CN103234986B - An intelligent electronic device, a QXAFS (quick X-ray absorption fine structure) system and a data acquisition and motor control method - Google Patents
An intelligent electronic device, a QXAFS (quick X-ray absorption fine structure) system and a data acquisition and motor control method Download PDFInfo
- Publication number
- CN103234986B CN103234986B CN201310125282.3A CN201310125282A CN103234986B CN 103234986 B CN103234986 B CN 103234986B CN 201310125282 A CN201310125282 A CN 201310125282A CN 103234986 B CN103234986 B CN 103234986B
- Authority
- CN
- China
- Prior art keywords
- control
- stepper motor
- programmable device
- control section
- xafs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000010521 absorption reaction Methods 0.000 title description 4
- 238000000833 X-ray absorption fine structure spectroscopy Methods 0.000 claims abstract description 59
- 230000003068 static effect Effects 0.000 claims abstract description 25
- 230000001133 acceleration Effects 0.000 claims description 48
- 238000001228 spectrum Methods 0.000 claims description 47
- 238000013480 data collection Methods 0.000 claims description 46
- 238000002955 isolation Methods 0.000 claims description 46
- 238000006243 chemical reaction Methods 0.000 claims description 31
- 238000002474 experimental method Methods 0.000 claims description 31
- 239000013078 crystal Substances 0.000 claims description 28
- 239000000872 buffer Substances 0.000 claims description 16
- 238000004891 communication Methods 0.000 claims description 16
- 230000005469 synchrotron radiation Effects 0.000 claims description 9
- 230000003993 interaction Effects 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 5
- 230000009977 dual effect Effects 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 24
- 238000005070 sampling Methods 0.000 abstract description 16
- 239000008358 core component Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 18
- 239000010949 copper Substances 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 238000000192 extended X-ray absorption fine structure spectroscopy Methods 0.000 description 6
- 230000010355 oscillation Effects 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000003696 structure analysis method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
本申请公开一种智能电子学设备、QXAFS系统及数据采集和电机控制方法,该智能电子学设备代替了常规XAFS实验系统中的步进电机控制器和定标器,以可编程器件为核心部件,该电子学设备通过多通道ADC采集电路结合快速XAFS系统中的电流放大器实现模拟采集,或利用可编程器件的计数功能结合快速XAFS系统中的V/F转换器实现积分形式数据采集。可编程器件通过读取配置于RAM中的控制曲线控制步进电机,同时在允许数据采集的控制段进行数据采集,实现了步进电机控制和数据采集的高速同步,且通过在控制曲线中的低速或静止控制段采样数据,避免在采集数据过程中的能量移动,在扫谱速度及能量移动两者的矛盾中获得最佳解决方案。
This application discloses an intelligent electronic device, a QXAFS system and a data acquisition and motor control method. The intelligent electronic device replaces the stepper motor controller and the scaler in the conventional XAFS experimental system, and uses a programmable device as the core component. , the electronic equipment implements analog acquisition through a multi-channel ADC acquisition circuit combined with a current amplifier in a fast XAFS system, or uses the counting function of a programmable device combined with a V/F converter in a fast XAFS system to realize integral data acquisition. The programmable device controls the stepper motor by reading the control curve configured in the RAM, and at the same time performs data acquisition in the control section that allows data acquisition, realizing high-speed synchronization of stepper motor control and data acquisition, and through the control curve in the control curve Sampling data in the low-speed or static control section avoids energy movement in the process of collecting data, and obtains the best solution in the contradiction between scanning speed and energy movement.
Description
技术领域technical field
本申请涉及现代物质结构分析方法-同步辐射实验方法,特别是涉及一种专用于快速X射线吸收精细结构(Quick X-ray Absorption Fine Structure,QXAFS)实验的智能电子学设备、快速XAFS实验系统以及使用该智能电子学设备实施的快速XAFS实验中的数据采集和步进电机控制方法。This application relates to the modern material structure analysis method - synchrotron radiation experiment method, especially to a kind of intelligent electronic equipment, fast XAFS experimental system and Data acquisition and stepper motor control methods in a fast XAFS experiment implemented using this smart electronics device.
背景技术Background technique
现代XAFS实验系统是基于同步辐射装置的大型物质结构分析研究的工具,其基本原理是利用单能X射线照射待研究的样品,在特定的X射线能量范围内逐步改变单能X射线的能量,实现能量扫描,同时探测样品前后X射线的强度,从而获得样品在特定能量范围的吸收谱线,分析该吸收谱线则可获得样品的微观结构信息。XAFS实验方法广泛应用于物理、化学、催化、材料、环境、生物等多学科领域的研究,是同步辐射诸多实验方法中应用最广泛的分析方法之一。The modern XAFS experimental system is a tool for large-scale material structure analysis and research based on synchrotron radiation devices. Its basic principle is to irradiate the sample to be studied with single-energy X-rays, and gradually change the energy of single-energy X-rays within a specific X-ray energy range. Energy scanning is realized, and the intensity of X-rays before and after the sample is detected at the same time, so as to obtain the absorption line of the sample in a specific energy range, and the microstructure information of the sample can be obtained by analyzing the absorption line. The XAFS experimental method is widely used in the research of physics, chemistry, catalysis, materials, environment, biology and other multidisciplinary fields. It is one of the most widely used analytical methods among many synchrotron radiation experimental methods.
图1示意性示出了一种常规XAFS实验系统的结构框图。在图1中,同步辐射X射线入射到双晶单色器101上,双晶单色器101将同步辐射X射线单色化,例如,只有波长满足布喇格(Bragg)关系的单色X射线得到反射,当转动双晶单色器101改变X射线的入射角时,出射光的波长随之改变,从而可以实现XAFS实验要求的单能可调X射线做能量(波长)扫描。从双晶单色器101出射的单能X射线与样品作用。Fig. 1 schematically shows a structural block diagram of a conventional XAFS experimental system. In Fig. 1, synchrotron radiation X-rays are incident on a twin-crystal monochromator 101, and the twin-crystal monochromator 101 monochromatizes synchrotron radiation X-rays, for example, only monochromatic X-rays whose wavelength satisfies the Bragg relationship The rays are reflected, and when the twin-crystal monochromator 101 is rotated to change the incident angle of the X-rays, the wavelength of the outgoing light changes accordingly, so that the energy (wavelength) scanning of single-energy adjustable X-rays required by the XAFS experiment can be realized. The single-energy X-ray emitted from the twin-crystal monochromator 101 acts on the sample.
单能X射线进入位于样品前的电离室X射线探测器103、样品以及位于样品后的电离室X射线探测器103(同时探测标准样品还可以有第三个电离室X射线探测器)。前后电离室X射线探测器103分别测量与样品作用前的X射线的强度和与样品作用后的X射线的强度,即可以获得XAFS谱。The single-energy X-ray enters the ionization chamber X-ray detector 103 located in front of the sample, the sample and the ionization chamber X-ray detector 103 located behind the sample (while detecting the standard sample, there may also be a third ionization chamber X-ray detector). The front and rear ionization chamber X-ray detectors 103 respectively measure the intensity of the X-rays before interacting with the sample and the intensity of the X-rays after interacting with the sample, so as to obtain the XAFS spectrum.
电离室的探测器103输出的弱电流信号馈入电流放大器105。电流放大器105将与样品前后的X射线探测器所产生的X射线强度成正比的电流信号放大并转换成模拟电压信号。电流放大器的数目可以是至少两个。电流放大器105获得的模拟电压信号与单能X射线的强度相对应,基于电流放大器105的输出值可以获得X射线的强度。电流放大器105的工作状态可以由计算机通过通用接口总线(General Purpose interface Bus,GPIB)进行设置。The weak current signal output by the detector 103 of the ionization chamber is fed into the current amplifier 105 . The current amplifier 105 amplifies and converts the current signal proportional to the X-ray intensity generated by the X-ray detectors before and after the sample into an analog voltage signal. The number of current amplifiers may be at least two. The analog voltage signal obtained by the current amplifier 105 corresponds to the intensity of the monoenergetic X-ray, and the intensity of the X-ray can be obtained based on the output value of the current amplifier 105 . The working state of the current amplifier 105 can be set by a computer through a general purpose interface bus (General Purpose interface Bus, GPIB).
电压/频率(V/F)转换器106将从电流放大器15输出的模拟电压信号转换成脉冲频率信号,定标器107对V/F转换器106输出的脉冲频率信号进行计数,并将计数值传输至计算机108。通过定标器107的计数值,可以获取与样品作用前后的X射线的强度。Voltage/frequency (V/F) converter 106 converts the analog voltage signal output from current amplifier 15 into a pulse frequency signal, and scaler 107 counts the pulse frequency signal output by V/F converter 106, and counts the value Transfer to computer 108. The intensities of X-rays before and after interacting with the sample can be obtained through the count value of the scaler 107 .
轴角编码器109读取双晶单色器101的当前角度,并通过显示器110显示而且传输到计算机108。计算机108向直线电机驱动器112发送控制信号,来控制双晶单色器101的滚角和投角。直线电机驱动器112与计算机108连接,可以实现手动/自动控制。The shaft angle encoder 109 reads the current angle of the twin crystal monochromator 101 , displays it on the display 110 and transmits it to the computer 108 . The computer 108 sends control signals to the linear motor driver 112 to control the roll angle and pitch angle of the twin-crystal monochromator 101 . The linear motor driver 112 is connected with the computer 108 to realize manual/automatic control.
计算机108向步进电机控制器114发送信号,使得步进电机控制器114生成步进电机驱动器113的控制脉冲,从而促使电机驱动器113驱动步进电机转动进而驱动双晶单色器101转动。步进电机控制器114还可以向其他被控装置发送控制信号。The computer 108 sends a signal to the stepper motor controller 114, so that the stepper motor controller 114 generates a control pulse of the stepper motor driver 113, thereby prompting the motor driver 113 to drive the stepper motor to rotate and then drive the double crystal monochromator 101 to rotate. The stepper motor controller 114 can also send control signals to other controlled devices.
另外,电流放大器105与步进电机控制器114、以及计算机与电流放大器105之间可以通过GPIB总线连接,进行各种所需的通信,计算机108与步进电机控制器114、直线电机驱动器112以及显示器110之间可以通过RS232连接。In addition, the current amplifier 105 and the stepper motor controller 114, and the computer and the current amplifier 105 can be connected through the GPIB bus to carry out various required communications. The computer 108 and the stepper motor controller 114, the linear motor driver 112 and The displays 110 can be connected via RS232.
采用图1的系统进行慢速采谱时,一次采谱过程由多个能量点的控制和数据采集构成。对于每个能量点,都是先由步进电机步进产生单能X射线,等步进电机停止运动、X射线能量稳定后,再开始采集数据。这种方法的优点是:在数据采集时,X射线能量已经稳定,测量结果的信噪比高。When the system in Figure 1 is used for slow-speed spectrum acquisition, a spectrum acquisition process consists of the control and data acquisition of multiple energy points. For each energy point, the single-energy X-rays are generated step by step by the stepping motor first, and then start to collect data after the stepping motor stops moving and the X-ray energy is stable. The advantage of this method is that at the time of data acquisition, the X-ray energy has been stabilized, and the signal-to-noise ratio of the measurement results is high.
