CN103235888B - The method of a kind of accurate Calculation Bianisotropic medium ball electromagnetic scattering - Google Patents
The method of a kind of accurate Calculation Bianisotropic medium ball electromagnetic scattering Download PDFInfo
- Publication number
- CN103235888B CN103235888B CN201310156058.0A CN201310156058A CN103235888B CN 103235888 B CN103235888 B CN 103235888B CN 201310156058 A CN201310156058 A CN 201310156058A CN 103235888 B CN103235888 B CN 103235888B
- Authority
- CN
- China
- Prior art keywords
- overbar
- sigma
- prime
- epsiv
- equation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 238000004364 calculation method Methods 0.000 title abstract description 6
- 239000013598 vector Substances 0.000 claims abstract description 35
- 239000011159 matrix material Substances 0.000 claims abstract description 30
- 230000005428 wave function Effects 0.000 claims abstract description 23
- 230000005672 electromagnetic field Effects 0.000 claims abstract description 11
- 230000006698 induction Effects 0.000 claims abstract description 10
- 230000005684 electric field Effects 0.000 claims description 8
- 230000014509 gene expression Effects 0.000 claims description 5
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 2
- 230000004907 flux Effects 0.000 claims 1
- 241000208340 Araliaceae Species 0.000 abstract 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 abstract 1
- 235000003140 Panax quinquefolius Nutrition 0.000 abstract 1
- 238000009795 derivation Methods 0.000 abstract 1
- 235000008434 ginseng Nutrition 0.000 abstract 1
- 238000011160 research Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
Landscapes
- Hall/Mr Elements (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
Description
技术领域 technical field
本发明属于电磁散射理论计算领域,具体涉及一种精确计算双各向异性介质球电磁散射的方法。 The invention belongs to the field of theoretical calculation of electromagnetic scattering, and in particular relates to a method for accurately calculating electromagnetic scattering of a bi-anisotropic medium sphere.
背景技术 Background technique
求解电磁散射比较传统的研究方法就是解析法,这一直是科学家追求的目标。所谓解析研究法是一种封闭形式的数学解答的方法,是直接求由麦克斯韦方程组导出的各种数学方程。对于某些边界条件规则的电磁问题非常有效。解析解可以为其他数值计算提供比较有效的数据,对数值计算结果的正确性进行验证,并能给出清晰的物理概念,因而具有非常重要的指导性意义。 The more traditional research method for solving electromagnetic scattering is the analytical method, which has always been the goal pursued by scientists. The so-called analytical research method is a method of closed-form mathematical solution, which is to directly find various mathematical equations derived from Maxwell's equations. Very effective for electromagnetic problems with certain boundary condition rules. Analytical solutions can provide more effective data for other numerical calculations, verify the correctness of numerical calculation results, and give clear physical concepts, so they have very important guiding significance.
恒定磁场作用下的等离子体和铁氧体等媒质,它们的电磁特性要分别用张量介电常数和张量磁导率来描述,即,它们具有各向异性的性质,称为各向异性煤质。 For media such as plasma and ferrite under the action of a constant magnetic field, their electromagnetic properties need to use the tensor dielectric constant and tensor permeability to describe, that is , they have anisotropic properties, called anisotropic coal quality.
对于各向异性介质球电磁散射解析解的研究现在开展得比较广泛,用不同的解析方法也能计算出球的雷达散射截面。 The research on the analytical solution of the electromagnetic scattering of the anisotropic medium sphere is widely carried out now, and the radar cross section of the sphere can also be calculated by using different analytical methods.
双各向异性媒介使得提供的电场与磁场之间的交叉耦合,对于求解此种介质球的解析解变的很困难。所以双各向异性介质球电磁散射解析解的研究很少几乎没有。 The doubly anisotropic medium makes the cross-coupling between the provided electric field and magnetic field difficult to solve analytically for such a medium sphere. Therefore, there are few researches on the analytical solutions of electromagnetic scattering by bi-anisotropic dielectric spheres.
