流动电池系统具有严格依赖于两种不同的正极和负极电解质溶液的体积的能量储存容量。这理想地要求能够将电解质溶液完全充电,用于最大化每体积电解质溶液的能量储存。 
另一方面,采用含有氧化还原偶V[III]/V[IV]的带负电荷的硫酸电解质溶液,该电池的负电极在充电循环过程中充当阴极,给电子至V[IV]并将其还原成V[III]。在某些操作条件下,在单元的负电极(阴极)处可能不会避免伴生的析氢。特别地,当首次调节完全均质体系(首次调节两种电解质溶液)时不能避免析氢。事实上,在启动时,正极槽和负极槽充有相同的溶液:实际上含有50%V[III]和50%[IV]。这两种溶液随后在该单元的相应隔室中循环,强制穿过单元的电流破坏了溶液的化学均匀性,将流经该正电极隔室的溶液中所有的V[III]氧化成V[IV],并将流经该负电极隔室的溶液中所有的V[IV]还原成V[III]。在负电极(阴极)处的反应是: 
VO2++e-+2H+=V3++H2O   (4) 
在调节期结束时,负极电解质溶液将只含有三价钒,而正极电解质溶液将只含有四价钒(钒)。 
在调节过程中,如1中所报道的那样,氢在负电极处析出。 
当然,按照2H++e-=H2O析氢是当运行中的氧化还原流动电池系统的充电循环结束时所有三价钒已转化为二价钒时将发生的唯一反应。 
此外,虽然使用具有相对大的氢过电压的碳电极用于有效地抑制在酸性电解质中仍然是热力学优先阴极反应的阴极析氢,即使在充电过程中,可能也会发生伴生的析氢,尽管由于各种意外原因以极低的速率进行,这些原因例如: 
·电解质不均匀地分布到活性电极(阴极)表面上,导致反应物质(三价钒)局部耗尽; 
·在电极(当充电时为阴极)的整个投影面积上不均匀的电流分配导致的在“热点”处过高的电流密度; 
·在电解液中存在痕量的具有低氢过电压的金属,如Fe、Ni、Co等。这些金属沉积到负电极表面(当充电时为阴极)上并催化析氢。 
当氢析出时,其必须在各单元的各自隔室的出口处释放以使因电解 
______________________ 1X.Gao,M.J.Leahy和D.N.Buckley的“Investigation of Hydrogen Evolution during the Preparation of Anolyte for a Vanadium Redox Flow Battery”。 
质溶液不均匀分布导致对电流密度均匀性的破坏和在多孔碳毡阴极中气栓的形成最小化。 
此外,许多应用极大地得益于通过能够在比“安全的”最大电流密度(为了向系统的电负载输送电能时可靠地确保该电池系统的额定功率输出能力)更大的电流密度下将该电解质溶液充电而减少将该电池系统完全充电所需时间的能力。 
发明的一般描述 
通过使用不同的单元群克服这些限制和缺陷,并实现氧化还原流动系统的提高的储存效率、可靠性和耐久性,其中第一单元群的所有单元在该电池系统的充电过程中于各电解质溶液流经的隔室中均具有多孔金属电极,而第二单元群的所有单元在该电池系统的放电过程中于各电解质溶液流经的流动隔室中均具有多孔碳毡电极,或仅在带负电荷的电解质溶液流经的隔室中具有多孔碳毡电极,并在其中带正电荷的电解质溶液流动的其它隔室中具有多孔金属电极。 
第二单元群的所有单元(预定在该流动氧化还原能量储存系统放电过程中起作用以便向电负载供能)可以具有以下一般结构:在两个隔室中具有碳毡电极,并在该单元的两个流动隔室中具有连接到碳毡电极的单元间互连或电极电流分配板,该碳毡电极由导电的碳颗粒或纤维集合体和树脂粘合剂制成。 
作为替代且优选的,所有碳基面层(facing)和活性多孔碳电极可以仅仅保留在该“带正电荷的”电解质溶液的流动隔室中,在其表面处,流动的电解质溶液中的氧化还原偶的离子经历阴极还原,并且钛基的尺寸稳定的阳极(该阳极具有提高的氧化还原偶的离子的氧化活性)可保留在该“带负电荷的”电解质溶液中,在其表面处,流动的电解质溶液中的氧化还原偶的离子经历阳极氧化。 
更优选地,在第二单元群的所有单元(放电单元)中使用的渗透离子膜片在与带正电荷的电解质溶液接触的表面上方(即,朝向该单元的基本“全金属”流动隔室)可以具有耐酸和阳极稳定的金属黑(通常为 铂黑)颗粒的多孔电催化面层,所述面层通过热压与颗粒状非成膜树脂粘合剂(如聚四氟乙烯)混合的高催化性颗粒结合到该渗透离子膜片。按照这种实施方案,粘附的多孔层构成了活性比面积显著增加的阳极,其能够在成比例提高的电流密度下运行而不具有过度的伴生氧排放,且活化钛微网叠板(pack)将实际上充当对于活性金属黑颗粒层(其结合到该渗透离子膜上)的电流分配器。 
在任何情况下,该单元间互连或电极电流分配板可以具有与流动的“带负电荷的”电解质溶液接触的钛板面层,用于提高穿过或沿着该导电隔片的电导率和在该单元的整个有效投影面积(active projected area)上的等势性。 
不同的是,第一单元群的所有单元(预定用于将该氧化还原流动电池系统进行充电)具有金属电极,例如为钛、钽、锆(最终用含有贵金属或贵金属氧化物、低价氧化物或混合氧化物的层涂布)、不锈钢、哈氏合金(Hastelloy)、钛-钯、钛-镍、铅、含铅合金、锑、含锑合金,其均可耐受酸性电解质水溶液。在该单元的一个流动隔室中的电极可以包括阳极钝化基材金属,例如用可含有例如与钛或钽氧化物混合的钌或铱氧化物的活性表面层涂布的钛、钽及其合金,在其表面上,在“耗尽的”带正电荷的电解质溶液中含有的氧化还原偶的离子经历阳极氧化,而在该单元的其它流动隔室中的多孔电极可以具有氢离子放电过电压相对高的金属或金属合金,例如铅、锑、铅-锑合金、不锈钢、钛-钯和钛-镍合金、哈氏合金,任选用铅和/或锑的表面层涂布,在其表面上,在“耗尽的”带负电荷的电解质溶液中含有的氧化还原偶的离子经历阴极还原。 