快速XAFS(QXAFS)方式是对常规XAFS实验技术的发展,可以提供具有时间分辨的结构信息,因而是材料、化学、催化领域研究化学反应机制、相变及动力学过程的重要实验方法。QXAFS方法基于常规的同步辐射XAFS实验系统,以连续能量扫描模式(continuing mode)替代常规的一步一步能量扫描模式(step by step mode),将采谱速度从常规XAFS实验的约10分钟量级一个谱提高到秒量级一个谱。Quick XAFS (QXAFS) method is the development of conventional XAFS experimental technology, which can provide time-resolved structural information, so it is an important experimental method for studying chemical reaction mechanism, phase transition and kinetic process in the fields of materials, chemistry and catalysis. The QXAFS method is based on the conventional synchrotron radiation XAFS experimental system, and replaces the conventional step by step energy scanning mode with the continuous energy scanning mode (continuing mode), which reduces the spectral acquisition speed from the conventional XAFS experiment to the order of about 10 minutes. The spectrum is improved to a spectrum in seconds.
但是采谱速度的提高,是以牺牲数据质量为代价的。从谱学角度看,原始谱的数据质量包括两个方面,谱中的XAFS震荡信息以及统计噪声。XAFS震荡畸变导致近邻结构信息失真,统计噪声则叠加于XAFS震荡波形,使其失去分析价值。目前发表的QXAFS实施方案多注重于采谱速度的提高而忽略了采集数据质量的方法与措施。实质上,QXAFS方法不能单纯追求快速,QXAFS的目的就是在采谱速度及数据质量两者之间达到平衡优化。However, the improvement of spectral acquisition speed is at the expense of data quality. From the perspective of spectroscopy, the data quality of the original spectrum includes two aspects, XAFS oscillation information in the spectrum and statistical noise. The XAFS oscillation distortion leads to the distortion of the adjacent structure information, and the statistical noise is superimposed on the XAFS oscillation waveform, which makes it lose its analytical value. The currently published QXAFS implementation plans focus more on the improvement of the acquisition speed and ignore the methods and measures of the acquisition data quality. In essence, the QXAFS method cannot simply pursue speed. The purpose of QXAFS is to achieve a balanced optimization between spectrum acquisition speed and data quality.
概括来讲,基于图1所示的系统进行快速采谱时,存在如下问题:In a nutshell, when performing rapid spectrum acquisition based on the system shown in Figure 1, there are the following problems:
(1)步进电机控制器和数据采集装置(例如图1中的电流放大器105、V/F转换器106和定标器107等)是分立设备,它们之间没有同步接口,只能通过计算机软件进行同步,受限于计算机与外设的通讯速度、外设的内部工作机制等,无法实现快速同步,因此限制了采谱速度。(1) stepper motor controller and data acquisition device (such as current amplifier 105, V/F converter 106 and scaler 107 etc. in Fig. Software synchronization is limited by the communication speed between the computer and peripherals, the internal working mechanism of peripherals, etc., and cannot achieve fast synchronization, thus limiting the spectrum acquisition speed.
(2)为了实现快速扫描,QXAFS实验过程中采用连续模式,即在步进电机移动的同时采集数据,则在单个能量点的数据采集时间t内必然会有能量移动ΔE(即能量变化),这就造成了数据失真,结果是造成XAFS震荡畸变。(2) In order to achieve fast scanning, the continuous mode is adopted in the QXAFS experiment process, that is, the data is collected while the stepping motor is moving, so there must be energy movement ΔE (that is, energy change) within the data collection time t of a single energy point, This distorts the data, resulting in XAFS oscillating distortion.
(3)在一个能量点进行数据采集时,其数据的统计误差表示为公式一:其中N为该能量点的数据采集量,I为信号强度,t为该点的数据采集时间。采用QXAFS方法缩短了采谱时间,t必然减少,则统计误差必然增加。(3) When data is collected at one energy point, the statistical error of the data is expressed as Formula 1: Where N is the amount of data collected at this energy point, I is the signal strength, and t is the data collection time at this point. Using the QXAFS method shortens the spectrum acquisition time, t will inevitably decrease, and the statistical error will inevitably increase.
(4)不同的数据采集电路方案,例如模拟数字转换(ADC)采样方案(即图1中采用电流放大器105来获得与X射线强度对应的电压值的方式)或者积分方案(即图1中采用V/F转换器106+定标器107的组合来获得与X射线的强度对应的计数值的方法),其效率不同,即在相同的时间t内采集的N值不同。因而,建立合理的数据采集硬件是优化QXAFS方法的重要方面。(4) Different data acquisition circuit schemes, such as an analog-to-digital conversion (ADC) sampling scheme (i.e., adopting a current amplifier 105 in FIG. 1 to obtain a voltage value corresponding to the X-ray intensity) or an integral scheme (i.e., adopting The combination of V/F converter 106 + scaler 107 to obtain the count value corresponding to the intensity of X-rays) has different efficiencies, that is, the N values collected in the same time t are different. Therefore, establishing a reasonable data acquisition hardware is an important aspect of optimizing the QXAFS method.
(5)探测系统存在时间常数,例如电离室探测器103的反应速度、电流放大器105的上升时间等,都会影响XAFS震荡结构,造成XAFS震荡波形畸变导致近邻结构信息失真。可见,改进探测系统硬件,也是优化QXAFS方法的重要方面。(5) There are time constants in the detection system, such as the reaction speed of the ionization chamber detector 103, the rise time of the current amplifier 105, etc., which will affect the XAFS oscillation structure, resulting in distortion of the XAFS oscillation waveform and distortion of adjacent structure information. It can be seen that improving the hardware of the detection system is also an important aspect of optimizing the QXAFS method.
(6)QXAFS实验能量扫描过程中丢步及步进与采样的相位不准确将造成谱在能量轴的变形,也造成XAFS震荡波形畸变导致近邻结构信息失真。(6) Step loss and inaccurate stepping and sampling phases during the energy scanning process of the QXAFS experiment will cause the spectrum to be deformed on the energy axis, and also cause the XAFS oscillation waveform to be distorted, resulting in distortion of the adjacent structure information.
(7)此外,为优化QXAFS方法,整体硬件系统设计应该能够最大限度压缩信号处理及传递的时间开销,以最大限度提高采谱速度。(7) In addition, in order to optimize the QXAFS method, the overall hardware system design should be able to compress the time overhead of signal processing and transmission to the greatest extent, so as to maximize the speed of spectrum acquisition.
发明内容Contents of the invention
为了解决上述问题中的一个或多个,本申请提供了一种专用于QXAFS实验的智能电子学设备、快速XAFS实验系统以及使用该智能电子学设备实施的快速XAFS实验中的数据采集和步进电机控制方法,使用该智能电子学设备来代替常规XAFS实验系统中的步进电机控制器以及定标器。In order to solve one or more of the above problems, the application provides an intelligent electronic device dedicated to QXAFS experiments, a fast XAFS experimental system, and data acquisition and stepping in the fast XAFS experiment implemented using the intelligent electronic device In the motor control method, the intelligent electronic device is used to replace the stepper motor controller and the scaler in the conventional XAFS experimental system.
本申请公开了一种专用于快速XAFS实验的智能电子学设备,包括:多通道模数转换采集电路和多路隔离电路中的至少之一、可编程器件、第一隔离电路以及通讯接口电路:This application discloses an intelligent electronic device dedicated to fast XAFS experiments, including: at least one of a multi-channel analog-to-digital conversion acquisition circuit and a multi-channel isolation circuit, a programmable device, a first isolation circuit, and a communication interface circuit:
所述多通道模数转换采集电路用于将来自至少两个电流放大器的模拟电压信号转换成数字信号,所述至少两个电流放大器用于将与快速XAFS实验中与样品前后的X射线探测器所产生的X射线强度成正比的电流信号放大并转换成模拟电压信号;The multi-channel analog-to-digital conversion acquisition circuit is used to convert the analog voltage signals from at least two current amplifiers into digital signals, and the at least two current amplifiers are used to connect the X-ray detectors before and after the sample in the fast XAFS experiment The current signal proportional to the X-ray intensity generated is amplified and converted into an analog voltage signal;
多路隔离电路用于实现来自电压/频率转换器的脉冲频率信号与所述可编程器件之间的电学隔离,所述电压/频率转换器用于将所述至少两个电流放大器的模拟电压信号转换成脉冲频率信号;The multi-channel isolation circuit is used to realize the electrical isolation between the pulse frequency signal from the voltage/frequency converter and the programmable device, and the voltage/frequency converter is used to convert the analog voltage signal of the at least two current amplifiers into a pulse frequency signal;
可编程器件与所述多通道模数转换采集电路和所述多路隔离电路连接,用于接收所述多通道模数转换采集电路输出的信号,对所述电压/频率转换器输入的脉冲频率信号进行计数,并将所述多通道模数转换采集电路输出的信号和对所述电压/频率转换器输入的脉冲频率信号进行计数的计数值存储到所述可编程器件自带的先进先出(First In First Out,FIFO)数据缓存器中,以供计算机读取;The programmable device is connected to the multi-channel analog-to-digital conversion acquisition circuit and the multi-channel isolation circuit, and is used to receive the signal output by the multi-channel analog-to-digital conversion acquisition circuit, and the pulse frequency input to the voltage/frequency converter The signal is counted, and the signal output by the multi-channel analog-to-digital conversion acquisition circuit and the count value for counting the pulse frequency signal input by the voltage/frequency converter are stored in the first-in-first-out (First In First Out, FIFO) data buffer for computer reading;
在所述可编程器件自带的控制曲线配置RAM中预先配置有步进电机的控制曲线,所述控制曲线定义为在不同能量点进行数据采集时步进电机的不同控制段与步进电机的控制脉冲频率之间的关系,所述不同控制段包括允许数据采集的静止控制段、减速后的匀速控制段或者加速后的匀速控制段以及不进行数据采集的加速控制段;The control curve of the stepper motor is pre-configured in the control curve configuration RAM carried by the programmable device, and the control curve is defined as the different control segments of the stepper motor and the stepper motor when data acquisition is performed at different energy points. Controlling the relationship between pulse frequencies, the different control sections include a static control section that allows data collection, a constant speed control section after deceleration or a constant speed control section after acceleration, and an acceleration control section that does not perform data collection;
所述可编程器件用于通过读取所述步进电机的控制曲线来向步进电机驱动器发出控制脉冲以控制步进电机转动,并且在所述静止控制段、减速后的匀速控制段以及加速后的匀速控制段开始后经过预设延迟开始数据采集;The programmable device is used to send control pulses to the stepper motor driver to control the rotation of the stepper motor by reading the control curve of the stepper motor, and in the static control section, the constant speed control section after deceleration and the acceleration Data acquisition starts after a preset delay after the start of the last constant speed control segment;
所述第一隔离电路与所述可编程器件连接,用于实现所述可编程器件与所述步进电机驱动器之间的电学隔离;The first isolation circuit is connected to the programmable device for realizing electrical isolation between the programmable device and the stepper motor driver;
所述通讯接口电路与所述可编程器件连接,用于实现所述可编程器件与所述计算机之间的通讯。The communication interface circuit is connected with the programmable device for realizing the communication between the programmable device and the computer.