发明内容 Contents of the invention
本发明的目的在于针对现有技术的不足,提出一种精确计算双各向异性介质球电磁散射的方法,同时证明球矢量波函数适用于双各向异性介质。 The purpose of the present invention is to address the deficiencies of the prior art, to propose a method for accurately calculating the electromagnetic scattering of a bi-anisotropic medium sphere, and to prove that the spherical vector wave function is suitable for a bi-anisotropic medium.
本发明解决其技术问题所采用的技术方案如下: The technical solution adopted by the present invention to solve its technical problems is as follows:
步骤1.利用无源麦克斯韦方程组和双各向异性媒介的本征方程推导出关于磁感应强度B的微分方程; Step 1. Utilize the passive Maxwell's equations and the eigenequation of the double anisotropic medium to derive the differential equation about the magnetic induction B ;
步骤2.将微分方程中和B相关的因子以球矢量波函数的形式表达出来,然后利用球矢量波函数M,N的正交性质得出一个含参数的矩阵方程,先利用矩阵方程满足非零解的条件计算出该矩阵方程的参数,再将参数代回到含参数的矩阵方程中得到矩阵方程的非零解; Step 2. Express the factors related to B in the differential equation in the form of spherical vector wave functions, and then use the orthogonal properties of spherical vector wave functions M and N to obtain a matrix equation with parameters. First, use the matrix equation to satisfy non The condition of zero solution calculates the parameters of the matrix equation, and then substitutes the parameters back into the matrix equation with parameters to obtain the non-zero solution of the matrix equation;
步骤3.构造一个新的函数,用新函数重新表示磁感应强度B,进而求出介质球内部的电磁场,然后把介质球内的电磁场和球外的入射电磁场、散射电磁场代入到边界条件中,得出散射矩阵。 Step 3. Construct a new function, use the new function Re-express the magnetic induction intensity B, and then obtain the electromagnetic field inside the dielectric sphere, and then substitute the electromagnetic field inside the dielectric sphere, the incident electromagnetic field outside the sphere, and the scattered electromagnetic field into the boundary conditions to obtain the scattering matrix.
如步骤1所述,将各向异性媒介本征方程中添加一项变为双各向异性媒介,双各向异性媒介的本征方程具体如下: As described in step 1, add an item to the eigenequation of the anisotropic medium to become a double anisotropic medium, and the eigenequation of the double anisotropic medium is as follows:
(1) (1)
其中,电位移矢量D、电场强度E、磁场强度H和磁感应强度B都是矢量,以黑色粗体来表示矢量;表示虚数单位;是用来衡量媒介电磁特性的参数; Among them, the electric displacement vector D , the electric field strength E , the magnetic field strength H and the magnetic induction strength B are all vectors, and the vectors are represented in black bold; represent imaginary units; It is a parameter used to measure the electromagnetic characteristics of the medium;
无源麦克斯韦方程组具体如下: Passive Maxwell's equations are as follows:
(2a) (2a)
(2b) (2b)
(2c) (2c)
(2d) (2d)
把式1代入到式2a、2b、2c、2d中,推导出磁感应强度B的微分方程如下: Substituting Equation 1 into Equations 2a, 2b, 2c, and 2d, the differential equation of magnetic induction B is derived as follows:
(3) (3)
其中,符号▽×表示对一个矢量求旋度;ω为电磁波的频率;为的逆;; Among them, the symbol ▽× represents the curl of a vector; ω is the frequency of the electromagnetic wave; for inverse of ;
如步骤2所述,将式3中写成球矢量波函数的形式,具体如下: As described in step 2, the formula 3 Written in the form of a spherical vector wave function, the details are as follows:
(4) (4)
(5) (5)
(6) (6)
其中, 与表示一样表示球矢量波函数,上标(1)表示矢量波函数由第一类球贝塞尔函数构成,下标表示球矢量波函数中的参数;表示一个待定量,表示球坐标系中的一个矢量;球矢量波函数前面的系数由媒介本征方程中的张量决定的,且,表示入射电场的场强。 in, and The same means the spherical vector wave function, the superscript (1) means that the vector wave function is composed of the first kind of spherical Bessel function, the subscript Represents the parameters in the spherical vector wave function; represents a pending quantity, Represents a vector in the spherical coordinate system; the coefficients in front of the wave function of the spherical vector are determined by the tensor in the eigenequation of the medium, and , Indicates the field strength of the incident electric field.