当然,该金属电极必须耐受在该氧化还原系统运行时的“游离酸”浓度下的酸性电解质溶液。在全钒储存电池系统的情况下,与该电解质溶液接触的金属结构元件必须耐受来自钒的硫酸溶液的侵蚀。 
金属电极具有以下优点:减轻了通常由碳毡电极导致的在离子充电和离子放电的活性表面位置处的有效电子电流分配或收集的问题。金属电极,即使在压缩地与该流动隔室的导电背壁或导电的单元间互连保持 接触时也能确保好得多的电接触,并甚至可以点焊到其上以最小化接触电阻。此外,它们具有比碳毡大得多的横向导通电阻(与该渗透离子膜单元分隔体另一侧上的该单元的对电极相对的电极表面平面中的电流通路)。由此显著降低单元电阻,并实现在整个有效单元面积上提高的等势性,这也减轻了电流密度在局部可能无意中超过设计极限水平的“热点”现象的风险。 
该金属电极应提供与流经通常浅的流动隔室的电解质溶液接触的活性表面,而不会导致过度的压力降低,以便不承担由必需的循环泵带来的功率吸收。可以在单元隔室中使用以下元件代替常见的可压缩碳毡电极:单个或多个微丝网(micro wire net)或薄金属板网,其在电极充当阳极的情况下最终通过电催化涂布活化,具有耐酸性金属和最终也可阳极钝化的基底,如钛、钽及其合金、不锈钢、哈氏合金,任选在均匀分布的点处或沿着均匀间隔的平行线成波浪形或深冲压以便在紧固到堆组件上时构成压向单元间互连的表面的间隔的点支架(point rests)。 
或者,多个或单个丝网(wire net)或薄金属板网可以点焊到单元间互连的表面上。当然,作为对将微丝网或薄金属板网进行塑性变形的取代,该导电背壁或单元间互连可以在其整个中心有效单元面积上具有间隔的肋材或均匀分布的相同高度的突起,微丝网或薄金属板网的活性电极可以挤压接触或点焊在其冠部或尖端上。 
该第一单元群的基本全金属单元(充电单元)的投影有效单元面积(也就是说,该单元的两个流动隔室的金属电极与渗透离子性膜片分隔体的投影面积)可以小于第二单元群的单元(放电单元)的投影有效单元面积以降低结构材料的成本(电极和渗透离子膜总值),因为消除了对于因存在碳基电极导致的最大可承担离子电流密度的约束。 
作为替代,或与最终降低有效单元面积协同,第一单元群(充电单元)的单元数量可以不同于并通常小于第二单元群的单元(放电)数量。 
穿过第一单元群的单元(充电单元)的各流动隔室的电解质溶液流量可以独立于穿过第二单元群的单元(放电单元)的各流动隔室的电解 质溶液流量进行调节,增加了对于将该能量储存系统进行充电和放电的各过程条件的适应性。 
将该能量储存系统进行充电和放电的两个过程可以各自在可独立优化的条件下同时进行以利用并发的可再生能源将该氧化还原流动电池系统进行充电并同时向电负载输送电力。 
按照一种优选的实施方案,不同单元群的单元均为电串行的双极单元,并且是相同的堆组件的一部分,虽然不同的是:第一单元群连接到DC电源,第二单元群连接到DC-AC转换变换器。 
按照一种替代性实施方案,两个不同单元群的所有单元均为单极单元,其电极分别按照特定的串行-并行配置连接:第一单元群的那些连接到DC电源,第二单元群的那些连接到DC-AC转换变换器。 
在所附权利要求中限定了本发明及其重要实施方案,其描述意欲构成本说明书的一部分并且通过明确引用并入本文。 
附图概述 
图1是按照本公开制得的流动氧化还原电池系统的基本图解。 
图2显示了图1的基本图解,其中按照一种优选实施方案,第一单元群的全金属电极单元和第二单元群的所有电池组装为一元化的(unified)堆组件。 
图3部分复制了前面图中的图解,按照双极单元实施方案示意性详细描述了堆叠的单极单元的内部结构。 
图4部分复制了图1和2中的基本图解,按照双极单元堆实施方案详细描述了内部单元结构。 
图5是均为双极类型的充电单元与放电单元的一元化堆的简化示意性分解图。 
图6是均为单极类型的充电单元与放电单元的一元化堆的简化示意性分解图。 
图7是限定双极充电单元的可堆叠元件的“书状”分解图。 
图8是限定双极放电单元的可堆叠元件的“书状”分解图。 
示例性实施方案描述 
原则上,根据本公开的流动氧化还原电池系统具有如图1中所述的功能性图解。 
如该图解中所示,将预定对该流动氧化还原电池系统的两种电解质溶液进行充电的第一单元群A的所有单元电连接到一个或多个DC电源上,所述电源可为太阳能单元板阵列、风轮机或甚至电池充电器形式。 
将预定对DC电力输送至电负载的第二单元群B的所有单元电连接到普通变换器的输入端,所述变换器通常在公共分配网的频率与额定电压下将DC输出功率转化为AC功率。 
不同于电连接线路,两种不同的电解质溶液的液压线路用实线描绘。分别地,带正电荷的电解质溶液储存在电解质槽(+)中,带负电荷的电解质溶液储存在各自的电解质槽(-)中。 
图1至4中显示的OCV装置是该氧化还原流动电池系统的充电状态的任选监控设备。其可以是与组A或B的单元结构相同的单个按比例缩小的单元。尺寸减小的复制单元允许监控开路单元电压,由此可能得知电解质溶液的充电状态。在全钒氧化还原流动电池系统的情况下,大约1.5V的开路单元电压表明电解质溶液的完全充电状态,大约1.2V的开路单元电压表明电解质溶液处于完全放电条件下。 