本申请还公开了一种快速XAFS实验系统,包括:The application also discloses a fast XAFS experimental system, including:
同步辐射X射线源;Synchrotron X-ray sources;
双晶单色器,将所述同步辐射X射线源输出的X射线单色化,以得到快速XAFS实验所需的单能X射线;A twin-crystal monochromator monochromatizes the X-rays output by the synchrotron radiation X-ray source to obtain the single-energy X-rays required for fast XAFS experiments;
轴角编码器,用于探测所述双晶单色器的角度;A shaft angle encoder for detecting the angle of the twin crystal monochromator;
步进电机,用于控制所述双晶单色器转动;A stepper motor is used to control the rotation of the twin crystal monochromator;
步进电机驱动器,与所述步进电机电性连接,用于驱动所述步进电机转动;a stepper motor driver, electrically connected to the stepper motor, for driving the stepper motor to rotate;
至少两个电流放大器,用于将与快速XAFS实验中与样品前后的X射线探测器所产生的X射线强度成正比的电流信号放大并转换成模拟电压信号;At least two current amplifiers are used to amplify and convert the current signal proportional to the X-ray intensity generated by the X-ray detector before and after the sample in the fast XAFS experiment and convert it into an analog voltage signal;
电压/频率转换器,与所述至少两个电流放大器连接,用于将所述至少两个电流放大器的模拟电压信号转换成脉冲频率信号;A voltage/frequency converter, connected to the at least two current amplifiers, for converting the analog voltage signals of the at least two current amplifiers into pulse frequency signals;
计算机,用于接收所述轴角编码器探测到的所述双晶单色器的角度;以及a computer, configured to receive the angle of the dual crystal monochromator detected by the shaft encoder; and
智能电子学设备,包括:多通道模数转换采集电路和多路隔离电路中的至少之一、可编程器件、第一隔离电路以及通讯接口电路:Intelligent electronic equipment, including: at least one of a multi-channel analog-to-digital conversion acquisition circuit and a multi-channel isolation circuit, a programmable device, a first isolation circuit, and a communication interface circuit:
所述多通道模数转换采集电路与所述至少两个电流放大器电性连接,用于将来自至少两个电流放大器的模拟电压信号转换成数字信号;The multi-channel analog-to-digital conversion acquisition circuit is electrically connected to the at least two current amplifiers, and is used to convert the analog voltage signals from the at least two current amplifiers into digital signals;
多路隔离电路配置于所述电压/频率转换器与所述可编程器件之间,用于实现来自所述电压/频率转换器的脉冲频率信号与所述可编程器件之间的电学隔离;A multi-channel isolation circuit is configured between the voltage/frequency converter and the programmable device, and is used to realize electrical isolation between the pulse frequency signal from the voltage/frequency converter and the programmable device;
可编程器件与所述多通道模数转换采集电路和所述多路隔离电路连接,用于接收所述多通道模数转换采集电路输出的信号,对所述电压/频率转换器输入的脉冲频率信号进行计数,并将所述多通道模数转换采集电路输出的信号和对所述电压/频率转换器输入的脉冲频率信号进行计数的计数值存储到所述可编程器件自带的先进先出数据缓存器中,以供所述计算机读取;The programmable device is connected to the multi-channel analog-to-digital conversion acquisition circuit and the multi-channel isolation circuit, and is used to receive the signal output by the multi-channel analog-to-digital conversion acquisition circuit, and the pulse frequency input to the voltage/frequency converter The signal is counted, and the signal output by the multi-channel analog-to-digital conversion acquisition circuit and the count value for counting the pulse frequency signal input by the voltage/frequency converter are stored in the first-in-first-out in a data cache for the computer to read;
在所述可编程器件自带的控制曲线配置RAM中预先配置有步进电机的控制曲线,所述控制曲线定义为在不同能量点进行数据采集时步进电机的不同控制段与步进电机的控制脉冲频率之间的关系,所述不同控制段包括允许数据采集的静止控制段、减速后的匀速控制段或者加速后的匀速控制段以及不进行数据采集的加速控制段;The control curve of the stepper motor is pre-configured in the control curve configuration RAM carried by the programmable device, and the control curve is defined as the different control segments of the stepper motor and the stepper motor when data acquisition is performed at different energy points. Controlling the relationship between pulse frequencies, the different control sections include a static control section that allows data collection, a constant speed control section after deceleration or a constant speed control section after acceleration, and an acceleration control section that does not perform data collection;
所述可编程器件用于通过读取所述步进电机的控制曲线来向所述步进电机驱动器发出控制脉冲以控制步进电机转动,并且在所述静止控制段、减速后的匀速控制段以及加速后的匀速控制段开始后经过预设延迟开始数据采集;The programmable device is used to send control pulses to the stepper motor driver to control the rotation of the stepper motor by reading the control curve of the stepper motor, and in the static control section and the constant speed control section after deceleration And start data acquisition after a preset delay after the accelerated constant speed control segment starts;
所述第一隔离电路与所述可编程器件连接,用于实现所述可编程器件与所述步进电机驱动器之间的电学隔离;The first isolation circuit is connected to the programmable device for realizing electrical isolation between the programmable device and the stepper motor driver;
所述通讯接口电路与所述可编程器件连接,用于实现所述可编程器件与所述计算机之间的通讯。The communication interface circuit is connected with the programmable device for realizing the communication between the programmable device and the computer.
本申请还公开了一种通过前述的快速XAFS实验系统实施的快速XAFS实验中的数据采集及步进电机控制方法,包括如下步骤:The present application also discloses a method for data acquisition and stepping motor control in the fast XAFS experiment implemented by the aforementioned fast XAFS experiment system, including the following steps:
通过计算机中安装的人机交互界面接收快速XAFS实验所需的全部运行参数,将所述运行参数格式化后传输到智能电子学设备,所述智能电子学设备将所述运行参数存储到可编程器件自带的与能量扫描和步进电机归位相关的配置RAM中,并由可编程器件生成控制曲线,所述控制曲线存储于所述可编程器件自带的控制曲线配置RAM中;Receive all the operating parameters required for the fast XAFS experiment through the human-computer interaction interface installed in the computer, format the operating parameters and transmit them to the intelligent electronic device, and the intelligent electronic device stores the operating parameters in the programmable In the configuration RAM related to energy scanning and stepper motor homing of the device, the control curve is generated by the programmable device, and the control curve is stored in the control curve configuration RAM of the programmable device;
在开始采谱时,将所述双晶单色器的现行角度由轴角编码器探测并通过显示器显示并传输到所述计算机,并且所述可编程器件读取所述控制曲线配置RAM中的控制曲线,并向步进电机驱动器发出控制脉冲,以控制步进电机转动,从而实现单色X射线扫描;When starting spectrum acquisition, the current angle of the twin-crystal monochromator is detected by the shaft angle encoder and displayed through the display and transmitted to the computer, and the programmable device reads the control curve configuration RAM. Control the curve, and send control pulses to the stepper motor driver to control the rotation of the stepper motor, so as to realize monochromatic X-ray scanning;
并且在进行步进电机控制步骤的同时,所述可编程器件不断检查当前时间,在当前时间与所述控制曲线配置RAM中预先配置的步进电机控制曲线中的静止控制段、减速后的匀速控制段或者加速后的匀速控制段的开始时间之间的差值达到预设延迟时,开始数据采集,从而将对应于不同能量点的所述多通道模数转换采集电路输出的信号和/或对所述电压/频率转换器输入的脉冲频率信号进行计数的计数值存储到所述可编程器件自带的先进先出数据缓存器中,形成初始数据;And while performing the stepping motor control step, the programmable device constantly checks the current time, the static control segment in the stepping motor control curve pre-configured in the control curve configuration RAM in the current time, the constant speed after deceleration When the difference between the start times of the control segment or the accelerated constant speed control segment reaches a preset delay, data acquisition is started, so that the signals output by the multi-channel analog-to-digital conversion acquisition circuit corresponding to different energy points and/or The count value of counting the pulse frequency signal input by the voltage/frequency converter is stored in the first-in-first-out data buffer of the programmable device to form initial data;
在采谱结束时,再次将所述双晶单色器的角度由轴角编码器探测并通过显示器显示并传输到所述计算机;At the end of the spectrum collection, the angle of the twin-crystal monochromator is detected by the shaft angle encoder again and displayed on the display and transmitted to the computer;
在采谱结束后,将所述先进先出数据缓存器中的初始数据传送至计算机,由计算机整理初始数据,并根据在采谱开始及结束时取得的轴角编码器的值,修正所述初始数据中的能量标定,最终生成正式的快速XAFS实验数据文件,并在所述计算机安装中的人机交互界面上显示所采集的快速XAFS谱。After the spectrum acquisition is finished, the initial data in the first-in-first-out data buffer is sent to the computer, and the computer organizes the initial data, and corrects the The energy calibration in the initial data finally generates a formal fast XAFS experimental data file, and the collected fast XAFS spectrum is displayed on the human-computer interaction interface in the computer installation.
本申请提供的智能电子学设备替代了常规XAFS实验系统中的步进电机控制器和定标器(如果该智能电子学设备不包括用于积分采样方案的器件,则该智能电子学设备还可以代替V/F转换器),通过可编程器件读取预先存储在RAM中的控制曲线来同步进行步进电机的控制以及数据采集,实现了快速同步,进而克服了现有技术中由于无法快速同步造成的采谱速度受限的问题。The intelligent electronic equipment provided by the application replaces the stepper motor controller and the scaler in the conventional XAFS experimental system (if the intelligent electronic equipment does not include the device for the integral sampling scheme, the intelligent electronic equipment can also instead of the V/F converter), the control curve and data acquisition of the stepper motor are synchronously carried out by reading the control curve pre-stored in the RAM through the programmable device, realizing fast synchronization, and then overcoming the problem of the inability to quickly synchronize in the prior art The problem caused by the limited acquisition speed.
而且,在RAM中预先配置有步进电机的控制曲线,该控制区域包括用于进行数据采集的静止控制段、加速后的匀速控制段或者减速后的匀速控制段,也就是说,步进电机采用波动速度运行,在低速或者静止的时候进行数据采集,而在非数据采集区间高速运行。采用该波动转动模式,可以减少或消除快速数据采集时的能量移动ΔE,可以在扫谱速度及ΔE两者的矛盾中获得最佳解决。Moreover, the control curve of the stepping motor is pre-configured in the RAM, and the control area includes a static control section for data acquisition, a constant speed control section after acceleration, or a constant speed control section after deceleration, that is, the stepping motor Run at a fluctuating speed, collect data at low speed or at rest, and run at high speed in the non-data collection interval. Using the wave rotation mode can reduce or eliminate the energy shift ΔE during fast data acquisition, and can obtain the best solution in the contradiction between the scanning speed and ΔE.
在后文的实施例中将进一步详细描述采用本申请的实施例如何解决背景技术中提到的各个问题。In the following embodiments, it will be further described in detail how to solve various problems mentioned in the background technology by using the embodiments of the present application.
通过以下参照附图对优选实施例的说明,本申请的上述以及其它目的、特征和优点将更加明显。The above and other objects, features and advantages of the present application will be more apparent through the following description of preferred embodiments with reference to the accompanying drawings.