矢量波函数函数前面的系数定义具体如下: The coefficients in front of the vector wave function are defined as follows:
,(7) , (7)
,(8) , (8)
(9) (9)
(10) (10)
(11) (11)
(12) (12)
(13) (13)
其中:,当时,;当时,,; in: ,when hour, ;when hour, , ;
,(14) , (14)
,(15) , (15)
(16) (16)
,(17) , (17)
(18) (18)
其中,在本发明中,表示同一个量,下标的不同是在不同的表达式中用以区分;同理、、均表示同一个量。 Among them, in the present invention, Indicates the same quantity, and the difference in subscripts is used to distinguish between different expressions; similarly , , Both represent the same quantity.
将式4、5、6代入到式3中得: Substitute equations 4, 5, and 6 into equation 3 to get:
(19) (19)
利用球矢量波函数的性质可得: Using the properties of the spherical vector wave function, we can get:
用矩阵的形式表示如下: Expressed in matrix form as follows:
(20) (20)
式20转变为如下形式: Equation 20 transforms into the following form:
(21) (twenty one)
其中,I是单位矩阵,式21表达的含义是:存在这样的参数k使得方程有非零解,通过矩阵知识知道只需令式21的行列式为零,解出参数,参数记解为,再用代入式20求出方程不为零的解,记, Among them , I is the identity matrix, and the meaning expressed in formula 21 is: there is such a parameter k that the equation has a non-zero solution, and the matrix knowledge only needs to make the determinant of formula 21 zero to solve the parameter ,parameter recorded as , then use Substitute into equation 20 to find the solution that the equation is not zero ,remember ,
所述的步骤3中构造一新的矢量函数,具体如下: Construct a new vector function in the described step 3 ,details as follows:
其中为待定系数,由介质球体表面的边界条件决定; in is an undetermined coefficient, which is determined by the boundary conditions on the surface of the medium sphere;
令(22) make (twenty two)
(23) (twenty three)
(24) (twenty four)
式22、23、24中矢量波函数前面的系数多出的下标l是将解代入式7、8、9、16中引起的;、、都是不为零的数,并且只在对它们求旋度的时候变为零。 In formulas 22, 23, and 24, the extra subscript l in front of the coefficients of the vector wave function is to convert the solution Caused by substituting into formulas 7, 8, 9, and 16; , , are non-zero numbers, and only become zero when curling them.
其中的参数具体如下: The parameters are as follows:
,; , ;
球外部的散射场和入射场分别定义为:E I ,H I 和Es,Hs,表达式如下(参看:Z.F.LinandS.T.Chui.“Electromagneticscatteringbyopticallyanisotropicmagneticparticle。”PhysicalReviewE,vol.69,pp.056624-2-056624-24,2004) The scattered field and the incident field outside the sphere are respectively defined as: E I , H I and Es , Hs , the expressions are as follows (see: ZF Lin and S.T. Chui. "Electromagneticscatteringbyopticallyanisotropicmagneticparticle."PhysicalReviewE,vol.69,pp.056624-2- 056624-24, 2004)
(25) (25)
(26) (26)
(27) (27)
(28) (28)
其中,,为真空中的介电常数,为真空中的磁导率;表示入射波方向、极化特性等量;式27、28中上标(3)表示球矢量波函数是由第三类贝塞尔函数构成;球体内部介质和球外介质都为理想介质,所以球体表面不存在面电荷和面电流,所以球体表面上任意一点的电场和磁场的切向分量是连续的,即: in, , is the dielectric constant in vacuum, is the magnetic permeability in vacuum; Indicates the incident wave direction, polarization characteristics, etc.; the superscript (3) in Equations 27 and 28 indicates that the spherical vector wave function is composed of Bessel functions of the third kind; both the internal medium and the external medium of the sphere are ideal media, so There is no surface charge and surface current on the surface of the sphere, so the tangential components of the electric field and magnetic field at any point on the surface of the sphere are continuous, that is:
(29) (29)
(30) (30)
将式23~28代入到上式29、30化简得到: Substituting formulas 23-28 into the above formulas 29 and 30 to simplify:
其中,,为球体的半径;,为球贝塞尔函数,为第一类球汉克尔函数。表示对求导数,同理。 in, , is the radius of the sphere; , is a spherical Bessel function, is a spherical Hankel function of the first kind. express yes Find the derivative, similarly .