在图1的示例性图解中,堆单元的单元群A和B(分别用于充电过程和放电过程)具有双极堆构造,两种电解质溶液的连续流穿过所有单元的各流动隔室从堆叠的双极单元的一个端头(header)h1到另一个端头h2,由此通常在一个端头h1中在两个不同的分配室(distribution chamber)中供给两种电解质溶液,并将其收集到另一端头h2的类似的不同隔室中。内部管道限定了两种电解质溶液的不同的连续流动途径。循环泵用于各电解质溶液。 
图2描述了图1的相同基本图解的替代性实施方案,根据该方案所有组装成一元化双极单元堆。 
在所示的示例性实施方案中,预定分别进行该电池系统的充电过程 和放电过程的单元的两个不同单元群A和B由三个堆叠的串行液流双极单元A1、A2和A3的子组构成,所述单元群的电端子通过到可能类型的DC电源和转换变换器输入端的各自电连接来鉴别。 
中间端头hi具有四个不同的电解质隔室,用于连续流经该双极单元子组的两种溶液的出口并用于将电解质溶液供给到单元的连续堆叠子组的第一单元或入口单元的各隔室,等等。 
预定将该流动氧化还原电池系统进行充电的单元群和预定将DC功率输送至电负载的第二单元群细分为单元的子组(在所述实施例中为三个单元子组)实现了增加由特定DC电源所产生的可接受DC电压和在DC-AC转换变换器输入端处产生的DC电压的目标,所述特定DC电源是为了将该流动氧化还原电池系统进行充电而开发的。同时,使得多单元电池的这些提高的DC输入和输出电压能力顺应于限制两种电解质溶液连续流过曲折的内管道从单元一个隔室到下一单元的相应隔室时的压力降低(泵送损失)的附加要求。当增加以串行(串联)流动模式运行的单元的数量时,穿过多个中间端头的循环电解质溶液的并行分配允许限制总压降的增加。 
为了详细描述单元的双极单元堆布置的内部单元结构,图3部分复制了图1和2的基本图解。 
仅对两组堆叠的双极单元示意性描述了基本内部单元结构,在左端侧上的单元组用于通过使用可用的DC电压源驱动DC电流穿过该组的系列双极单元将两种电解质溶液进行充电。 
在右端侧上的堆叠双极单元组用于通过将两种电解质溶液进行放电从而将DC功率经变换器输送至AC电负载。 
用小点阴影(light dot hatching)描绘的多孔电极优选由耐受酸性溶液和阳极稳定的基底金属,如钛或钽的微网制成,并用含有贵金属或贵金属氧化物或混合氧化物的电催化表面涂层进行活化。用实阴影线描绘的多孔电极也优选是金属的,是微网或丝垫(wire mats)形式的具有相对高的氢过电压的金属或金属合金,如铅或更优选铅-钼合金。或者,至少在属于向变换器输入端供给DC电压的单元组的单元(放电 单元)中,用实阴影线描绘的电极可为多孔碳毡。 
两组双极堆叠单元的单元间互连I”可以是具有树脂粘合剂的碳和/或石墨颗粒和/或纤维的导电集合体,或更优选地由层叠片材制成,所述层叠片材包括至少耐酸的金属或金属合金的片材和具有合适的高氢过电压的不同金属的第二薄片材或耐酸性金属涂层,例如铅或铅-锑合金的片材或涂层,所述薄片材适合与活化金属微网的多孔电极(用小点阴影描绘的)建立良好电接触或点焊到其上,所述第二薄片或耐酸性金属涂层适合与例如由铅或铅-锑合金的微网或丝垫或多孔碳毡或丝垫制成的具有相对高的氢过电压的多孔电极(用实阴影线描绘的)建立良好电接触。 
末端电流分配隔片I’将具有与该双极堆叠单元组的端电极接触的表面,具有合适的电化学特性,它们的结构适于确保令人满意的等势性,并适于电连接到用于将该氧化还原流动电池系统进行充电和放电的各DC汇流条的正(+)和负(-)轨线(rails)上。 
图4部分复制了图1和2的基础图解,用于详细描述单元的单极单元堆布置的内部单元结构。 
对仅两组堆叠单元示意性描述了基础内部单元结构,在左端侧上的单元组用于通过使用可用的DC电压源驱动DC电流穿过该组的系列双极单元来将两种电解质溶液进行充电。 
在右端侧上的堆叠单极单元组用于通过将两种电解质溶液进行放电来将DC功率经变换器输送至AC电负载。 
用小点阴影描绘的多孔电极优选由耐受酸溶液和阳极稳定的基底金属,如钛或钽的微网制成,并用含有贵金属或贵金属氧化物或混合氧化物的电催化的表面涂层进行活化。用实阴影线描绘的多孔电极也优选是金属的,是微网或丝垫形式的具有相对高的氢过电压的金属或金属合金,如铅或更优选铅-钼合金。或者,至少在属于向变换器输入端供给DC电压的单元组的单元(放电单元)中,用实阴影线描绘的电极可为多孔碳毡。 
两个单极堆叠单元组的单元间互连I”可以均为具有树脂粘合剂的 碳和/或石墨颗粒和/或纤维的导电集合体,或更优选地,不同于图3的双极单元堆的情况,可以具有两种不同的组成,交替地组装在系列堆叠单极单元中。 
在两侧上与用小点阴影描绘的活化金属微网的多孔电极接触或点焊到其上的两个单极堆叠单元组的单元间互连I”可以由耐酸性金属或金属合金的片材制成,所述金属或金属合金适于与相同类型的电极建立良好电接触(即暴露于相同的电化学试剂和工作条件下)。 
与用实阴影线描绘的具有相对高的氢过电压的多孔电极(铅或铅-锑合金的微网或丝垫或多孔碳毡)接触的两个单极堆叠单元组的单元间互连I”可以由耐酸性金属或金属合金的片材制成,例如不锈钢或哈氏合金的片材,其适于在两侧上与相同类型的电极建立良好的电接触并具有合适的高氢过电压,任选涂有铅或铅-锑合金层。 