附图说明Description of drawings
图1示意性示出了一种常规XAFS实验系统的结构框图;Fig. 1 schematically shows a structural block diagram of a conventional XAFS experimental system;
图2示意性示出本申请实施例的QXAFS实验系统的一种结构框图;Fig. 2 schematically shows a structural block diagram of the QXAFS experimental system of the embodiment of the present application;
图3示意性示出了本申请实施例中专用于QXAFS实验的智能电子学设备的结构框图;Fig. 3 schematically shows the structural block diagram of the intelligent electronic device dedicated to the QXAFS experiment in the embodiment of the present application;
图4示出了本申请实施例中智能电子学设备的模拟数据采集和积分形式数据采集的逻辑框图;Fig. 4 shows the logical block diagram of the analog data acquisition and integral form data acquisition of the intelligent electronic device in the embodiment of the present application;
图5示意性示出了本申请实施例中可编程器件的固件(firmware)框图;Fig. 5 schematically shows the firmware (firmware) block diagram of the programmable device in the embodiment of the present application;
图6示意性示出预先配置于RAM中的一种控制曲线;Fig. 6 schematically shows a kind of control curve pre-configured in RAM;
图7示意性示出预先配置于RAM中的另一种控制曲线;Fig. 7 schematically shows another control curve pre-configured in RAM;
图8示意性示出预先配置于RAM中的另一种控制曲线;Fig. 8 schematically shows another control curve pre-configured in RAM;
图9示意性示出一种控制曲线中预设延迟的设置方式;Fig. 9 schematically shows a setting method of a preset delay in a control curve;
图10示意性示出RAM中的分段式配置示意图;Fig. 10 schematically shows a schematic diagram of a segmented configuration in RAM;
图11示意性示出RAM中对于控制曲线的配置示意图;Fig. 11 schematically shows a schematic diagram of the configuration of the control curve in the RAM;
图12示意性示出了本申请实施例中QXAFS实验系统的另一种结构框图;Fig. 12 schematically shows another structural block diagram of the QXAFS experimental system in the embodiment of the present application;
图13示意性示出本申请实施例的另一种智能电子学设备的结构示意图;FIG. 13 schematically shows a schematic structural diagram of another intelligent electronic device according to an embodiment of the present application;
图14示意性示出了采用如图2所示的系统获得的K空间Cu(铜)的K边EXAFS谱与从美国先进同步辐射光源(APS)的在线数据库发布的常规XAFS方法采集的标准的Cu的K边EXAFS谱之间的比对效果。Fig. 14 schematically shows the K-edge EXAFS spectrum of Cu (copper) in K-space acquired by the system shown in Fig. Comparison effect between K-edge EXAFS spectra of Cu.
具体实施方式Detailed ways
图2示意性示出本申请实施例的QXAFS实验系统的结构框图。同步辐射X射线入射到双晶单色器101上,经双晶单色器101单色化的单能X射线进入位于样品前的电离室探测器103、样品以及位于样品后的电离室探测器103(同时探测标准样品还可以有第三个电离室X射线探测器)。Fig. 2 schematically shows the structural block diagram of the QXAFS experimental system of the embodiment of the present application. Synchrotron radiation X-rays are incident on the twin-crystal monochromator 101, and monochromatic monochromatic X-rays through the twin-crystal monochromator 101 enter the ionization chamber detector 103 located in front of the sample, the sample, and the ionization chamber detector located behind the sample 103 (can also have a third ionization chamber X-ray detector to detect the standard sample at the same time).
双晶单色器101的当前角度可以由轴角编码器109探测并通过显示器110显示并传输到计算机108。The current angle of the twin crystal monochromator 101 can be detected by the shaft angle encoder 109 and displayed by the display 110 and transmitted to the computer 108 .
双晶单色器101的滚角、投角由直线电机驱动器112驱动,直线电机驱动器112与计算机108连接,可以实现手动/自动控制。The roll angle and pitch angle of the twin-crystal monochromator 101 are driven by a linear motor driver 112, which is connected with a computer 108 to realize manual/automatic control.
电离室探测器输出的弱电流信号馈入至少两个电流放大器105,电流放大器的工作状态可以由计算机108通过GPIB总线进行设置。The weak current signal output by the ionization chamber detector is fed into at least two current amplifiers 105, and the working state of the current amplifiers can be set by the computer 108 through the GPIB bus.
智能电子学设备200例如通过USB总线与计算机108连接,与计算机108进行指令及数据传输,智能终端电子学设备200与步进电机驱动器113连接,发出控制脉冲,使得步进电机按照预设程序驱动双晶单色器101以布喇格角度转动,从而实现单色光能量扫描。智能电子学设备200与电流放大器105连接,在智能电子学设备的控制下,协调双晶单色器101的布喇格角度转动以及电流放大器105的输出信号的读取,从而完成样品的数据采集。For example, the smart electronic device 200 is connected to the computer 108 through a USB bus, and performs command and data transmission with the computer 108. The smart terminal electronic device 200 is connected to the stepper motor driver 113, and sends out control pulses, so that the stepper motor is driven according to a preset program. The twin-crystal monochromator 101 rotates at a Bragg angle, thereby realizing monochromatic light energy scanning. The intelligent electronic device 200 is connected to the current amplifier 105, and under the control of the intelligent electronic device, it coordinates the Bragg angle rotation of the twin crystal monochromator 101 and the reading of the output signal of the current amplifier 105, thereby completing the data collection of the sample .
数据采集结束后的采谱数据由智能电子学设备200传输至计算机108。After data collection, the spectrum data is transmitted from the intelligent electronic device 200 to the computer 108 .
比较图2和图1可以看出,本申请实施例的QXAFS实验系统与常规的XAFS实验系统的区别之处在于:用智能电子学设备200替换了常规XAFS实验系统中的步进电机控制器114和定标器107。Comparing Fig. 2 and Fig. 1, it can be seen that the difference between the QXAFS experimental system of the embodiment of the present application and the conventional XAFS experimental system is that the stepper motor controller 114 in the conventional XAFS experimental system is replaced by an intelligent electronic device 200 and scaler 107 .
图3示意性示出了本申请实施例中专用于QXAFS实验的智能电子学设备200的结构框图。FIG. 3 schematically shows a structural block diagram of an intelligent electronic device 200 dedicated to QXAFS experiments in the embodiment of the present application.
该智能电子学设备200包括:多通道模数转换(ADC)采集电路201、多路隔离电路202、可编程器件203、第一隔离电路204以及通讯接口电路205。The intelligent electronic device 200 includes: a multi-channel analog-to-digital conversion (ADC) acquisition circuit 201 , a multi-channel isolation circuit 202 , a programmable device 203 , a first isolation circuit 204 and a communication interface circuit 205 .
多通道ADC采集电路201用于将来自至少两个电流放大器的模拟电压信号转换成数字信号。至少两个电流放大器(例如,图1中的电流放大器105)用于将与快速XAFS实验中与样品前后的X射线探测器所产生的X射线强度成正比的电流信号放大并转换成模拟电压信号。The multi-channel ADC acquisition circuit 201 is used to convert the analog voltage signals from at least two current amplifiers into digital signals. At least two current amplifiers (for example, current amplifier 105 in FIG. 1 ) are used to amplify and convert the current signal proportional to the intensity of X-rays generated by the X-ray detectors before and after the sample in the fast XAFS experiment and convert it into an analog voltage signal .
多路隔离电路202实现来自V/F转换器106的脉冲频率信号与可编程器件203之间的电学隔离。V/F转换器106用于将至少两个电流放大器的模拟电压信号转换成脉冲频率信号。The multi-channel isolation circuit 202 realizes electrical isolation between the pulse frequency signal from the V/F converter 106 and the programmable device 203 . The V/F converter 106 is used to convert the analog voltage signals of the at least two current amplifiers into pulse frequency signals.
可编程器件203可以自带有多个随机读取存储器(Random AccessMemory,RAM)和FIFO数据缓存器。可编程器件203与多通道ADC采集电路201和多路隔离电路202连接,用于接收多通道ADC采集电路201输出的信号,对V/F转换器106输入的脉冲频率信号进行计数,并将多通道ADC采集电路201输出的信号和对V/F转换器106输入的脉冲频率信号进行计数的计数值存储到可编程器件203自带的FIFO数据缓存器。The programmable device 203 may have multiple random access memories (Random Access Memory, RAM) and FIFO data buffers. The programmable device 203 is connected with the multi-channel ADC acquisition circuit 201 and the multi-channel isolation circuit 202, and is used to receive the signal output by the multi-channel ADC acquisition circuit 201, count the pulse frequency signal input by the V/F converter 106, and multiple The signal output by the channel ADC acquisition circuit 201 and the counted value of the pulse frequency signal input by the V/F converter 106 are stored in the FIFO data buffer of the programmable device 203 .
图4示出了本申请实施例中智能电子学设备的模拟数据采集和积分形式数据采集的逻辑框图。多通道ADC采集电路201将电流放大器105的模拟电压信号转换成数字信号,可编程器件203将多通道ADC采集电路201输入的信号存储到FIFO数据缓存器中,相当于以ADC形式进行数据采集。可编程器件203利用自身的计数模块对V/F转换器106输入的脉冲频率信号进行计数,并将计数值存储在FIFO数据缓存器中,相当于代替了常规XAFS系统中定标器的功能,并且实现了以积分形式进行数据采集。这两种数据采集通路是并行的,互不干扰。Fig. 4 shows a logic block diagram of analog data acquisition and integral form data acquisition of the intelligent electronic device in the embodiment of the present application. The multi-channel ADC acquisition circuit 201 converts the analog voltage signal of the current amplifier 105 into a digital signal, and the programmable device 203 stores the signal input by the multi-channel ADC acquisition circuit 201 into the FIFO data buffer, which is equivalent to data acquisition in the form of ADC. The programmable device 203 uses its own counting module to count the pulse frequency signal input by the V/F converter 106, and stores the count value in the FIFO data buffer, which is equivalent to replacing the function of the scaler in the conventional XAFS system, And it realizes data collection in integral form. These two data acquisition paths are parallel and do not interfere with each other.
图5示意性示出了本申请实施例中可编程器件的固件框图。例如,可编程器件是现场可编程门阵列(FPGA),该FPGA的逻辑主要可以由3个配置RAM、若干寄存器(图中未示出)、4个逻辑功能模块以及6个FIFO数据缓存器等构成。图中所有斜体字标出的信号可由寄存器设置;所有黑体字标出的信号可由寄存器读取。各个逻辑功能模块、RAM、FIFO之间可以通过ECS接口进行通讯。Fig. 5 schematically shows a firmware block diagram of the programmable device in the embodiment of the present application. For example, the programmable device is a field-programmable gate array (FPGA), and the logic of the FPGA can be mainly composed of 3 configuration RAMs, several registers (not shown in the figure), 4 logic function modules, and 6 FIFO data buffers, etc. constitute. All signals marked in italics in the figure can be set by registers; all signals marked in bold can be read by registers. Each logical function module, RAM, and FIFO can communicate through the ECS interface.