将上式写成矩阵的形式: Write the above formula in matrix form:
(31) (31)
(32) (32)
解方程组31、32得到: Solving equations 31 and 32 gives:
用雷达散射截面(radarcrosssection.RCS)表征目标反射雷达波散射率的特征,把它作为评价目标电磁散射特性的最基本的参数,具体如下(参看:Z.F.LinandS.T.Chui.“Electromagneticscatteringbyopticallyanisotropicmagneticparticle”PhysicalReviewE,vol.69,pp.056624-2-056624-24,2004): The radar cross section (radar cross section. RCS) is used to characterize the characteristics of the scattering rate of the reflected radar wave of the target, and it is used as the most basic parameter for evaluating the electromagnetic scattering characteristics of the target. The details are as follows (see: Z.F.LinandS.T.Chui. vol.69, pp.056624-2-056624-24, 2004):
(33) (33)
(34) (34)
(35) (35)
把式27代入到式35中得到: Substitute Equation 27 into Equation 35 to get:
(36) (36)
本发明的有益效果如下: The beneficial effects of the present invention are as follows:
以球矢量波函数为基础提出了双各向异性介质球电磁散射的解析解。第一次给出计算结果。需要求解含参量的矩阵方程的行列式,由行列式解出参量,再得到矩阵方程的非零解。由于计算电尺寸较大的球体时需要高阶的矩阵,而高阶的含参数的矩阵方程的参数计算机不容易算出。所以本方法比较适用于求解电尺寸较小的双各向异性介质球的电磁散射。 Based on the spherical vector wave function, an analytical solution for the electromagnetic scattering of a doubly anisotropic dielectric sphere is proposed. The calculation result is given for the first time. It is necessary to solve the determinant of the matrix equation with parameters, solve the parameters from the determinant, and then obtain the non-zero solution of the matrix equation. Since a high-order matrix is needed to calculate a sphere with a large electrical size, the computer is not easy to calculate the parameters of the high-order matrix equation containing parameters. Therefore, this method is more suitable for solving the electromagnetic scattering of bi-anisotropic dielectric spheres with small electric size.
附图说明 Description of drawings
图1是本发明实施例1给出了介质球的雷达散射截面与散射角对应关系 Fig. 1 is the corresponding relationship between the radar scattering cross section and the scattering angle of the dielectric sphere given in Embodiment 1 of the present invention
图2是本发明实施例2给出了介质球的雷达散射截面与散射角对应关系 Fig. 2 is the corresponding relationship between the radar scattering cross section and the scattering angle of the dielectric sphere given in Embodiment 2 of the present invention
图3是本发明实施例3给出了介质球的雷达散射截面与散射角对应关系图4是本发明实施例4给出了介质球的雷达散射截面与散射角对应关系 Figure 3 is the corresponding relationship between the radar scattering cross section and the scattering angle of the dielectric sphere given in Embodiment 3 of the present invention Figure 4 is the corresponding relationship between the radar scattering cross section and the scattering angle of the dielectric sphere given in Embodiment 4 of the present invention
图5是本发明实施例5主要参数和例4中一样,研究变化时对E面雷达散射截面的影响: Fig. 5 is that the main parameters of embodiment 5 of the present invention are the same as in example 4, research The influence of the change on the radar cross section of the E surface:
图6是本发明实施例6主要参数和例4中一样,研究变化时对H面雷达散射截面的影响: Fig. 6 is that the main parameters of embodiment 6 of the present invention are the same as in example 4, research The influence of the change on the radar cross section of the H surface:
具体实施方式 detailed description
下面结合附图和实施例对本发明作进一步说明。 The present invention will be further described below in conjunction with drawings and embodiments.