在单极单元堆的情况下,该单元间互连I”不需要是液压分离的隔片,并且任选地它们可以在中心区域具有开口结构,与该多孔电极的投影面积重合。例如,它们可以具有膨胀片材的形式或带有均匀分布的紧密间隔的开口或通孔的中心区域,和外周的基本实心的密封表面。单元间互连I”的开口结构将会确保在相邻堆叠单元的相同流动隔室中的液压压力的平衡,如果需要放宽多种设计限制。 
末端电流分配隔片I’将具有与该双极堆叠单元组的末端电极接触的表面,具有适当的电化学特性(作为相应的单元间互连),并且它们的结构可使得确保令人满意的等势性,并适于电连接到用于将该氧化还原流动电池系统进行充电和放电的各DC汇流条的正(+)和负(-)轨线上。 
在分别构成一系列双极和单极单元的堆叠元件的重复布置的局部说明图3和图4中,可以示意性但清楚地观察到与所有的各单元隔室平行的流动隔室(经由各自的入口和出口歧管:入M1(+)、出M1(+)、入M2(-)、出M2(-)供给的两种电解质溶液流经所述流动隔室)和将堆叠的双极单元的末端互连I’分配至或将堆叠单极单元的所有单元间互连I’和I”交替地分配至正(+)和负(-)DC轨线的导电电流电连接。 
图5是用于详细描述所有金属双极单元互连I”和预定在与其接触流动的电解质溶液中被阳极极化的多孔金属基底电极的示例性构造的双极单元堆组件的三维分解图。 
在双极单元间互联的细节分解图中描述了根据想要用于将该氧化还原电池系统进行充电或放电的堆叠单元组的全金属实施方案的双极单元间互连I”的层叠结构。 
所示双极单元堆是三单元组件,各单元基本包括渗透离子膜片组件M,其类似于引用的同一申请人的上述在先PCT专利申请PCT/IB2010/001651中所述实施方案的类似于引用的在先PCT专利申请的图3的组件。各膜组件M夹在双极单元间互连I”或在端头h1和h2处的等效末端互连I’之间。图中所示的末端互连I’的电连接末端的符号与该双极单元堆到DC电压源的连接一致,该电压源用于将该氧化还原流动电池系统的电解质溶液进行充电。但是,类似的双极单元堆叠组可用于将该氧化还原流动电池系统进行充电,该堆的末端互连I’的连接的符号在这种情况下是相反的。 
如双极单元间互连I”之一的分解图所示,按照一种优选的实施方案,该导电隔片的芯可以由彼此电接触地接合在一起的两个不同金属m1和m2的片材组成。预定在流经各单元隔室的电解质溶液中阳极极化的片材m1可以是阳极钝化的、耐酸的金属;例如:钛、钽或其合金。预定在各单元隔室中流动的电解质溶液中阴极极化的金属片材m2可以是具有相对高的氢离子放电过电压的钛、钛-钯或钛镍合金、不锈钢、哈氏合金或其它耐酸性金属,或为此目的具有高氢过电压金属的表面涂层,该高氢过电压金属优选为铅或铅-锑合金。 
两个金属片材m1和m2之间的接合可以通过任何合适的方式建立,所述方式应确保良好的电接触。可以使用导电粘合剂,或者可以通过在两个不同金属的片材之间插入低熔点焊料并将其压在一起,或甚至通过将两个片材点焊在一起,来将它们焊接在一起。 
层叠金属隔片具有通孔以构成内部入口和出口歧管,用于两种不同的电解质溶液在各单元的各自电极隔室中流动。如在所述在先PCT专利 申请中公开的那样,在该单元间双极互连I”的层叠金属芯的通孔中引入绝缘塑料垫圈,通过在其上层叠电绝缘遮罩msk,例如耐受酸性电解质的热塑性绝缘材料以便使活性电极区域周围的周边部分(在该互连的两侧上方)电绝缘,所述电绝缘遮罩与插入该通孔中的塑料垫圈熔接以电防护在该互连两侧上的平坦周边表面以及该循环孔(circulation holes)的表面。 
如在引用的同一申请人的在先PCT专利申请中公开的那样,在该互连的两个侧面上的这些遮蔽的周边区域将协同地贴到固定在渗透离子膜M的周边部分之间的背靠背组装的两个弹性垫圈的浅浮雕图案区域,由此在各隔室中限定不同的循环通路和分布通道,其允许在该双极堆的所有单元的各隔室中使这两种电解质溶液循环。 
三维图允许观察在流经各隔室的电解质溶液中阳极极化的所有电极。与层叠结构的片材m1的未遮蔽导电中心区域接触的电极可以为三个钛或钽的微网的叠板形式,其涂有催化层,所述催化层含有贵金属(Pt、Ir、Ru、Pd)和/或至少一种贵金属的氧化物、低价氧化物或混合氧化物,用于提供多孔金属电极结构的大的活性表面,当电解质溶液从该流动隔室一角处的入口端口流经含电极的隔室并从该流动隔室对角的出口端口离开时,所述活性表面被渗透微网叠板的流动电解质溶液所润湿。 
高氢过电压金属(如铅、铅锑合金)的类似堆叠微网叠板或多孔丝垫用于预定在各单元隔室中流动的电解质溶液中阴极极化的该双极单元间互连的另一侧上(在图上不可见),和与端头h2相连的末端互连I’的另一侧(不可见)上。 
图6是按照如图4中例示的单极单元的多组堆的一般布置的一元化堆组件的单极单元的两个组(A和B)的三维分解图,根据该图,第一组A的单元专有地用于将该氧化还原流动电池系统进行充电,另一组B的单元专有地通过将该氧化还原流动电池系统放电向电负载供电。 
按照该替代性实施方案,不同的互连的层叠结构可用于组A的单元(充电单元)和组B的单元(放电单元),考虑到以下事实:该单极堆 组织要求每一互连I”和I’必须具有其尺寸确保可忽略的电阻(电压降)的横截面积(侧面传导的横截面),以便在分别与其接触的该单元电极ma-mc和cfa-cfc的整个投影面积上提供良好的等势性和电流分布均匀性。 