能量扫描过程和归位过程完全由3个配置RAM定义。The energy scanning process and homing process are completely defined by 3 configuration RAMs.
(1)控制曲线配置RAM:步进电机的控制曲线包括加速曲线和减速曲线等,加速曲线和减速曲线可以看成相反的两个过程,所使用的脉冲序列完全相同,只是加速时,脉冲频率递增,减速时,脉冲频率递减。因此,加减速曲线使用同一个RAM配置。(1) Control curve configuration RAM: The control curve of the stepping motor includes acceleration curve and deceleration curve, etc. The acceleration curve and deceleration curve can be regarded as two opposite processes. Incrementally, when decelerating, the pulse frequency decreases. Therefore, the acceleration and deceleration curves use the same RAM configuration.
(2)能量扫描配置RAM:该RAM定义能量扫描控制模块的运行过程。(2) Energy scanning configuration RAM: This RAM defines the running process of the energy scanning control module.
(3)归位控制模块运行配置RAM:该RAM定义步进电机归位的运行过程。(3) Operation configuration RAM of homing control module: This RAM defines the running process of stepper motor homing.
寄存器可以分为两类:控制寄存器和状态寄存器,分别用于智能电子学设备的控制和监视。比如,通过步进电机控制寄存器,可以发出能量扫描运行请求。Registers can be divided into two categories: control registers and status registers, which are used for control and monitoring of intelligent electronic devices, respectively. For example, through the stepper motor control register, an energy scan operation request can be issued.
4个逻辑功能模块实现步进电机的控制和数据的采集。Four logical function modules realize the control of the stepper motor and the collection of data.
(1)能量扫描控制模块(1) Energy scanning control module
能量扫描控制模块可以访问能量扫描配置RAM和控制曲线配置RAM,根据两个RAM的配置,完成对步进电机的加减速控制,并在低速或静止阶段发出数据采集请求,从而完成能量扫描的过程。The energy scanning control module can access the energy scanning configuration RAM and the control curve configuration RAM. According to the configuration of the two RAMs, the acceleration and deceleration control of the stepping motor is completed, and a data acquisition request is sent at a low speed or at a standstill to complete the energy scanning process. .
能量扫描控制模块可通过写控制寄存器启动。The energy scan control module can be started by writing the control register.
(2)归位控制模块(2) Homing control module
归位控制模块可以访问归位控制模块运行配置RAM和控制曲线配置RAM,根据两个RAM的配置,完成对步进电机的加减速控制,使步进电机回到起始位置。The homing control module can access the operating configuration RAM and the control curve configuration RAM of the homing control module. According to the configuration of the two RAMs, the acceleration and deceleration control of the stepping motor is completed, so that the stepping motor returns to the initial position.
归位控制模块可通过写控制寄存器启动。The homing control module can be enabled by writing to the control register.
(3)步进电机脉冲调制模块(3) Stepper motor pulse modulation module
步进电机脉冲调制模块的作用包括:展宽脉冲信号、控制步进电机方向信号、对步进电机脉冲信号计数、检测步进电机脉冲计数是否超出限制等。The functions of the stepping motor pulse modulation module include: stretching the pulse signal, controlling the direction signal of the stepping motor, counting the pulse signal of the stepping motor, and detecting whether the pulse count of the stepping motor exceeds the limit, etc.
当步进电机脉冲调制模块检测到步进电机脉冲计数超限错误时,会停止步进电机的运行,起保护作用,也就是说,如果检测到超限错误时能量扫描控制模块或归位控制模块正在运行,那么运行过程会被立即停止。When the stepper motor pulse modulation module detects an overrun error in the pulse count of the stepper motor, it will stop the operation of the stepper motor and play a protective role, that is, if an overrun error is detected, the energy scanning control module or homing control If the module is running, the running process will be stopped immediately.
(4)数据采集模块(4) Data acquisition module
数据采集模块接收能量扫描控制模块发出的数据采集请求,并可以根据数采延迟和数采宽度进行数据采集。数据采集完成后,采集结果存入用于缓存数据的FIFO数据缓存器中,供计算机机读取。该数据采集模块具有计数模块,可以对于V/F转换器传送过来的脉冲频率信号进行计数。The data acquisition module receives the data acquisition request sent by the energy scanning control module, and can perform data acquisition according to the data acquisition delay and the data acquisition width. After the data acquisition is completed, the acquisition results are stored in the FIFO data buffer for caching data, and are read by the computer. The data acquisition module has a counting module, which can count the pulse frequency signal sent by the V/F converter.
上述4个模块,每个都有基本的检错功能,所有错误信息可以通过寄存器查询。Each of the above four modules has a basic error detection function, and all error information can be queried through registers.
6个FIFO数据缓存器用于缓存数据采集的结果,分别对应3个模拟电压采集通道和3个V/F脉冲计数通道。6 FIFO data buffers are used to buffer the results of data acquisition, corresponding to 3 analog voltage acquisition channels and 3 V/F pulse counting channels.
在可编程器件自带的控制曲线配置RAM中预先配置有步进电机的控制曲线。该控制曲线定义在不同能量点进行数据采集时步进电机的不同控制段与步进电机的控制脉冲频率之间的关系。这些不同控制段包括允许数据采集的静止控制段、减速后的匀速控制段或者加速后的匀速控制段以及不进行数据采集的加速控制段。The control curve of the stepper motor is pre-configured in the control curve configuration RAM of the programmable device. The control curve defines the relationship between the different control segments of the stepper motor and the control pulse frequency of the stepper motor when data acquisition is performed at different energy points. These different control segments include a static control segment that allows data collection, a constant speed control segment after deceleration or a constant speed control segment after acceleration, and an acceleration control segment that does not perform data collection.
图6示意性示出预先配置于RAM中的一种控制曲线。在该控制曲线中,横坐标t表示步进电机的运行时间,纵坐标fs表示步进电机的控制脉冲频率。步进电机的速度与控制脉冲频率相关,当步进电机加速时,控制脉冲频率递增;当步进电机减速时,控制脉冲频率递减。Fig. 6 schematically shows a control curve pre-configured in RAM. In the control curve, the abscissa t represents the running time of the stepping motor, and the ordinate fs represents the control pulse frequency of the stepping motor. The speed of the stepping motor is related to the control pulse frequency. When the stepping motor accelerates, the control pulse frequency increases; when the stepping motor decelerates, the control pulse frequency decreases.
单个能量点(即通过双晶单色器获得的一个单能能量点,例如第一能量点)对应的不同控制段包括允许数据采集的减速后的匀速控制段以及不进行数据采集的加速控制段。Different control sections corresponding to a single energy point (that is, a single-energy energy point obtained through a twin-crystal monochromator, such as the first energy point) include a decelerated constant-velocity control section that allows data collection and an acceleration control section that does not perform data collection .
不进行数据采集的加速控制段实质上是一个高速控制段,在该控制段将步进电机加速,使得步进电机加速转动到所需的角度,进而获得所需的单能X射线。The acceleration control section without data acquisition is essentially a high-speed control section, in which the stepper motor is accelerated to make the stepper motor rotate to the required angle, and then obtain the required single-energy X-ray.
在经过加速控制段之后可以有加速后的匀速控制段和减速控制段。在减速控制段之后进入减速后的匀速控制段。该减速后的匀速控制段是一个低速控制段,在控制段内进行数据采集,可以减小单能X射线的能量移动,从而提高采谱质量。After the acceleration control segment, there may be an accelerated constant speed control segment and a deceleration control segment. After the deceleration control section, enter the deceleration constant speed control section. The decelerated constant-velocity control section is a low-speed control section, and data acquisition in the control section can reduce the energy transfer of single-energy X-rays, thereby improving the quality of spectrum collection.
可见,通过图6所示的控制曲线来控制步进电机,可以使得步进电机循环做加速运行、加速后的匀速运行(高速运行)、减速运行、减速后的匀速运行(低速运行),实现了步进电机的“波动式”运行控制。It can be seen that by controlling the stepper motor through the control curve shown in Figure 6, the stepper motor can be cycled to perform acceleration operation, uniform speed operation after acceleration (high speed operation), deceleration operation, and uniform speed operation after deceleration (low speed operation), realizing The "fluctuating" operation control of the stepping motor is realized.
本申请针对现有技术存在的问题所提出的解决方案中的关键点之一就是让步进电机“波动式”运行,即在不进行数据采集的阶段让步进电机快速转动,而在进行数据采集的阶段让步进电机低速转动。这样,一方面可以让步进电机快速转动到所需的位置,达到快速的目的,另一方面在进行数据采集的时候让步进电机以低速运行,减小单能X射线的能量移动,提高系统的信噪比,保证采谱质量。One of the key points in the solution proposed by this application for the problems existing in the prior art is to let the stepping motor run in a "fluctuating" manner, that is, the stepping motor is allowed to rotate rapidly when the data is not being collected, while the data is being collected. The acquisition phase turns the stepper motor at a low speed. In this way, on the one hand, the stepping motor can be quickly rotated to the required position to achieve the purpose of fast speed; on the other hand, the stepping motor can be run at a low speed during data collection, reducing the energy movement of single-energy X-rays and improving The signal-to-noise ratio of the system ensures the quality of the spectrum.
图7示意性示出预先配置于RAM中的另一种控制曲线。在该控制曲线中,横坐标t表示步进电机的运行时间,纵坐标fs表示步进电机的控制脉冲频率。Fig. 7 schematically shows another control curve pre-configured in RAM. In the control curve, the abscissa t represents the running time of the stepping motor, and the ordinate fs represents the control pulse frequency of the stepping motor.
图7中,单个能量点对应的不同控制段包括允许数据采集的静止控制段以及不进行数据采集的加速控制段。In Fig. 7, different control segments corresponding to a single energy point include a static control segment that allows data collection and an acceleration control segment that does not perform data collection.
不进行数据采集的加速控制段实质上是一个高速控制段,在该控制段将步进电机加速,使得步进电机加速转动到所需的角度,进而获得所需的单能X射线。The acceleration control section without data acquisition is essentially a high-speed control section, in which the stepper motor is accelerated to make the stepper motor rotate to the required angle, and then obtain the required single-energy X-ray.
在经过加速控制段之后可以有加速后的匀速控制段和减速控制段。在减速控制段之后进入静止控制段。在静止控制段内进行数据采集,可以减小单能X射线的能量移动,从而提高采谱质量。After the acceleration control segment, there may be an accelerated constant speed control segment and a deceleration control segment. Enter the stationary control segment after the deceleration control segment. The data acquisition in the static control section can reduce the energy shift of the single-energy X-ray, thereby improving the quality of the spectrum.
可见,通过图7所示的控制曲线来控制步进电机,可以使得步进电机循环做加速运行、加速后的匀速运行(高速运行)、减速运行、静止,实现了步进电机的“波动式”运行控制。It can be seen that by controlling the stepper motor through the control curve shown in Figure 7, the stepper motor can be cycled to perform acceleration operation, uniform speed operation after acceleration (high-speed operation), deceleration operation, and stand still, realizing the "wave type" of the stepper motor. "Operational control.