一种精确计算双各向异性介质球电磁散射的方法,包括以下步骤: A method for accurately calculating electromagnetic scattering of a double anisotropic dielectric sphere, comprising the following steps:
对媒介本征方程各张量进行赋值: Assign values to each tensor of the medium eigenequation:
通过fortran计算出,并输出这两个矩阵到MATLAB Calculated by fortran , and output these two matrices to MATLAB
在MATLAB中计算行列式 Calculate determinant in MATLAB
。得出关于k的一个方程,解出这个方程的未知量k。得到的解记为,将代入方程中求出。然后通过和计算。 . Obtain an equation about k, and solve the unknown quantity k of this equation. The obtained solution is denoted as ,Will Substitute into the equation to find . then pass and calculate .
综上所述,介质球内部的都能够计算得出,且入射场是已知的,通过边界条件将入射场和散射场能够算出介质球的散射场,进而通过由散射场就得到雷达散射截面(RCS) To sum up, the inside of the dielectric sphere can be calculated, and the incident field is known, the incident field and the scattering field can be calculated through the boundary conditions to calculate the scattering field of the dielectric sphere, and then the radar cross section (RCS) can be obtained by the scattering field
。 .
如图1所示,图中为本发明实施例1给出了介质球的雷达散射截面与散射角对应关系,其参数为,,,,,,所对比的数据来自于文献(You-LinGeng.“Scatteringofaplanewavebyananisotropicferrite-coatedconductingsphere”IETMicrow.AntennasPropag,2008,2,(2),pp.158-162.)。 As shown in Figure 1, the figure shows the correspondence between the radar scattering cross section and the scattering angle of the dielectric sphere for Embodiment 1 of the present invention, and its parameters are , , , , , , The compared data comes from the literature (You-Lin Geng. "Scattering of a plane wave by ananisotropic ferrite-coated conductingsphere" IET Microw. Antennas Propag, 2008, 2, (2), pp.158-162.).
如图2所示,图中为本发明实施例2给出了介质球的雷达散射截面与散射角对应关系,其参数为,,,,。 As shown in Figure 2, the figure shows the correspondence between the radar cross section of the dielectric sphere and the scattering angle for Embodiment 2 of the present invention, and its parameters are , , , , .
如图3所示,图中为本发明实施例3给出了介质球的雷达散射截面与散射角对应关系,其参数为。 As shown in Figure 3, the figure shows the corresponding relationship between the radar scattering cross section and the scattering angle of the dielectric sphere for Embodiment 3 of the present invention, and its parameters are .
如图4所示,图中为本发明实施例4给出了介质球的雷达散射截面与散射角对应关系,其参数为 。 As shown in Figure 4, the figure shows the corresponding relationship between the radar scattering cross section and the scattering angle of the dielectric sphere for Embodiment 4 of the present invention, and its parameters are .