在“全金属”充电单元(组A)和“全碳”放电单元(组B)的情况下,“全金属”充电单元(组A)的互连可以具有耐酸性金属或合金的单个金属片材芯m3,该芯适于在两侧上接触多孔金属阴极mc的多孔金属阳极ma,并且适于在两侧上接触碳毡阳极cfa和碳毡阴极cfc的“全碳”放电单元(组B)的互连可以是包含芯片材m4的层叠板,该芯片材m4是高导电性金属,例如不锈钢、钛、哈氏合金或甚至铝或铜,夹在均为导电碳-树脂集合体的两个片材c1之间,所述两个片材通过热压或任何其它有效方式接合到该金属芯上。碳毡电极可以用导电粘合剂点接合到碳集合体片材上。 
图7是限定双极充电单元的可堆叠元件的“书状”分解图,图8是限定单极放电单元的可堆叠元件的“书状”分解图。 
用于前述附图中的相同的附图标记/文字标识也用于这两幅书状图中,由此除了本公开的多单元堆的基本部件的组织之外,也能够观察两种类型的多孔电极:即在各电解质溶液中作为阳极专有地被极化的电极,ma或cfa,以及在各电解质溶液中作为阴极专有地被极化的电极,mc或cfc。 
所示实施方案的背靠背夹在渗透离子膜之间的膜片组件M和与它们相连的周边间隔(perimetral spacers)9以及该对“浅浮雕”图案弹性体垫圈的详情由引用的同一申请人的在先PCT专利申请PCT/IB2010/001651详细地提供,其相关内容通过引用并入本文。 

Claims (10)

1.用于能量储存的氧化还原流动电池系统,包含由导电的单元间互连、正电极、渗透离子膜单元分隔体、负电极和另一导电的单元间互连的堆叠的重复布置所确定的单元,所述电极装在两个相邻单元的各自流动隔室中,各单元的相反符号的电极的流动隔室被所述膜液压分隔,用于可带正电荷的电解质溶液的至少第一储存槽,用于可带负电荷的电解质溶液的至少第二储存槽,用于使所述电解质溶液从所述储存槽循环穿过所述单元的各流动隔室的不同管道与泵送装置,其中所述系统包含由部件的堆叠的重复布置所确定的不同的单元群,
第一单元群的每个单元具有流动隔室,各电解质溶液流经所述流动隔室用于将所述电池系统充电,并且
第二单元群的每个单元具有流动隔室,当所述电池系统放电以向电负载输送DC功率时各电解质溶液流经所述流动隔室。
2.如权利要求1所述的氧化还原流动电池系统,其中所述第一单元群的所有单元的导电单元间互连、正电极和负电极为金属材料的;所述第二单元群的所有单元的导电单元间互连、正电极和负电极为含碳物质的或集合体的。
3.如权利要求2所述的氧化还原流动电池系统,其中所述含碳物质或集合体选自碳、石墨、玻璃碳、碳颗粒的导电集合体、石墨颗粒、玻璃碳颗粒、炭黑及其与树脂粘合剂的混合物。
4.如权利要求1或2所述的氧化还原流动电池系统,其中第二单元群的所有单元的正电极为可压缩的多孔碳毡的,负电极具有选自钛、钽、锆及其合金的多孔金属基底,所述多孔金属基底涂有含贵金属或贵金属氧化物或贵金属与至少所述基底金属的混合氧化物的层。
5.如权利要求4所述的氧化还原流动电池系统,其中第二单元群的所有单元的导电单元间互连包含与可压缩多孔碳毡的正电极电接触的钛板或层叠到含碳物质或具有含碳物质面层的钛板。
6.如权利要求4所述的氧化还原流动电池系统,其中所述渗透离子膜片在与带正电荷的电解质溶液接触的表面上具有耐酸和阳极稳定的金属黑的颗粒的多孔电催化面层,所述面层用聚四氟乙烯接合到所述渗透离子膜上,并与所述多孔金属基底负电极点接触。
7.如权利要求1或2所述的氧化还原流动电池系统,其中第一单元群的所有单元的正电极具有金属基底,所述金属基底选自钛、钽、锆及其合金,涂有含贵金属或贵金属氧化物或贵金属与至少所述基底金属的混合氧化物的层,并且所述负电极具有金属基底,所述金属基底选自不锈钢、钛-钯合金、钛-镍合金、铅、铅合金、锑、锑合金,均耐受各酸性电解质水溶液。
8.如权利要求1所述的氧化还原流动电池系统,其中所述第一单元群的正电极和负电极具有比第二单元群的电极小的投影面积。
9.如权利要求1所述的氧化还原流动电池系统,其中所述第一单元群的单元数量小于所述第二单元群的单元数量。
10.如权利要求1所述的氧化还原流动电池系统,其中彼此独立地调节穿过所述第一相的单元和穿过所述第二单元群的单元的两种电解质溶液的流量。
CN2010800694027A 2010-08-13 2010-08-13 采用不同的充电和放电单元的氧化还原流动电池系统 Pending CN103181014A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2010/002004 WO2012020277A1 (en) 2010-08-13 2010-08-13 Redox flow battery system employing different charge and discharge cells

Publications (1)

Publication Number Publication Date
CN103181014A true CN103181014A (zh) 2013-06-26

Family

ID=42829548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800694027A Pending CN103181014A (zh) 2010-08-13 2010-08-13 采用不同的充电和放电单元的氧化还原流动电池系统