在图6和图7所示的控制曲线中,快速起停控制的过程与传统的XAFS实验系统类似,但是由于在低速控制段或者静止控制段允许数据采集,因而使得步进电机快速起停的过程可以与数据采集的过程高度同步,因此,与传统的XAFS实验系统相比,本申请的实施例可以在保证采谱质量的前提下用更少的时间完成数据采集。In the control curves shown in Fig. 6 and Fig. 7, the process of fast start-stop control is similar to that of the traditional XAFS experimental system, but because data collection is allowed in the low-speed control section or static control section, the fast start-stop of the stepper motor is The process can be highly synchronized with the data collection process. Therefore, compared with the traditional XAFS experimental system, the embodiment of the present application can complete data collection in less time under the premise of ensuring the quality of spectrum collection.
图8示意性示出预先配置于RAM中的另一种控制曲线。在该控制曲线中,横坐标t表示步进电机的运行时间,纵坐标fs表示步进电机的控制脉冲频率。Fig. 8 schematically shows another control curve pre-configured in RAM. In the control curve, the abscissa t represents the running time of the stepping motor, and the ordinate fs represents the control pulse frequency of the stepping motor.
单个能量点对应的不同控制段包括允许数据采集的加速后的匀速控制段以及不进行数据采集的加速控制段。Different control segments corresponding to a single energy point include a constant speed control segment after acceleration that allows data collection and an acceleration control segment that does not perform data collection.
图8所示的曲线中,在步进电机高速运行的过程中完成数据采集。采用该控制曲线来控制步进电机,由于数据采集过程中步进电机高速运转,因而,单能X射线的能量移动稍大,然而,由于在加速后的匀速控制段允许进行数据采集,因而实现了步进电机控制和数据采集的高速同步,因而,与常规的XAFS实验系统相比仍然具有快速的优势。In the curve shown in Figure 8, the data acquisition is completed during the high-speed operation of the stepper motor. This control curve is used to control the stepper motor. Since the stepper motor runs at high speed during the data acquisition process, the energy shift of the single-energy X-ray is slightly larger. However, since the data acquisition is allowed in the uniform speed control section after acceleration, the The high-speed synchronization of stepper motor control and data acquisition is achieved, so it still has a fast advantage compared with the conventional XAFS experimental system.
在图6到图8所示的控制曲线中,可以设置每个能量点对应的有效数据采集区间,也就是说在静止控制段、减速后的匀速控制段或者加速后的匀速控制段等开始后经过预设延迟开始数据采集。例如,图9示意性示出一种控制曲线中预设延迟的设置方式。在图9中,在减速后的匀速控制段(即低速段)开始后经过预设延迟Td之后,开始进行数据采集。有效数据采集区间持续的时间是Ts。In the control curves shown in Figures 6 to 8, the effective data collection interval corresponding to each energy point can be set, that is, after the start of the static control section, the decelerated constant speed control section, or the accelerated constant speed control section, etc. Data acquisition begins after a preset delay. For example, FIG. 9 schematically shows a setting manner of a preset delay in a control curve. In FIG. 9 , data collection starts after a preset delay Td after the start of the decelerated constant-speed control section (ie, the low-speed section). The duration of the valid data collection interval is Ts.
在本申请的实施例中,步进电机和数据采集的控制采用段式控制。一次采谱过程包含多个控制段。该控制段可以有多种类型,例如如图6到图8的控制曲线所示,可以包括单步控制段、加速控制段、匀速控制段、减速控制段、静止控制段等,分别用来控制步进电机动一步、步进电机加速、步进电机匀速运行、步进电机减速、步进电机静止不动等。一次采谱过程所包含的多个控制段可以由可编程器件自带的控制曲线配置RAM或者可以由可编程器件可以直接访问的RAM存储。图10示意性示出RAM中的分段式配置示意图。该控制曲线配置RAM中配置了控制段1、控制段2、……控制段N,每个控制段均可以配置有效数据采集区间持续的时间Ts以及开始数据采集的预设延迟Td。In the embodiment of this application, the control of the stepper motor and data acquisition adopts segment control. A spectrum acquisition process includes multiple control segments. The control section can have various types, for example, as shown in the control curves in Figure 6 to Figure 8, it can include a single-step control section, an acceleration control section, a constant speed control section, a deceleration control section, a static control section, etc., which are used to control The stepper motor moves one step, the stepper motor accelerates, the stepper motor runs at a constant speed, the stepper motor decelerates, the stepper motor stands still, etc. Multiple control segments included in a spectrum acquisition process can be stored in the control curve configuration RAM of the programmable device or can be directly accessed by the programmable device. FIG. 10 schematically shows a schematic diagram of a segmented configuration in RAM. The control curve configuration RAM is configured with control segment 1, control segment 2, ... control segment N, and each control segment can be configured with the duration Ts of the effective data collection interval and the preset delay Td for starting data collection.
步进电机的加减速过程实际上可以通过按照一系列预定的时间间隔发出步进电机控制脉冲信号来完成。这一系列的时间间隔可以由可编程器件自带的控制曲线配置RAM或者可以由可编程器件直接访问的RAM存储。图11示意性示出RAM中对于控制曲线的配置示意图。在该RAM中配置了各个脉冲频率对应的脉冲周期。这一系列的时间间隔的倒数便是要产生的一系列控制脉冲信号的频率。加速时,这一系列脉冲的频率变大,减速时,脉冲的频率变小。The acceleration and deceleration process of the stepper motor can actually be completed by sending out the stepper motor control pulse signal according to a series of predetermined time intervals. This series of time intervals can be stored in a control curve configuration RAM built into the programmable device or in a RAM that can be directly accessed by the programmable device. FIG. 11 schematically shows the configuration diagram of the control curve in the RAM. The pulse period corresponding to each pulse frequency is configured in the RAM. The reciprocal of this series of time intervals is the frequency of a series of control pulse signals to be generated. When accelerating, the frequency of this series of pulses becomes larger, and when decelerating, the frequency of the pulses becomes smaller.
加速和减速过程的一系列脉冲的时间间隔由计算机或者可编程器件提前计算,并写入控制曲线配置RAM中。利用控制曲线配置RAM中存储的时间间隔可以把步进电机从静止加速到步进电机的最高运行速度,也可以把步进电机从最高运行速度减速到静止状态。当然,也可以实现任意一个速度到另外一个速度的加速或减速过程。The time interval of a series of pulses in the acceleration and deceleration process is calculated in advance by a computer or a programmable device, and written into the control curve configuration RAM. Using the control curve to configure the time interval stored in RAM can accelerate the stepping motor from rest to the highest operating speed of the stepping motor, and can also decelerate the stepping motor from the highest operating speed to the static state. Of course, an acceleration or deceleration process from any speed to another speed can also be realized.
加速控制段可以是控制曲线配置RAM中保存的加速曲线的全部或一部分,具体可以由加速控制段指定的起始速度和末尾速度决定。起始速度和末尾速度决定了加速过程的开始速度和结束速度。The acceleration control section can be all or part of the acceleration curve stored in the control curve configuration RAM, and can be specifically determined by the start speed and end speed specified by the acceleration control section. The start speed and end speed determine the start speed and end speed of the acceleration process.
减速控制段与加速控制段类似,只不过是反过来用来实现一段减速的过程。The deceleration control section is similar to the acceleration control section, but it is used in reverse to realize a deceleration process.
加速和减速曲线可以由计算机根据步进电机的扭矩、转速等参数以及传动装置的结构和负载进行计算给出,并写入可编程器件自带的RAM中。The acceleration and deceleration curves can be calculated by the computer according to the torque, speed and other parameters of the stepping motor as well as the structure and load of the transmission device, and written into the RAM of the programmable device.
为了使得步进电机的运行与数据采集能够同步,在控制步进电机运行状态的加速控制段、匀速控制段、减速控制段和静止控制段都可以允许启动数据采集。当然这些控制段也可以禁止数据采集,具体可以由控制段的定义决定。较佳地,为了避免出现数据采集时单能X射线能量偏移较大,可以在减速后的匀速控制段和静止控制段允许启动数据采集。而在加速控制段禁止数据采集。In order to synchronize the operation of the stepper motor with data acquisition, data acquisition can be started in the acceleration control section, constant speed control section, deceleration control section and static control section of the stepper motor's operating state. Of course, these control sections can also prohibit data collection, which can be determined by the definition of the control section. Preferably, in order to avoid large single-energy X-ray energy shifts during data collection, the data collection can be started in the constant speed control section and the static control section after deceleration. In the acceleration control segment, data acquisition is prohibited.
对于开启了数据采集功能的控制段,控制段的执行起始时间和数据采集的起始时间之间可以定义一个延迟时间Td,如图9所示。For the control segment with the data acquisition function turned on, a delay time Td can be defined between the execution start time of the control segment and the start time of data acquisition, as shown in FIG. 9 .
图3所示的智能电子学设备包括多通道ADC采集电路201并且可以通过可编程器件203对脉冲频率信号进行计数,从而可以进行ADC数据采样和积分采样这两种数据采样方式。当然,该设备也可以具备ADC采样和积分采样这两种采样方式中的一种。图12示意性示出了本申请实施例中QXAFS实验系统的另一种结构框图。该结构与图2所示的结构相比,省去了V/F转换器,即相当于智能电子学设备200代替了常规XAFS系统中的步进电机控制器、定标器和V/F转换器。相应地,在智能电子学设备200中可以不包括多通道隔离电路。图12所示的结构仅可以实现ADC采样方式。The intelligent electronic device shown in FIG. 3 includes a multi-channel ADC acquisition circuit 201 and can count pulse frequency signals through a programmable device 203, so that two data sampling modes of ADC data sampling and integral sampling can be performed. Certainly, the device may also have one of the two sampling modes of ADC sampling and integral sampling. Fig. 12 schematically shows another structural block diagram of the QXAFS experimental system in the embodiment of the present application. Compared with the structure shown in Fig. 2, this structure saves the V/F converter, which is equivalent to that the intelligent electronic device 200 replaces the stepper motor controller, scaler and V/F converter in the conventional XAFS system device. Accordingly, the multi-channel isolation circuit may not be included in the intelligent electronic device 200 . The structure shown in Figure 12 can only realize the ADC sampling mode.
如果智能电子学设备200对脉冲频率信号进行计数而不包括多通道ADC采集电路201,则图2所示的系统中不能省略掉V/F转换器,即相当于智能电子学设备代替了常规XAFS系统中的步进电机控制器和定标器。If the intelligent electronic device 200 counts the pulse frequency signal without including the multi-channel ADC acquisition circuit 201, the V/F converter cannot be omitted in the system shown in FIG. Stepper motor controller and scaler in the system.
下面结合图2到图12来描述本申请的QXAFS实验系统的工作过程。The working process of the QXAFS experimental system of the present application will be described below in conjunction with FIG. 2 to FIG. 12 .