如图5所示,图中为本发明实施例5主要参数和例4中一样,研究变化时对E面雷达散射截面的影响: As shown in Figure 5, the main parameters of embodiment 5 of the present invention are the same as in example 4 among the figure, research The influence of the change on the radar cross section of the E surface:
如图6所示,图中为本发明实施例6主要参数和例4中一样,研究变化时对H面雷达散射截面的影响。 As shown in Figure 6, the main parameters of embodiment 6 of the present invention are the same as in example 4 among the figure, research The influence of the change on the H-surface radar cross section.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310156058.0A CN103235888B (en) | 2013-04-27 | 2013-04-27 | The method of a kind of accurate Calculation Bianisotropic medium ball electromagnetic scattering |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310156058.0A CN103235888B (en) | 2013-04-27 | 2013-04-27 | The method of a kind of accurate Calculation Bianisotropic medium ball electromagnetic scattering |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103235888A CN103235888A (en) | 2013-08-07 |
| CN103235888B true CN103235888B (en) | 2016-04-06 |
Family
ID=48883928
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310156058.0A Expired - Fee Related CN103235888B (en) | 2013-04-27 | 2013-04-27 | The method of a kind of accurate Calculation Bianisotropic medium ball electromagnetic scattering |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103235888B (en) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106202594B (en) * | 2015-05-07 | 2019-12-27 | 南京理工大学 | Time domain discontinuous Galerkin method for analyzing transient electromagnetic scattering characteristics of mixed target |
| EP3521806B1 (en) * | 2018-02-06 | 2024-12-04 | Malvern Panalytical Limited | Multi-angle dynamic light scattering |
| CN109766576B (en) * | 2018-12-05 | 2021-09-17 | 西安电子科技大学 | Analytic method for polarized Bessel vortex beam transmission in anisotropic medium |
| CN109859173B (en) * | 2019-01-08 | 2021-04-20 | 杭州电子科技大学 | A medical imaging method for early breast cancer detection based on electromagnetic inverse scattering |
| CN110489714B (en) * | 2019-07-17 | 2022-09-30 | 西安理工大学 | Method for calculating two-dimensional random rough surface scattering statistical moment |
| CN112231947B (en) * | 2020-09-16 | 2024-02-23 | 华中科技大学 | Simulation method and system for double anisotropic waveguides |
| CN117310574B (en) * | 2023-11-28 | 2024-02-13 | 华中科技大学 | Method for obtaining magnetic field conversion matrix, external magnetic field measurement method and system |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5677893A (en) * | 1994-07-07 | 1997-10-14 | Schlumberger Technology Corporation | Method of processing seismic data |
| CN101194262A (en) * | 2005-06-09 | 2008-06-04 | 埃克森美孚上游研究公司 | Method for determining earth vertical electrical anisotropy in marine electromagnetic surveys |
| CN101384929A (en) * | 2006-02-21 | 2009-03-11 | Lg化学株式会社 | Anisotropic diffusion sheet |
| CN102508220A (en) * | 2011-10-24 | 2012-06-20 | 西瑞克斯(北京)通信设备有限公司 | Method for obtaining radar cross section (RCS) of homogeneous bi-isotropic medium object |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2863052B1 (en) * | 2003-12-02 | 2006-02-24 | Inst Francais Du Petrole | METHOD FOR DETERMINING THE COMPONENTS OF A TENSEUR OF EFFECTIVE PERMEABILITY OF A POROUS ROCK |
| US8837031B2 (en) * | 2007-11-09 | 2014-09-16 | Duke University | Finite-embedded coordinate designed transformation-optical devices |
-
2013
- 2013-04-27 CN CN201310156058.0A patent/CN103235888B/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5677893A (en) * | 1994-07-07 | 1997-10-14 | Schlumberger Technology Corporation | Method of processing seismic data |
| CN101194262A (en) * | 2005-06-09 | 2008-06-04 | 埃克森美孚上游研究公司 | Method for determining earth vertical electrical anisotropy in marine electromagnetic surveys |
| CN101384929A (en) * | 2006-02-21 | 2009-03-11 | Lg化学株式会社 | Anisotropic diffusion sheet |