Country Status (6)

Country Link
US (1) US20130177789A1 (zh)
CN (1) CN103181014A (zh)
BR (1) BR112013003374A2 (zh)
PH (1) PH12013500295A1 (zh)
SG (1) SG188211A1 (zh)
WO (1) WO2012020277A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103967451A (zh) * 2014-04-16 2014-08-06 大连辉腾自动化系统有限公司 抽油机节能离网太阳能光伏供电系统
CN108701849A (zh) * 2016-02-10 2018-10-23 住友电气工业株式会社 氧化还原液流电池用电极和氧化还原液流电池
CN109690848A (zh) * 2016-09-09 2019-04-26 乐天化学株式会社 用于制备用于氧化还原液流电池的电极的浆料组合物,以及用于制备用于氧化还原液流电池的电极的方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7820321B2 (en) 2008-07-07 2010-10-26 Enervault Corporation Redox flow battery system for distributed energy storage
US8785023B2 (en) 2008-07-07 2014-07-22 Enervault Corparation Cascade redox flow battery systems
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
US20130252041A1 (en) * 2012-03-26 2013-09-26 Primus Power Corporation Electrode for High Performance Metal Halogen Flow Battery
US20140050999A1 (en) * 2012-08-19 2014-02-20 Ftorion, Inc. Flow Battery And Regeneration System
EP2926400B1 (en) 2012-11-30 2019-03-20 Hydraredox Technologies Holdings Ltd. Back plate-electrode-membrane assembly for a redox, flow energy storage electrochemical cell
JP2016503943A (ja) 2012-12-14 2016-02-08 ハイドラレドックス テクノロジーズ ホールディングス リミテッド レドックス・フロー・バッテリ・システム及びそれを制御する方法
CN103117402B (zh) * 2013-01-31 2015-04-29 中国东方电气集团有限公司 多孔电极组、液流半电池和液流电池堆
CN103137983B (zh) * 2013-01-31 2015-08-12 中国东方电气集团有限公司 多孔电极组、液流半电池和液流电池堆
WO2014125331A1 (en) * 2013-02-14 2014-08-21 Hydraredox Technologies Inc. ALL-VANADIUM REDOX FLOW BATTERY SYSTEM EMPLOYING A V+4/V+5 REDOX COUPLE AND AN ANCILLARY Ce+3/Ce+4 REDOX COUPLE IN THE POSITIVE ELECTROLYTE SOLUTION
WO2014162326A1 (ja) * 2013-03-30 2014-10-09 Leシステム株式会社 レドックスフロー電池及びその運転方法
CN103199285B (zh) * 2013-04-10 2016-01-13 大连融科储能技术发展有限公司 一种液流电池停机保护方法及液流电池系统
US10439240B2 (en) * 2013-11-21 2019-10-08 Robert Bosch Gmbh System and method for minimizing transport related performance losses in a flow battery system
WO2015095555A1 (en) * 2013-12-19 2015-06-25 Robert Bosch Gmbh Hydrogen/bromine flow battery in which hydrogen is freely exchanged between two celi compartments
KR20180069911A (ko) * 2015-11-13 2018-06-25 아발론 배터리 (캐나다) 코포레이션 레독스 플로우 배터리용 개선된 전극