在开始QXAFS实验之前,计算机中安装有相关的总控制程序(例如,该总控制程序可以通过Labview实现),用户通过总控制程序的人机交互界面输入采谱的全部运行参数,格式化后下传到智能电子学设备。该智能电子学设备将运行参数存储于该可编程器件自带的与能量扫描和步进电机归位相关的配置RAM(例如图5中的能量扫描配置RAM和归位运行RAM)中,并由可编程器件生成控制曲线,该控制曲线存储于可编程器件自带的控制曲线配置RAM中。Before starting the QXAFS experiment, the relevant general control program is installed in the computer (for example, the general control program can be implemented through Labview), and the user inputs all the operating parameters of the spectrum acquisition through the human-computer interaction interface of the general control program, and after formatting, download transmitted to intelligent electronic devices. The intelligent electronic device stores the operating parameters in the configuration RAM (for example, the energy scanning configuration RAM and the homing operation RAM in Fig. 5 ) related to the energy scanning and the homing of the stepping motor that the programmable device carries, and is controlled by The programmable device generates a control curve, and the control curve is stored in the control curve configuration RAM of the programmable device.
在进行QXAFS实验之前可以进行预扫描,让用户在K空间观察白噪声的大小,通过观察K空间的噪声大小并结合光强、样品状态以及分析数据允许的统计误差等因素确定数据采集持续的时间,即图9中的Ts的大小,并将所确定的Ts的大小输入到智能电子学设备。该智能电子学设备基于用户输入的Ts的大小可以形成采谱规划,即步进电机的多个控制曲线。A pre-scan can be performed before the QXAFS experiment, allowing users to observe the size of the white noise in the K-space, and determine the duration of data acquisition by observing the noise in the K-space and combining factors such as light intensity, sample state, and statistical errors allowed by the analysis data. , that is, the size of Ts in FIG. 9 , and input the determined size of Ts to the intelligent electronic device. Based on the magnitude of Ts input by the user, the intelligent electronic device can form a sampling plan, that is, multiple control curves of the stepping motor.
在开始采谱时,将双晶单色器的现行角度由轴角编码器探测并通过显示器显示并传输到计算机,并且可编程器件读取控制曲线配置RAM中的控制曲线,并向步进电机驱动器发出控制脉冲,以控制步进电机转动,从而实现单色X射线扫描。At the beginning of spectrum acquisition, the current angle of the double crystal monochromator is detected by the shaft angle encoder and displayed on the display and transmitted to the computer, and the programmable device reads the control curve and configures the control curve in the RAM, and sends it to the stepping motor The driver sends out control pulses to control the rotation of the stepper motor, so as to realize monochrome X-ray scanning.
并且在进行步进电机控制步骤的同时,可编程器件不断检查当前时间,在当前时间与控制曲线配置RAM中预先配置的步进电机控制曲线中的静止控制段、减速后的匀速控制段或者加速后的匀速控制段的开始时间之间的差值达到预设延迟时,开始数据采集,从而将对应于不同能量点的多通道模数转换采集电路输出的信号和/或对电压/频率转换器输入的脉冲频率信号进行计数的计数值存储到可编程器件自带的先进先出数据缓存器中,形成初始数据。And while the stepper motor control step is being performed, the programmable device constantly checks the current time, and the static control segment, the constant speed control segment after deceleration or the acceleration in the stepper motor control curve pre-configured in the current time and control curve configuration RAM When the difference between the start times of the subsequent constant speed control segments reaches a preset delay, data acquisition is started, so that the signals output by the multi-channel analog-to-digital conversion acquisition circuit corresponding to different energy points and/or the voltage/frequency converter The count value counted by the input pulse frequency signal is stored in the first-in-first-out data buffer of the programmable device to form the initial data.
在采谱结束时,再次将双晶单色器的角度由轴角编码器探测并通过显示器显示并传输到计算机。At the end of the spectrum collection, the angle of the double crystal monochromator is detected by the shaft angle encoder again, displayed on the display and transmitted to the computer.
在采谱结束后,将FIFO数据缓存器中的初始数据传送至计算机,由计算机整理初始数据,并根据在采谱开始及结束时取得的轴角编码器的值,修正初始数据中的能量标定,最终生成正式的快速XAFS实验数据文件,并在计算机中安装的人机交互界面上显示所采集的快速XAFS谱。After the spectrum acquisition is finished, the initial data in the FIFO data buffer is sent to the computer, and the computer arranges the initial data, and corrects the energy calibration in the initial data according to the value of the shaft angle encoder obtained at the beginning and end of the spectrum acquisition , and finally generate a formal fast XAFS experimental data file, and display the collected fast XAFS spectrum on the human-computer interaction interface installed in the computer.
特别需要注意,本申请的实施例中,上述的步进电机控制步骤和数据采集步骤是同时进行的,通过基于可编程器件的智能电子学设备,可以实现这两个步骤之间的快速同步。In particular, it should be noted that in the embodiments of the present application, the stepping motor control step and the data collection step are performed simultaneously, and the rapid synchronization between these two steps can be realized through intelligent electronic devices based on programmable devices.
在本申请的实施例中,多通道ADC采集电路包含的ADC通道数可以不少于2个通道,模数转换采集位数可以不低于10位。多路隔离电路可以是光学隔离电路或者磁隔离电路。图13示意性示出本申请实施例的另一种智能电子学设备的结构示意图。在该设备中,多通道ADC采集电路201包括三个ADC采集通道201a,并且多路光学隔离电路202包括三路光学隔离电路202a。In the embodiment of the present application, the number of ADC channels included in the multi-channel ADC acquisition circuit may be no less than 2 channels, and the number of acquisition bits for analog-to-digital conversion may be no less than 10 bits. The multi-channel isolation circuit may be an optical isolation circuit or a magnetic isolation circuit. FIG. 13 schematically shows a schematic structural diagram of another intelligent electronic device according to an embodiment of the present application. In this device, the multi-channel ADC acquisition circuit 201 includes three ADC acquisition channels 201a, and the multi-channel optical isolation circuit 202 includes a three-channel optical isolation circuit 202a.
在本申请的各实施例中,与可编程器件连接的通讯接口电路可以是USB接口、网口、串口、无线接口等。多路隔离电路和第一隔离电路可以是光学隔离电路或者磁隔离电路。可编程器件可以是现场可编程门阵列(FPGA)、微处理器(MPU)、微控制器(MCU)以及数字信号处理器(DSP)中的一种。In each embodiment of the present application, the communication interface circuit connected to the programmable device may be a USB interface, a network port, a serial port, a wireless interface, and the like. The multi-channel isolation circuit and the first isolation circuit may be optical isolation circuits or magnetic isolation circuits. The programmable device may be one of a field programmable gate array (FPGA), a microprocessor (MPU), a microcontroller (MCU), and a digital signal processor (DSP).
下面来解释为什么采用本申请实施例提供的智能电子学设备、QXAFS实验系统以及相应的数据采集和步进电机控制方法就可以解决前文提及的现有技术存在的问题(1)到(7)。The following explains why the problems (1) to (7) in the prior art mentioned above can be solved by adopting the intelligent electronic device, the QXAFS experimental system and the corresponding data acquisition and stepping motor control method provided by the embodiment of the present application .
1、本申请提供的智能电子学设备中,脉冲频率信号的计数由可编程器件实现,而不再由分立的定标器实现,步进电机的控制由可编程器件实现,而不再由分立的步进电机控制器实现,也就是说,本申请提供的智能电子学设备替代了常规XAFS实验系统中的步进电机控制器和定标器。这样,通过可编程器件读取预先存储在RAM中的控制曲线来同步进行步进电机的控制以及数据采集,实线了快速同步,进而克服了现有技术中由于无法快速同步造成的采谱速度受限的问题(1)。1. In the intelligent electronic equipment provided by this application, the counting of the pulse frequency signal is realized by a programmable device instead of a discrete scaler, and the control of the stepping motor is realized by a programmable device instead of a discrete scaler. The implementation of the stepper motor controller, that is to say, the intelligent electronic device provided by this application replaces the stepper motor controller and scaler in the conventional XAFS experimental system. In this way, the control curve of the stepper motor and the data acquisition are performed synchronously by reading the control curve pre-stored in the RAM through the programmable device, realizing fast synchronization, thereby overcoming the acquisition speed caused by the lack of fast synchronization in the prior art Restricted problem (1).
2、在本申请的实施例中,在RAM中预先配置有步进电机的控制曲线,该控制曲线包括用于进行数据采集的静止控制段或者减速后的匀速控制段,也就是说,步进电机采用波动速度运行,在低速或者静止的时候进行数据采集,而在非数据采集区间高速运行。采用该波动转动模式,可以减少或消除快速数据采集时的能量移动ΔE,可以在扫谱速度及ΔE两者的矛盾中获得最佳解决方案,从而解决了影响QXAFS数据质量因素的问题(2)。2. In the embodiment of the present application, the control curve of the stepper motor is pre-configured in the RAM, and the control curve includes a static control section for data collection or a constant speed control section after deceleration, that is to say, a stepping motor The motor runs at a fluctuating speed, and collects data at low speed or at rest, and runs at high speed in the non-data collection interval. Using this wave rotation mode can reduce or eliminate the energy movement ΔE during fast data acquisition, and can obtain the best solution in the contradiction between the scanning speed and ΔE, thus solving the problem of factors affecting the quality of QXAFS data (2) .
3、通过主机预扫描程序及相关的分析步骤的设置,在开始采谱之初通过预扫描,让用户在K空间观察白噪声的大小,通过观察K空间的噪声大小并结合光强、样品状态以及分析数据允许的统计误差等因素确定数据采集持续的时间,快速确定了在确保数据质量的前提下每个能量点的最小采样时间t(即,图7中的数据采集的持续时间Ts),进而优化了采谱速度,解决了影响QXAFS数据质量因素的问题(3)。3. Through the pre-scanning program of the host computer and the setting of related analysis steps, the user can observe the size of the white noise in the K-space through the pre-scanning at the beginning of the spectrum collection. By observing the noise size of the K-space and combining the light intensity and the state of the sample And factors such as the statistical error allowed by the analysis data determine the duration of data acquisition, and quickly determine the minimum sampling time t of each energy point under the premise of ensuring data quality (that is, the duration Ts of data acquisition in Figure 7), Furthermore, the spectrum acquisition speed is optimized, and the problems affecting the quality of QXAFS data are solved (3).
4、根据本申请的一个实施例,在智能电子学设备中可以通过多通道ADC采集电路以ADC采样方案实现数据采集,并且可以通过可编程器件对脉冲频率信号计数来通过积分方案实现数据采集,也就是说,该智能电子学设备提供了两种数据采集方式,因而,为进一步比较不同数据采集电路方案的优劣、为不同实验条件下采用不同的改进探测器系统硬件提供了灵活性,解决了影响QXAFS数据质量因素的问题(4)和(5)。4. According to an embodiment of the present application, in the intelligent electronic device, the data acquisition can be realized with the ADC sampling scheme through the multi-channel ADC acquisition circuit, and the data acquisition can be realized through the integration scheme by counting the pulse frequency signal through the programmable device, That is to say, the intelligent electronic device provides two data acquisition methods, thus, it provides flexibility for further comparing the advantages and disadvantages of different data acquisition circuit schemes, and adopting different improved detector system hardware under different experimental conditions. Issues (4) and (5) of factors affecting QXAFS data quality are addressed.
5、本申请的智能电子学设备基于可编程器件来实现步进电机的控制与数据采集,具有极高的执行及定时精度,确保了扫描中步进与采样的相位准确,解决了影响QXAFS数据质量因素的问题(6)。5. The intelligent electronic device of this application is based on programmable devices to realize the control and data acquisition of stepping motors, which has extremely high execution and timing accuracy, ensures the accurate phase of stepping and sampling in scanning, and solves the problem of affecting QXAFS data. Question of quality factor (6).