| CN102508220A (en) * | 2011-10-24 | 2012-06-20 | 西瑞克斯(北京)通信设备有限公司 | Method for obtaining radar cross section (RCS) of homogeneous bi-isotropic medium object |
Non-Patent Citations (4)
| Title |
|---|
| Scattering by an electrically small bianisotropic sphere in a gyroelectromagnetic uniaxial medium;A.Lakhtakia et al;《IEE PROCEEDINGS-H,》;19920630;第139卷(第3期);第217-220页 * |
| Time-Domain Finite-Difference and Finite-Element Methods for Maxwell Equations in Complex Media;Fernando L.Teixeira;《IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION》;20080831;第56卷(第8期);第2150-2166页 * |
| 单轴双各向异性媒质柱体的电磁散射;张明 等;《电波科学学报》;20000930;第15卷(第3期);第343-346页 * |
| 部分填充双各向异性介质的圆柱形波导中混合模特性研究;尹文言 等;《电子科学学刊》;19950531;第17卷(第3期);第276-282页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103235888A (en) | 2013-08-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103235888B (en) | The method of a kind of accurate Calculation Bianisotropic medium ball electromagnetic scattering | |
| CN105717547B (en) | A kind of anisotropic medium mt non-grid numerical simulation method | |
| Li et al. | Recovering multiscale buried anomalies in a two-layered medium | |
| CN104573376B (en) | A Transient Field Far-Field Extrapolation Method for Computing Electromagnetic Scattering by Finite-Difference Time-Domain Method | |
| CN117725769A (en) | Complex model aviation electromagnetic three-dimensional fast forward modeling method based on multi-scale finite element | |
| CN103984033B (en) | Two-dimensional retrieval method for surface nuclear magnetic resonance | |
| Gao et al. | Eigenvalue analysis for acoustic problem in 3D by boundary element method with the block Sakurai–Sugiura method | |
| CN105825015B (en) | A kind of time-domain finite difference for magnetized plasma | |
| CN110502785B (en) | An Electromagnetic Numerical Method for Calculating Waveguide S-parameters in Three-Dimensional Time Domain | |
| Deng et al. | On regularized full-and partial-cloaks in acoustic scattering | |
| CN108021533A (en) | A kind of method that any chromatic dispersion material electromagnetic property is solved based on generalized coordinates system | |
| CN104809286B (en) | The implementation method for exactly matching absorbing boundary of coordinate is extended in a kind of plasma | |
| CN114065585A (en) | Three-dimensional electrical source numerical simulation method based on coulomb specification | |
| CN108052738A (en) | The golden analysis method of high-order part unconditional stability time-discontinuous gal the Liao Dynasty of dispersive medium | |
| CN103632028B (en) | Analytical Method of Electromagnetic Scattering by Multilayer Spin Electromagnetic Anisotropic Dielectric Ball | |
| CN107066815A (en) | A kind of analytic method for calculating sub-surface conductors ball electromagnetic scattering | |
| CN104915324B (en) | Cavity electromagnetic scattering containing dielectric object hybrid analysis | |
| Liu et al. | A well‐conditioned integral equation for electromagnetic scattering from composite inhomogeneous bi‐anisotropic material and closed perfect electric conductor objects | |
| He et al. | Comparative study on the applicability of regularization method in ship’s magnetic signature modeling based on monopole array | |
| CN104679919B (en) | Calculate the Extrapolation method of microwave resonator circuits time domain response | |
| CN104008249B (en) | Dynamic contour model based surface nuclear magnetic resonance inversion method | |
| CN106294283B (en) | A Fast Method of Time Domain Integral Equation Based on Taylor Series Expansion | |
| CN103135140B (en) | A kind of central loop TEM full phase true resistivity computing method of non-flanged effect | |
| CN103076638A (en) | Processing method for dual Bessel functions in one-dimensional layered earth central loop TEM (transverse electric and magnetic field) formula | |
| CN114547542A (en) | Three-dimensional controllable source electromagnetic forward modeling method and system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160406 Termination date: 20180427 |