US10135087B2 (en) * 2016-12-09 2018-11-20 Unienergy Technologies, Llc Matching state of charge in a string
KR101803824B1 (ko) * 2017-03-31 2018-01-10 스탠다드에너지(주) 레독스 흐름전지
CN108448187B (zh) * 2018-02-11 2020-07-28 浩发环保科技(深圳)有限公司 一种甲基磺酸铅液流单体电池的充放电方法
IT201800004325A1 (it) * 2018-04-09 2019-10-09 Batteria a flusso
US11705571B2 (en) * 2018-09-05 2023-07-18 Nikolai M. Kocherginsky Foil-based redox flow battery
US11710843B2 (en) * 2020-05-15 2023-07-25 Ess Tech, Inc. Redox flow battery and battery system
DE102020120428B3 (de) 2020-08-03 2021-07-08 Voith Patent Gmbh Redox-Flow Batterie mit einer Messeinrichtung
WO2022033750A1 (de) 2020-08-10 2022-02-17 Voith Patent Gmbh Redox-flow-batterie-system und betriebsverfahren
US20230057780A1 (en) * 2021-08-17 2023-02-23 Standard Energy Inc. Connections for redox battery integration

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2030349A (en) * 1978-07-10 1980-04-02 Oronzio De Nora Impianti Process and Accumulator, for Storing and Releasing Electrical Energy
WO1996035239A1 (en) * 1995-05-03 1996-11-07 Unisearch Limited High energy density vanadium electrolyte solutions, methods of preparation thereof and all-vanadium redox cells and batteries containing high energy vanadium electrolyte solutions
JP2003007327A (ja) * 2001-06-25 2003-01-10 Takenaka Komuten Co Ltd 蓄電システム
JP2009093942A (ja) * 2007-10-10 2009-04-30 Loopwing Kk 電力貯蔵システム
US20100003545A1 (en) * 2008-07-07 2010-01-07 Enervault Corporation Redox Flow Battery System for Distributed Energy Storage
CN201435423Y (zh) * 2008-03-11 2010-03-31 夏嘉琪 通信用全钒液流电池系统
CN201528013U (zh) * 2009-09-04 2010-07-14 江苏省信息化研究中心 钒铬双液流电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4738904A (en) * 1986-10-14 1988-04-19 Hughes Aircraft Company Low temperature thermoelectrochemical system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2030349A (en) * 1978-07-10 1980-04-02 Oronzio De Nora Impianti Process and Accumulator, for Storing and Releasing Electrical Energy
WO1996035239A1 (en) * 1995-05-03 1996-11-07 Unisearch Limited High energy density vanadium electrolyte solutions, methods of preparation thereof and all-vanadium redox cells and batteries containing high energy vanadium electrolyte solutions
JP2003007327A (ja) * 2001-06-25 2003-01-10 Takenaka Komuten Co Ltd 蓄電システム
JP2009093942A (ja) * 2007-10-10 2009-04-30 Loopwing Kk 電力貯蔵システム
CN201435423Y (zh) * 2008-03-11 2010-03-31 夏嘉琪 通信用全钒液流电池系统
US20100003545A1 (en) * 2008-07-07 2010-01-07 Enervault Corporation Redox Flow Battery System for Distributed Energy Storage
CN201528013U (zh) * 2009-09-04 2010-07-14 江苏省信息化研究中心 钒铬双液流电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103967451A (zh) * 2014-04-16 2014-08-06 大连辉腾自动化系统有限公司 抽油机节能离网太阳能光伏供电系统
CN108701849A (zh) * 2016-02-10 2018-10-23 住友电气工业株式会社 氧化还原液流电池用电极和氧化还原液流电池
CN108701849B (zh) * 2016-02-10 2021-05-07 住友电气工业株式会社 氧化还原液流电池用电极和氧化还原液流电池
CN109690848A (zh) * 2016-09-09 2019-04-26 乐天化学株式会社 用于制备用于氧化还原液流电池的电极的浆料组合物,以及用于制备用于氧化还原液流电池的电极的方法

Also Published As

Publication number Publication date
WO2012020277A1 (en) 2012-02-16
PH12013500295A1 (en) 2013-07-15
SG188211A1 (en) 2013-04-30
BR112013003374A2 (pt) 2016-07-12
US20130177789A1 (en) 2013-07-11

Similar Documents

Publication Publication Date Title
CN103181014A (zh) 采用不同的充电和放电单元的氧化还原流动电池系统
CN1174511C (zh) 氧化还原流量蓄电池系统和电池组
US9269983B2 (en) Flow battery
JP2934632B2 (ja) 平板状多重接合電気化学式セル
US10964982B2 (en) Rechargeable metal-air battery cell, a battery stack and method of manufacturing the same
CN101593841B (zh) 一种氧化还原液流电池和氧化还原液流电池组
CN108701801A (zh) 能够在高电压下工作的电化学电池及其组件
WO2015070066A1 (en) Cell and cell block configurations for redox flow battery systems
CN112467163A (zh) 与电化学电池一起使用的流场
KR100571821B1 (ko) 직접메탄올 연료전지 및 이를 장착한 휴대용 컴퓨터
JP2020513223A (ja) バナジウムレドックスフロー電池の多点電解質フローフィールド実施形態
KR20240035803A (ko) 이온 션트 전류 제거를 위한 장치 및 방법
JPH1030197A (ja) 固体高分子電解モジュールおよびその製造方法並びにそれを用いた除湿装置
US10177389B2 (en) Electrochemical device and method for controlling corrosion
RU2496186C1 (ru) Топливный элемент и батарея топливных элементов
CN218769649U (zh) 多个燃料电池堆组合装置
KR100387244B1 (ko) 직접메탄올 연료전지용 단전극 셀팩
CN216738555U (zh) 一种内部设有多通道框架结构的电解槽
WO2013095374A2 (en) Flow battery with enhanced durability
JP2004335158A (ja) レドックスフロー電池用セルフレーム
KR100704437B1 (ko) 비전도성 분리판을 구비한 전기화학 단위 셀 및 이를 이용한 전기화학 셀 조립체
KR101355543B1 (ko) 메탈폼의 제조방법 및 이 메탈폼이 구비된 전기화학 스택
KR101637008B1 (ko) 활성점에 차이가 있는 카본펠트 및 이를 포함하는 레독스 흐름 이차전지
CN118308745A (zh) 一种采用流动电解池的分步电解水装置
CZ38010U1 (en) A flow electrochemical cell with three electrodes and three separated electrode chambers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130626