6、本申请提供的智能终端电子学设备集采样、步进驱动于一体,克服了常规XAFS系统中多设备间信号传输、转换、主机运算的时间开销,最大限度提高了系统整体采谱速度,解决了影响QXAFS数据质量因素的问题(7)。6. The intelligent terminal electronic equipment provided by this application integrates sampling and stepping drive, overcomes the time overhead of signal transmission, conversion, and host operation between multiple devices in the conventional XAFS system, and maximizes the overall spectrum acquisition speed of the system. Addressed issues with factors affecting QXAFS data quality (7).
图14示意性示出了采用如图2所示的系统获得的K空间Cu(铜)的K边EXAFS谱与从美国先进同步辐射光源(APS)的在线数据库发布的常规XAFS方法采集的标准的Cu的K边扩展XAFS(extend X-ray Absorption FineStructure,EXAFS)谱之间的比对效果,样品为5微米的标准铜箔。图14中黑色实线表示标准的Cu的K边EXAFS谱,灰色实线表示通过如图2所示的系统获得的Cu的K边EXAFS谱。由这两条曲线比较看出,两个谱在K空间中在12K以内吻合很好,而采谱时间仅为15秒,表明应用本申请的QXAFS系统可以具有较高的采谱质量和很快的采谱速度。Fig. 14 schematically shows the K-edge EXAFS spectrum of Cu (copper) in K-space acquired by the system shown in Fig. The comparison effect between the K-edge extended XAFS (extend X-ray Absorption FineStructure, EXAFS) spectrum of Cu, the sample is a standard copper foil of 5 microns. The black solid line in FIG. 14 represents the standard Cu K-edge EXAFS spectrum, and the gray solid line represents the Cu K-edge EXAFS spectrum obtained by the system shown in FIG. 2 . From the comparison of these two curves, it can be seen that the two spectra match well within 12K in K space, and the spectrum acquisition time is only 15 seconds, which shows that the application of the QXAFS system of the present application can have higher spectrum acquisition quality and faster The spectrum acquisition speed.
需要说明的是,本申请提供的QXAFS实验系统不限于图2中的轴角编码器、显示器、直线电机驱动器等设结构,本领域技术人员可以设计出其他的结构,本申请的重点在于智能电子学设备以及与该智能电子学设备相关联的组件。It should be noted that the QXAFS experimental system provided by this application is not limited to the structure of the shaft angle encoder, display, and linear motor driver in Figure 2, and those skilled in the art can design other structures. The focus of this application is on intelligent electronics. An electronic device and components associated with the intelligent electronic device.
虽然已参照几个典型实施例描述了本申请,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本申请能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。While the present application has been described with reference to several exemplary embodiments, it is understood that the words which have been used are words of description and illustration, rather than of limitation. Since the present application can be embodied in various forms without departing from the spirit or essence of the invention, it should be understood that the above-described embodiments are not limited to any of the foregoing details, but should be construed broadly within the spirit and scope of the appended claims. , all changes and modifications falling within the scope of the claims or their equivalents shall be covered by the appended claims.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310125282.3A CN103234986B (en) | 2013-04-11 | 2013-04-11 | An intelligent electronic device, a QXAFS (quick X-ray absorption fine structure) system and a data acquisition and motor control method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310125282.3A CN103234986B (en) | 2013-04-11 | 2013-04-11 | An intelligent electronic device, a QXAFS (quick X-ray absorption fine structure) system and a data acquisition and motor control method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103234986A CN103234986A (en) | 2013-08-07 |
| CN103234986B true CN103234986B (en) | 2015-03-18 |
Family
ID=48883037
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310125282.3A Active CN103234986B (en) | 2013-04-11 | 2013-04-11 | An intelligent electronic device, a QXAFS (quick X-ray absorption fine structure) system and a data acquisition and motor control method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103234986B (en) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104748766B (en) * | 2014-12-19 | 2017-10-13 | 中国航天科技集团公司第五研究院第五一三研究所 | A kind of X-ray pulsar spectral distribution simulation system |
| CN105731268B (en) * | 2015-01-22 | 2017-09-29 | 新沂时集创新创业科技产业园有限公司 | A kind of cargo transport lifts transporter |
| CN108233825A (en) * | 2017-12-08 | 2018-06-29 | 深圳市显控科技股份有限公司 | A kind of pulse control method and system |
| CN109490340B (en) * | 2019-01-22 | 2020-06-05 | 中国科学院高能物理研究所 | Method for processing test data of joint technology |
| CN112763432B (en) * | 2020-12-25 | 2023-04-28 | 中国科学院上海高等研究院 | Control method for automatically collecting experimental data of absorption spectrum |
| CN113281361B (en) * | 2021-05-12 | 2022-12-02 | 中国科学院高能物理研究所 | Quick scanning XAFS system |
| CN113376189A (en) * | 2021-05-12 | 2021-09-10 | 中国科学院高能物理研究所 | QXAFS electronics equipment |
| CN117647745B (en) * | 2023-12-01 | 2024-05-07 | 青岛艾诺仪器有限公司 | Battery micro-short circuit data acquisition method based on annular buffer |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH1194770A (en) * | 1997-09-19 | 1999-04-09 | Japan Science & Technology Corp | High vacuum XAFS measuring device |
| JP2003107018A (en) * | 2001-09-27 | 2003-04-09 | Sumitomo Chem Co Ltd | Evaluation method of addition polymerization catalyst component |
| KR100429830B1 (en) * | 1997-09-13 | 2004-06-16 | 삼성전자주식회사 | X-ray Electron Spectroscopy |
| CN1749741A (en) * | 2004-09-16 | 2006-03-22 | 中国科学院高能物理研究所 | X-ray absorption spectrum detector and method for chemical valence research |
| CN101065658A (en) * | 2004-11-29 | 2007-10-31 | 摩托罗拉公司 | Method for determining chemical content of complex structures using x-ray microanalysis |
| CN102621165A (en) * | 2012-04-05 | 2012-08-01 | 中国科学院上海应用物理研究所 | Data collection method based on monochromator quick-scanning control system |
| CN202486075U (en) * | 2012-03-02 | 2012-10-10 | 中国科学院上海应用物理研究所 | Data Acquisition System for Fluorescence XAFS Test |
-
2013
- 2013-04-11 CN CN201310125282.3A patent/CN103234986B/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100429830B1 (en) * | 1997-09-13 | 2004-06-16 | 삼성전자주식회사 | X-ray Electron Spectroscopy |
| JPH1194770A (en) * | 1997-09-19 | 1999-04-09 | Japan Science & Technology Corp | High vacuum XAFS measuring device |
| JP2003107018A (en) * | 2001-09-27 | 2003-04-09 | Sumitomo Chem Co Ltd | Evaluation method of addition polymerization catalyst component |
| CN1749741A (en) * | 2004-09-16 | 2006-03-22 | 中国科学院高能物理研究所 | X-ray absorption spectrum detector and method for chemical valence research |
| CN101065658A (en) * | 2004-11-29 | 2007-10-31 | 摩托罗拉公司 | Method for determining chemical content of complex structures using x-ray microanalysis |
| CN202486075U (en) * | 2012-03-02 | 2012-10-10 | 中国科学院上海应用物理研究所 | Data Acquisition System for Fluorescence XAFS Test |
| CN102621165A (en) * | 2012-04-05 | 2012-08-01 | 中国科学院上海应用物理研究所 | Data collection method based on monochromator quick-scanning control system |
Non-Patent Citations (7)
| Title |
|---|
| "A New Apparatus for Polarized X-ray Absorption Fine Structure Using Grazing-Incidence Fluorescence Excitation";Hiroyuki Oyanagi;《Journal of Synchrotron Radiation》;19981231(第5期);第48-53页 * |
| "IK220计数卡在XAFS线站数据采集系统改造中的应用";刘亨 等;《核技术》;20120831;第35卷(第8期);第561-567页 * |
| "Quick extended x-ray absorption fine structure instrument with millisecond time scale, optimized for in situ applications";S. Khalid 等;《REVIEW OF SCIENTIFIC INSTRUMENTS》;20100119;第81卷(第1期);第1-7页 * |
| "Solving the structure of reaction intermediates by time-resolved synchrotron x-ray absorption spectroscopy";Qi Wang 等;《THE JOURNAL OF CHEMICAL PHYSICS》;20081215;第129卷(第23期);第1-7页 * |
| "利用数据采集卡实现快速XAFS";刘涛 等;《核技术》;20041231;第27卷(第12期);第885-889页 * |
| "北京同步辐射1W1B XAFS的实验控制和QXAFS的实现";刘涛 等;《核技术》;20040630;第27卷(第6期);第401-404页 * |
| "基于Labview的XAFS光束线实验站数据采集系统";邹杨 等;《核技术》;20090430;第32卷(第4期);第246-250页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103234986A (en) | 2013-08-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103234986B (en) | An intelligent electronic device, a QXAFS (quick X-ray absorption fine structure) system and a data acquisition and motor control method | |
| CN102999644B (en) | Multi-function separation-type data collecting card | |
| CN201476879U (en) | Fast spectrum analysis system with synchronous scanning and sampling | |
| Ponce-Marquez et al. | Thomson scattering diagnostic upgrade on DIII-D | |
| CN108664425A (en) | A kind of data collecting system based on high speed analog-to-digital conversion and time-to-digital converter technology | |
| JP2010154728A (en) | Low-speed control method and apparatus for servo motor | |
| Cui et al. | ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers | |
| CN107643123A (en) | A kind of CCD detecting systems of micro spectrometer | |
| Coolen et al. | Computer-interactive system for stopped-flour kinetics with rapid scanning molecular absorption spectrometry | |
| CN113074813A (en) | Terahertz time-domain spectroscopy system and step length self-adaptive adjustment method thereof | |
| CN203672782U (en) | Spectral data acquisition system based on singlechip control | |
| CN103091260A (en) | System for controlling femtosecond laser two-dimensional infrared spectroscopy device | |
| CN114413941B (en) | Photocell detection system, coding control method, processing chip, device and medium | |
| CN102621165A (en) | Data collection method based on monochromator quick-scanning control system | |
| CN110275197A (en) | Electron Beam Inspection System | |
| CN113376189A (en) | QXAFS electronics equipment | |
| CN212514280U (en) | Raman spectrum acquisition device based on ARM and FPGA and Raman spectrometer | |
| CN113281361B (en) | Quick scanning XAFS system | |
| CN109375534A (en) | Synchronous control method and system for acquisition and detection of Rayleigh Brillouin scattering signals | |
| KR20120074687A (en) | Thomson scattering diagnostic data processing system by using epics based standard framework | |
| CN120161073A (en) | Intelligent electronics equipment and its applications for synchrotron radiation XAFS experiments | |
| JP2010107402A (en) | Spectrophotometer | |
| CN217034558U (en) | Raman analyzer electronic control system | |
| Caliebe et al. | Cam-driven monochromator for QEXAFS | |
| CN2420618Y (en) | Dtector for period method freauency stability and accuracy |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |